首页

> 学术发表知识库

首页 学术发表知识库 问题

建筑力学论文500字

发布时间:

建筑力学论文500字

去CNKI里找,有很多。

土木工程的英文是Civil Engineering ,直译是民用工程,它是建造各种工程的统称。它既指建设的对象,即建造在地上,地下,水中的工程设施,也指应用的材料设备和进行的勘测、设计施工、保养维修等专业技术。 土木工程随着人类社会的进步而发展,至今已经演变成为大型综合性的学科,它已经出许多分支,如:建筑工程,铁路工程,道路工程,桥梁工程,特种工程结构,给水排水工程,港口工程,水利工程,环境工程等学科。土木工程共有六个专业:建筑学,城市规划,土木工程,建筑环境与设备工程,给水排水工程和道路桥梁工程。 土木工程作为一个重要的基础学科,有其重要的属性:综合性,社会性,实践性,统一性。土木工程为国民经济的发展和人民生活的改善提供了重要的物质技术基础,对众多产业的振兴发挥了促进作用,工程建设是形成固定资产的基本生产过程,因此,建筑业和房地产成为许多国家和地区的经济支柱之一。 古代的土木工程有很长的时间跨度,大致从公元前500年新石器时代出现原始的土木工程活动到16世纪末意大利的文艺复兴,导致土木工程走上迅速发展的道路为止,前后经历了两千多年。在这段时间内,由于科学理论发展及其缓慢,土木工程也没有突破习惯的发展。 远古时代,居住和交往的需要,人类开始了掘土为穴,架木为桥的原始的土木工程活动,我国黄河流域的仰邵文化遗址和西安半坡遗址发现了有供居住的浅穴和直径为5—6米的圆形房屋。中国古代的建筑多采用木结构,并逐渐形成与此想适应的风格,公元14世纪的建造的北京故宫是世界上最大的最完整的古代木结构宫殿建筑群,应县的木塔是世界上最高的木建筑。与此同时,欧洲的以石拱结构为主的古代房屋建筑也达到了很高的水平,意大利的比萨大教堂,法国的巴黎圣母院,罗马的圣彼得大教堂均反映了欧洲这一时期建筑施工和结构的最高成就。从17世纪中页开始到20 世纪40年代第二次世界大战结束为止的300年间,国外的建筑取得了长足的进步。土木工程进入了定量分析阶段。一些理论的发展,新材料的出现,新工具的发明,都使土木工程科学日渐完善和成熟。到了近代,二战结束之后,许多国家经济起飞,现代科学日益进步,从而为进一步发展提供了强大的动力和物质基础。尤其是我国,土木工程在这一段时间内,更是突飞猛进,建筑,桥梁,道路,隧道等,无论是在技术理论上,还是在基础建设上,都取得了巨大的成就。 人们生活水平的不断提高,必然要求越来越舒适的居住环境,在这种情况下,建筑的发展直接推动了土木工程的发展。远古时代,人们巢居穴处,后来石器的出现,人们开始利用工具建造简单的住房,到明清时期,中国的木结构建筑技术和规模都达到了顶峰。解放后,随着国家对基础建设的投入的不断加大,一座座高楼想雨后春笋一样出现在中华大地。 建筑工程就是兴建房屋规划,勘测,设计,施工的总称。目的是为人类的生产和生活提供场所。 房屋建筑一般包括十个部分:(1)埋在地下的基础和地下室(2)承载外力并把力传到基础的柱子,楼板,梁,框架墙,屋盖及支撑体系(3)四周的饿维护结构和中间的隔墙(4)房屋内外的装饰(5)控制环境的供暖,通风,空气调节,照明,防火隔声等系统(6)楼梯间,电梯或自动扶梯等垂直传输系统(7)闭路电视,电话,计算机网络等通讯体系(8)电力系统(9)卫生设备和给水排水系统(10)垃圾处理系统。 Pier Luigi Nervy说过:建筑结构说穿了,不过就是受力体的反力与内部应力如何与外力达到平衡。建筑首先要解决,也是必须要解决的问题就是受力的问题。我们把解决这个问题的学科称为建筑力学。建筑力学有可以分为:静力学,材料力学和结构力学三大力学体系。建筑力学是讨论和研究建筑结构及构件在荷载和其他因素影响的工作状况,也就是建筑的强度,刚度,稳定性。在载荷作用下,承受载荷和传递载荷的建筑结构和构件会引起周围的物体对它们的作用,同时物件本身受载荷作用而产生变形,并且存在着破坏的可能性,但是结构本身就具有一定的抵抗变形和破坏的能力,而结构的承载能力的大小是与构件的材料,截面的几何尺寸,受力性质,工作条件和构造情况有关。而这些关系都可以由力学关系式通过计算而得以解决。 建筑材料在建筑中也有着举足轻重的作用。建筑材料是随着人类社会生产力和科学技术的提高而逐步发展起来的。人类最早穴居巢处,几乎没有建筑材料的概念,后进入到石器铁器时代,开始掘土凿石为洞,伐木搭竹为棚,利用最原始的材料建造最简陋的房屋。后来,用黏土烧制砖瓦,用岩石制石灰,石膏,建筑材料从天然进入了人工阶段,为建造教大的房屋创造了条件。18世纪后,科学技术的发展促使建筑材料进入了一个新的发展阶段,钢铁,水泥,混凝土及其他材料的相继问世,为现代的建筑奠定了基础。20世纪后,建材性能和质量的弊端改善,品种的不断增加,以有机材料为主的化学建材异军突起,一些具有特殊功能的建材如绝热材料,吸声隔热材料,耐火防火材料,防水抗渗材料,防爆防辐射材料应运而生,这些材料为房屋建筑提供了强有力的物质保障。现在的建筑中,工程质量的优劣通常与所采用材料的优劣,性能及使用的合理与否有直接的联系,在满足相同技术指标和质量要求的前提下,选择不同的材料不同的使用方法,都对工程的造价有直接的影响。 在建筑过程中,建筑工程施工是和与建筑力学,建筑材料同样重要的一个环节。建筑施工是将设计者的思想,意图及构思转化为现实的过程,从古代的穴居巢处到现在的摩天大楼,从农村的乡间小道到城市的高架道路都需要通过“施工”的手段来实现。一个工程的施工包括许多工种工程,诸如土方工程,桩基础工程,混凝土结构工程,钢机构工程,结构吊装工程,防水工程等,各个工种工程都有自己的规律,都需要根据不同的施工对象及施工环境条件采用相应的施工技术,在土建施工的同时,需要与有关的水电,风暖及其他设备组成一个整体,各工程之间合理的组织与协调,更好的发挥投资的效益。土木工程施工在发挥效益的同时,还要严格按照国家颁发的有关施工技术规范,从而进一步提高我国的施工水平,保证施工质量,降低工程成本。 任何建筑无不修建在地球表面的地层上,建筑的重量最后都会传给地层,有地层来承受。支撑建筑的地层被统称为地基,建筑物在地面以下并将上部结构的自重与所承担的载荷传递到地基上的构件或部分构件称为基础。地基,基础和上部结构是建筑物的三个不可分割的部分。三者功能不同,但在载荷的作用下,它们彼此相关,是共同作用的整体。地基可分为天然地基和人工地基,基础根据埋深分为深基础和浅基础。,基础和地基的质量是保证建筑物的安全和正常使用的关键所在,建筑物的地基在建筑物的载荷作用下既要保持整体的稳定性又要是地基产生的沉降在建筑物许可范围内,而地基本身应有足够的强度,刚度和耐久性,同时还要考虑修基础的方法和必要的挡土挡水及相关措施。 随着人们生活的水平的不断提高,人们对自己所处的建筑空间已经不仅仅单纯从数量上提出更高的要求,而且从质量上也提车了更高的要求,要求环境的美观,有一定的舒适度。这就需要对建筑进行必要的装修。如果说建筑主体工程构成了建筑的骨架,那么装饰后的建筑则成了有血有肉的有机体,最终以丰富的,完善的面貌出现在人们的面前,最佳的建筑应该充分体现各种装饰材料的有关特性,结合现有的施工技术,最有效的手法,来达到构思所要表达的效果。建筑装修要考虑建筑空间的使用要求,保护主体机构免受损害,给人以美的享受,满足消防疏散的要求,装饰材料和方案的合理性,施工技术和经济的可行性等。房屋建筑发展的同时,像房屋建筑一样影响着人们生活的道路,桥梁,隧道等也取得了长足的发展。 路桥 改革开放以来,我国公路建设事业迅猛发展,尤其是高速公路建设,从无到有,现已建成8700km。作为公路建设重要组成部分的桥梁建设也得到相应发展,跨越大江(河)、海峡(湾)的长大桥梁建设也相继修建,一般公路和高等级公路上的中、小桥、立交桥,形式多样,工程质量不断提高,为公路运输提供了安全、舒适的服务。 随着经济的发展、综合国力增强,我国的建筑材料、设备、建筑技术都有了较快发展。特别是电子计算技术的广泛应用,为广大工程技术人员提供了方便、快捷的计算分析手段。更重要的是我国的经济政策为公路事业发展提供多元化的筹资渠道,保证了建设资金来源。我国广大桥梁工作者,充分认识到这一可贵、难得的机遇,竭尽全力,发挥自己的聪明才智,为我国公路桥梁建设事业,积极工作,多做贡献。结合常用的桥型谈谈对公路桥梁发展趋势的看法,不当之处,请同行正。 总的来说土木工程是一门古老的学科,它已经取得了巨大的成就,未来的土木工程将在人们的生活中占据更重要的地位。地球环境的日益恶化,人口的不断增加,人们为了争取生存,为了争取更舒适的生存环境,必将更加重视土木工程。在不久的将来,一些重大项目将会陆续兴建,插入云霄的摩天大楼,横跨大样的桥梁,更加方便的交通将不是梦想。科技的发展,以及地球不断恶化的环境必将促使土木工程向太空和海洋发展,为人类提供更广阔的生存空间。近年来,工程材料主要是钢筋,混凝土,木材和砖材,在未来,传统材料将得到改观,一些全新的更加适合建筑的材料将问世,尤其是化学合成材料将推动建筑走向更高点。同时,设计方法的精确化,设计工作的自动化,信息和智能话技术的全面引入,将会是人们有一个更加舒适的居住环境。一句话,理论的发展,新材料的出现,计算机的应用,高新技术的引入等都将使土木工程有一个新的飞跃。

土木工程类的论文范文不多,你可以百度下:普刊学术中心,有很多各个领域的学术论文范文,当然其实重要的还是论文写作技巧和能力,上面有很多关于学术论文写作方面的教程值得抽时间多看看

是试题,还是学习心得!

力学论文500字

论文还是自己写好,我可以给你提供个方面,如自行车中的物理知识,厨房中的物理知识,洗衣服中的物理知识也不少,你可以从力学、热学来写,电学就更多了,如双控灯等。

再给你些例子:1、挂在壁墙上的石英钟,当电池的电能耗尽而停止走动时,其秒针往往停在刻度盘上“9”的位置。这是由于秒针在“9”位置处受到重力矩的阻碍作用最大。 2、有时自来水管在邻近的水龙头放水时,偶尔发生阵阵的响声。这是由于水从水龙头冲出时引起水管共振的缘故. 3、对着电视画面拍照,应关闭照相机闪光灯和室内照明灯,这样照出的照片画面更清晰。因为闪光灯和照明灯在电视屏上的反射光会干扰电视画面的透射光. 4、冰冻的猪肉在水中比在同温度的空气中解冻得快。烧烫的铁钉放入水中比在同温度的空气中冷却得快。装有滚烫的开水的杯子浸入水中比在同温度的空气中冷却得快。这些现象都表明:水的热传递性比空气好, 5、锅内盛有冷水时,锅底外表面附着的水滴在火焰上较长时间才能被烧干,且直到烧干也不沸腾,这是由于水滴、锅和锅内的水三者保持热传导,温度大致相同,只要锅内的水未沸腾,水滴也不会沸腾,水滴在火焰上靠蒸发而渐渐地被烧干, 6、走样的镜子,人距镜越远越走样.因为镜里的像是由镜后镀银面的反射形成的,镀银面不平或玻璃厚薄不均匀都会产生走样。走样的镜子,人距镜越远,由光放大原理,镀银面的反射光到达的位置偏离正常位置就越大,镜子就越走样. 7、天然气炉的喷气嘴侧面有几个与外界相通的小孔,但天然气不会从侧面小孔喷出, 只从喷口喷出.这是由于喷嘴处天然气的气流速度大,根据流体力学原理,流速大,压强小,气流表面压强小于侧面孔外的大气压强,所以天然气不会以喷管侧面小孔喷出。 8、将气球吹大后,用手捏住吹口,然后突然放手,气球内气流喷出,气球因反冲而运动。可以看见气球运动的路线曲折多变。这有两个原因:一是吹大的气球各处厚薄不均匀,张力不均匀,使气球放气时各处收缩不均匀而摆动,从而运动方向不断变化;二是气球在收缩过程中形状不断变化,因而在运动过程中气球表面处的气流速度也在不断变化,根据流体力学原理,流速大,压强小,所以气球表面处受空气的压力也在不断变化,气球因此而摆动,从而运动方向就不断变化。 9、吊扇在正常转动时悬挂点受的拉力比未转动时要小,转速越大,拉力减小越多.这是因为吊扇转动时空气对吊扇叶片有向上的反作用力.转速越大,此反作用力越大. 10、电炉“燃烧”是电能转化为内能,不需要氧气,氧气只能使电炉丝氧化而缩短其使用寿命。 11、从高处落下的薄纸片,即使无风,纸片下落的路线也曲折多变。这是由于纸片各部分凸凹不同,形状备异,因而在下落过程中,其表面各处的气流速度不同,根据流体力学原理,流速大,压强小,致使纸片上各处受空气作用力不均匀,且随纸片运动情况的变化而变化,所以纸片不断翻滚,曲折下落

我会给你

摩擦力 一个物体在另一个物体表面运动时, 在两个物体接触面会产生一种阻碍运动的力叫摩擦力。例如:日常生活中汽车在公路上行驶是靠汽车轮胎与地面的摩擦力向前行进的。摩擦通常分为滑动摩擦、滚动摩擦和静摩擦几种。 我们知道踢出去的足球会慢慢停下来,是由于受到摩擦力的作用。木匠在把木板磨光滑的工作中,是用砂纸在木板上靠砂纸和木板产生的摩擦力将木板打磨平滑的; 汽车发动机靠与皮带的摩擦力将动能传给发电机发电;人们洗手时双手摩擦把手上的灰尘洗掉;洗衣机洗衣时转动使衣服和水产生摩擦;吃东西时牙齿和食物发生摩擦;用拖把擦地;用布擦桌子;用板擦擦黑板都会产生摩擦力。在我们的生活中只要物体相互接触且有相对运动或有相对运动趋势都会产生摩擦力。 影响摩擦力大小的两个因素: 1. 摩擦力的大小与接触面间的压力大小有关,接触面粗糙程度一定时,压力越大摩擦力越大。生活中我们有这样的常识,当脚踏车车胎气不足的时候,骑起来更费力一些。 2. 摩擦力的大小与接触面的粗糙程度有关,压力一定时,接触面越粗糙,摩擦力越大。 如何增大摩擦力和减少摩擦力 1. 物体的接解面越粗糙,摩擦力越大。比如鞋底和轮胎的花纹。汽车在路面行驶时,轮胎与粗糙的柏油路面接触,这样摩擦力就能增大。汽车行驶在雪、水的路面,摩擦力就会减小。所以雨、雪天就要注意安全。 2. 减小接触面间的粗糙程度; 风扇转轴要做得很光滑。钟表加油可以减少摩擦力,使走时更准确。滑冰场上,工作人员经常打扫冰面使它平整,可减少摩擦,加快滑冰的速度。 拔河比赛比的是什么?很多人会说:当然是比哪一队的力气大喽!实际上,这个问题并不那么简单。 对拔河的两队进行受力分析就可以知道,只要所受的拉力小于与地面的最大静摩擦力,就不会被拉动。因此,增大与地面的摩擦力就成了胜负的关键。首先,穿上鞋底有凹凸花纹的鞋子,能够增大摩擦系数,使摩擦力增大;还有就是队员的体重越重,对地面的压力越大,摩擦力也会增大。大人和小孩拔河时,大人很容易获胜,关键就是由于大人的体重比小孩大。 另外,在拔河比赛中,胜负在很大程度上还取决于人们的技巧。比如,脚使劲蹬地,在短时间内可以对地面产生超过自己体重的压力。再如,人向后仰,借助对方的拉力来增大对地面的压力,等等。其目的都是尽量增大地面对脚底的摩擦力,以夺取比赛的胜利。 通过以上的学习观察总结出,摩擦力的大小取决两物体压力和表面的粗糙程度。

GJ给你介绍一家相当专业的地方 ,咋样啊,呵呵。你去找"90代写网"吧,那里的工作人员水平都相当高的哦,各种形式的论文都能写的啊 。

首先记住,要有摩擦力存在,必须要有压力,且摩擦力与压力是相互垂直的,然后,摩擦力分静摩擦和动摩擦两种,动摩擦的大小与正压力是成正比的,就是f=μN.而静摩擦力则不一样,最大静摩擦力往往比最大滑动摩擦要大一点,而且静摩擦的方向和大小是不定的,大多出现在平衡状态中,而滑动摩擦力是与运动方向相反的,影响它的大小的主要有两个因素,一个是正压力的大小,另一个就是μ的大小,而μ的大小是由接触面的粗糙程度决定的,也就是接触的两个面的材料的原因 影响摩擦力的因素不同情况不一样,动摩擦力、最大静摩擦力一般由两相互接触的物间的正压力以及两相互接触物的材料、表面性质、接触方式决定;但静摩擦力就与上述无关,它是由使物体发生相对运动趋势的合外力决定。 一般情况下摩擦力与接触面无关,但实际上接触面会影响正压力的大小,即当压强一定时,接触面大,正压力会随着增大,这时,摩擦力就与接触面积有关了。要注意的是,很多情况下是压力一定,当面积变化时,压强也随着反比例变化,这时面积对摩擦力就无影响。 1. 摩擦力的大小与接触面间的压力大小有关,接触面粗糙程度一定时,压力越大摩擦力越大。生活中我们有这样的常识,当脚踏车车胎气不足的时候,骑起来更费力一些。 2. 摩擦力的大小与接触面的粗糙程度有关,压力一定时,接触面越粗糙,摩擦力越大。 拔河比赛比的是什么?很多人会说:当然是比哪一队的力气大喽!实际上,这个问题并不那么简单。 对拔河的两队进行受力分析就可以知道,只要所受的拉力小于与地面的最大静摩擦力,就不会被拉动。因此,增大与地面的摩擦力就成了胜负的关键。首先,穿上鞋底有凹凸花纹的鞋子,能够增大摩擦系数,使摩擦力增大;还有就是队员的体重越重,对地面的压力越大,摩擦力也会增大。大人和小孩拔河时,大人很容易获胜,关键就是由于大人的体重比小孩大。 另外,在拔河比赛中,胜负在很大程度上还取决于人们的技巧。比如,脚使劲蹬地,在短时间内可以对地面产生超过自己体重的压力。再如,人向后仰,借助对方的拉力来增大对地面的压力,等等。其目的都是尽量增大地面对脚底的摩擦力,以夺取比赛的胜利

去百度文库搜一搜,很多,参考一下怎么写,如果你只是为了完成任务,就可以在百度文库中Ctrl+c 然后 Ctrl+v :wenku.baidu./search?word=%B8%DF%D6%D0%CE%EF%C0%ED&lm=0&od=0

能量,动量的论文很好写,可以从多角度切入,以下思路仅供参考。 一:按部就班型。首先,抓住一条线索,如:能量与动量的产生,成因,作用,以及他们之间的联络。(逻辑分析)能量与动量在声学,光学,相对论与量子力学的不同意义。(横向分析)然后围绕线索,提出自己的见解。 二:标新立异型:引入概念与研究方法,大胆猜想,将自己思维的角度不断变换,小则在夸克,大则在宇宙与黑洞,与当代的物理猜想相接轨,拓宽思路。

我也是高中的,论文的严格格式差不多是这样,你可以借鉴一下 你要注意,如果是实验的话一定要写清楚原理,然后有资料记录,资料分析,最后要有结果和讨论。引用文章的话要标出,在论文最后写明,注意我的格式。〔M〕表示书,〔J〕表示杂志 只要提笔写,自然而然就出来了,比写作文简单。 超前的数学对物理学发展的影响与意义 摘要:本文重点探讨19世纪的数学。这个时期的一些数学和数学思想大大超前于同时代的物理学。它们对于20世纪的物理学发展具有重大意义。本文简单总结了物理学史上一些较为经典的反映这种情况的例子,同时对数学的超前现象对于物理学发展的意义与影响作了相关探讨。 关键词: 数学 超前性 物理 一、 概述:数学与物理学发展的同时性 二、数学于物理学发展的超前性 2.1概述 2.2 18~19世纪超前于物理的数学工具 2.2.1 群论 2.2.2泛函理论 2.3 18~19世纪超前于物理的数学模型 2.3.1非欧几何模型与相对论 2.3.2数学函式与弦理论 2.4其他问题 2.4.1复变函式与物理学 三、 总结与进一步探讨 引注 ①《古今数学思想》第一册,第1页 ②《数学:确定性的丧失》 第50页 ③《古今数学思想》第二册,第199页 ④《可怕的对称》,第140页 ⑤《古今数学思想》第四册,第160~161页 ⑥《古今数学思想》第四册,第149页 ⑦《宇宙的琴弦》,第163~137页 ⑧《纯粹数学应用于现代物理学中的一个新范例》 ⑨希尔伯特《数学的问题》,摘自《数学史译文集》第69页 参考文献 〔1〕<美>M-克莱因:《数学:确定性的丧失》〔M〕湖南科学技术出版社,1997年第一版 〔2〕中国科学院自然科学史研究所数学史组,中国科学院数学研究所数学史组:《数学史译文集》〔M〕上海科学技术出版社,1981第一版 〔3〕中国科学院自然科学史研究所数学史组,中国科学院数学研究所数学史组:《数学史译文集续集》〔M〕上海科学技术出版社,1985第一版

初中物理论文 通过初中的学习,我发现物理是一门很广阔的学科,它首先是拥有基本概念,然后到探究实验,最后应用到生活中,解释生活中的现象。下面有几个例子: 例如, 一个物体在另一个物体表面运动时, 在两个物体接触面会产生一种阻碍运动的力叫摩擦力。例如:日常生活中汽车在公路上行驶是靠汽车轮胎与地面的摩擦力向前行进的。摩擦通常分为滑动摩擦、滚动摩擦和静摩擦几种。 我们知道踢出去的足球会慢慢停下来,是由于受到摩擦力的作用。木匠在把木板磨光滑的工作中,是用砂纸在木板上靠砂纸和木板产生的摩擦力将木板打磨平滑的; 汽车发动机靠与皮带的摩擦力将动能传给发电机发电;人们洗手时双手摩擦把手上的灰尘洗掉;洗衣机洗衣时转动使衣服和水产生摩擦;吃东西时牙齿和食物发生摩擦;用拖把擦地;用布擦桌子;用板擦擦黑板都会产生摩擦力。在我们的生活中只要物体相互接触且有相对运动或有相对运动趋势都会产生摩擦力。 影响摩擦力大小的两个因素: 1. 摩擦力的大小与接触面间的压力大小有关,接触面粗糙程度一定时,压力越大摩擦力越大。生活中我们有这样的常识,当脚踏车车胎气不足的时候,骑起来更费力一些。 2. 摩擦力的大小与接触面的粗糙程度有关,压力一定时,接触面越粗糙,摩擦力越大。 如何增大摩擦力和减少摩擦力: 1. 物体的接解面越粗糙,摩擦力越大。比如鞋底和轮胎的花纹。汽车在路面行驶时,轮胎与粗糙的柏油路面接触,这样摩擦力就能增大。汽车行驶在雪、水的路面,摩擦力就会减小。所以雨、雪天就要注意安全。 2. 减小接触面间的粗糙程度; 风扇转轴要做得很光滑。钟表加油可以减少摩擦力,使走时更准确。滑冰场上,工作人员经常打扫冰面使它平整,可减少摩擦,加快滑冰的速度。 拔河比赛比的是什么?很多人会说:当然是比哪一队的力气大喽!实际上,这个问题并不那么简单。 对拔河的两队进行受力分析就可以知道,只要所受的拉力小于与地面的最大静摩擦力,就不会被拉动。因此,增大与地面的摩擦力就成了胜负的关键。首先,穿上鞋底有凹凸花纹的鞋子,能够增大摩擦系数,使摩擦力增大;还有就是队员的体重越重,对地面的压力越大,摩擦力也会增大。大人和小孩拔河时,大人很容易获胜,关键就是由于大人的体重比小孩大。 另外,在拔河比赛中,胜负在很大程度上还取决于人们的技巧。比如,脚使劲蹬地,在短时间内可以对地面产生超过自己体重的压力。再如,人向后仰,借助对方的拉力来增大对地面的压力,等等。其目的都是尽量增大地面对脚底的摩擦力,以夺取比赛的胜利。 通过以上的学习观察总结出,摩擦力的大小取决两物体压力和表面的粗糙程度。 又例如,有关光的反射,光是通过平面镜或其他不规则物体改变光的传播路径实现的, 光反射原理和规律:参考书本详细说明 应用:汽车后视镜、太阳灶、遥控器、脚踏车后灯 可以参考上面两个例子,再举例子。 这是我学习初中物理所总结出的经验 ,它可能也高中物理学习必不可少的环节。相信我在物理学能越学越好,越学越有兴趣。

你太抠了,会有人给你写吗。要不,你在网上搜索吧,有都是

物理是一门以观察和实验为基础的学科。在教学中,有意识地引导学生联络生活实际,分析物理现象;利用身边物品,进行物理实验,都能激发学生的学习兴趣,加深学生体会。这里介绍一组与鸡蛋有关的物理现象和实验。 1、液体蒸发吸热 实验:把刚煮熟的蛋从锅内捞起来,直接用手拿时,虽然较烫,但还可以忍受。过一会儿,当蛋壳上的水膜干了后,感到比刚捞上时更烫了。 分析:因为刚捞上来的蛋壳上附着一层水膜,开始时,水膜蒸发吸热,使蛋壳的温度下降,所以并不觉得很烫。经过一段时间,水膜蒸发完毕。由蛋内部传递出的热量使蛋壳的温度重新升高,所以感到更烫手。 2、热胀冷缩的性质 实验:把煮熟捞起的蛋立刻浸入冷水中,待完全冷却后,再捞起剥落。 分析:首先,蛋刚浸入冷水中,蛋壳直接遇冷收缩,而蛋白温度下降不大,收缩也较小,这时主要表现为蛋壳在收缩。其次,由于不同物质热胀冷缩性质的差异性,当整个蛋都完全冷却时,组织疏松的蛋白收缩率比蛋壳大,收缩程度更明显,造成蛋白蛋壳相互脱离,剥蛋壳就更方便了。 3、验证大气压存在 实验:选一只口径略小于鸡蛋的瓶子,在瓶底热上一层沙子。先点燃一团酒精棉投入瓶内,接着把一只去壳鸡蛋的小头端朝下堵住瓶口。火焰熄灭后,蛋被瓶子缓缓“吞”入瓶肚中。 分析:酒精棉燃烧使瓶内气体受热膨胀,部分气体被排出。当蛋堵住瓶口,火焰熄灭后,瓶内气体由于温度下降,压强变小,低于瓶外的大气压。在大气压作用下,有一定弹性的鸡蛋被压入瓶内。 4、浮沉现象 实验:把一只去壳鸡蛋,浸没在一只装有清水的大口径玻璃杯中。松开手后,发现鸡蛋缓缓沉入杯底。捞出鸡蛋往清水中加入食盐,调制成浓度较高的盐溶液。再把鸡蛋浸没在盐溶液中,松开手后,鸡蛋却缓缓上浮。 分析:物体浮沉情况取决于所受的重力和浮力的大小关系。浸没在液体中的物体体积就是它所排开液体的体积,根据阿基米德原理可知物体密度与液体密度的大小关系可以对应表示重力与浮力的大小关系。因为蛋的密度略微比清水的密度大,当蛋浸入清水中时,所受重力大于浮力,所以蛋将下沉。当浸没在盐水中时,由于盐水密度比蛋的密度大,所受的重力小于浮力,所以蛋将上浮。 5、惯性、摩擦阻力现 象 实验:选用外形相似的生鸡蛋、熟鸡蛋各一只,放在水平桌面上。用相同的力使它们在原处旋转。能迅速旋转的是熟鸡蛋,缓慢旋转几圈就停止的是生鸡蛋。 分析:生鸡蛋的壳内是液状的蛋清,外力作用在蛋壳上旋转时,蛋清由于惯性,继续保持静止状态,则它与蛋壳间存在摩擦阻力作用,使整个蛋只能缓慢转动。而熟鸡蛋内蛋清已凝固成蛋白,外力作用时旋转时,整个蛋就能迅速转动。 6、物体的稳定平衡 实验:选用一只生鸡蛋,在小头一端开个孔并清除干净壳内的蛋清蛋黄。沿小孔滑入一块重物。以蛋壳的大头端为底部,扶好蛋壳。点燃一只蜡烛,滴入烛油,把重物封存在蛋壳底部。烛油大约封存至整个蛋壳高度的四分之一即可。把制好的蛋壳推倒后,蛋壳能自动立起。制成一个“不倒翁”。 分析:在空蛋壳的底端封存的重物和烛油,使整个蛋体的重心移近蛋壳的底部,重心起低,稳定性越好。当蛋壳倾斜,偏离平衡位置时,使蛋体的重心升高。因为蛋壳底端是球形的,在蛋体的自身重力作用下,蛋体又恢复到原来的平衡位置上。 7、分子运动现象 实验:外壳完好的蛋,埋入食盐中腌制一段时间,可以制成一只咸蛋。虽然蛋壳仍然完好,但连内部的蛋黄都变咸了。 分析:因为物质的分子间存在间隙,而且分子不停地做无规则运动,所以食盐分子扩散到蛋黄中,使蛋黄也变咸。 一组与鸡蛋有关的物理现象和实验一文由教育资源网教育资源网蒐集整

力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!

浅析物理力学的产生及其发展

摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。

关键词:物理力学;产生;发展

一、物理力学发展需要解决的问题分析

在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。

在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。

针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。

在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。

还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。

二、新技术不断推动物理力学的发展

物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。

人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。

本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。

参考文献:

[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).

[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).

[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。

[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).

浅析力学在机械中的应用

[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。

[关键词]力学 弹性力学 断裂力学 工程力学 机械

力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。

一、力学

力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。

力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。

二、力学在机械中的应用

力学在机械中的应用广泛,其典型应用主要有以下几种:

1.弹性力学在机械设计中的应用

弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。

齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。

2.断裂力学在机械工程中的应用

断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。

首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。

其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。

再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。

最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。

3.工程力学在机械修理中的应用

工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。

三、结语

当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。

参考文献

[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).

[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).

[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).

[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).

建筑力学与材料力学论文

建筑力学与结构力学、理论力学区别

一、概念不同:

1、建筑力学:将力学原理应用建筑工程系统的科学。包括理论力学、材料力学、结构力学。

2、结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。

3、理论力学是研究物体的机械运动规律及其应用的科学,理论力学是力学的学科基础。分静力学、运动学和动力学三部分。

二、研究内容不同:

1、建筑力学包括理论力学、材料力学、结构力学。

主要研究和分析作用在结构(或构件)上力与平衡的关系,结构(或构件)的内力、应力、变形的计算方法以及构件强度、刚度和稳定条件,为保证结构(或构件)安全可靠、经济合理提供计算理论依据。

2、结构力学:研究对象是由细长杆件构成的体系——平面杆系结构,如:梁、刚架、拱及组合结构等。

(1)研究平面杆件体系的几何构造分析 。

(2)讨论结构的强度、刚度、稳定性、动力反应以及结构极限荷载的计算原理和计算方法等。

3、理论力学:包括静力学、运动学和动力学三部分。

(1)静力学:研究物理机械运动的特殊情况——平衡问题。

(2)运动学:研究物体运动过程中各运动学参数(如位置坐标、速度、加速度等)间的几何关系。

(3)动力学:研究物体运动状态的变化与作用力之间的关系。

三、任务不同

1、建筑力学:

(1)掌握基本的力学知识和计算方法为建筑工程领域的结构设计和建筑施工等提供基本保障。

(2)研究多种类型构件(或构件系统)的强度、刚度和稳定性问题,各种不同的受力方式会产生不同的内力,不同承载能力的计算方法。

2、结构力学:

(1)研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。

(2)计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。

(3)计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。

3、理论力学:归纳机械运动的规律,借助严密的数学规律进行归纳。

参考资料:

百度百科——建筑力学

百度百科——结构力学

百度百科——理论力学

学生建筑力学学习行为表现在学习中的表现建筑力学是专业基础课,是学习《建筑结构》及其他专业课的基础,是建筑专业学生必须掌握的.每个学生刚开始接触专业课程,在同一起跑线上学习建筑力学心得建筑力学由理论力学、材料力学、结构力学三部分组成,它是土木工程专业一门重要的专业基础课。建筑力学课程中的基本规律、原理和方法,是人们通过观察生活和生产实践中的各种现象,进行多次科学实验,经过分析,综合和归纳所总结出来的。从很久以前到日益发展的现代社会,力学总是和人类的发展与进步息息相关。人类在远古时代就开始制作各种和力学相关的物品,例如弓箭、房屋、船以及乐器等等,这些都是简单的结果。随着现代社会的进步,人们对于结构设计的规律以及结构的强度和刚度逐渐有了更深的认识并且积累了经验,这表现在古代建筑的辉煌成就中,如埃及的金字塔、中国的万里长城、北京的故宫等等。虽然在这些结构中隐含力学 的知识,但其归根并没有形成一门学科,随着现代社会的进步和发展,人们逐渐从这些结构和实践中总结出经验,形成了现代的力学建筑力学。现代社会所有的有关建筑的和力学室密不可分的,没有可靠的力学与结构分析就没有安全而又实用的建筑物。特别是建筑力学对现代建筑的意义更为重要,每一座好的建筑在开始建造前都要通过大量的实验验证和安全评估,否则将产生诸多不良的影响,甚至损失难以估计。首先要考虑建筑结构的合理性,如何在实际情况下选取合适节省材料的结构方式完成工程很重要。最重要的是要考虑到安全因素,从整体的静力分析到有线单元的衍架与混凝土结构再到外部环境因素,例如风载荷、地震、建筑物的本身质量等等以及有特殊设计要求的 特殊场地,这些都是和建筑力学密不可分的。建筑力学是需要我们认真对待的,他几乎应用到所有角落。建筑是随着人类文明进一步发展的,再好的。理论都需要可靠的实践来证明,同理好的理论和方法也尤为重要,例如现代在计算机领域的应用,我们可以通过模拟软件来模拟模块的受力及有线单元的使用等,很方便的促进了力学的分析和复杂问题的计算,所以他们是相符发展和影响的。总之,力学和建筑是分不开的,作为一个建筑力学的学习者,特别是对我这样对建筑工程感兴趣的学生来说,掌握最基本的分析方法和培养良好的科学习惯尤为重要,并为以后的学习和工作打下坚实的基础,当一个工程在我们手中像长城一样伫立不随着人类社会的进步和发展,人类逐渐从建

建筑力学是为建筑学专业的学生开设的一门理论性、实践性较强的技术基础课,旨在培养学生应用力学的基建筑力学本原理,分析和研究建筑结构和构件在各种条件下的强度、刚度、稳定性等方面问题的能力。结构力学(Structural Mechanics)是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。 结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法 ,成为利用计算机进行结构计算的理论基础。理论力学是机械运动及物体间相互机械作用的一般规律的学科,也称经典力学。是力学的一部分,也是大部分工程技术科学理论力学的基础。其理论基础是牛顿运动定律,故又称牛顿力学。20世纪初建立起来的量子力学和相对论,表明牛顿力学所表述的是相对论力学在物体速度远小于光速时的极限情况,也是量子力学在量子数为无限大时的极限情况。对于速度远小于光速的宏观物体的运动,包括超音速喷气飞机及宇宙飞行器的运动,都可以用经典力学进行分析。 理论力学和材料力学比较重要 这些都是结构力学的基础,建筑工程类必须学好理论力学的静力学部分,材料力学也是必须把和建筑工程联系在一起的部分学好。理论力学,材料力学,结构力学这三个就是土木专业里所说的三大力学,理论力学先学,然后是材料力学,最后是结构力学,理论力学是基础,材料力学和结构力学接近实际,所以都得学好,学生一般认为是结构力学难,但其实难的是理论力学,因为没有固定方法,结构力学你研究的透了其实方法很固定,但初学者一般掌握不好。所以都很重要。

一样的。有的建筑力学则只讲授静力学,因为后续的材料力学与结构力学知识也只限于静力学范

关于力学的论文500字

一只筷子夹东西是不行的,只有二只筷子夹才能夹住!·你明白我的意思了吗?

物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。主要包括静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学 物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。 物理力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。 物理力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。 物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。 近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,物理力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。

世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页 资料来源:

先引入一个生活中的例子,然后就此展开讨论力与运动的各种关系,后总接一下。

数学建模小论文500字

随着我国基础 教育 课程改革的不断深入,数学建模越来越受到重视,在小学数学中的地位也逐渐显著。下面是我带来的关于小学数学建模小论文的内容,欢迎阅读参考!小学数学建模小论文篇1 浅谈小学数学教学中的数学建模 什么是数学建模呢?下面我从两个方面谈谈小学数学教学中的数学建模。 一、从建模的角度解读教材 小学数学教材中的大部分内容已经按照数学建模的思想编排,即“创设问题情境——对问题进行分析——建立数学模型——模型应用、拓展”的模式,只是大部分数学教师还没有意识到这一点。数学教师首先要从数学建模的角度解读教材,充分挖掘教材中蕴含的建模思想,运用建模思想创造性的解释运用教材。 例如人教版三年级上册,第一章“测量”的第一节“毫米的认识”这一内容,书中是这样编排的: 1、通过插图创设问题情境:(1)、让学生估计数学书的长、宽、厚大约是多少厘米,再让学生测量“数学书的长、宽、厚的长度”。(2)、学生汇报测量的结果:“我量出的宽不到15厘米,还差------”,“我量出的宽比14厘米多,多------”,“数学书的厚不到1厘米是------”这里让学生量的数学书的宽和高都不是整厘米,学生不会表述。(3)、小精灵提出数学问题:“当测量的长度不是整厘米时,怎么办?” 2、将实际问题数学化,建立数学模型: 当测量的长度不到1厘米时怎么办呢?这时学生就会产生“有比1厘米更短的长度单位吗?”的念头,然后教师启发学生:“数学家们把1厘米平均分成10格,每1小格的长度叫1毫米,请同学们看自己的直尺,数一数1厘米的长度里有几小格?1厘米里有几毫米呢?”。在这里教师一定要帮助学生建立“毫米”这个数学模型的概念。 3、解释、应用与拓展: (1)、请同学们看实物1分钱硬币,它的厚是1毫米。(2)、让学生再次测量数学书的宽、厚各是多少?(学生测量后汇报:宽是14厘米8毫米,厚是6毫米)。(3)、请同学们说一说生活中的哪些物品一般用“毫米”作单位? 二、让学生亲身经历数学模型的产生、形成与应用过程 小学阶段的数学建模重在让学生体验建模的过程。从学生亲身经历的现实问题情境出发,将实际问题数学化,使学生经历数学模型建立的过程,再运用建立的数学模型解决实际问题。例如人教版六年级上册“圆的周长”一课教师可以这样设计。 1、让学生亲身经历问题产生的过程: 出示主题图:一个学生绕着圆形花坛骑自行车。教师提出问题“骑一圈大约有多少米?”。自行车绕着圆形花坛骑一圈的轨迹是一个圆,它的长度就是这个圆的周长(如果忽略自行车行走时与花坛的距离)。学生产生疑问:怎样才能知道一个圆的周长呢?什么是圆的周长? 2、让学生亲身经历猜测、分析、验证的过程: (1)、师:请同学回忆什么是周长?正方形、长方形的周长怎么求?与什么有关系? (2)、师:什么是圆的周长?同桌互相指一指自己桌面上的圆形物体的周长。 (3)、师:猜想圆的周长与什么有关?(生1:我认为圆的周长与半径有关,自行车的半径越大车轮就越大。生2:我认为圆的周长与直径有关,圆形花坛的直径越大圆形花坛的周长就越长。) (4)、学生动手验证自己的猜想 a、请同学拿出课前准备的学具(两个大小不同的圆,一个直径5厘米,另一个直径10厘米),同桌合作分别量出两圆的周长,验证生1与生2的猜测是否正确。 b、学生汇报交流自己测量的结果,并谈谈自己的看法。(生1:我用细绳绕直径是10厘米的圆一周,然后量出细绳的长大约是31.2厘米。生2:我在作业本上画了一条直线,让直径是5厘米的圆沿直线滚动一周,量出一周的直线长大约是15.5厘米。生3:我认为刚才我们的猜想是正确的,直径是10厘米,周长大约是31.2厘米;直径是5厘米,周长大约是15.5厘米。直径越大周长越长,直径越小周长越短,所以圆的周长与直径、半径有关。) 3、让学生亲身经历数学模型(圆周率π)的产生过程 刚才同学们已验证了圆的周长与直径有关,那么它们到底有怎样的关系呢? (1)、师:正方形的周长是边长的4倍,猜猜圆的周长与直径有倍数关系吗?如果有,你认为是几倍?仔细观察下图后回答。 (2)、师:同学们的猜想有道理吗,让我们利用前面测量过的圆的直径与周长的数据来算一算圆的周长是直径的几倍,学生计算后汇报交流。(生1:第一个圆的周长与直径的比值是:31.2÷10=3.12,第二个是:15.5÷5=3.1。生2:我发现周长与直径的比值都是3倍多一些,难道它也和正方形的一样,比值是个固定值吗?)师:你的猜想太对了,发现了一个数学秘密。一个圆的周长与它的直径的比值是一个固定值,数学家们把它叫做圆周率,用字母π表示。 (3)、介绍中国古代数学著作《周髀算经》与数学家祖冲之1500年前就计算出圆周率应在3.1415926和3.1415927之间的 故事 。然后课件呈现:π是一个无限不循环小数,再呈现小数点后面4百位的分布情况。 师:π的小数部分有很多位数。为了计算方便,一般把它保留两位小数,取近似值3.14。刚才同学们用自己测量的周长与直径算出的比值分别是3.12和3.1,虽然存在误差,但是老师认为你们已经很不错了,不仅发现了圆的周长与直径有关,而且还发现他们的比值是一个固定值。 4、让学生归纳、 总结 、应用圆的周长计算公式 师:既然圆的周长与它的直径的比值是一个固定值π,那么圆的周长怎样求?(生:圆的周长=直径×π)。请同学们利用公式计算“骑一圈大约有多少米?”【量得圆形花坛的直径是20米,学生计算3.14×20=62.8(米)。】 反思 :建构主义认为,知识是不能简单地进行传授的,而必须通过学生自身以主动、积极的建构方式获得。这里从贴近学生的生活背景出发,提出“绕着圆形花坛骑一圈大约有多少米?”的问题,到“怎样求圆的周长”,再到学生不断地猜想验证“圆的周长与直径有关”,“圆的周长与它的直径的比值是一个固定值”,最后得到“圆的周长计算公式”这个数学模型,学生亲身经历了猜测、分析、验证、交流、归纳、总结的过程,实际上这就是一个建立数学模型的过程。在这个建模过程中培养了学生的初步建模能力,自觉地运用数学 方法 去发现、分析、解决生活中的问题的能力,培养了学生的数学应用意识。 小学数学建模小论文篇2 浅谈小学数学的数学建模教学策略 摘 要:小学数学的“数学建模”是教学方式中新的改革亮点。近年来许多学校都陆续展开小学数学的“数学建模”活动。希望通过积极的实践为小学数学教育总结出一条全新的教育模式。 关键词:小学数学;数学建模;教学策略探究 数学教育是引导学生形成具有缜密逻辑性的思想方式。建立和解析数学模型能够有效提高学生的数学学习热情,降低数学学习的难度,使学生运用数学知识更加轻松自然。然而,在小学的数学教育内容中,就已经包含许多初级的数学模型。所以,在研究“数学建模”的过程中,教育界的学者们认为,小学的“数学建模”需要注意三个方面:小学“数学建模”的意义与目标;小学“数学建模”的定位;小学“数学建模”的教学演绎。 一、小学“数学建模”的意义与目标 1、小学“数学建模”的意义 小学的“数学建模”活动早已经有学校展开研究。从目前研究资料来分析,小学数学建模是指:学生在教师设计的生活情景之中,通过一定的数学活动建立能够解读的数学模型并以此为学习数学的基本载体,进行学习相关的数学知识。 小学数学建模在建模目的、活动方式、背景知识三方面,与传统数学模型存在较大差异。(1)建模目的方面:小学的数学建模目的是让学生了解数学知识,通过数学模型掌握新吸收的数学知识和争强对数学知识的正确应用,使学生在潜移默化中形成数学思考能力。(2)活动方式方面:小学的数学建模是为了培养学生的学习数学兴趣和更好掌握数学知识的教学方式,所以在教学活动方式上需要教师精心设计活动内容,由教师引导逐渐参与和体会数学世界的丰富和与现实生活的紧密联系。(3)知识背景方面:小学的数学建模,是在小学生毫无数学基础的情况下进行构建数学模型,所以在小学的数学建模中,需要简单的数学知识,以此为学生的数学知识结构打下良好基础。 通过上述三个方面的分析,小学“数学建模”的意义,在于通过数学教育方式的改进,引导小学生发现数学与生活的紧密联系,提高小学生对数学知识的兴趣,培养小学生数学思维能力和学习能力,为日后的数学学习打下结实基础。 2、小学“数学建模”的目标导向 小学的数学建模,其目标导向是培养小学生的建模意识。通过培养建模意识来提升数学思维能力,积累数学知识,提升数学素养。建模意识的培养需要通过挖掘教学内容中蕴涵的建模元素,采用教师引导、学生寻找、以生活内容加强记忆的方式,使学生掌握数学建模的过程和通过数学模型解决生活问题的能力,在不断反复的学习和锻炼中组建使学生提升数学建模的意识。 二、小学“数学建模”的定位 数学建模,是建立数学模型并且通过使用数学模型,解决生活中存在的数学问题,整体过程的简称。 如果通过大学或高中的教学视角审视数学建模,无疑会对学生日后学习和工作产生积极的影响。不过,从小学生的视角考虑数学建模,就需要特别注意建模的合理性定位,既不能失去数学建模的意义,又不能过于拔苗助长,导致教学效果的反向反弹。所以“数学建模”的定位要适合小学生的生活 经验 和环境,同时适合小学生的思维模式。 1、定位于 儿童 的生活经验 在小学对小学生的数学教学过程中,提供学生探讨研究的数学问题,其难易程度和复杂程度需要尽量贴近小学生的日常生活。在设计教学内容的时候,需要多设计小学生常见的生活数学问题,使学生因为好奇心而对学习产生动力,通过思考探索,体会数学模型的存在。 同时,在教学的过程中需要循序渐进,随着学生的年龄争长,认知度的加强,生活关注内容的变化,适时地增加数学问题的难度。在此过程中,既需要照顾学生们的学习差异性,又要尊重学生的学习兴趣和个性。 2、定位于儿童的思维模式 小学生的思维模式比较简单。在小学数学的建模过程中,需要根据学生的具体学习程度循序渐进,通过由简入深的学习过程,让学生具有充分的适应过程。只有适应学生思维模式的教学定位,才能使学生的数学意识得到提高,并且通过循序渐进的学习过程掌握运用数学模型解决实际问题的能力。 举例:在小学二年级,关于认知乘法和除法的过程中,将时间、路程、速度引入教学场景之中。学生跟随教师引导,逐渐发现时间与路程的关系,并且结合所学的数学知识,乘法与除法,找到了“一乘两除”的数学原型。从而使学生通过“数量关系”中,认知到生活与数学的关系。 三、小学“数学建模”的教学演绎 小学“数学建模”的教学演绎,主要分析以下两个方面。 1、在小学“数学建模”中促进结构性生长 因为小学生的 逻辑思维 能力还处于发展构成阶段,所以必须在数学建模教学过程中从学生的“逻辑结构图式”出发,充分考虑小学生的知识结构和认知规律,通过整合实际问题,从数学问题角度为学生整合抽象的、具有清晰结构认知性的,数学教育模型,从而使小学生能够直接清晰地对数学模型拥有直观深刻的认知。 2、在小学“数学建模”中促进学生自主性建构 在小学“数学建模”中教师需要引导和帮助学生,运用已学习的数学知识,构建具有应用性的数学模型。在教学过程中,教师需要对学生们习以为常的事物进行剖析,使事物露出具有吸引性的数学问题,通过激发学生的好奇心,引导学生探索生活中存在的数学问题,帮助学生发现生活中隐藏的数学问题和解决问题,最终促使学生能够独立自主地根据实际问题建立数学模型。 小学数学的“数学建模”是教学方式中新的尝试,它作为一种学习数学的方式、方法、策略和将生活与数学紧密联系的纽带,对引导学生更好的认识数学、学习数学、运用数学、具有十分积极的作用。小学生学习建模过程,实际就是锻炼逻辑思维能力的过程,对学生日后学习学习知识和 兴趣 爱好 都有显著的帮助。 参考文献: [1] 陈进春.基于数学建模视角的教学演绎[J].江苏教育,2013(4). [2] 储冬生.小学数学建模的分析讨论[J].湖南教育,2012(12). [3] 陈明椿.数学教育中的数学建模方法[J].福建师范大学,2014(1). 小学数学建模小论文篇3 浅析数学建模在小学数学中的应用 摘 要:小学阶段进行数学基础知识的教学时,适时适度渗透数学思想模式,不仅成为一种可能,也成为一种必需。学校教育由于长期受“应试教育”的影响,学生中存在着知识技能强,实际应用差的情况.为此,本文引入了“数学模型”这一概念,就此讨论如何帮助学生建立数学模型以及建立数学模型的意义,旨在促进学生的学习兴趣,提高他们的实际应用能力。 关键词:小学数学 模型 概念 应用 一、数学教学中数学模型应用的缺乏 数学课程改革的思路之一就是数学应强化应用意识,允许非形式化。事实上,数学课程中数学的应用意识早已成为发达国家的共识,而我国目前应用意识却十分淡薄,与世界数学课程的发展潮流极不合拍。 当前使用的数学教材中的习题多是脱离了实际背景的纯数学题,或者是看不见背景的应用数学题,这样的训练,久而久之,使学生解现成的数学题能力很强,而解决实际问题的能力却很弱。教师要独具慧眼,善于改造教材,为学生创造一个可操作,可探索的数学情境,引领他们探索知识的生成过程,再现数学知识的生活底蕴。因此,引入“数学模型”这一概念。 二、概念界定 何谓数学模型?数学模型可描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构,而建立数学模型的过程,则称之为数学建模。 三、数学建模在小学数学中的应用 1、 让学生经历数学概念形成的过程,探索数学规律。《新课标》的总体目标中提出,要让学生“经历将一些实际问题抽象为数与代数的问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。”让学生经历就必须有一个实际环境。学生在实际环境中通过活动体会数学、了解数学、认识数学。 在教学中“鱼段中烧”常常存在。没有在教学的应用上给予足够的注意和训练,即没有着意讨论和训练如何从实际问题中提炼出数学问题(鱼头)以及如何应用数学来满足实际问题中的特殊需求(鱼尾),很少给学生揭示有关数学概念及理论的实际背景和应用价值。为了避免这一情况,教师要帮助学生建立数感,在自己的水平上探索不同的数学模型。比如:在教学连减应用题时,可以让学生进行模拟购物。小售货员讲一讲自己怎样算帐,体会两种方法的不同:小强带了90元钱去买了一只 足球 45元,一只 排球 26元,要找回几元?大部分小售货员都这样算:先用90元钱去减一只足球的钱,再减去一只排球的钱,求出来的就是要找回的钱。算式是90-45-26=19(元)。也有一小部分售货员列出了这样的算式:45+26=71(元) 90-71=19(元)两种方法我都给予肯定,并总结:遇到求剩余问题的题目时都用减法来做。并总结出求大数用加法,求小数用减法的模型。学生只要在做题中知道求的是大数还是小数就可以了,从而培养了学生从数学的角度去观察和解释生活。 2、 开设数学活动课,重视实践活动,为学生解决问题积累经验。开设数学活动课,让学生自己动脑、动手解决问题,可以使他们获取数学实际问题的背景、情境,理解有关的名词、概念,有助于学生正确理解题目意思,建立数学模型,是培养学生主动探究精神和实践能力的自由天地。 比如:在上“几个与第几个”的拓展课时,出现一道题:从左往右数,小华是第9个,从右往左数,小华是第8个,这一排有多少人?在解这道题之前,我让一个组6个人站起来,数其中的一个人,发现就直接3+4=7,会多出一人来。为什么会这样?学生讨论后得出:其中的那个人多数一次了,要把他减掉。于是,得到一个模型:左边数过来的数+右边数过来的数-1=总人数。有了这个模型之后,解决这一类问题就容易多了。 3、 引导学生用图形解决问题,确立从代数到几何的过渡。代数与几何并不是孤立的两块。他们也有相通之处。我们可以用几何的观念来解代数问题。图形对于低段学生来说是更直观、更有效的形式。 例:让学生观察热水瓶、茶杯、可乐罐、电线杆、大树、房屋柱子等,通过现代教学手段(如用CAI课件或实物投影仪),学会撇开扶手柄、树枝、颜色等非本质特征,分析主体部分的形状,再配以必要的假设,得出它们的共同属性:只能往一个方向滚动,且上下两个底面是大小相同的圆面,抽象出“圆柱体”这一数学模型。这样通过向学生展示上述数学建模的过程,使学生知道数学来源于实际生活,生活处处有数学,在此基础上再引导学生把数学知识运用到生活和生产的实际中去。又如,在教学应用题时,我们往往借助线段图来解,将文字题有效地转化为图形,使题目变得浅显易懂。 四、数学模型在小学数学中的现实意义 1、 通过数学建模理论的学习研讨,有利于提高教师的数学素养。一般地说,在建模过程中,原始问题中的本质特征应被保留下来,当然也要简化,这种简化基于科学,而不完全基于数学,另一方面,一定的简化又是必须的,以便得到的数学体系是易处理的。这就需要教师必须具备精深的专业知识,能帮助学生建立准确的数学模型。 2、 建立数学模型能有效地激发学生的求知欲望。数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,更重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,学生更加体会到数学与大自然和社会的天然联系。因而,在小学数学教学中,让学生从现实问题情景中学数学、做数学、用数学应该成为我们的一种共识。 3、 数学建模是培养学生建模能力的重要途径。数学建模就是找出具体问题的数学模型,求出模型的解,验证模型解的全过程。由于小学生以形象思维为主,因此他们的数学模型大多和形象图有关。引导学生从画实物图、矩形图、线段图开始,逐步做到自觉主动地构建数学模型,并把它作为一种极好的解决问题的工具,使他们在这个过程中提高兴趣,增强能力。 4、 现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。 五、结束语 学生的建模思想的培养是长期的、复杂的过程,采用的方法是多样、灵活的。只要教师用心设计,耐心诱导,全体学生都能建立不同水平的数学模型。 猜你喜欢: 1. 数学建模教学相关小论文 2. 小学数学建模优秀论文 3. 关于小学数学建模论文 4. 学习数学建模心得体会 5. 小学数学教学小论文

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

相关百科

热门百科

首页
发表服务