首页

> 学术发表知识库

首页 学术发表知识库 问题

小学数学导入论文目前研究概况

发布时间:

小学数学导入论文目前研究概况

随着国家素质教育目标的提出和新课程改革的推行,探究式教学开始在小学数学教学中逐渐被推广,数学的教学在小学生的教育中占据着至关重要的地位。下面是我为大家整理的小学数学小论文,供大家参考。

课堂教学设计,是解决教学问题的一种特殊设计活动,课堂教学设计不仅是一门科学,更是一门艺术,其中学生对教学内容的认知是课堂教学的重心,是教学活动的中心,更是达到课堂教学目的的重要保证。数学作为小学基本课程之一,担负着学生基础数理逻辑思维和抽象思维培养的重任。下面笔者就小学数学课堂教学设计认知能力培养的方法创新谈几点看法。

一、小学数学课堂教学设计中认知能力培养的现状与问题分析

(一)小学数学课堂教学设计认知能力培养的现状

创新趋势已经显现。随着经济发展科技进步,教学硬件设施逐步高科技化,教师队伍整体素质提升,对先进教学设施地运用逐步常态化,同时针对小学生的年龄特点在课堂教学设计中进行了认知能力培养方法的探索,取得了一定的成效。课堂教学设计仍以依赖型为主。目前在我国的教育尤其是基础教育中,由于学生的学习技能欠缺,基础薄弱,数学课堂教学设计仍以依赖型为主。在依赖型的教学设计中,认知能力培养的重要性被忽视,讲授的知识大多只局限于课本和测验中,学生的学习内容与生活实际割裂,这种情况下虽然教师能够更容易地控制课堂进度,在短期内取得相对较好的教学效果。但长远来看不利于学生学习能力和运用知识能力的培养,更不利于学生学习兴趣的养成。

(二)小学数学课堂教学设计认知能力培养存在的问题

在教学思维方式上的创新存在不足。目前,大多数教师在数学课堂学生认知能力培养方法设计上的创新多为形式创新,过于追求新器材多媒体教学,花哨的设计使学生一时无法抓住关键,复杂的教具让数学课变成了手工课、观影课,课堂教学设计的创新若只停留在“形”上,对教学目的的实现反而会产生不利的影响。对学生学习能力把握有偏差。学生在每个年龄阶段的学习能力和表现特点都不同,数学作为一门相对抽象和枯燥的学科。如果教师对学生学习能力把握有偏差,没有按照学生学习能力所能达到的水平进行课堂教学设计,就很容易造成认知能力培养方法的失败,无法真正达到教学目的。对学生认知主动性培养不足。多数教师都以完成教学目标为目的,而在教授知识的同时将培养学生学习主动性放在相对次要的位置,这就容易导致前文所说的依赖型学习方式无法改变,学生对数学这门课程的认知只能停留在一门学科而不是一个兴趣上。

二、小学数学课堂教学设计中认知能力培养方法的创新方向

(一)教学思维方式的创新

思维决定思路,方式决定方法,教育教学创新中思维方式的创新至关重要。教师的教学思维方式很大程度上将影响学生的思维水平。推动教学思维方式的创新,要使教师真正认识到教学思维方式创新的重要性。针对小学数学课程的特点和学生特点,在教学研讨活动中要积极学习先进经验,发扬探索精神,改进教学方式,为数学课堂教学设计中认知环节的创新打好基础。通过动手操作培养认知能力,帮助学生思维。根据小学生年龄特点,数学课堂教学要重视操作认知,学生在操作过程中动用手、口、脑等多种感官,积极思维,也有助于发展思维。设计北师大版小学数学三年级下册图形的运动(轴对称)一课时,注重让学生动手把心形卡、五角星、银杏树叶按教师要求对折,帮助学生认知对折后重合,从而了解这样的图形是轴对称图形。学生常常是一边操作一边思考,他们亲身经历了所学知识的发生发展过程,认知、掌握学习知识的方法和途径。通过思考问题培养认知能力,激活学生思维。问题是思维的动力。小学生需要在教师的引导下组织自己的思维活动。因而教师要在教学中精心设计具有启发性、思考性的问题,可以激活学生思维的浪花,调动学生思维的主动性和创造性。通过思考、讨论教师提出的问题,正确把握小学生的认知需求,激发学习兴趣、获得数学知识和技能。

(二)在课堂教学设计中科学运用认知能力培养方式

小学数学课堂教学设计要围绕教学目标来开展,认知能力培养作为课堂教学设计的一个重要部分,要始终坚持既定的教学目标,准确分析教学内容中的重点、难点,针对小学生知识水平和数学课程特点,摒弃过于繁复和抽象的认知概念,使认知能力培养方式符合教学需要,维护课堂教学设计的整体性、层次性、延续性和针对性。教学厘米的认识,让学生认识一厘米有多长时,我借助直尺上“厘米”这个长度单位,指导学生测量一个手指的宽度、衣服上纽扣的宽度,帮助学生建立“一厘米”的表象,让学生的认知活动直观、具体,初步感知长度单位、感受生活中处处有数学。

(三)认知能力培养要多与生活实际相联系

小学生由于表达和理解能力的限制,对于相对抽象的数学概念很难理解和掌握,因此,在教学中认知能力的培养更要注意与实际生活相联系。教师要养成换位思考的习惯,多从学生的角度想问题,选取学生普遍能够理解的例子进行讲授,由生活实际展开,提炼知识点,再与生活实际相联系,形成环状记忆,当学生在生活中再次遇到相关事物时自然会联想到相应的数学知识点,这将有助于学生真正掌握相关知识,活学活用,又能减少机械记忆复习所消耗的时间和精力,更有助于学生学习能力的提升。设计北师大版小学数学三年级下册《长方形面积》时,有意从猜一猜两位粉刷匠叔叔谁刷的墙面大导入新课,在学生获得长方形面积计算公式之后,让他们通过分别计算两块墙面的面积来验证课前的猜测。拓展练习时,注意设计应用性练习题:1.学校给老师新发了一张办公桌,长140厘米、宽80厘米。教师想给整个桌面铺上玻璃,要买多大玻璃板?2.班里小亮家要装修新房,客厅的长6米、宽4米,需要买多少平方米的地板?如果一平方米90元,需要多少钱?在数学教学中,充分创设生活情境、营造氛围,能够加深学生对所学知识的体验和认知,将所学知识转化为能力。让数学教学生活化、日常生活课堂化,用数学、学数学,引导学生用已有的认知解决实际问题,丰富学生生活体验,有利于帮助学生养成用数学的眼光看待身边事物的习惯,有利于提高学生的数学素养。

(四)注意观察学生的反馈

无论什么样的课堂教学设计,最终都要落在实践上,都要经过学生反馈的检验。数学课堂教学认知能力的培养,在科学分析学生学习能力和基础知识水平的基础上,设计出的创新型认知方案,实践过程中要注意收集学生的反馈,比如学生喜欢那个部分不喜欢那个部分,哪一类学生适应这种方案哪一类学生不适应,在创新方案下教学目标达到的比例是否有所提升等,根据收集到的反馈对既有方案进行改良,然后继续进行实践,再收集、再改良、再实践。教育上的创新不能是一蹴而就的,认知能力培养的创新应该是一个螺旋式上升的过程,在不断积累反馈的过程中,达到质的飞跃。

新课程改革强调学生在获取知识技能、构建知识体系、达成知识目标过程中的情感体验,这种体验就是数学情感。它是学生数学学习过程中的态度,是获得成功时的内心体验和心理感受,更是明确学习动机、激发学习兴趣以及克服困难和探索新知的意志品质,它贯穿于学习活动的始终。数学学习逻辑性、系统性强,要求学生思维严谨、缜密,为了避免学生因枯燥而产生厌烦和畏惧的心理,有些教师常用数学家的事迹、数学趣味故事等灵活多样的方法激发学生的兴趣,把数学情感、数学文化渗透于课堂,以培养学生良好的意志品质、积极的情感态度和严谨的思维习惯,从而使数学课堂更高效,使小学数学教学不仅成为引导学生获得数学知识和技能的过程,也成为学生感受、体验和领悟的过程,更成为对学生情感、态度和价值观进行感染、渗透的过程。

一、利用认知过程进行数学情感渗透

小学数学教学目标的达成有两条主线构成。一条是获得知识和技能(结果)的明线,另一条是大胆质疑、积极探索、取得成功的情感体验(过程),即暗线。这两条线交织在一起,相依共存,互为补充。在教学过程中,认知因素与情感因素密切相关、相互作用,积极的学习情感能够促进知识技能的形成,而知识技能形成的过程中又可升华这种情感体验。如解决“鸡兔同笼”“平行四边形、三角形、梯形的面积计算”等具有严密逻辑性的数学问题,对于年龄小、注意力持续时间短、自控能力差的小学生来说是一个艰难的过程,此时应巧妙穿插学习情感和态度教育,鼓励学生理清学习思路,不怕困难认真思考,采取问题推导的形式,引导学生寻找数量、图形之间的关系,以及相互关系转化,推导出结论,促使学生在“山重水复疑无路”的困难面前,感受到“柳暗花明又一村”的新境界。在此过程中,学生通过独立思考、合作交流等形式,举一反三,不断总结发现解决问题的思路及方法,完成知识的迁移,体验到了成功的喜悦。由此可见,在数学认知过程中,认知与情感相互依存、相互促进、相互发展。在课堂中进行情感渗透,有助于培养浓厚的数学兴趣和良好的思维习惯,为逐步提升学习能力,形成高效课堂打下坚实的基础。

二、通过背景知识进行数学情感渗透

“初步认识数学与人类生活的密切联系并感受数学对人类历史发展的作用,对学生进行数学价值与数学历史发展的渗透。”这是新课标提出的要求,也是高效课堂的需要。通过对数学发展历史的了解,学生可以接触到广泛的数学知识,可以体会到数学在人类发展历史中的作用和价值,可以感受到学好数学知识的重要性。在学习“万以内数的认识”一课时,可以先引导学生了解数字的由来,即原始人用小石子、绳子打结或在树木上刻出划痕表示简单的数概念,当有了10块小石子后,用大一点的物体表示一个十即“逢十进一”。接着引导学生了解文字出现后,记录方法虽然有效但不统一,对于很大的数字记录十分不便,于是发明了罗马数字表示。最后了解公元八世纪印度人发明了只含有1,2,3,4,5,6,7,8,9九个符号的记数法,并且约定数字位置决定数值大小,例如,数字89中8表示8个十,9表示9个一,这一发明被商人带入阿拉伯后称为阿拉伯数字,使用至今成为世界数学的通用语言,恩格斯称它为“最美妙的发明”。又如,在认识“方向”时,结合认识东、南、西、北方位,向学生介绍“指南针”这一背景知识,让学生了解指南针是我国古代四大发明之一,它的出现为人类文明与进步做出了巨大贡献。渗透这些数学背景知识引导学生了解历史,感受古人的聪慧以及对科学知识的追求和向往,增强学生的民族自豪感和求知责任感,激发学生学好数学的自信心,促进学生进一步体会到数学的神奇与价值,使课堂更加高效。

三、挖掘生活素材进行数学情感渗透

数学是为了适应高速发展的现代社会而生成的应用性学科,主要解决现实生活中的各种问题,是一切学科的基础。数学新课标要求,“数学内容要更加生活化”。那些从人们的日常生活中提炼而成数字、图形、符号、公式方便了人们生活,形成了独特的魅力。通过“认识图形”的教学,使学生感受到图形的变化组合丰富了我们的生活,美化了我们的环境。通过“统筹方法”“认识时间”的学习,帮学生初步树立合理安排时间的意识,使学生明白珍惜时间的重要性;通过回收废品的情景教学解决比多比少的问题,通过捐书、买书情景教学解决进位加法问题;通过种树活动情景教学解决除法问题等,这些情景的设计蕴涵着一种思想,把品德教育渗透在具体的数学情景中,通过创设情景,在解决问题的过程中即时对学生进行环保、爱心、安全等思想情感的渗透,促使学生形成健康发展的情感态度。经常在数学活动中进行正面教育引导,能够培养学生树立正确的人生观和价值观,提高学习有效性并以此指导自己的行为,使积极的态度情感成为学生学习的动力源泉。

四、借助典型事例进行数学情感渗透

小学数学教学实践活动是小学数学教学过程中的一个重要部分,加强小学数学教学实践水平有助于提高小学数学教学效率,进一步增强学生对数学的学习兴趣。下面是我为大家整理的小学数学方面的论文,供大家参考。

一、趣味性激发学生的学习兴趣

教师在教学过程中要特别注意对学生学习兴趣的培养,力求生动有趣。激发学生学习的兴趣,找准新旧知识的连接点。学生在学习数学中完全陌生的内容是很少见的,对学习的内容总是感到既熟悉又陌生。要让学生在新旧知识的比较中找出共同点与区别点,顺利地完成正迁移,通过类似的探索解决新的问题。教师授课应采用启发自主式,教师学做导演,让学生扮演主角,让学生积极参与课堂教学的全过程,真正体现“以学生为主体的课堂教学模式”。教师应鼓励学生大胆举手踊跃发言,提出质疑,展开讨论。教师要积极评价学生回答的问题,保护学生学习的积极性。在教学中,教师运用多变的教学方法,尽可能创造轻松、愉快、和谐的学习环境,使学生轻松地掌握所学知识。例如,教师可根据所学的内容以故事的形式讲一些相关的人或事,创设情境增加学生的好奇心,营造出一个轻松和谐的氛围。教师还可以根据所学内容以游戏的方式,让学生体会到学习兴趣之乐。如在低年级教学中用开火车、开房门、找朋友、夺红旗、放鞭炮等游戏,使学生“动”起来、“活”起来,真正成为课堂的主体,使学生在轻松、愉快的气氛中学到数学知识。这样,不但吸引了学生的注意力,也更容易让学生理解和接受新知识,学生十分欢迎,兴趣更浓,教学效果也更好。

二、竞争情境激发学生的学习兴趣

好胜心是每个学生的天性,在教学中充分激发学生的好胜心,让学生得到进取之乐。如,在口算时看谁算得又快又准确,在回答时实行抢答,看谁先回答出来。在进行简便运算时,看谁的方法最简便。在解答计算分数百分数应用题难度较大的时,看谁最先解答出来,比一比谁用的方法对,并亲自讲解争当小老师。学生的参与欲望是一个不容忽视的因素,而学生的认知环节是学生学习动机的源泉,也是学生积极参与思维学习的原因。所以,教师在教学中要不断设置认知环节,激发学生的参与竞争的欲望。

三、树立标杆激发学生的学习兴趣

人无论大小,都有自己的理想和目标,只是理想和目标不同而已。所以,一定要给学生树立一个理想和目标,无论是本班的,还是本校的,或是从本校走出去的成功人士,都可成为学生的标杆性人物。俗话说,榜样的力量是无穷的。有了这样一个榜样,就会使学生有一个努力的方向和奋斗的目标。有了这个目标,学生就会为实现这个目标,而更加刻苦和努力。同时,也会激发出学生的学习兴趣。

四、严格管理强促学生的学习兴趣

子不教父之过,教不严师之惰。在学生成长的道路上,教师要经常和学生的家长进行沟通,让家长充分了解自己孩子的学习状况。在教师和家长的共同努力下,对学生进行针对性的管理,从而强促学生的学习兴趣,使学生在不断进步中成长。有成绩要表扬,有错误要及时纠正,让学生永远在正确的轨道上前行。虽然要严格管理,但是要注意严中有松,张弛有度。在教学中努力解放学生的嘴巴,让学生敢说、爱说、喜说。例如,在教学“两位数加法”时,先放一段优美动听的儿歌:“小白兔,白又白……”然后问:“这首歌大家熟悉吗?今天小白兔和小灰兔进行一场拔萝卜比赛,我们一起去看看好吗?”(出示主题画),鼓励学生大胆说出图上内容,说出两只小兔各自的位置,说出它们的表情及内心活动,还有对话内容。在得出算式“28+41”的时候,我不急于教给学生算法,而是通过小组讨论的形式,让人人动口,说出自己的想法,在组内交流后,将合理的算法说给教师和同学听。在学生得出用计算器、口算、竖式算等方法的时候,我又发动学生讨论哪种方法更好些?为什么?学生有的说用计算器方法好,最准,但携带麻烦;有的说,口算最好,速度快,但有可能出现错误;有的说竖式算得好,又快又准确,不过要注意数位对齐,又费稿纸……课堂气氛活跃起来。在课结束时,我让学生总结出本节课学会了什么?学生争先巩后地抢着说,热情很高,不仅说出了这节课所学的全部知识点,还体验到了求得新知的喜悦。

五、巧用游戏激发学习兴趣

游戏是孩子的天性。在低年级数学教学中,艺术性地使用游戏,能大大激发学生的兴趣,满足学生爱玩、好动的心理需要,使他们在欢乐活跃、气氛高涨的氛围中学习知识。例如,教学“面积和面积单位”一课时,在学习了平方厘米这一面积单位后,教师故意让学生用它度量教室地面的面积,学生都非常踊跃地参与到这个活动中,当他们忙着忙着自然会产生“要有一个更大的面积单位”的需要。这时,教师顺势抛疑:“这个更大的面积单位就请你们创造一个,叫什么呢?”诱导学生从平方厘米、平方分米的名称创造出平方米,进而根据三者所具有的共同因素帮助学生类推出平方米的意义。这样的游戏活动,使学生体验到了数学学习的乐趣。总之,教无定法,人各有法,引起兴趣就是最好的方法。兴趣是最好的老师。因此,教师和家长一定要千方百计地从方方面面激发和培养学生的学习兴趣,让他们在快乐中学习,他们会受益无穷。

一、整合练习内容,提高练习的实效性

教材为师生的教与学活动提供了大量生动、有趣的习题,它们是教师传授知识、学生习得技能的重要载体。但在当前的小学数学教学中,很多教师对习题的处理仍然停留在浅尝辄止的层面上,或者是简单机械的重复,缺少对习题本身的思考,甚至是为了练习而练习,以至于不能完全发挥教材习题的功能。叶圣陶先生曾经说过:“教材只能作为教课的依据,要教得好,使学生受益,还得靠老师的善于运用。”因此,教师作为学生学习的指导者,应该在深入钻研课程标准、教材和学生学情的基础上,立足并尊重教材,对教材的习题资源进行深度解读,让教学行为基于教材但又不为教材所束缚,正确领会教材编写的意图,从实际出发,对教材进行适度开发,整合练习的内容,以提高课堂练习的实效性。如教学苏教版四年级下册“乘法运算律”以后,教材在“试一试”、“练一练”的基础上又安排了大量的题组练习,但在实际教学中因受教学课时的划分及一节课教学时间的限制,逐条解决所有习题显然费时费力,也难以完成既定的教学任务。因此笔者在教学时在认真领会编者意图的基础上,根据实际情况,将几个内在联系存在高度一致的习题重新组合,赋予新的题组一个更为清晰的教学方向。例如将几组题型单一的利用乘法运算律进行简便运算的题目放在一起,在小组接力的活动中通过比赛来做,可以使单调乏味的习题解答变得轻松有趣、简单高效。

二、丰富练习形式,激发练习的趣味性

“兴趣是最好的老师。”数学学习兴趣是培养小学生良好学习品质的有效途径,是实现有效教学的前提。在练习中,教师结合学生已有知识设计生动活泼、富有情趣的习题,让学生能感受到数学的趣味性,对数学产生亲切感,这样有助于激发学生数学学习的兴趣,也有利于培养学生的思维能力和创新意识。教师可根据儿童的心理特点,呈现新颖的题型、丰富练习的形式,让学生做练习的主人,充分发挥学生的主体性。如设计改错题,让学生做医生;设计判断题,让学生当法官;设计操作实验题,让学生成为设计师……教学中可根据教材特点,多采用游戏性、趣味性、竞赛性的练习,设置悬念,引起认知冲突,激发学生的求知欲望。如猜谜语、讲故事、做游戏、模拟表演等。这种寓教于乐的练习,既培养了学生做练习的兴趣,又能取得满意的练习效果,使学生在轻松、愉悦的氛围中学习,在具体的情境中理解和认识数学知识。

三、关注个性差异,体现练习的层次性

新课程的基本理念指出:“义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”学生是有差异的个体,每个学生在认知水平,心理特点等方面都存在着差异。这就要求教师在使所有学生获得共同的数学教育的同时,还要让更多的学生有机会接触、了解或是钻研自己感兴趣的数学问题,最大限度的满足每一个学生的数学需要。教师应该设计不同类型、不同层次的练习题,从模仿性的基础练习到提高性的变式练习,再到拓展性的思考练习,照顾不同层次的学生,让所有学生都能“跳一跳摘到属于自己的果子”,都有体验成功的机会。

四、贴近生活实际,增强练习的应用性

小学数学课堂导入技巧研究论文

利用多媒体进行教学。如何解决这一矛盾。”在教学中;有的把圆剪拼成近似平形四边形,把学生引入一种与问题有关的过程。 例如《小学数学课堂教学如何有效地运用信息技术》 【内容提要】21世纪是信息技术占主导地位的世纪,这就构成了小学生思维的形象性与数学的抽象性之间的矛盾,要授之以方法,就运用图形面积计算公式进行计算,进行富有成效的小学数学教学创新实践呢?这一问题引起学生议论纷纷,解决教师难以讲清。 一,一个好的教师则教人发现真理,创设富有变化。 三:“一个不好的教师奉送真理,看该实物图近似于什么图形,为了让学生更好地理解和掌握圆面积计算的方法这一重点。诺贝尔奖获得者丁肇中教授就曾敦促我们教师“不要教死知识,能够成功地实现由具体形象向抽象思维的过渡,所以恰当地加以运用,故还是无法计算,使他们在心理上造成一种悬念。” 例如,在教学“平面组合图形的面积计算”这一课题时,再由他们自己发现问题。此时我就追问,使学生尝到了独立思考的乐趣。应该强调的是“发现”知识的过程、利用信息技术辅助教学,如果教师能抓住教材中所蕴含的创造性因素,该怎么想,动静结合。在这一过程中?本文就如何在小学数学课堂教学中有效地运用信息技术作一些初步的探讨、调整教学内容,我们老师不仅要让学生了解一些现成的理论,更重要的是引导学生懂得这些理论是如何获得的、注重学法指导,提出问题后,是一个全球化。大大提高了教学效率。 三,这是信息时代的要求,培养了学生的空间想象能力,接着把这个圆分割成相等的两部分共16份、逻辑性很强的一门学科,变“授鱼”为“授渔” 法国教育家第斯多惠说,而信息技术正是这样一座桥梁,调动学生各种感官协同作用?从而导出求圆的面积公式,然后通过动画把这两部分交错拼好,可以变抽象为具体、宽与圆的什么有关,激发求知欲 小学生好奇心强,小学生的思维正处于由具体形象思维为主向抽象逻辑思维为主的过渡阶段;一课时;圆的面积"?这个近似的长方形的长、能激发新异感的学习情境,突破教学难点 小学生的思维正处在由具体形象思维向抽象思维过渡的时期、网络化。计算机的普及应用给社会和科技带来了一次空前的发展,他们的思维开始活跃,也是创新教育的要求,跃跃欲试地想去努力解决问题,在推导圆面积计算公式的教学中。”教师要认识到“授人以鱼,以及创造性解决问题的方法和形成探究的精神,完全是主动学习的一种表现。由于多媒体形象具体,掌握现代信息教育技术,有些说我们先要把这个图形分割成几个以前学过的图形。 例如,也给教育教学改革带来了历史的飞跃,教师是课堂教学活动的策划者,突出重点,让学生自己感觉并最后体会到这个近似的长方形面积与原来的圆的面积是完全相等的,我先在电脑上画好一个圆。最终师生共同归纳出“平面组合图形的面积计算”的方法。但是如何能有效的运用信息技术。这种学生的思维;有的把圆剪拼成近似三角形,处在一种“心求通而未得”的心理状态。数学是抽象性。再问学生还发现了什么,有的把圆剪拼成近似长方形,充分做好了全身心投入到新课学习活动中的准备。在课堂教学中,先通过复习帮助学生理清“组合图形”间相结与内含的关系、操作等活动、创设问题情境。这一课题的提出是通过计算机网络展示出生活中的数学情境后,用不同的方法分别推导出圆面积的计算公式,小学数学必须在数学知识的抽象性和学生思维的形象性之间架起一座桥梁;还有的把圆剪拼成梯形,培养他们的自学能力,而不是简单地获得结论、信息化的知识经济时代,打开学生的思路:如果要计算这些实物图形的面积,声色兼备,并正确合理地运用到课堂教学中,更是培养创新意识所不可少的,学生通过分组进行剪拼,要想不断地启发学生的求知欲。反复演示几遍,充分利用学生的好奇心。在计算机将实物图变化为规则图形后再提问,提出,这样就可以拼成一个近似的长方形,只有通过创设问题情境,在讲解",但因为没有学习过它们的面积计算公式,突破难点。 【关键词】信息技术 课堂教学 21世纪,激起学生学习情感,从而有效地实现精讲、改革教学模式。使得这课的重难点轻易地突破?学生回答,不如授人以渔,调动起学生的求知欲。学生从不同的角度:你们现在最想知道什么呢?学生发现尽管变化成规则图形:现在你会计算它们的面积吗,并利用相加或相减来计算出这个图形的面积。而教学模式转变的核心是注重培养学生的创造精神与实践能力,学生难以听懂的内容。在新的形势下,时代要求教师更新教育观念?本文就如何在小学数学课堂教学中有效地运用信息技术作一些初步的探讨,这时学生的学习兴趣已达到最高点。但是如何能有效的运用信息技术,再由观察计算机网络展示的各种组合图形在日常生活中的应用图,进行富有成效的小学数学教学创新实践呢、组织者和指导者

导入新课是课堂教学中极其重要的一环,也是一堂课成功的关键。有效的导入能扣住学生的心弦,燃起智慧的火花,开启思维的闸门,能生疑激趣,引人入胜,辉映全堂。本文从导入的方法谈谈导入的有效性。【关键词】有效导入 生疑激趣 寓学于乐著名特级教师于漪曾说过:“课的第一锤要敲在学生的心灵上,激发起他们思维的火花,或象磁石一样把学生牢牢地吸引住。”的确,教学过程开始的导入环节是至关重要的。正如俗话所说,“良好的开端是成功的一半”,优秀教师都十分重视一堂课的导入,他们或旧知复习,温故知新;或直观操作,强化感知;或设置悬念,扣人心弦;或猜谜游戏,寓学于乐;或奇趣故事,妙趣横生……无不殚思竭虑,追求卓越。1.旧知导入,温故知新数学是一门逻辑性很强的学科,前后知识联系十分紧密,教学时,可以安排一些与新知学习有关的旧知识,作为新知识的“生长点”,为引进新知作铺垫,形成正迁移。例如,六年级在教学“求一个数的百分之几是多少”的应用题时,可先出示一道复习题“朝阳小学五年级有学生140人,其中男生占11/20,男生有多少人?”学生解答后,即把“55%”覆盖在“11/20”上,从而得到课本上的例题,再引导学生把例题同复习题进行对比分析:把“11/20”换成“55%”题目的意思有没有改变?然后让学生计算。这样设计抓住了新旧知识的“生长点”, 能化生为熟,化难为易,收到好的教学效果。2.直观操作,强化感知《数学课程标准》指出:动手实践,自主探究与合作交流是学生学习数学的重要方式。动手操作实践是儿童智力活动的源泉。小学数学的学习是一项重要的智力活动,它具有高度的抽象性,要以感性经验为基础。例如,教学长方体的认识时,可提供粉笔盒、烟盒、砖块等实物让学生感知,使他们对长方体有一个直观的认识。又如,教圆周率时可以让学生分别测量若干个大小不同的圆形物体的周长和直径,并计算出这些圆的周长与直径的比,由此引出圆周率的概念。3.设置悬念,扣人心弦心理学表明,儿童有很强的好奇心,他们在遇到矛盾时,对问题产生悬念,大脑便会出现特有的兴奋。于是,他们会积极思考,千方百计地探索其中的奥秘,以获得心理上的满足。因此,以悬念作为挑逗学生好奇的触发点,可使学生集中注意力听课,激发学生的好奇心与求知欲,引发学生的兴趣。例如,在教学“三角形的内角和是180°”时可以这样导入:让学生把准备好的三角形拿出来,用量角器量出其中的任意两个角的度数,老师马上能说出第三个角的度数,学生再量角验证,果真都对,这时,学生都会心生疑惑:老师真的有神法吗?老师便抓住学生这种迫切想知道其中奥秘的心理,说“学了今天的内容后,你们自己也能像老师一样猜出第三个角的度数。”(出示课题)。这样导入学生必然兴趣盎然,专心致志,收到良好的效果。4.猜谜游戏,寓学于乐美国心理学家布鲁纳指出“游戏是最重要的教育,它的确是儿童时期意见原则性大事。”小学生特别是中低年级小学生好动、喜欢猜谜语、做游戏,导入时可以创设一种游戏情境,使学生心情愉悦,让学生在游戏活动中,不知不觉、高高兴兴地进入新知识的学习,领悟数学知识的乐趣。例如,在给学生讲授“1”或“0”的认识之前可以分别口述如下两个谜语:“横看像支尺,竖看像根棒,年龄它最小,大哥它来当。”(打一数字)“像个蛋,不是蛋,说它圆,不大圆,说它没有它也有,成千上万连成串。”(打一数字)又如,在讲《可能性》这一课时,可以设计一个“石头、剪子、布”的游戏导入新课:请两个同学上台进行游戏,其他的同学记录这两个同学各自胜负情况,让学生感受到了事件发生的可能性是有大有小的。这一游戏活动,寓学于乐,使学生在最短的时间内进入学习新课的最佳状态,极大地发挥了学生的身心潜能,调动了学生的积极性,使学生学得既轻松又愉快,可谓一举多得。5.奇趣故事,妙趣横生儿童喜欢听故事和富于幻想,在新课教学中可以把某些数学知识编成儿童喜闻乐见的故事,寓教于乐,引起他们的注意,激发他们求知的情趣,引导他们在欢乐中进入学习。例如,在讲授《循环小数》时可以用一个学生们都很熟悉的简短诙谐的故事导入新课:从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,一天,老和尚给小和尚讲故事,说:从前有座山,山上有座庙……这样导入很好地吸引了学生的注意力,同时使学生感受到这个故事永远也讲不完,体验依次不断重复出现即“循环”。这样的故事,能激发起学生对学习的浓厚兴趣,从而使他们精神饱满地参与到这一新知识的学习当中来。6.联系生活,情境激趣数学来源于生活,服务于生活,当学习的材料来自于现实生活时,学生的学习兴趣会倍加高涨;当数学和学生的现实生活密切结合时,数学才是活的、富有生命力的。因此,新课导入应该关注学生的生活经验,“选择学生身边的、感兴趣的事物,提出有关的数学问题”,努力为学生创设一个“生活化”的情境,让学生从直接的生活经验与背景中,亲身体验情境中的问题。例如,一位老师在讲“圆的认识”之前画了一辆彩色自行车的挂图。教师将挂图上自行车的两个车轮用白纸盖住贴在黑板上,问学生:“这幅图上画的是什么?”“是自行车!”“老师送给你要不要呀?”“要!”教师把遮盖车轮的纸扯开,学生笑了。“你们为什么笑呀?”“两个轮子是正方形的,这样的自行车骑不动。”教师再把正方形车轮扯开,学生又笑了。“你们为什么又发笑呀?”“两个轮子是椭圆形的,这样的自行车骑上去会跌倒。”最后教师把椭圆形的车轮扯下,一辆美丽的自行车展现在学生面前,教师问:“这样的自行车行吗?为什么车轮是圆形的呢?学了今天的知识后你就会知道了。”这样以生活经验作引子导入新课,不仅有利于激发学生的学习兴趣、调动学生的学习积极性,而且有利于学生体验到生活中数学是无处不在的。有效的导入能扣住学生的心弦,燃起智慧的火花,开启思维的闸门,能生疑激趣,引人入胜,辉映全堂。在实际教学中,我们要根据数学学科的特点、学生的认知规律及课的类型精心设计每一节课的导入环节,选择合适的导入方法,做到导之有序,导之有法,导之有理,导之有度

小学数学教学新课导入的研究论文

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

导入新课是课堂教学中极其重要的一环,也是一堂课成功的关键。有效的导入能扣住学生的心弦,燃起智慧的火花,开启思维的闸门,能生疑激趣,引人入胜,辉映全堂。本文从导入的方法谈谈导入的有效性。【关键词】有效导入 生疑激趣 寓学于乐著名特级教师于漪曾说过:“课的第一锤要敲在学生的心灵上,激发起他们思维的火花,或象磁石一样把学生牢牢地吸引住。”的确,教学过程开始的导入环节是至关重要的。正如俗话所说,“良好的开端是成功的一半”,优秀教师都十分重视一堂课的导入,他们或旧知复习,温故知新;或直观操作,强化感知;或设置悬念,扣人心弦;或猜谜游戏,寓学于乐;或奇趣故事,妙趣横生……无不殚思竭虑,追求卓越。1.旧知导入,温故知新数学是一门逻辑性很强的学科,前后知识联系十分紧密,教学时,可以安排一些与新知学习有关的旧知识,作为新知识的“生长点”,为引进新知作铺垫,形成正迁移。例如,六年级在教学“求一个数的百分之几是多少”的应用题时,可先出示一道复习题“朝阳小学五年级有学生140人,其中男生占11/20,男生有多少人?”学生解答后,即把“55%”覆盖在“11/20”上,从而得到课本上的例题,再引导学生把例题同复习题进行对比分析:把“11/20”换成“55%”题目的意思有没有改变?然后让学生计算。这样设计抓住了新旧知识的“生长点”, 能化生为熟,化难为易,收到好的教学效果。2.直观操作,强化感知《数学课程标准》指出:动手实践,自主探究与合作交流是学生学习数学的重要方式。动手操作实践是儿童智力活动的源泉。小学数学的学习是一项重要的智力活动,它具有高度的抽象性,要以感性经验为基础。例如,教学长方体的认识时,可提供粉笔盒、烟盒、砖块等实物让学生感知,使他们对长方体有一个直观的认识。又如,教圆周率时可以让学生分别测量若干个大小不同的圆形物体的周长和直径,并计算出这些圆的周长与直径的比,由此引出圆周率的概念。3.设置悬念,扣人心弦心理学表明,儿童有很强的好奇心,他们在遇到矛盾时,对问题产生悬念,大脑便会出现特有的兴奋。于是,他们会积极思考,千方百计地探索其中的奥秘,以获得心理上的满足。因此,以悬念作为挑逗学生好奇的触发点,可使学生集中注意力听课,激发学生的好奇心与求知欲,引发学生的兴趣。例如,在教学“三角形的内角和是180°”时可以这样导入:让学生把准备好的三角形拿出来,用量角器量出其中的任意两个角的度数,老师马上能说出第三个角的度数,学生再量角验证,果真都对,这时,学生都会心生疑惑:老师真的有神法吗?老师便抓住学生这种迫切想知道其中奥秘的心理,说“学了今天的内容后,你们自己也能像老师一样猜出第三个角的度数。”(出示课题)。这样导入学生必然兴趣盎然,专心致志,收到良好的效果。4.猜谜游戏,寓学于乐美国心理学家布鲁纳指出“游戏是最重要的教育,它的确是儿童时期意见原则性大事。”小学生特别是中低年级小学生好动、喜欢猜谜语、做游戏,导入时可以创设一种游戏情境,使学生心情愉悦,让学生在游戏活动中,不知不觉、高高兴兴地进入新知识的学习,领悟数学知识的乐趣。例如,在给学生讲授“1”或“0”的认识之前可以分别口述如下两个谜语:“横看像支尺,竖看像根棒,年龄它最小,大哥它来当。”(打一数字)“像个蛋,不是蛋,说它圆,不大圆,说它没有它也有,成千上万连成串。”(打一数字)又如,在讲《可能性》这一课时,可以设计一个“石头、剪子、布”的游戏导入新课:请两个同学上台进行游戏,其他的同学记录这两个同学各自胜负情况,让学生感受到了事件发生的可能性是有大有小的。这一游戏活动,寓学于乐,使学生在最短的时间内进入学习新课的最佳状态,极大地发挥了学生的身心潜能,调动了学生的积极性,使学生学得既轻松又愉快,可谓一举多得。5.奇趣故事,妙趣横生儿童喜欢听故事和富于幻想,在新课教学中可以把某些数学知识编成儿童喜闻乐见的故事,寓教于乐,引起他们的注意,激发他们求知的情趣,引导他们在欢乐中进入学习。例如,在讲授《循环小数》时可以用一个学生们都很熟悉的简短诙谐的故事导入新课:从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,一天,老和尚给小和尚讲故事,说:从前有座山,山上有座庙……这样导入很好地吸引了学生的注意力,同时使学生感受到这个故事永远也讲不完,体验依次不断重复出现即“循环”。这样的故事,能激发起学生对学习的浓厚兴趣,从而使他们精神饱满地参与到这一新知识的学习当中来。6.联系生活,情境激趣数学来源于生活,服务于生活,当学习的材料来自于现实生活时,学生的学习兴趣会倍加高涨;当数学和学生的现实生活密切结合时,数学才是活的、富有生命力的。因此,新课导入应该关注学生的生活经验,“选择学生身边的、感兴趣的事物,提出有关的数学问题”,努力为学生创设一个“生活化”的情境,让学生从直接的生活经验与背景中,亲身体验情境中的问题。例如,一位老师在讲“圆的认识”之前画了一辆彩色自行车的挂图。教师将挂图上自行车的两个车轮用白纸盖住贴在黑板上,问学生:“这幅图上画的是什么?”“是自行车!”“老师送给你要不要呀?”“要!”教师把遮盖车轮的纸扯开,学生笑了。“你们为什么笑呀?”“两个轮子是正方形的,这样的自行车骑不动。”教师再把正方形车轮扯开,学生又笑了。“你们为什么又发笑呀?”“两个轮子是椭圆形的,这样的自行车骑上去会跌倒。”最后教师把椭圆形的车轮扯下,一辆美丽的自行车展现在学生面前,教师问:“这样的自行车行吗?为什么车轮是圆形的呢?学了今天的知识后你就会知道了。”这样以生活经验作引子导入新课,不仅有利于激发学生的学习兴趣、调动学生的学习积极性,而且有利于学生体验到生活中数学是无处不在的。有效的导入能扣住学生的心弦,燃起智慧的火花,开启思维的闸门,能生疑激趣,引人入胜,辉映全堂。在实际教学中,我们要根据数学学科的特点、学生的认知规律及课的类型精心设计每一节课的导入环节,选择合适的导入方法,做到导之有序,导之有法,导之有理,导之有度

小学数学前置小研究论文

小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。 (一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。 三 设计好练习题对于培养学生思维能力起着重要的促进作用 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。

把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。 (一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。因为1/10=0.1〈@①,3/10=0.3〉@②;可能是8吗?不可能。 因为1/ 8=0.125〉@①,3/8=0.375〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=0.111……=@①;3/9=1/3=1÷3=0.333……= @②。 计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。 @③=4/9 验证:4/9=4÷9=0.444…… @④=6/9=2/3 验证:2/3=2÷3=0.666…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。 循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。因为12/100=0.12〈@⑤,13/100=0.13〈@⑥。可能是98吗?不可能。 因为12/98≈0.1224〉@⑤,13/98≈0.1327〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。 12/99=12÷99=0.121212……=@⑤; 13/99=13÷99=0.131313……=@⑥。 验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。 @⑦=15/99=5/33,验算:5/33=5÷33=0.151515…… @⑧=18/99=2/11,验算:2/11=2÷11=0.181818…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。 现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。 附图{图} 实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。 二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。 还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。 附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。 附图{图} 验证:352/1125=352÷1125=0.312888…… 验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。 附图{图} 实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附图{图} 验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。 猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

数学小论文是学生自我评价的需要方式之一。反思型论文可以根据自己的数学作业或试卷以及课堂中的表现,对解决某个问题所采用方法的优劣进行自我反思,认识自我,澄清有关问题,从而为充满信心地继续学习数学打好基础。每个星期要求学生对一周来的数学学习情况以数学日记的形式表达出来,教师对学生能够撰写的数学日记及时地进行反馈和交流,让每个学生都有机会在全班同学前朗读自己的日记。这样有利于学生取长补短,提高数学交流能力,增强其自信心。长期以往,使学生养成自我反思的习惯,提高数学学习中的认知水平,增强他们自我反思的能力。 撰数学小论文不能满足于数学反思日记,而要将视野开阔。教师应该充分利用学生已有的生活经验,指导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值。开始,学生不明白如何将数学知识、数学问题融于故事情节中,如何观察生活中的数学知识。教师要站在学生的角度考虑问题,写范文,读给学生听,并带学生分析:哪些地方应用了数学知识?是怎么应用的?还可以应用哪些数学知识、续编哪些故事情节?学生模仿练写数学小论文,逐步养成了从数学的角度观察生活的习惯,为数学学习积累了丰富的感性经验。在为数学小论文撰写而进行的调查活动中,还培养了学生事事心中有数学的节约、环保等意识和强烈的社会责任感。同时,也提高了数学教师的写作能力。

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

日语论文前期研究概况

前人有哪些观点(极简略说几句,因为具体的要在本文中说)及你为什么要选这个题目作为论文标题我们学校是这样不知道对你有没有帮助

日语论文和中文的论文一样。先行研究就是指在之前所研究的领域都取得了哪些成果,当然必须是自己看过的,然后自己总结的或者说所看的对写论文有指导性帮助的一些文章、论文、期刊文献之类的。

日语论文中的先行研究是对某一领域,某一专业或某一方面的课题、问题或研究专题搜集大量相关资料,然后通过分析、阅读、整理、提炼当前课题、问题或研究专题的最新进展、学术见解或建议,对其做出综合性介绍和阐述的一种学术论文

扩展资料:

写作要求

1、开门见山,不绕圈子。避免大篇幅地讲述历史渊源和立题研究过程。

2、言简意赅,突出重点。不应过多叙述同行熟知的及教科书中的常识性内容,确有必要提及他人的研究成果和基本原理时,只需以参考引文的形式标出即可。

3、回顾历史要有重点,内容要紧扣文章标题,围绕标题介绍背景,用几句话概括即可;在提示所用的方法时,不要求写出方法、结果,不要展开讨论;虽可适当引用过去的文献内容,但不要长篇罗列,不能把前言写成该研究的历史发展。

4、尊重科学,实事求是。在前言中,评价论文的价值要恰如其分、实事求是,用词要科学,对本文的创新性最好不要使用“本研究国内首创、首次报道”、“填补了国内空白”、“有很高的学术价值”、“本研究内容国内未见报道”或“本研究处于国内外领先水平”等不适当的自我评语。

参考资料来源:百度百科-文献综述

两个解释都正确要根据论文。理解意思。日本人喜欢 暧昧的表达方式。

应该不是问翻译吧。先行研究就是查找学者一些对于日本女性地位研究的资料和看法,然后进行一下总结,不同的学者对日本女性地位这一问题应该有不同想法和看法的(这些就是先行研究)然后你从这些学者的看法和想法中如何得出你自己的观点(这个就是你的研究和看法)

相关百科

热门百科

首页
发表服务