首页

> 学术发表知识库

首页 学术发表知识库 问题

数学解析几何论文答辩稿

发布时间:

数学解析几何论文答辩稿

数学系毕业论文答辩陈述稿参考

尊敬的评委老师:

早上好!

我是师范学院数学系xx级2班的学生xxx,我的毕业论文题目是《运用化归与类比思想的解题策略》。本论文是在陈建州老师的悉心指点下完成的。在此,我十分感谢他长期以来对我的大力帮助,并对四年来教育、培养过我的老师表示深深的敬意。同时感谢百忙之中抽出宝贵的时间参与对我这篇论文审阅的老师们。

下面我将对我的学位论文的基本内容做一个简要的陈述:

我想从以下四个方面对这篇论文的写作进行介绍:首先是选题的研究现状和背景,其次是本题研究的目的和意义,再次是论文的主要内容,最后谈谈本论文的不足之处。

首先,选题的现状和北京

我国火电企业也已经进行政企分开,公司化改组,商业化运营,法制化管理的改革。这些改革归根结底就是使火电企业能够顺利进入市场,参与竞争,这对火电企业来说既是一种挑战,也是一次发展的机遇:厂网分开、竞价上网等改革为火电企业拓展电力市场提供了条件;国家对供电营业区的划分和对限制用电政策的取消或调整,为火电企业提供了生存空间和政策支持;全社会口益提高的环保意识、优化能源结构和人规模城乡电网改造又为火电企业拓展电力市场创造了良机。火电企业正在这次机遇中迅猛发展。虽然当前我国发电企业去的了不俗的成绩,但仍存在着电网安全隐患较大,电力交易不规范行为屡见不鲜,各方利益矛盾冲突难以解决等问题。同时,当前火力发电企业经营环境面临电力需求增速趋缓、资金矛盾凸现、煤炭持续涨价、电价调整不到位等压力。随着我国建设资源节约型和环境友好型社会理念的提出,各种社会收费项目如水资源费、环保收费逐年增加,发电企业的生存与发展仍然面临着严峻的考验。

技术经济学是现代管理科学中一门新兴的综合性学科,其主要任务是从经济角度对具体工程项目、技术方案进行分析评价,为决策者提供有关经济效益方面的科学依据,帮助决策者作出正确的抉择。改革开放以来,我国技术经济学科获得了巨大发展。技术经济分析方法及其应用作为技术经济学科的重要组成部分在整个技术经济体系中占据着越来越重要的地位。

其次,本题的研究目的和意义

当前火力发电企业经营环境面临电力需求增速趋缓、资金矛盾凸现、煤炭持续涨价、电价调整不到位等压力。随着我国建设资源节约型和环境友好型社会理念的提出,各种社会收费项目如水资源费、环保收费逐年增加,发电企业的生存与发展面临严峻的考验。技术经济分析方法对于整个发电企业来起着极为重要的意义。浙能乐清电厂作为浙能集团旗下的新兴电厂和浙江省电力工程的重要组成部分,各个重大项目的规划和设备的购置更需经过详细的计算和分析,从而在达到效益最大化的同时兼顾未来发展和周边环境。乐清电厂要想的到更好的发展必须依赖精准可靠的技术经济分析方法。

再次,论文的'主要内容,

本文共分成三个部分:

第一部分主要阐述了论文的研究背景现状及研究的目的意义

第二部分主要阐述了技术经济分析方法包括盈亏平衡分析、敏感性分析、风险分析这三项不确定性分析及综合分析法、层次分析法和模糊综合评价法三个重要的系统综合法的基本原理及优缺点介绍。

第三部分主要阐述了上诉集中重要技术经济分析方法在浙能乐清电厂中的实际应用

最后一点,想说说论文存在的一些不足。

第一,搜集材料的问题;虽然在校期间从事家教辅导,但是对中学教学的经验仍有待提高,因此,在写作的过程中,仅从几个问题上阐述了我肤浅的理解。

第二,由于实践研究不够,总结出的策略可操作性不强。论文对这些问题没有深入展开探讨,与导师期望达到的水平仍有一定的差距。

主要表现为:调研统计资料不够齐全,样本数量不足,合理性、全面性不够,技术经济分析方法选取代表性不足等。

经过本次论文写作,本人学到了许多有用的东西,也积累了不少经验,但由于本人才疏学浅,能力不足,加之时间和精力有限,在许多内容表述、论证上存在着不当之处,与老师的期望还相差甚远,许多问题还有待进行一步思考和探究,借此答辩机会,万分肯切的希望各位老师能够提出宝贵的意见,多指出我的错误和不足之处,本人将虚心接受,从而不断进一步深入学习研究,使该论文得到完善和提高。

以上是我对自己的论文简单介绍,请各位老师提问,谢谢。

论文答辩是一种比较正规的审查形式,有组织、有准备、有鉴定、有计划的。答辩会由校方、答辩委员会还有答辩者组成。我在此献上 毕业 答辩发言稿,希望大家喜欢。

毕业答辩发言稿一:

各位老师,上午好!

我叫赵晓琦,是土 木工 程__ 班的学生,我的论文题目为某某市八十八中学办公楼的设计。设计是在姚力老师的悉心指点下完成的,在那里我向我的老师表示深深的谢意,也向在坐各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对上大学来我有机会聆听教诲的各位老师表示由衷的敬意。

下面我将本论文设计的目的和主要资料向各位老师作一汇报,恳请各位老师批评指导。

首先我想简单介绍本设计。

本工程为某某市八十八中学办公楼采用多层框架结构,主体结构为6层,内外装修均为一般装修,为永久性建筑。该楼总建筑面积为3981㎡,拟建位置另行给定,抗震设防烈度为8度。

其次我想谈谈这篇论文的结构和主要资料。

毕业答辩发言稿二:

各位领导、来宾,老师、同学们:

大家上午好!

为了进一步提高广大学生的创业意识,鼓励创新观念的成长,促进同学们就业观念由“择业”向“创业”转换,促进产、学、研一体化发展,培养能够适应市场经济发展需求的骨干人才,厦门大学团委一直致力于激发大学生创新创业的热情,以“挑战杯” 创业计划 竞赛为契机,为大学生创新创业提供广阔的平台。

“恒安杯”厦门大学第五届创业计划竞赛从去年5月启动至今,共吸引了1000多名本科生、硕士生和博士生参加,申报了65个项目。有30支团队从去年10月的初赛中脱颖而出。经过初赛、复赛和决赛三个阶段的培训和角逐,目前闯入决赛的9支队伍今天在此进行决赛。现在我简要向各位介绍一下本次竞赛的举办情况。

毕业论文答辩流程

1、 自我介绍 :自我介绍作为答辩的发言稿,包括姓名、学号、专业。介绍时要举止大方、态度从容、面带微笑,礼貌得体的介绍自己,争取给答辩小组一个良好的印象。好的开端就意味着成功了一半。

2、答辩人陈述:收到成效的自我介绍只是这场答辩的开始,接下来的自我陈述才进入正轨。自述的主要内容包括论文标题;课题背景、选择此课题的原因及课题现阶段的发展情况;有关课题的具体内容,其中包括答辩人所持的观点看法、研究过程、实验数据、结果;答辩人在此课题中的研究模块、承担的具体工作、解决方案、研究结果。 文章 的创新部分;结论、价值和展望; 自我评价 。

3、提问与答辩:答辩教师的提问安排在答辩人自述之后,是答辩中相对灵活的环节,有问有答,是一个相互交流的过程。一般为3个问题,采用由浅入深的顺序提问,采取答辩人当场作答的方式。

4、 总结 :上述程序一一完毕,代表答辩也即将结束。答辩人最后纵观答辩全过程,做总结陈述,包括两方面的总结:毕业设计和论文写作的体会;参加答辩的收获。答辩教师也会对答辩人的表现做出点评:成绩、不足、建议。

5、致谢:感谢在毕业设计论文方面给予帮助的人们并且要礼貌地感谢答辩教师。

毕业答辩发言稿 范文 相关文章:

★ 毕业论文答辩发言稿精选5篇

★ 毕业论文答辩演讲稿范文合集5篇

★ 毕业论文答辩发言稿精选集总5篇

★ 毕业论文答辩演讲稿范文精选5篇

★ 2020本科毕业答辩演讲稿最新范文【五篇】

★ 毕业论文答辩演讲稿范文集锦

★ 本科毕业答辩演讲稿范文

★ 毕业论文答辩发言稿精选集总

★ 毕业论文答辩演讲稿范文汇总

★ 毕业论文答辩发言稿精选合集

数学解析几何论文答辩

数学建模论文答辩指导

四、建模答辩要尽量体现建模思想、逻辑和价值性

数学建模一般没有标准答案,竞赛的目的也是在挖掘解决问题的最优方案。建模可发挥的空间比较大,可以从不同的角度、用不同的方法去解决同一个问题,但答辩的宗旨是一致的,即答辩的问题主要集中在建模的思想、逻辑性及应用的价值性上。也就是说怎样证明你建的数学模型是最优的。建模的答辩时间一般只有15分钟,学生最多有1分钟的时间简述自己的论文观点,剩下的时间由评委提问。评委有可能问一些建模里没有考虑清楚或说明清楚的问题,指出漏洞,甚至“刁难”,不过这个主要是考察建模论文是不是学生自己做的。所以答辩的学生只要不慌,充满信心,回答评委问题时,口齿清晰,逻辑推理性强,就一定会成功。

五、建模答辩幻灯片

(PPT)的制作

PPT就是幻灯片。可以理解把一张一张“图片”放给别人看。也就是把你想告诉别人的东西,排版起来,介绍给别人,PPT重要的还是内容,格式只是表现形式。

在答辩过程中,精彩的PPT幻灯片会抓住评委的注意力,令评委们耳目一新。由于答辩时间总共不超过15分钟,学生简述时间约1分钟,在这短短的时间内把你三天的建模工作简述出来,是对学生综合能力和表达能力的挑战。所以制作好PPT幻灯片是答辩成功的重要环节。一般应注意以下几点:

(1)15分钟的答辩准备大约2-3页幻灯片即可。每页只用8-1行字,或一幅图。只列出要点及关键技术。

(2)幻灯片中不要出现参赛学校名称等信息。

(3)幻灯片的背景不要追求花哨,尽量用浅色调

(米黄、象牙百、灰色等),不要弄些与答辩无关的动画。

(4)幻灯片一般从建模的提要、提出问题、分析问题、解决问题入手制作。

(5)幻灯片内容要突出自己的建模特点。主要体现建模的思想、算法、特殊技术及创新点。

(6)答辩者大约一分钟讲2页,听众一分钟大约看完4-5页。不能完全照着幻灯片念,要用口语化、演讲式的语言讲。

(7)充分利用图形,在较短时间内传递较多信息。

(8)给幻灯片加上页码,再打开母版,把“#”改成“#/X”,X是幻灯片的总页数,这样答辩时就能知道已讲了多少,便于调整速度。

(9)如果能用动画把论文中的图形动态变化部分动态演示出来,会使答辩更精彩,更能形象说明论文的论点。

总之,答辩的同学一定要准备充分,阐述所建模型与实际生活的联系,而且要不乏趣味性。在答辩过程中评委可能从模型的抽象到模型的构建向答辩的同学提出很多启发性的问题,引导大家深入思考如何构建一个合理标准的数学模型。

用配方的方法来求最快,如,x2+4x+3=0,可以配方为(x+2)2-1=0,那么它的值域是.大于或等于-1…2.用点描绘出一元二次方程的图象,看它和x轴有多少个交点,有多少个交点,那么方程就有多少个解…

不能紧张,一定要口齿清晰!!!

大学生数学建模论文答辩指导

有很多参加大学数学建模竞赛的学生, 建模论文写得很好,数学模型建立的观点也很新颖独特,但一旦要答辩,心理就会变得惴惴不安,不知所措。 而且他们心理最大的疑问就是:“数学建模怎么进行答辩? 老师一般问什么问题? PPT 幻灯片怎么做? PPT 幻灯片上主要写些什么? ”针对这些问题,笔者拟从五个方面具体分析,期望对大学生数学建模论文答辩有所帮助。

一、建模论文答辩前应做的准备工作

大学生的建模论文基本上都有或多或少的缺点。 如文字表述的逻辑性、论文的规范性、图形的准确性等都有可能存在缺陷,只要论文上交给评委组了,以上存在的种种问题就无法再挽回了。 但是只要你的论文有创意、观点新颖,也有可能获得参加建模论文答辩的机会。 如果真的获得了答辩的机会,作为答辩的学生就应该高度重视,严肃认真地把握好这个机会, 要清楚自己论文形成的整个过程,这样参加答辩时才会头脑清晰。 笔者总结归纳了高教社杯全国大学生数学建模竞赛答辩前必须注意的问题,供参加数学建模答辩的学生参考。 包括以下内容:(1)论文的主题是什么? (2)你为何选择写这个主题的论文?(3) 论文的研究问题是什么 ? 为什么选择这个问题来研究? (4)掌握论文中涉及的基本理论;(5)对涉及的理论分析、方法、原则问题要熟练掌握;(6)陈述要全面、流利、简练(建议反复练习一下);(7)结合实践谈谈自己对该理论有何新的认识?(8)你所提出的解决方法,是否有应用的前景? (9)在写论文时,收集了哪些方面的资料,是怎样收集的?(10)论文最重要的参考文献是哪一篇? 请简单介绍其主要内容;(11)论文主要创新点有哪些? (12)你的研究存在哪些局限与不足? (13)论文所涉及的主题还可以从哪些方面进一步深入研究? (14)要特别熟悉论文的内容,一些名词尤其要注意, 比如你引用了平衡计分卡的内容或观点,一定要搞清是谁发明的,否则问起来回答不出来会打折扣的;(15)引用一些书名,最好是自己读过的,内容大概知道一些;(16)准备 10-15 分钟的答辩陈述,一定要把自己论文的关键之处说清楚,让评委老师眼前一亮;(17)可能抛开论文以外 ,问你几个与学习工作相关的话题。

如果在参加建模论文答辩前能够把握好以上问题,说明你已经准备得不错了。

二、数学建模答辩时应注意的问题

答辩流程分为论文方案讲解和专家评委提问两个环节,每个环节限时七、八分钟。 在比赛中,各参赛队伍的表述都要求条理清晰,思维严谨,对同样的问题从不同的角度,通过不同的数学模型进行讲解。 但要注意以下几点:(1)答辩的过程就是检验你的真实建模能力 ,同时也检测你的建模论文是不是自己做的。 所以答辩时一定要证明论文是自己做的。 (2)答辩也就是要求陈述你的建模过程以及建模的创新点,所以答辩时要把做题的思路讲清楚,每个步骤都必须严谨。 (3)制作 PPT 幻灯片尽量多用图,少用文字。 (4)对于自己的建模论文,多设计几个问题,并有针对性地给出合理的解释, 防止到时提问时不知道怎么回答。 (5)一定要坚信自己的模型是合理正确的,否则别人也就不会相信你。 评委对你的模型肯定要提问,要你说理由, 你只要大胆说出你的方法和模型的特色就可以了。 (6)回答教师提问时一定要谦虚,有争议的问题,可以商榷,不要争辩。 (7)自己最好准备一份论文打印稿备份在手,以备随时查阅。 (8)答辩时千万不能紧张,一定要口齿清晰。 (9)不管评委老师问的问题有多么刁钻、有多么难以回答,都要保持微笑。 即使没有圆满回答出评委老师问的问题,也要保持微笑,给评委老师一个良好的印象,把评委老师那份感情分牢牢地抓在手里。

三、建模答辩时要反思自己的论文形成过程

笔者认为,大学生数学建模竞赛论文答辩并不可怕,可怕的是参赛学生是否有参加答辩的能力, 这种能力来源于参赛学生建模论文的形成过程。 因为学生几十页的建模论文不是苍白文字的罗列, 而是学生团体合作的结果。 他们从拿到竞赛题目的茫然不知到对题目思路由模糊到清晰,直到能够建立数学模型,最后解决题目要解决的问题。 在这个过程中,论文里的所有数学模型、解决问题的计算方法、 提出解决问题的方案等都是学生亲身的经历和体验,可以说建模论文是学生三天劳动的结晶,所以建模论文只要是学生自己做出来的,答辩就不是问题,因为论文中的所有片段会像幻灯片一样在学生的头脑中放映,所以不管评委老师提什么问题,选手只要沉着冷静就能对答如流。

四、建模答辩要尽量体现建模思想、逻辑和价值性

数学建模一般没有标准答案, 竞赛的目的也是在挖掘解决问题的最优方案。 建模可发挥的空间比较大,可以从不同的角度、用不同的方法去解决同一个问题,但答辩的宗旨是一致的,即答辩的问题主要集中在建模的思想、逻辑性及应用的价值性上。 也就是说怎样证明你建的.数学模型是最优的。建模的答辩时间一般只有 15 分钟, 学生最多有 10分钟的时间简述自己的论文观点, 剩下的时间由评委提问。 评委有可能问一些建模里没有考虑清楚或说明清楚的问题,指出漏洞,甚至“刁难”,不过这个主要是考察建模论文是不是学生自己做的。 所以答辩的学生只要不慌,充满信心,回答评委问题时,口齿清晰,逻辑推理性强,就一定会成功。

五、建模答辩幻灯片(PPT)的制作

PPT 就是幻灯片 。 可以理解把一张一张 “图片 ”放给别人看。 也就是把你想告诉别人的东西,排版起来,介绍给别人,PPT 重要的还是内容,格式只是表现形式。

在答辩过程中, 精彩的 PPT 幻灯片会抓住评委的注意力,令评委们耳目一新。 由于答辩时间总共不超过 15分钟,学生简述时间约 10 分钟,在这短短的时间内把你三天的建模工作简述出来, 是对学生综合能力和表达能力的挑战。 所以制作好 PPT 幻灯片是答辩成功的重要环节。 一般应注意以下几点:(1)15 分钟的答辩准备大约20-30 页幻灯片即可。 每页只用 8-10 行字,或一幅图。 只列出要点及关键技术。 (2)幻灯片中不要出现参赛学校名称等信息。 (3)幻灯片的背景不要追求花哨,尽量用浅色调(米黄、象牙百、灰色等),不要弄些与答辩无关的动画。(4)幻灯片一般从建模的提要 、提出问题 、分析问题 、解决问题入手制作。 (5)幻灯片内容要突出自己的建模特点。主要体现建模的思想、算法、特殊技术及创新点。 (6)答辩者大约一分钟讲 2 页,听众一分钟大约看完 4-5 页。 不能完全照着幻灯片念,要用口语化、演讲式的语言讲。 (7)充分利用图形,在较短时间内传递较多信息。 (8)给幻灯片加上页码,再打开母版,把“#”改成“#/X”,X 是幻灯片的总页数, 这样答辩时就能知道已讲了多少,便于调整速度。 (9)如果能用动画把论文中的图形动态变化部分动态演示出来,会使答辩更精彩,更能形象说明论文的论点。

解析几何毕业论文答辩记录

答辩记录的填写方法如下:

1、学生的姓名、学院以及专业:这一点比较简单,按照你学校的名称以及专业来填写即可,但是一定要注意,这里的填写不要写简称,一定要写全称。

2、学生的学号以及指导教师和职称:如实去填写,老师的话可以去问一下,千万不要将指导老师的名字写错,也不要写某科目老师,要写名字以及自己是否有职称,如果没有的话就不填写。

3、学生的答辩时间以及论文自述的情况:学生答辩时间按照你第一次答辩的时间来填写,论文自述的情况尽量是要以第三方语气来描写。

4、教师提问以及学生回答情况:这一点尽量挑选重点来书写,一些小问题或者没办法加分的情况就不要填写了。

答辩记录上的评价项目

1、选题符合专业培养目标,体现综合训练基本要求。

2、对实验结果的分析能力(或综合分析能力、技术经济分析能力)。

3、论文(或设计)规范化程度(论文(或设计)栏目齐全合理、SI制的使用等)。

4、综合运用知识的(涉及学科范围,内容深广度及问题难易度)。

答辩记录内容写法如下:

一、首先,PPT封面应该有:毕设题目、答辩人、指导教师以及答辩日期。

二、其次,需要有一个目录页来清楚的阐述本次答辩的主要内容有哪些。

三、接下来就到了答辩的主要内容了,第一块应该介绍课题的研究背景与意义。

四、之后是对于研究内容的理论基础做一个介绍,这版一部分简略清晰即可。

五、重头戏自然是自己的研究内容,这一部分最好可以让不太了解相关方面的老师们也能听出个大概,知道到底都做出了哪些工作,研究成果有哪些,研究成果究竟怎么样。

六、最后是对工作的一个总结和展望。

七、结束要感谢一下各位老师的指导与支持。

答辩记录内容怎么写:

1、学生的姓名、学院以及专业:这一点比较简单,按照你学校的名称以及专业来填写即可,但是一定要注意,这里的填写不要写简称,一定要写全称。

2、学生的学号以及指导教师和职称:如实去填写,老师的话可以去问一下,千万不要将指导老师的名字写错,也不要写某科目老师,要写名字以及自己是否有职称,如果没有的话就不填写。

3、学生的答辩时间以及论文自述的情况:学生答辩时间按照你第一次答辩的时间来填写,论文自述的情况尽量是要以第三方语气来描写。

4、教师提问以及学生回答情况:这一点尽量挑选重点来书写,一些小问题或者没办法加分的情况就不要填写了。

答辩记录上的评价项目:

1、选题符合专业培养目标,体现综合训练基本要求。

2、对实验结果的分析能力(或综合分析能力、技术经济分析能力)。

3、论文(或设计)规范化程度(论文(或设计)栏目齐全合理、SI制的使用等)。

4、综合运用知识的(涉及学科范围,内容深广度及问题难易度)。

数学系解析几何本科毕业论文

数学本科毕业论文--数学教学与学生创造思维能力的培养摘 要:现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。怎样培养学生的创造思维能力:1、指导观察2、引导想象3、鼓励求异4、诱发灵感关键词:创造 思维前 言:在竞争日益激烈的当今社会,如何让在学校里学习的学生提前适应社会的发展,使他们能够顺利地成长,是学校、家庭和社会所面临的一个重要问题,本文就在数学教学中如何培养学生的创造思维能力提出自己的一些看法 现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。创新是教与学的灵魂,是实施素质教育的核心;数学教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积极探索培养和训练学生创造性思维的原则、方法。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。本文就创造思维及数学教学中如何培养学生创造思维能力谈谈自己的一些看法。一、 创造思维及其特征思维是具有意识的人脑对客观事物的本质属性和内部规律性的概括的间接反映。创造思维就是合理地、协调地运用逻辑思维、形象思维及直觉思维等多种思维方式,使有关信息有序化,以产生积极的效果或成果。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物、提示新规律、建立新理论、创造新方法、获得新成果、解决新问题等思维过程,尽管这种思维结果通常并不是首次发现或超越常规的思考。创造思维是创造力的核心。它具有独特性、新颖性、求异性、批判性等思维特征,思考问题的突破常规、新颖独特和灵活变通是创造思维的具体表现,这种思维能力是正常人经过培养可以具备的。二、 创设适宜的教学环境教师必须用尊重、平等的情感去感染学生,使课堂充满民主、宽松、和谐的气氛,只有这样学生才会热情高涨,才能大胆想象、敢于质疑、有所创新,这是培养学生创造性思维能力的重要前提。1、教育创新是教师的职责。教师应该深入钻研教材,挖掘教材本身蕴藏的创造因素,对知识进行创造性的加工,使课堂教学有创造教育的内容。例如教学轴对称图形时,提出“在河边修一个水塔,使到陈村、李庄所用的水管长度最少,如何选定这个水塔的位置?”从而把课本内容引申到实际生活中来,使教学富有实践性、科学性、现代性。突出学生的“主体”地位。要发扬教学民主,尊重学生中的不同观点,保护学生中学习争辩的积极性,让学生敢于想象,敢于质疑,敢于标新立异,敢于挑战权威,给每个学生发表自己见解的机会,最大限度地消除学生的心理障碍,形成学生主动学习,积极参与的课堂教学氛围,处理学生学习行为时,尊重他们的想法,鼓励别出心裁等。三、 怎样培养学生的创造思维能力1、指导观察观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。2、引导想象想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。"在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。如在学习《平行四边形的面积》时,教师利用多媒体呈现学生熟悉的情景:种植园里各种植物郁郁葱葱,分别种在划成不同形状的地块上。然后出示种有竹子和杜鹃的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的青菜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对未知领域的探索有天然的好奇,思维的积极性被激发,纷纷根据前面的知识作出如下猜测:①、面积是长边和短边长度的积。②、长边和它的高的积。③、短边和它的高的积。④、先拼成一个长方形,跟这个长方形的面积有关……教师一一板书出来,学生见自己的思维结果被肯定,心理上有一种小小的成就,从而更激起了主动探索的欲望。3、鼓励求异求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生勇于质疑,在探索和求异中有所发现和创新。本人教授“§2.7平行线的性质”一节时深有感触,一道例题最初是这样设计的:例:如图,已知a // b , c // d , ∠1 = 115, ⑴ 求∠2与∠3的度数 ,1abcd⑵ 从计算你能得到∠1与∠2是什么关系? 2学生很快得出答案,并得到∠1=∠2。我正要向下讲解,这时一位同学举手发言:“老师,不用知道∠1=115°也能得出∠1=∠2。”我当时非常高兴,因为他回答了我正要讲而未讲的问题,我让他讲述了推理的过程,同学们报以热烈的掌声。我又借题发挥,随之改为:已知:a//b , c//d 求证: ∠1=∠2让学生写出证明,并回答各自不同的证法。随后又变化如下:变式1:已知a//b , ∠1=∠2 , 求证:c//d。变式2:已知c//d ,∠1=∠2 , 求证:a//b。变式3:已知a//b, 问∠1=∠2吗?(展开讨论)这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立思考,这应成为我们以后教与学的着力点。 4、诱发灵感灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。 例如,有这样的一道题:把3/7、6/13、4/9、12/25用">"号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。 总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。结束语:学生的创造思维能力如何培养如何提高是学校教学工件新的难题,以上仅代表本人的观点,不足之处请大家指正。该篇论文的完成得到了各方面的支持,在此谨表示最真诚的感谢,谢谢!

你好!你的先选一个题目,可以从微分方程、解析几何、概率论等科目里面选一个题目

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

解析几何小论文范文

递推公式斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列。通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)注:此时 通项公式推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为: 解得 , .则 ∵ ∴ 解得 方法二:待定系数法构造等比数列1(初等代数解法)设常数 , .使得则 , 时,有……联立以上n-2个式子,得:∵ ,上式可化简得:那么……(这是一个以 为首项、以 为末项、 为公比的等比数列的各项的和)。, 的解为则方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。得α+β=1。αβ=-1。构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。所以。an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。由式1,式2,可得。an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法四:母函数法。对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x.因此S(x)=x/(1-x-x^2).不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“形数结合”、“形数统一”的思想方法,启迪和促进了我国乃至世界的数学发展。 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的“数学对话”: 周公问:“听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我们怎样才能得到关于天地之间的数据呢?” 商高回答说:“我们已经在实践中总结出了一些了解天地的好方法。如当直角三角形(矩)的一条直角边(勾)等于3,另一条直角边(股)等于4的时候,那么它的斜边(弦)就必定是5。这就叫做勾股弦定理,是在大禹治水的时候就总结出来的一个定理。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,这就比毕达哥拉斯要早五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。 我国古代数学家们不仅很早就发现并应用了勾股定理,而且很早就尝试对勾股定理作出理论性的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。他创制了一幅“勾股圆方图”,用形数结合的方法,对勾股定理进行了详细的证明。在“勾股圆方图”中,以弦为边长得到正方形ABDE,它是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间那个小正方形的边长为b-a,则面积为(b-a)2。于是便有了如下的式子:a2+b2=c2。《九章算术》中的《勾股章》,对勾股定理的表述是:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2) 我国古代数学家对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数结合”、“形数统一”的思想方法,更具有科学创新的重大意义。正如我国当代数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。” 我们今天学习勾股定理,不但要学会利用它进行计算、证明和作图,更要学习和了解它的历史,了解其中体现出来的“形数结合”、“形数统一”的思想方法,这对我们今后的数学发展和科学创新都将具有十分重大的意义。

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

相关百科

热门百科

首页
发表服务