毕业论文是学生在掌握基本理论、专业知识和基本技能的基础上,接受科学研究工作的初步训练,培养独立工作能力的重要环节,也是取得毕业证书、申请学士学位的重要条件之一。为了保证全院本科生毕业论文制作统一,特制定本规定。一、毕业论文的内容:(1) 封面:论文题目、学生姓名、指导教师姓名、年月日等。(2) 论文题目:用宋体3号字。论文题目必须有相应的英文题目。(3) 摘要:论文的第一页应为摘要,约300字左右。摘要应该说明论文的内容、研究方法、成果和结论。要突出本论文的创造性或新见解,语言力求精炼。同时,应该在本页的下方另起一行注明本文的关键词(3—5个)。(4) 英文摘要:论文的第二页为英文摘要,其上方为英文题目。英文摘要的内容与中文摘要的内容相对应。最后一行为关键词(3—5个)。(5) 目录;是论文的提纲,也是论文的组成部分,放在第三页。(6) 正文:正文的第一部分为引言,主要包括选题的依据,对本课题研究现状的简述,该研究工作的实用价值与理论意义、本论文所要解决的问题等。(7) 结论:论文必须有结论。结论应该明确、精炼、完整、准确,要认真阐述自己的创造性工作在本领域中的地位和作用,以及个人新见解的意义。(8) 参考文献:另起一页,只列出主要的及公开发表的参考文献,并且按照文中引用的顺序附于文末。参考文献要写明作者、书名(或文章题目及报刊名)、版次(初版不注版次)、出版地、出版者、出版年、页码。中译本前要加国别。序号使用[1],[2],[3]……。其格式为:著作:序号,作者、书名、出版社、出版时间、页码。论文:序号,作者、论文篇名、刊号、年、卷(期)、页码。例:[1] Robert A. Szymanski B. Stability of Linear Systems. Merrill Publishing Company ,1990, 39(4): 131-134[2] [英]M 奥康诺尔著,王耀先译·科技书刊的编译工作,北京:人民教育出版社,1982, 56-57(9) 论文正文字数在8000字以上。二、毕业论文写作规范(1)、毕业论文的版面要求论文打印一律使用A4打印纸,统一版心,页边距要求:上边距2.54厘米,下边距2.54厘米,左边距4.17厘米,右边距3.17厘米。页号打在页下方中间。(2)、字体要求A. 封面部分:3号宋体字(加粗)。B. 摘要部分:标题:3号黑体字,正文:小4宋体字,关键词:小4黑体。各关键词之间用逗号分开,最后一个关键词后不加标点符号。C. 英文摘要: 标题:3号加粗,正文:小4,关键词:小4加粗,字体 :Times New Roman. D. 目录:标题:3号黑体字,正文:小4宋体字,每章题目要加粗,并注明各章节起止页码,题目和页码之间用“┄┄”相连。E. 正文: 大标题用汉字大写“一、二…”,3号黑体字;次标题用“(一)、(二)…”,小3黑体字;小标题用阿拉伯数字“1、2…”,小4号宋体字,加粗。行间距,固定值,20磅,段前后6磅。F.参考文献: 标题用小3黑体字,参考文献内容用5号宋体字。要求要点:300字左右的论文摘要 6篇中文参考文献 8千字 (附)渤海学院2005级学生毕业论文开题报告撰写格式 (一)题目的国内外研究现状及评价(主要根据学术文献对该题目涉及领域的国内外研究动态进行评述,对该研究的历史、现状和发展情况进行分析,指出其优点和不足,同时指出自己开展此研究的设想。)(二)所选题目的理论意义和现实意义(三)本课题拟采用的研究方法(如文献综述法、案例分析法、社会调查研究方法等)(四)论文的基本结构(论文的章节)(五)参考文献 (例) 本科毕业论文(设计)(2009届本科毕业生)题 目: 浅谈中值定理的应用 学生姓名: *** 学生学号: 05000001 学院名称: 数学与系统科学学院 专业名称: 数学与应用数学 指导教师: *** 摘 要 论文从对《几何画板》的认识及其在高中教学中的应用等方面展开讨论.首先论述了应用《几何画板》辅助数学教学的必要性和现实意义;其次从软件的发展史、功能、特点等方面对《几何画板》做了详细的介绍,该软件短小精悍,功能强大,能够动态表现相关对象的关系,适合教师根据教学需要自编微型课件.论文以《几何画板》在高中数学教学中的应用为例, 论述了其在实际教学中的应用.分别从《几何画板》在高中代数教学中的应用,在高中立体几何教学中的应用,在高中平面解析几何教学中的应用等诸方面,论述了《几何画板》实用性及使用《几何画板》较其它同类软件的优势;最后,总结了基于《几何画板》进行辅助教学对现代教育教学的影响及推动作用.关键字:几何画板,计算机辅助教学,课件,数形结合Based on "Geometer’s Sketchpad" Computer Aided InstructionAbstract:Paper from the understanding of “Geometer’s Sketchpad” and its application in the high school teaching launched the discussion. At first elaborate the necessity and the practical significance of applying “Geometer’s Sketchpad” to assist mathematics teaching; Next from aspect software history, function, characteristic and so on made the detailed introduction to “Geometer’s Sketchpad”, this software terse and forceful, the function is formidable, can the dynamic performance correlation object relations, suit the teacher to need from to arrange the miniature class according to the teaching. The paper took “Geometer’s Sketchpad” in the high school mathematics teaching application as an example, elaborated it in the field research application. separately from “Geometer’s Sketchpad” algebra teaching application in the high school , three-dimensional geometry teaching application in the high school, plane analytic geometry teaching application in the high school and so on the various aspects, elaborated “Geometer’s Sketchpad” the usability and used “ Geometer’s Sketchpad” to compare other similar software the superiority; Finally, summarized the assistance teaching based on “Geometry Drawing board” to the modern education teaching influence and the impetus function. Keywords: Geometer’s Sketchpad, the computer aided instruction, courseware, counts the shape union目 录一、引 言………………………………………………………………………1二、《几何画板》的发展史及其功能………………………………………1 (一)《几何画板》的发展史………………………………………………1 (二)《几何画板》的功能…………………………………………………2 1.用《几何画板》,创设“情景”,改善认知环境……………………2 2.用《几何画板》帮助学生辨析概念…………………………………3 3.用《几何画板》教数学,变抽象为形象……………………………4 4.用《几何画板》做“数学实脸”……………………………………4 三、《几何画板》的主要特点………………………………………………5 (一) 动态性………………………………………………………………5 (二) 形象性………………………………………………………………5 (三) 简单性………………………………………………………………6 (四) 快捷性………………………………………………………………6 四、基于《几何画板》的辅助教学的特点及基本方式…………………6 (一) 基于《几何画板》进行数学辅助教学的特点………………………6 (二) 基于《几何画板》的计算机辅助教学的几种方式…………………7 1.教师引导研究式………………………………………………………7 2.学生自主研究式………………………………………………………7 3.小组合作研究式………………………………………………………8五、《几何画板》作为辅助工具在数学教学中的实践 ……………………8 (一)《几何画板》在高中代数教学中的应用……………………………8 (二)《几何画板》在高中立体几何教学中的应用………………………9 (三)《几何画板》在高中平面解析几何教学中的应用………………10 六、基于《几何画板》的辅助教学的思考…………………………………12 (一)更新教育观念,迎接教育革命…………………………………12 (二) 坚持数学教师自己制作软件………………………………………12 (三) 力争让学生了解《几何画板》…………………………………12 (四)《几何画板》运用于教学中的前景展望……………………………13 七、结束语……………………………………………………………………13 参考文献………………………………………………………………………14一、引 言随着教学技术的现代化,多媒体软件技术日益广泛地运用,为高中数学教学手段的更新创造了条件,为数学………….在运用“数形结合”的数学思想,解决抽象数学问题时,使抽象的理论具体化、形象化,将便于学生理解和记忆.通过具体的感性的………….二、《几何画板》的发展史及其功能《几何画板》是针对数学开发研制的软件.利用它辅助数学教学,实际上就是借助它来开展数学实验,这是全面实施新教育的需要.以下从发展史及功能对《几何画板》作以介绍.(一)《几何画板》的发展史《几何画板》是一个优秀的专业学科平台软件,代表了当代专业工具平台类教学软件的发展方向.它是以数学为根本,以“动态几何”为特色………….(二)《几何画板》的功能《几何画板》具有强大的功能,可为每位学数学的人所用.教师可利用它来制作教案,学生可利用它来学习数学………….1.用《几何画板》,创设“情景”,改善认知环境由于《几何画板》能够准确、动态地表达几何现象,这就为认识概念创设了一个很好的“情景”,从而改善了认知环境,以达到提高教学效果的目的.例如,在教学《三角形的中位线》时,可用《几何画板》做如下………….2.用《几何画板》帮助学生辨析概念数学中容易混淆的概念很多,需要辨析.椭圆的中心与椭圆上两点的连线为终边的角(x轴的正向为始边)、“椭圆的离心角”是学生容易混淆的………….………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………七、结束语论文提出了解决传统数学教学弊端的途径之一是利用《几何画板》辅助教学.使用《几何画板》进行数学教学,通过具体的感性的信息呈现,能给学生留下更为深刻的印象,使学生不是把数学作为单纯的知识去理解它,而是能够更有实感的去把握它.学生可以在计算机教室的环境或者在家用电脑的环境下,在教师的引导下使用《几何画板》自己去探索几何的规律,培养学生的探索、分析问题的能力,得出创新成果.这样教师就不仅仅是知识的灌输者,而成为一位引导者、帮助者;学生也不仅仅是知识的容器,而是一个研究者、探索者.这一方面符合国际上现代教育的教育思想,而且在很大程度上会促进“素质教育”的开展.由于时间有限,对《几何画板》在数学课堂教学中应用的分析还不够透彻,研究还不够全面,我将在今后的课堂教学中逐渐去发现和总结.参考文献[1] 陶维林.几何画板实用范例教程[M].北京:清华大学出版社,2001:50—51[2] 朱庆生.多媒体电脑实用技术[M].重庆:重庆出版社,1996:1—10………………………………………………………………………………[9] Maria L.Femandez. Making Music With Mathematics[J],Mathematics Teacher Vol.92 No.2,1999:90备注:按封面左侧装订线装订。论文装订顺序:按照“论文封面、论文任务书、论文评审书和毕业论文”的顺序装订在一起。一式三份(一份装学生档案、一份指导教师存档、一份院系存档)。二零零九年五月 沈阳师范大学渤海学院经贸系 2008年12月4日
解析几何诞生于17世纪的法国,数学家笛卡儿和费马通过把坐标系引入几何中,将几何的基本元素——点,与代数的基本研究对象——数对应起来,从而将几何问题转化为代数问题。解析几何学的产生可以说是数学发展史上的一次飞跃。它为17世纪数学最重要的成就之一——微积分的创立奠定了基础;解析几何把变量引入数学,因此完成或者简化了其他学科中一些定理的证明;同时,通过对图形方程的建立和研究将几何图形更好的应用到我们的生活中。公元前146年,罗马人征服了希腊本土。公元前47年,凯撒纵火焚毁停泊在亚历山大港的埃及船队,大火延及该城,并无情地将图书馆两个半世纪以来收集的藏书毁于一炬。罗马统治者推崇的基督教的传播,迅速地以强烈的宗教狂热淹没了丰富的科学想象,使希腊数学蒙受了更大的灾难。查封学园,禁止学习研究数学,使欧洲数学进入了漫长的黑暗时期。15世纪,随着拜占庭帝国的瓦解,难民们带着包括古希腊文化在内的财富逃亡到意大利,从15世纪中期到16世纪末,这段时期在欧洲称为文艺复兴时期。在这一时期,欧洲开始出现了思想大解放、生产大发展、社会大进步,包括数学在内的科学文化开始复苏并繁荣起来。到17世纪,从封建社会内部产生出来的资本主义生产关系,处于它的上升时期,促进了社会生产力的迅速发展,远洋航行、矿山开采、机械制造以及资本的对外扩张,向自然科学提出了大量的问题,例如天体运行、钟表摆动、炮弹弹道、透镜形状等,所有这些,都已超出欧几里得几何学的范围。费马和笛卡儿创立的解析几何学解决了以上问题,解析几何是代数与几何相结合的产物,通过把坐标系引入几何中,将几何的“形”与代数的“数”对应起来,从而将几何问题转化为代数问题,它把变量引入数学,使得人们借助数学对运动变化规律进行定量分析成为可能。美国著名数学史家莫里斯·克莱茵指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善。”17世纪上半叶,数学家们已经积累了微积分的大量知识和方法,解析几何的出现为微积分的创立奠定了基础。正如恩格斯所说:“数学中的转折点是笛卡儿的变数;有了变数,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了。”在解析几何中,我们可以通过构造向量完成一些定理的证明,或者简化一些定理证明过程。利用空间解析几何中的数量积、向量积以及混合积运算,对一个向量与三个不共面向量的分解式进行混合积运算,之后在空间右手直角坐标系下应用混合积的坐标表示,代入四个向量的坐标以后可以证明线性代数中解线性方程组的重要定理——克莱姆法则。通过数量积的定义和空间直角坐标系下数量积的坐标表示式可以证明数学分析中的重要不等式——柯西—施瓦茨不等式;还可以利用双重向量积的计算公式证明数学分析中的两个重要等式——拉格朗日恒等式和雅可比恒等式。在三角形中构造向量以后,可以运用数量积的定义和运算律证明三角学中的余弦定理,还可以利用向量积模的定义证明三角学中的另一定理——正弦定理。
去找导师啊,想当年我毕业论文网上都搜不到什么,导师给一部分,自己做一部分,在就差不多啦
一、函数的起源(产生) 十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。 十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。 人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。 二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。 十八世纪中叶,著名的数学家达朗贝尔 (D’Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。 实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。 1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。 函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不解释 十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。 十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6) 1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。 ⒉以“集合”为基础的函数概念 函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( G.Cantor)提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。 二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。 随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。 对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。 对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。 为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。 到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。 三、新旧两种定义的比较 比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别: ⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。 ⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。
圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。
高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究
圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.
一、高中数学圆锥曲线教学现状
1.从教师角度分析
高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.
考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.
2.从学生角度分析
圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.
二、提升高中数学圆锥曲线教学效率的措施
1.培养学生学习圆锥曲线的兴趣
众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.
2.教师要重视演示数学知识的形成过程
考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.
3.坚持学生的主体地位
教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.
三、结语
高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.
高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考
【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。
【关键词】 椭圆;双曲线;相似性质
学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:
1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。
2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。
3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?
4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。
5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。
我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。
首先,有关椭圆的第一定义与双曲线的第一定义。
“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。
比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。
其次,有关用二次平方法化简方程。
在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。
数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。
根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。
最后,椭圆与双曲线的相关性质。
在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。
通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。
1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。
例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。
又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。
例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。
3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。
例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。
鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。
通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。
在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。
参考文献
[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.
[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.
[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.
高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题
摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。
关键词:课程标准 数学高考 解析几何 存在性问题 思考
前言
最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]
一、是否存在这样的常数
例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.
(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.
二、是否存在这样的点
【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.
三、是否存在这样的直线
【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条
件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]
四、是否存在这样的圆
【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系
结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.
2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;
参考文献:
[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003
[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012
[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006
递推公式斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列。通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)注:此时 通项公式推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为: 解得 , .则 ∵ ∴ 解得 方法二:待定系数法构造等比数列1(初等代数解法)设常数 , .使得则 , 时,有……联立以上n-2个式子,得:∵ ,上式可化简得:那么……(这是一个以 为首项、以 为末项、 为公比的等比数列的各项的和)。, 的解为则方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。得α+β=1。αβ=-1。构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。所以。an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。由式1,式2,可得。an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法四:母函数法。对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x.因此S(x)=x/(1-x-x^2).不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
随着教育科研意识的不断深化,很多教师希望把自己的研究成果,以论文形式公开发表. 根据笔者的切身经历,我认为初写数学论文的教师, 为了尽可能的少走弯路,应充分注意以下几点. 一、借鉴成果,博采众长 对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情. 一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴. 就初中数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息. 信息的表现形式多种多样,大致可以分为三类:(1)书面形式,比如各种书籍、报纸、刊物等;(2)口头形式,比如各种会议、听课、交流、咨询等;(3)电子形式,比如以网络、光盘、软盘等为载体的信息. 来源于不同形式的信息各有千秋,有的权威性高,有的时效性快,有的针对性强,有的信息量大. 这些信息的保存方式也各不相同,主要有四种:(1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容,主要用于一般性的信息;(2)做摘记,写在本上,编好序号目录,以便查找,所记内容比卡片更详尽,适用于比较重要的信息;(3)复印,对于特别重要并且篇幅较长的文章,可以全文复印,复印件应用同样大小的复印纸,对不同大小的原件缩放得一样大,便于装订、排序、编目;(4)存盘,这是针对电子信息形式的特殊性采用的一种保存方式,复制到微机硬盘或软盘上. 有条件的,还能使用录音、录像、刻录光盘等等方式. 自1996年以来,我手抄20多万字,复印存盘10多万字,这些宝贵的文献资料,为我的教育科研和论文写作,提供了强大的理论支持和实践指导. 二、完备素材,厚积薄发 论文只是教研结果的表现形式之一,有人提出“论文还自教研始”、“论文在研不在写”等观点,有一定的道理. 如果只看重论文发表这一结果,急功近利,做无病之呻吟,效果肯定不好. “厚积”是基础,没有来源于实践的经验教训、数据统计等等素材的积累,想要写出比较有价值的论文,几乎是不可能的. 这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面:(1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习的过程;(2)课后反思,对每节课的成败得失都及时的总结下来,以便进一步研究;(3)作业记录,从学生作业中不但能发现具有共性的问题,提示我们教学教研的改革方向,而且学生中也会有许多新颖的解题思想,值得教师学习;(4)考试总结,测验考试是对学生知识的集中检验,即使在素质教育中,也不能把考试视为应试教育的“余孽”,“打入冷宫”,关键是如何改革考试制度和内容,适应素质教育;(5)解题分析,教师平时应坚持解答一定数量的数学题,解题是数学的核心任务之一,这样做可以活跃思维,并从中探索解题规律和命题趋势;(6)调查反馈,调查可以用谈心、问卷等多种形式进行,从中所反馈的信息是难得的写作素材;(7)成果质疑,学习他人但不要迷信他人,在阅读他人的论文时,有时也能发现其存在的不足甚至是错误之处,对此只要自己的理由充分就要敢于质疑;(8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度;(9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,但这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起. 几年来,我以“教学手记“形式,积累的素材已达200多份45万字,在此基础上进一步整理成文,已在国家级、省级报刊发表各类数学论文(或文章)100余篇17万字. 其中,有些论文的素材积累投入了很大力度,比如发表于《理科考试研究》(初中版)2001年第10期的《“动”了五年的压轴题》一文,是在对1997年~2001年五年间,河北省中考压轴题的命题规律进行研究的基础上,汇总整理而成的;发表于《校园学习·数学》2002年第1~2期的《方程(组)中考复习精要》一文,素材源于对2001年70余份中考试题的分析精选. 三、立足实践,提炼新意 初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的. 正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展. 近期,我正负责河北省“创新教育”子课题“培养学生创造性思维能力”的研究工作,这一课题也是当前教育界的一个热门话题,我将自己的阶段性研究成果写成论文《培养学生创造性思维能力的常用方法》,参加了2000年8月在京举办的“全国初中数学教育第十届年会”论文评选,荣获二等奖. 再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手,据此李凤君老师和我合作写成《怎样判断勾股数》一文,发表在《教育实践与研究》2000年第2期上. 论文的新意如何出?我认为有两点非常重要:一是在主题上,立意新颖,视角独特;二是在时间上,意识超前,创作及时. 就拿对中考试题的研究来说:河北省2000年中考于6月22日结束,我随即对当年的中考试题加以分析,从考查学生创造性思维能力的角度深入剖析,于7月份创作完成了《注重考查学生的创造性思维能力——2000年河北省中考数学试题评析》并寄给《中小学数学》(初中教师版),后来发表于该刊2001年第3期;一般每年的全国各地中考试题汇编资料最早在10月份面世,通过研究我发现,1998年的中考试题中不等式应用题异军突起,而且当年考生的得分率偏低,必将引起以后中考师生的注意,针对这一新动向,我于11月份写成《例谈中考不等式(组)应用题》一文,对此进行分类研究,并补充编拟新试题,指出命题趋势,该文发表于《河北教研》1999年第2期. 四、从小到大,循序渐进 写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,提醒初写者先尝试以下两个步骤: 第一步,练习写学习辅导类的文章. 几年来,我在《学习报》、《少年智力开发报》、《初中生周报》等报纸上,发表学习辅导类文章数十篇. 这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究. 学习辅导类的报刊面向广大学生,通常用稿量大,发表得快;其内容突出针对性,深入浅出,形式灵活;所需稿件短小精悍,通常有1000字左右;要求与教学同步,应该比教学进度提前3个月寄稿;写稿还应分析用稿动向,目前学习辅导类报刊多数存在高年级稿多、低年级稿少,综合知识稿多、单个知识稿少等等现象,初写者可以倾向于写“少”的方面的稿;稿件写完后要反复修改,确保无误,再抄写或打印寄出. 第二步,进行教学研究类论文的写作,侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文. 可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等. 如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,比如发表于《中小学数学》(初中教师版)2001年第9期的《谈计算器的教学》一文,就是在此方面的尝试. 需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华;论文篇幅不求长,大家都知道的少说或不说,适可而止,相信读者的阅读水平,主要适于教师阅读的论文,长短不一,就我发表的论文而言,短的仅千余字,长的近7000字,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,但对与教学同步性的要求则比较宽松;为提高发稿率,应认真研读报刊风格,留心新增栏目、征稿启事,对发现的问题勇于质疑争鸣. 五、文外功夫,提高修养 文外功夫,主要指一个人的思想境界、个人修养、意志品格等方面的表现. 它具体体现在两个方面: 一方面是,讲究文德,不要过分看重名利、沽名钓誉. 必须信守承诺,尤其是应约写稿,一定要迅速及时,保质保量;如所约稿件较多,也可以多写几篇给编辑以选择的余地;为避免信件丢失,可用挂号信寄稿,有时还需用特快专递、传真、发E-mail等方式. 当前很多单位(甚至有的是个人)利用教师希望发表论文的迫切心理,征集各种名目的“自助论文”,对此应慎重对待,不能为了名利,就写一些没有价值的文字,花钱发表. 一稿多发一般是由一稿多投所致,如果在约定时间内未收到用稿通知、样报样刊或稿费,而再投他刊造成重复发表的尚有情可原;但有的把一篇稿同时寄往多家报刊,甚至明知已经发表录用又另投他刊,即使侥幸被重复发表,无论间隔时间长短,也很容易被读者识破,这样做既不尊重编辑,影响报刊质量,又坑害读者,降低个人声誉,结果适得其反. 更为严重的是剽窃抄袭他人论文,不但可耻,而且是一种违法行为. 另一方面是,坚持不懈,持之以恒. 我从1996年初开始着手于素材的积累,不断自觉的夯实基本功,历时一年多,直至1997年开始投稿,结果投寄的第3篇论文《代数式求值十法》就被发表于《理科考试研究》1997年第6期,喜悦之情溢于言表,细细回味,一年多的“寂寞”也是初次收获的重要因素,如果坚持不下来,也只能是半途而废了. 相对于更多的论文作者来说,我还算是幸运的,他们在谈到自己的写作经验时,提到投稿数十次、甚至近百次以后才有作品问世,其间的酸甜苦辣、经验体会是难以言传的,“失败是成功之母”、“功夫不负有心人”在他们身上得到了充分的体现. 以上所谈是我对初中数学论文写作的几点看法,希望能给刚刚开始写作的朋友带来一些帮助. 所涉及的内容较为肤浅,如要在论文写作的道路上不断提高,还需要借鉴更多人的成功之道,但无论如何,个人的实践创新才是最重要的因素之一.
《简析科学发展观的精神实质及其意义》
摘要:科学发展观的提出,是马克思主义发展理论在当代中国的生动运用和体现,是对我国改革开放和现代化建设实践经验的总结和升华。只有正确认识科学发展观的基本内涵,深刻领会科学发展观的精神实质,牢固树立和落实科学发展观,坚定不移地以科学的发展观统领经济社会发展全局,才能顺利推进我国的社会主义现代化建设。
关键词:科学发展观;精神实质意义
一、科学发展观的精神实质
科学发展观的实质是社会主义科学发展观,正因为其目的就是进一步解决中国特色社会主义如何发展的问题。科学发展观有着极为深刻和丰富的内涵和精神实质。科学发展观,第一要义是发展,核心是以人为本,基本要求是全面协调可持续,根本方法是统筹兼顾。这是胡锦涛对科学发展观内涵的完整概括。
(一)科学发展观的第一要义是发展,这是党执政兴国的第一要务。
马克思主义认为,生产力的发展是人类社会发展的最终决定力量。革命也好,改革开放也好,目的就是解放和发展生产力。社会主义现代化的实现,全面建设小康社会目标的实现,前提就是大力发展生产力。我们在任何时候,都要牢抓住经济建设这个中心,始终坚持聚精会神搞建设,一心一意谋发展。要采取各种措施激励科技创新,管理创新,不断解放和发展生产力,为建设中国特色的社会主义打下坚实的基础。国家的昌盛,人民的富裕,说到底是经济实力问题。国际竞争说到底也是经济实力的竞争,国内各种矛盾的解决,说到底也要靠经济的发展,财富的积累。一句话要靠发展去解决,不发展或发展慢,就不是社会主义。
(二)科学发展观的核心是以人为本。
科学发展观不仅回答了为什么要发展,还回答了为谁发展,靠谁发展的重大问题。要求发展必须坚持以人为本。坚持以人为本,全心全意为人民服务是我们党的根本宗旨,党过去、现在和将来的一切奋斗和工作都是为了造福人民。要始终把实现好、维护好最广大人民的根本利益作为党和国家一切工作的出发点和落脚点。在发展中坚持用人民拥护不拥护、赞成不赞成、高兴不高兴、答应不答应来衡量一切决策。要把经济发展的目的真正落实到满足人民需要和实现人民的利益,提高人民的生活水平上,让人民群众真正享受到发展成果。在政治的建设发展上,要着眼于保障人民当家作主的权利和合法权益,不断发展社会主义民主、健全社会主义法制。在文化的建设和发展上,要着眼于满足人民精神生活的需求,提高人民群众精神生活的质量和品位。在社会建设和发展上,一方面,要协调好各方面的利益关系,增强人民的凝聚力,构建好和谐社会,保护好环境,让人民生活在良好的社会环境和自然环境中。另一方面,又要大力发展教育,发展科学文化,要不断提高全民族的文化素质和思想道德的品质,注重人的全面发展。
(三)全面协调可持续发展是科学发展观的基本要求。
如何发展呢?基本要求是发展的全面性,要求我们在建设中国特色的社会主义事业中,坚持全面推进经济建设、政治建设、文化建设、社会建设等四大方面的建设,而不是某个方面和领域的发展。发展过程中要突出重点,抓主要矛盾和矛盾的主要方面,但不能顾此失彼,只见树木不见森林,片面追求某个方面和领域的发展。客观事物是相互联系的,全国是一个大系统,系统中的各要素是相互联系的,看不到这一点,就难以实现又好又快地发展。协调可持续发展,要求的是在发展中兼顾各方面关系,促进社会的协调发展。要按照中国特色社会主义事业总体布局,全面推进经济建设、政治建设、文化建设,促进现代化建设各个环节、各个方面相协调,促进生产关系与生产力、上层建筑与经济基础相协调。
(四)坚持统筹兼顾是科学发展观的根本方法。
要正确认识和妥善处理中国特色社会主义事业中的重大关系。毛泽东曾说过,统筹兼顾,各得其所。邓小平同志,江泽民同志都曾讲过发展中的统筹问题。胡锦涛在十七大报告中讲了四个方面的统筹:统筹城乡发展、区域发展、经济社会发展、人与自然和谐发展,国内发展和对外开放,统筹中央和地方的关系,统筹个人利益和集体利益、局部利益和整体利益、当前利益的长远利益,充分调动各方面的积极性。统筹国内国际两个大局,树立世界眼光,加强战略思维,从世界发展变化的大局中把握国内发展的机遇,决策我们国家发展的方针政策。统筹兼顾的思想方法是总结社会主义建设历史经验,适应新的形势和任务提出来的。充分体现了唯物辩证的发展观,是对毛泽东思想,邓小平理论和三个代表重要思想的继承和发展,是马克思主义理论的创新。
二、科学发展观的重大意义
科学发展观是我们党以邓小平理论和“三个代表”重要思想为指导,从新世纪、新阶段党和国家事业发展的全局出发提出的重要战略思想。
(一)科学发展观是在深刻总结改革开放以来经济建设中的经验教训的基础上提出来的。
科学发展观是继邓小平理论和“三个代表”重要思想之后中国特色社会主义理论建设新的阶段性重大成果。它正确反映了社会主义建设规律,符合广大人民的利益和要求。科学发展观的提出,是我党坚持解放思想、实事求是、与时俱进、理论创新的重大理论成果,是党对社会主义建设规律认识的进一步深化,是党的执政理念的一个新飞跃。改革开放30多年来,经过艰苦探索,在发展问题上,我们党积累了不少经验:坚持以经济建设为中心,大力发展生产力;建立社会主义市场经济体制,发挥市场在资源配置中的基础性作用;全面推进社会主义物质文明、政治文明、精神文明建设,促进经济社会协调发展和人的全面发展;坚持经济增长从数量型向质量型、效益型转变;扩大对外开放,不断提高对外开放水平;注重经济与人口、资源、生态的协调发展等。改革开放以来,正是因为坚持了正确的发展观,制定和贯彻了正确的路线、方针、政策,我国的社会主义现代化建设事业才取得了举世瞩目的成就。十六大在深刻总结这段历程的基础上,提出了科学发展观,为我们伟大的社会主义事业继续前进提供了指导。十六大以来,以胡锦涛同志为的党中央牢牢把握发展这个主题,把中国特色社会主义事业全面推向前进。科学发展观把中国特色社会主义事业的成功经验加以深化,与新的时代特点和当前国情相结合,赋予发展观以新的时代内涵,因而具有坚实的历史基础和实践基础。
(二)科学发展观的提出深刻回答了社会发展的问题。
科学理论的伟大意义在于它能够指导实践。在马克思主义发展史上具有重要地位的理论,必须是能够解决重大实践问题的理论。现在,我国的改革发展正处于关键阶段,新的问题层出不穷。科学发展观系统深入地回答了“要不要发展”、“为谁发展”、“怎样发展”等事关中国长远发展的一系列重大问题,把对中国特色社会主义发展问题的认识提高到新的水平。
(三)科学发展观的提出开拓了马克思主义发展的新境界。
科学发展观是继毛泽东思想、邓小平理论和“三个代表”重要思想之后中国特色社会主义理论建设新的阶段性重大成果,是重大的理论创新。科学发展观紧密结合新的时代条件,以广的世界眼光和深刻的战略思维观察当代世界和当代中国发展问题,实现了马克思主义与中国实际的进一步结合,生动而具体地坚持和发展了马克思主义,为我们党的理论创新增添了富有时代精神和现实品格的崭新内容,赋予马克思主义新的鲜活力量,开辟了马克思主义在当代中国发展的新境界。
参考文献:
[1]中国共产党第十六届中央委员会第六次全体会议公报.人民日报.2006.10.11.
[2]吴邦国.构建社会主义和谐社会的纲领性文件.人民日报.2006.10.20.
以人为本、全面协调可持续的科学发展观,是以胡锦涛同志为总书记的党中央以邓小平理论和“三个代表”重要思想为指导,在准确把握世界发展趋势、认真总结我国发展经验、深入分析我国发展阶段性特征的基础上提出的重大战略思想,实现了我们党对发展问题认识的新飞跃。在新的形势和任务面前,我们只有正确把握科学发展观的理论意义和实践要求,坚持用科学发展观武装头脑、指导工作、研究问题,才能把我国改革开放和社会主义现代化建设事业不断推向前进。科学发展观是我们党执政兴国的强大思想武器科学发展观坚持马克思主义的基本原理,站在历史和时代的高度,进一步回答了新形势下我国怎样发展的重大问题,用新的思想和观点深化了对社会主义建设规律的认识,进一步丰富了马克思主义关于发展的理论,是与时俱进的马克思主义发展观。深入学习贯彻科学发展观,对于我们切实抓好发展这个党执政兴国的第一要务,实现全面建设小康社会的宏伟目标,推进中国特色社会主义事业,具有重要的现实意义和深远的历史意义。科学发展观是指导发展的世界观和方法论的集中体现。从根本上讲,科学发展观的理论基础是马克思主义哲学,是马克思主义唯物史观。科学发展观强调以人为本,充分体现了唯物史观关于人民群众是社会历史的主体和创造者的观点;强调全面发展和协调发展,充分体现了唯物史观关于社会系统内部诸要素间相互联系、相互作用的思想;强调可持续发展,充分体现了唯物史观关于人、社会对自然界的依赖性和社会历史发展的连续性的观点。科学发展观的提出,是我们党在发展问题上对马克思主义世界观和方法论的科学运用,是对马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要思想关于发展的思想的继承和发展,为我们不断推进经济社会发展指明了正确的前进方向。科学发展观是推进我国改革开放和社会主义现代化必须长期坚持的指导方针。科学发展观是在深刻总结我国社会主义建设和世界各国发展的经验教训的基础上提出来的,形成了对我国经济社会发展一般规律的认识,是我们党关于社会主义现代化建设指导思想的重大发展。以人为本是科学发展观的核心;全面、协调、可持续发展是科学发展观的基本内涵和本质要求。坚持以人为本,促进人的全面发展,是我们党的性质和宗旨的具体体现,符合马克思主义关于人的自由全面发展是社会主义新社会本质要求的思想;坚持全面、协调、可持续发展,体现了发展的时代特征和必然趋势,符合社会主义现代化建设和人类社会发展的内在规律。科学发展观是推进社会主义经济建设、政治建设、文化建设和社会建设全面发展的指导方针,是推动我国经济社会发展、加快推进社会主义现代化必须长期坚持的重要指导思想。科学发展观是我们党治国理政、富民安邦的新的遵循。发展是我们党执政兴国的第一要务,执政能力建设是党执政后的一项根本建设。提高党的执政能力,首先要提高党领导发展的能力。科学发展观赋予党的执政理念以鲜明的时代内涵,为我们党更好地领导发展提供了新的遵循、新的思路。按照科学发展观的要求,不断完善党的执政方略、健全党的执政体制、改进党的执政方式、巩固党的执政基础,是加强党的执政能力建设、提高党的执政水平的战略选择。只有牢固树立和全面落实科学发展观,把发展的成效作为衡量党的执政能力的重要尺度,把坚持党的先进性落实到推进经济社会又快又好发展上来,我们党才能得到人民群众的衷心拥护和广泛支持,才能更好地肩负起团结带领全国各族人民不断推进中国特色社会主义事业、实现中华民族伟大复兴的历史重任。科学发展观是推动经济社会又快又好发展的行动指南树立和落实科学发展观既是重大的理论问题,更是重大的实践问题。贯彻落实科学发展观,最根本和最重要的是坚持用科学发展观武装头脑、指导工作、研究问题,坚持以科学发展观统领经济社会发展的全局,推动经济社会发展切实转入以人为本、全面协调可持续发展的轨道。把以人为本贯穿各项工作的始终。以人为本是科学发展观的核心。以人为本,就是以最广大人民的根本利益为本,是坚持发展为了人民、发展依靠人民、发展成果由全体人民共享。贯彻以人为本的发展理念,要求我们:第一,把人作为发展的根本动力。人是生产力中最活跃的因素,人的素质高低对经济社会发展的速度和质量具有重要的影响。要大力开发人力资源,不断提高劳动者素质,努力把我国的人口压力转化为人力资源优势,为全面建设小康社会、加快推进社会主义现代化提供强大的人力智力支持。第二,把人才强国战略作为实现发展的根本战略。当今世界,人才已成为最重要的战略资源,经济科技的竞争实质上就是人才的竞争。要更加自觉地实施人才强国战略,把人才工作纳入经济社会发展的总体规划,通过深化体制改革和发展教育科学文化事业,为更多的人才脱颖而出、施展聪明才智创造良好环境和条件。第三,把满足人民群众的物质文化需求和促进人的全面发展作为经济社会发展的根本出发点和落脚点。做任何工作,都要着眼于实现好、维护好、发展好最广大人民的根本利益,都要努力实现人民的愿望、满足人民的需要、维护人民的利益。当前,特别要从解决人民群众最关心、最直接、最现实的利益问题入手,着力抓好就业再就业、社会保障、扶贫开发、安全生产、社会稳定等民生问题,使广大人民群众更好地享受经济社会发展的成果。把全面发展和协调发展贯穿各项工作的始终。全面发展,就是要以经济建设为中心,全面推进经济、政治、文化、社会建设,实现经济发展和社会全面进步;协调发展,就是要统筹城乡发展、统筹区域发展、统筹经济社会发展、统筹人与自然和谐发展、统筹国内发展和对外开放,推进生产力和生产关系、经济基础和上层建筑相协调,推进经济、政治、文化、社会建设的各个环节、各个方面相协调。把全面发展和协调发展贯穿各项工作的始终,一是必须正确处理经济增长与全面发展的关系。发展首先要抓好经济发展。没有经济增长,就没有全面发展。但是,只抓经济增长,不但不能实现社会全面进步和人的全面发展,而且经济增长也难以持久。二是必须正确处理协调发展与共同发展的关系。协调不是“劫富济贫”、“压快拉慢”,而是要通过深化改革、创新体制、完善政策,扫除发展的障碍,落实“五个统筹”,从而促进共同发展。三是必须正确处理改革发展稳定之间的关系。只有始终坚持把握全局、统筹兼顾,妥善处理各种社会矛盾,把改革的力度、发展的速度和社会可承受的程度统一起来,才能实现在和谐稳定中推进经济社会发展。把可持续发展贯穿各项工作的始终。可持续发展,就是要促进人与自然和谐相处,实现经济发展和人口、资源、环境相协调,坚持走生产发展、生活富裕、生态良好的文明发展道路,保证一代接一代的永续发展。我们必须清醒地看到,重要资源和能源短缺、环境压力加大已成为制约我国经济社会发展的瓶颈,增强可持续发展能力是关系中华民族生存与长远发展的根本大计。实现可持续发展,根本途径是努力建设资源节约型、环境友好型社会。当前,必须抓紧建立和完善科学、全面地考核经济社会发展的指标体系,把人口与计划生育、环境与资源保护、生态安全与生产安全等因素作为重要的评价指标,推动经济社会发展进入持续发展和良性循环的轨道,促进人与人、人与社会、人与自然的和谐。
rfeqfaklnjerkdfa,wemskldq/adkjwkqnqfmds,fnweqkdsdlekfnwejkdsnkdewjd,msadjkwels.lwekfnmaskdwqdkasmdkwjdas,nmqkma.mnwekdjnjwefnjusdnhqjwd.jwedfbnweujdwqknaqidlkasjqkndknqiwhfweufhejdkwqujhdnajksd.;jdnhweqfuwhfjasdkf.qfjdefuhedsjkanhew,fudfhauwehfuewifkweuihawkeiuahuekwudhia/ewufiawudhaeedejha.aewjfhaufieahefukuhfarhiruhiwoaejfdkf.
科学发展观,是马克思主义关于发展的世界观和方法论的集中体现,是我国经济社会发展的重要指导方针,是发展中国特色社会主义必须坚持和贯彻的重大战略思想。接下来我为你带来科学发展观的议论文,希望对你有帮助。科学发展观的议论文篇1 十七大报告明确指出:“科学发展观,第一要义是发展,核心是以人为本,基本要求是全面协调可持续,根本方法是统筹兼顾。”发展是在工业化、信息化的基础上实现社会主义现代化的社会全面进步过程,这是我党依据我国处在社会主义初级阶段的基本国情作出的科学判断,是总结我国社会主义建设长期实践正反两方面经验教训得出的重要结论。有什么样的发展观,就会有什么样的发展道路、发展模式和发展战略,就会对发展的实践产生根本性、全局性的重大影响。科学发展观吸收和借鉴了一系列新思想、新观点、新论断,科学系统地揭示了社会主义发展的客观规律。科学发展观所蕴涵的基本思想和发展规律,体现了构建和谐认证的目标要求,进而促进了新形势下认证工作不断深入发展的必然结果。科学发展观的提出,是理论创新的一个突出成果,体现了中央对发展内涵的深刻理解和科学把握,对发展思路、发展模式的不断探索和创新,对我们把握大局,立足本职为认证事业的发展做好各项工作,具有非常重要的意义。现将本人学习科学发展观的主要心得体会归纳如下。 通过构建和谐社会,树立科学发展观,充分发挥认证的作用和影响力,在消费安全、食品安全、社会诚信机制的建设越来越得到重视,环境友好型社会、资源节约型社会建设成为经济和社会发展的重要课题的今天,认证工作作为一种国际通行的先进管理方法,在这些方面将会大有可为,发挥越来越重要的作用。中国质量认证中心在国家质检总局、国家认监委、认可中心和认证认可协会的支持和帮助下,注意发挥认证从业人员的积极性,使认证事业有了长足的发展。管理体系认证证书持续增长。 同时,在国际贸易中认证消除技术性贸易壁垒的作用将越来越突出,在管理、服务、安全、质量、环保方面的基础性保障作用越来越为各国政府所重视。随着我国对外贸易不断发展,我们所面临国外设置的技术壁垒会越来越多,如何适应这个需求,有效发挥认证的基础性保障作用,促进认证认可结果的国际互认,促进对外贸易,促进我国经济在全球化环境中的健康成长,是我们面临的重大课题。 要实现科学发展,我认为在今后一段时期,认证工作的任务是一手抓提高,一手抓发展。抓提高,就是提高认证有效性。通过提高认证有效性来提高社会对认证认可的信任程度,提高认证认可对经济发展的贡献价值。抓发展,就是发挥认证对经济的推动作用。通过扩大认证活动对社会经济生活的影响面,来促进经济的持续健康发展,通过更多的社会组织实施认证,来推动引入现代管理理念。通过发展新的认证领域来,推动社会在环境保护、职业健康安全、资源节约方面的进步,实现可持续发展。要实现认证认可的工作任务,认证机构是认证工作实施的主体,首先认证机构要适应发展的要求。认证机构要从经营宗旨、内部机制、认证人员、技术开发、运行管理等各个方面适应工作发展对我们的要求。 科学发展观的议论文篇2 通过近段时间的学习,我深刻地感到,科学发展观的提出,是理论创新的一个突出成果,体现了中央新一届领导集体对发展内涵的深刻理解和科学把握,对发展思路、发展模式的不断探素和创新,对我们把握大局、做好各项工作,有着非常重要的意义,坚持科学发展观已成为我们的重大国策,作为一名劳动保障人,我就学习的收获,谈几点体会: 在全党开展深入学习实践科学发展观活动,就是要把各方面的积极性真正引导到科学发展轨道上来,抓住机遇,应对挑战,在新的起点上,实现更长时间、更高水平、更好质量的发展;实现经济发展与社会进步结合,政治体制改革与经济体制改革结合,开放兼容与自主创新结合,时代精神与文化传统结合的全方位发展。因此,在新的历史发展阶段,必须继续全面建设小康社会、发展中国特色社会主义,必须坚持以邓小平理论和“三个代表”重要思想为指导,必须认真学习、深入贯彻落实科学发展观。 作为一名劳动工作者,学习了科学发展观的有关论述后,认识到:一是要增强贯彻落实科学发展观的自觉性和坚定性,全面把握贯彻落实科学发展观的目标要求,建立健全贯彻落实科学发展观的制度、体制和机制,切实把科学发展观贯穿于工作的全过程、落实到工作的各个环节。二是牢固树立和落实科学发展观,不断把工作推向前进。要紧密结合新时期新任务下工作的新特点、新要求,树立新形象,按照“对己清正、对人公正、对内严格、对外公平”的要求,加强自身建设,不断提高自身素质,落实岗位职责,转变工作作风,拓宽工作思路,创新工作方法,提高工作效率。三是坚持用科学发展观武装头脑,不断增强贯彻落实科学发展观的自觉性和主动性。切实把思想统一到科学发展观上来。全面贯彻落实科学发展观,关键是要进一步用科学发展观武装头脑,使科学发展观真正为我们所掌握,并真正贯彻到各项工作中去。要大力加强对科学发展观的学习、宣传和研究,深刻认识科学发展观的时代背景,进一步明确以人为本、全面协调可持续发展的本质要求,从而切实把思想统一到科学发展观上来。四是坚持以人为本,做到统筹兼顾,推动我县劳动保障事业全面协调可持续发展。学习和落实科学发展观,就是要以科学发展观的要求推进我县劳动工作的深入开展,要与落实科学发展观的重要步骤和各项举措相适应。不断改进工作作风,充分调动一切积极性和创造性树立良好的教育现象,把立党为公、执政为民的要求,落实到各项工作中去;要大力弘扬求真务实精神,大兴求真务实之风,努力形成为民、务实、清廉的良好风气,以良好的作风、踏实的工作保证科学发展观的落实。 学习科学发展观,重点是实践、是落实。我们一定要结合阜宁实际,心系劳动保障事业,服务阜宁人民,创建和谐阜宁,办人民满意事,在科学发展观的指导下,使我们阜宁的劳动保障事业更上一层楼。 科学发展观的议论文篇3 党的十六大以来,以胡锦涛同志为的党中央,高举邓小平理论和“三个代表”重要思想伟大旗帜,坚持立党为公、执政为民,求真务实、锐意进取,在全面推进社会主义经济建设、政治建设、文化建设、社会建设和党的建设的同时,不断推进党的理论创新,提出科学发展观这一重大战略思想,为党和人民事业的发展提供了科学的理论指导和有力的思想保证。 第一,贯彻落实科学发展观是我国时代发展的必然要求。科学发展观是我们党立足社会主义初级阶段基本国情,深入分析我国发展的阶段性特征,总结发展实践,把握世界发展趋势,适应新的要求提出来的,是我国经济社会发展的重要指导方针,是发展中国特色社会主义必须坚持和贯彻的重大战略思想。胡锦涛同志指出:“一个国家坚持什么样的发展观,对这个国家的发展会产生重大影响,不同的发展观往往会导致不同的发展结果”。 经过30年的改革开放,我国已经站在了新的历史起点上。我国的经济建设已经得到了很大的发展,取得了举世公认的成就,2007年我国的国民生产总值已经达到了246619亿元,位居世界第四位,从1979年至2004年我国经济年均增长9.6%,过去五年我国经济的年均增长更是达到了10.6%。这些成绩的取得确实令人感到振奋,感到自豪。我国已经解决了十三亿人的吃饭问题,这也是中国人民为世界做出的重要贡献。目前全国人民在党中央国务院的坚强领导下,正在以饱满的热情、满怀信心地为全面建设社会主义小康社会而奋斗。 但是我们应该清醒地看到,我们还存在这样或那样的诸多问题,虽然我国的GDP总量不少,但是平均到每个人就很少了,甚至比一些发展中国家还少。在医疗、教育、住房、社会保障等方面我们还有大量的工作要做,还远远不能满足人民群众的需要。更加严峻的是,我国在贫富差距、社会稳定、道德建设、环境保护等方面面临着巨大的挑战。目前官方的数据显示,我国的基尼系数已经达到了0.48,基尼系数是经济学用来反映贫富差距的指标,基尼系数越大表明贫富差距越大,基尼系数越小表明贫富差距越小。如果基尼系数在0.4至0.5之间说明这个国家的贫富差距较大,如果在0.5以上说明这个国家的贫富差距很大。据说,有的学者对我国基尼系数所做的统计还高于0.48。这说明我国的贫富差距是比较大的。而我们的邻居日本基尼指数一直在2.7左右徘徊。就连我们一直认为贫富差距很大的美国,其基尼系数虽然创下了新高,但也仅为4.6。所以我们如果任由贫富差距继续扩大,将对我国的稳定团结造成很大的威胁。还有一个数据同样值得我们注意,2007年我国5人以上的群体性事件已经达到了9万起。因此我们必须采取有力措施,缩小城乡差距,缩小贫富差距,维持国家的稳定和社会的和谐。 再有,我国粗放型的发展模式是以消耗资源,牺牲环境为代价的。资源和环境是不可再生的,如果我们继续这种发展模式,不做任何调整,不但经济的高速发展难以为继,由此带来的资源浪费、环境污染可能会部分抵消经济发展的成就,甚至威胁到广大人民群众的生存环境,对我们的子孙后代是极不负责任的。此外,我国的道德建设也刻不容缓,在市场经济的冲击下,少数人利益至上,不惜干违法乱纪的事情,前不久发生的三鹿牌婴幼儿奶粉事件说明,少数商人在利益的驱动下可以完全不顾人民的死活。以上这些问题当然不能抹煞我国经济建设取得的巨大成就,但是居安思危,我们不能忽略这些问题,而要采取有力的措施,保持我国经济又好又快得可持续性发展。 看过科学发展观的议论文的人都会看: 1. 关于发展观的议论文3篇 2. 关于科技的议论文 3. 谈社会公德的800字议论文 4. 关于教育的议论文 5. 文明城市议论文范文4篇
答辩记录的填写方法如下:
1、学生的姓名、学院以及专业:这一点比较简单,按照你学校的名称以及专业来填写即可,但是一定要注意,这里的填写不要写简称,一定要写全称。
2、学生的学号以及指导教师和职称:如实去填写,老师的话可以去问一下,千万不要将指导老师的名字写错,也不要写某科目老师,要写名字以及自己是否有职称,如果没有的话就不填写。
3、学生的答辩时间以及论文自述的情况:学生答辩时间按照你第一次答辩的时间来填写,论文自述的情况尽量是要以第三方语气来描写。
4、教师提问以及学生回答情况:这一点尽量挑选重点来书写,一些小问题或者没办法加分的情况就不要填写了。
答辩记录上的评价项目
1、选题符合专业培养目标,体现综合训练基本要求。
2、对实验结果的分析能力(或综合分析能力、技术经济分析能力)。
3、论文(或设计)规范化程度(论文(或设计)栏目齐全合理、SI制的使用等)。
4、综合运用知识的(涉及学科范围,内容深广度及问题难易度)。
答辩记录内容写法如下:
一、首先,PPT封面应该有:毕设题目、答辩人、指导教师以及答辩日期。
二、其次,需要有一个目录页来清楚的阐述本次答辩的主要内容有哪些。
三、接下来就到了答辩的主要内容了,第一块应该介绍课题的研究背景与意义。
四、之后是对于研究内容的理论基础做一个介绍,这版一部分简略清晰即可。
五、重头戏自然是自己的研究内容,这一部分最好可以让不太了解相关方面的老师们也能听出个大概,知道到底都做出了哪些工作,研究成果有哪些,研究成果究竟怎么样。
六、最后是对工作的一个总结和展望。
七、结束要感谢一下各位老师的指导与支持。
答辩记录内容怎么写:
1、学生的姓名、学院以及专业:这一点比较简单,按照你学校的名称以及专业来填写即可,但是一定要注意,这里的填写不要写简称,一定要写全称。
2、学生的学号以及指导教师和职称:如实去填写,老师的话可以去问一下,千万不要将指导老师的名字写错,也不要写某科目老师,要写名字以及自己是否有职称,如果没有的话就不填写。
3、学生的答辩时间以及论文自述的情况:学生答辩时间按照你第一次答辩的时间来填写,论文自述的情况尽量是要以第三方语气来描写。
4、教师提问以及学生回答情况:这一点尽量挑选重点来书写,一些小问题或者没办法加分的情况就不要填写了。
答辩记录上的评价项目:
1、选题符合专业培养目标,体现综合训练基本要求。
2、对实验结果的分析能力(或综合分析能力、技术经济分析能力)。
3、论文(或设计)规范化程度(论文(或设计)栏目齐全合理、SI制的使用等)。
4、综合运用知识的(涉及学科范围,内容深广度及问题难易度)。
递推公式斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列。通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)注:此时 通项公式推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为: 解得 , .则 ∵ ∴ 解得 方法二:待定系数法构造等比数列1(初等代数解法)设常数 , .使得则 , 时,有……联立以上n-2个式子,得:∵ ,上式可化简得:那么……(这是一个以 为首项、以 为末项、 为公比的等比数列的各项的和)。, 的解为则方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。得α+β=1。αβ=-1。构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。所以。an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。由式1,式2,可得。an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法四:母函数法。对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x.因此S(x)=x/(1-x-x^2).不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“形数结合”、“形数统一”的思想方法,启迪和促进了我国乃至世界的数学发展。 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的“数学对话”: 周公问:“听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我们怎样才能得到关于天地之间的数据呢?” 商高回答说:“我们已经在实践中总结出了一些了解天地的好方法。如当直角三角形(矩)的一条直角边(勾)等于3,另一条直角边(股)等于4的时候,那么它的斜边(弦)就必定是5。这就叫做勾股弦定理,是在大禹治水的时候就总结出来的一个定理。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,这就比毕达哥拉斯要早五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。 我国古代数学家们不仅很早就发现并应用了勾股定理,而且很早就尝试对勾股定理作出理论性的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。他创制了一幅“勾股圆方图”,用形数结合的方法,对勾股定理进行了详细的证明。在“勾股圆方图”中,以弦为边长得到正方形ABDE,它是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间那个小正方形的边长为b-a,则面积为(b-a)2。于是便有了如下的式子:a2+b2=c2。《九章算术》中的《勾股章》,对勾股定理的表述是:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2) 我国古代数学家对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数结合”、“形数统一”的思想方法,更具有科学创新的重大意义。正如我国当代数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。” 我们今天学习勾股定理,不但要学会利用它进行计算、证明和作图,更要学习和了解它的历史,了解其中体现出来的“形数结合”、“形数统一”的思想方法,这对我们今后的数学发展和科学创新都将具有十分重大的意义。
数学论文范文参考
数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。
论文题目: 学生自主学习能力培养提升小学数学课堂教学效果
摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。
关键词: 自主学习能力;创新思维;小学数学
在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。
一、小学数学教学中的现状及反思
小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。
(一)情境教学中过多地引入情境,丧失了教学目标
一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。
(二)成人化的想象对小学生缺乏新奇的吸引性
数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。
(三)课堂教学中“数学味”的弱化和缺失
在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。
二、自主学习的概念及其重要性
在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。
(一)提高数学知识吸收的质量
自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。
(二)为后续的数学知识学习奠定基础
小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。
(三)自主发现和自主学习能力的培养
小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。
三、自主性学习的小学数学课堂教学策略
小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。
(一)数学课堂有效导入,激发学生的自主参与性
合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。
1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]
2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。
3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
( 一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
( 二) 教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
( 一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
( 二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
( 三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献:
〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.
〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.
〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.
浅谈高中数学文化的传播途径
一、结合数学史,举办文化讲座
数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、
二、结合教学内容,穿插数学故事
数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、
三、结合生活实际,例解数学问题
作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、
四、结合其他学科,共享文化精华
科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、
五、结合课外活动,小组合作探究
由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、
六、结合教学评价,纳入数学考试
虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。