首页

> 学术发表知识库

首页 学术发表知识库 问题

随机变量函数的分布课程论文研究

发布时间:

随机变量函数的分布课程论文研究

答:浙大教材是用来看概率论和数理统计部分的,不用全部看,只要看考纲要求的部分就行,高数看同济大学的教材概率统计随机事件和概率考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.5.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.随机变量及其分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.5.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为5.会求随机变量函数的分布.多维随机变量及其分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.5.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.随机变量的数字特征考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.5.会求随机变量函数的数学期望.3.了解切比雪夫不等式.大数定律和中心极限定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).5.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.数理统计的基本概念考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为5.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、分布和分布得上侧 分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.参数估计考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.5.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

引入: 可测量圆轴界面直径d,关心:截面面积 定义设X是随机变量,函数y=g(x),则以随机变量X 作为自变量的函数Y=g(X)也是随机变量,称之为随机变量 的函数。例如: 问题:已知X的概率分布,求Y=g(X)的概率分布。

设X具有以下分布律,试求 的分布律。

解:(矩阵法)

有两种方法:分布函数求导法、公式法(必须单调函数)。 分布函数求导法: 已知连续型随机变量 的概率密度函数 ,和分布函数 ,而 ,求 的概率分布,概率密度 和分布函数 。 ①由分布函数定义,求Y=g(X)分布函数。 其中积分区间就是g(X)≤y的不等式解。 ②对 ,就可解出。

设随机变量 具有概率密度 求随机变量 的概率密度。 解:分布函数求导法 ①第一步: ②第二步: 此时, 是分段函数,因此要对 在分段函数中进行讨论。 因此就有

设随机变量X具有概率密度 求随机变量 的概率密度。 ① 当 是不可能事件,故 当 综上所述,就有: ②

定理:设随机变量X具有概率密度 。 如果 是x的单调可导函数,即恒有 或 则'Y=g(X)'是连续型随机变量,其概率密度为 其中x=h(y)是y=g(x)的反函数, 证明:讨论 情形,此时g(x)单调增加 ,h'(y),h(y)单调增加 当 不可能事件, 当 必然事件, 当 综上所述: 单调递增,就是乘导数 单调递减,就是乘导数的相反数。 注:若 在有限区间[a,b]以外等于零,则只需假设在[a,b]上恒有 ,此时

设随机变量 ,试证明X的线性函数 也服从正态分布。 证明: , 故 的概率密度为: 即: 的 故 最终

推论:正态分布的线性函数,依然服从正态分布。

设电压 ,其中是一个已知的正常数, 相角 是一个随机变量,且有 ,试求电压V的概率密度。 解: 很显然V在区间 上是严格单调的,导函数大于0,因此可以采用公式法。 很显然 那么 又 ,那么 ( 因均匀分布)。

随机变量和的分布毕业论文

数学期望是随机变量最重要的特征数之一,它是消除随机性的主要手段.本文通过对数学期望的概念、性质以及应用性的举例,下面是我为你整理的数学期望应用毕业论文,一起来看看吧。

摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章列举了一些现实生活实例,阐述了数学期望在经济和实际问题中颇有价值的应用。

关键词:随机变量,数学期望,概率,统计

数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。

1.决策方案问题

决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。

1.1投资方案

假设某人用10万元进行为期一年的投资,有两种投资方案:一是购买股票;二是存入银行获取利息。买股票的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为8%,可得利息8000元,又设经济形势好、中、差的概率分别为30%、50%、20%。试问应选择哪一种方案可使投资的效益较大?

[摘 要] 离散型随机变量数学期望是概率论和数理统计的重要概念之一,是用概率论和数理统计来反映随机变量取值分布的特征数。通过探讨数学期望在经济和实际问题中的一些简单应用,以期让学生了解数学期望的理论知识与人类实践紧密联系,它们是不可分割、紧密联系的。

[关键词] 数学期望;离散型随机变量

一、离散型随机变量数学期望的内涵

在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。

二、离散型随机变量数学期望的作用

期望表示随机变量在随机试验中取值的平均值,它是概率意义下的平均值,不同于相应数值的算术平均数。是简单算术平均的一种推广,类似加权平均。在解决实际问题时,作为一个重要的参数,对市场预测,经济统计,风险与决策,体育比赛等领域有着重要的指导作用,为今后学习高等数学、数学分析及相关学科产生深远的影响,打下良好的基础。作为数学基础理论中统计学上的数字特征,广泛应用于工程技术、经济社会领域。其意义是解决实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析提供准确的理论依据。

三、离散型随机变量的数学期望的求法

离散型随机变量数学期望的求法常常分四个步骤:

1.确定离散型随机变量可能取值;

2.计算离散型随机变量每一个可能值相应的概率;

3.写出分布列,并检查分布列的正确与否;

4.求出期望。

四、数学期望应用

(一)数学期望在经济方面的应用

例1: 假设小刘用20万元进行投资,有两种投资方案,方案一:是用于购买房子进行投资;方案二:存入银行获取利息。买房子的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为5.1%,可得利息11000元,又设经济形势好、中、差的概率分别为40%、40%、20%。试问应选择哪一种方案可使投资的效益较大?

第一种投资方案:

购买房子的获利期望是:E(X)=4×0.4+1×0.4+(--2)×0.2=1.6(万元)

第二种投资方案:

银行的获利期望是E(X)=1.1(万元),

由于:E(X)>E(X),

从上面两种投资方案可以得出:购买房子的期望收益比存入银行的期望收益大,应采用购买房子的方案。在这里,投资方案有两种,但经济形势是一个不确定因素,做出选择的依据是数学期望的高低。

(二)数学期望在公司需求方面的应用

例2:某小公司预计市场的需求将会增长。公司的员工目前都满负荷地工作。为满足市场需求提高产量,公司考虑两种方案 :第一种方案:让员工超时工作;第二种方案:添置设备。

假设公司预测市场需求量增加的概率为P,当然可能市场需求会下降的概率是1―P,若将已知的相关数据列于下表:

市场需求减(1-p) 市场需求增加(p)

维持现状(X)

20万 24万

员工加班(X)

19万 32万

耀加设备(X)

15万 34万

由条件可知,在市场需求增加的情况下,使员工超时工作或添加设备都是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的期望大小。用期望值判断:

E(X)=20(1-p)+24p,E(X)=19(1-p)+32p,E(X)=15(1-p)+34p

分两种情况来考察:

(1)当p=0.8,则E(X)=23.2(万),E(X)=29.4(万),E(X)=30.2(万),于是公司可以决定更新设备,扩大生产;

(2)当p=O.5,则E(X)=22(万),E(X)=25.5(万),E(X)=24.5(万),此时公司可决定采取员工超时工作的应急措施扩大生产。

由此可见,从上面两种情况可以得出:如果p=0.8时,公司可以决定更新设备,扩大生产。如果p=O.5时,公司可决定采取员工超时工作的应急措施。因此,只要市场需求增长可能性在50%以上,公司就应采取一定的措施,以期利润的增长。

(三)数学期望在体育比赛的应用

乒乓球是我们得国球,全国人民特别爱好,我们在这项运动中具有绝对的优势。现就乒乓球比赛的赛制安排提出两种方案:

第一种方案是双方各出3人,三局两胜制,第二种方案是双方各出5人,五局三胜制。对于这两种方案, 哪一种方案对中国队更有利?不妨我们来看一个实例:

假设中国队每一位队员对美国队的每一位队员的胜率都为55%。根据前面的分析,下面我们只需比较两队的数学期望值的大小即可。

在五局三胜制中,中国队若要取得胜利,获胜的场数有3、4、5三种结果。我们应用二项式定律、概率方面的知识,计算出三种结果所对应的概率,恰好获得三场对应的概率:0.33465;恰好获得四场对应的概率:0.2512;五场全胜得概率:0.07576.

设随机变量X为该赛制下中国队在比赛中获胜的场数,则可建立X的分布律: X 3 4 5

P 0.33465 0.2512 0.07576

计算随机变量X的数学期望:

E(X)=3×0.33465+4×0.2512+5×0.07576=2.04651

在三局两胜制中,中国队取得胜利,获胜的场数有2、3两种结果。对应的概率为=0.412;三场全胜的概率为=0.206。

设随机变量Y为该赛制下中国队在比赛中获胜的场数,则可建立Y的分布律:

X 2 3

Y 0.412 0.206

计算随机变量Y的数学期望:

E(Y)=2×0.412+3×0.206=1.2

比较两个期望值的大小,即有E(X)>E(Y),因此我们可以得出结论,五局三胜制中国队更有利。

因此,我们在这样的比赛中,五局三胜制对中国队更有利。在体育比赛中,要看具体的细节,具体情形,把握好比赛赛制,用我们所学习的知识来实现期望值的最大化,做到知己知彼,百战百胜。

(四)数学期望对企业利润的评估

在市场经济活动中,厂家的生产或是商家的销售.总是追求最大的利润。在生产过程中供大于求或供不应求都不利于获得最大利润来扩大再生产。但在市场经济中,总是瞬息万变,往往供应量和需求量无法确定。而厂家或商家在一般情况下根据过去的数据,再结合现在的具体情况,具体对象,常常用数学期望的方法结合微积分的有关知识,制定最佳的生产活动或销售策略。

假定某公司计划开发一种新产品市场,并试图确定其产量。估计出售一件产品,公司可获利A元,而积压一件产品,可导致损失B元。另外,该公司预测产品的销售量x为一个随机变量,其分布为P(x),那么,产品的产量该如何制定,才能获得最大利润。

假设该公司每年生产该产品x件,尽管x是确定的.但由于需求量(销售量)是一个随机变量,所以收益Y是一个随机变量,它是x的函数:

当xy时,y=Ax;

当xy时,y=Ay--B(x-y)。

于是期望收益为问题转化为:

当x为何值时,期望收益可以达到最大值。运用微积分的知识,不难求得。

这个问题的解决,就是求目标函数期望的最大最小值。

(五)数学期望在保险中问题

一个家庭在一年中五万元或五万元以上的贵重物品被盗的概率是0.005,保险公司开办一年期五万元或五万元以上家庭财产保险,参加者需缴保险费200元,若在一年之内, 五万元或五万元以上财产被盗,保险公司赔偿a元(a>200),试问a如何确定,才能使保险公司期望获利?

设X表示保险公司对任一参保家庭的收益,则X的取值为 200或 200�a,其分布列为:

X 200 200-a

p 0.995 0.005

E(x)=200×0.9958+(200-a)×0.005=200-0.005a>0,解得a<40000,又a>100,所以a∈(200,40000)时,保险公司才能期望获得利润。

从上面的日常生活中,我们不难发现:利用所学的离散型随机变量数学期望方面的知识解决了生活中的一些具有的,实实在在的问题有大大的帮助。

因此我们在实际生活中,利用所学的离散型随机变量数学期望方面的知识,面对当今信息时代的要求,我们应当思维活跃,敢于创新,既要学习数学理认方面知识,更应该重视对所学知识的实践应用,做到理认联系实际,学以致用。当然只是实际生活中遇到的数学期望应用中的一部分而已,还有更多的应用等待我们去思考,去发现,去探索,为我们伟大的时代创造出更多的有价值的东西和财富。

序列相关性指对于不同的样本值,随机扰动项之间不再是完全相互独立,而是存在某种相关性. 2. 一阶自相关只的是误差项的当前值只与其自身前一期值之间的相关性. 3. D.W.检验:全称杜宾—瓦森检验,适用于一阶自相关的检验..DW判断的是一阶自相关,一般用差分法(一阶)就可以解决。自相关的解决方法,基本方法是通过差分变换,对原始数据进行变换的方法,使自相关消除.一,差分法,一阶。设Y对x的回归模型为Yt=β1+β1xt+μt(1)μt=ρμt-1+vt式中, vt满足最小平方法关于误差项的全部假设条件。将式(1)滞后一个时期,则有Yt-1=β0+β1xt-1+μt-1(2)μt-1=ρμt-2+vt-1于是, (1)-ρ×(2),得Yt-ρYt-1=β0(1-ρ)+β1(xt-ρxt-1)+νt(3)Yt-ρYt-1=β1(xt-xt-1)+μt-μt-1=β1(xt-xt-1)+vt(4)ρ为自相关系数也就是说,一阶差分法是广义差分法的特殊形式。高阶自相关是用BG检验法,LM=T*R^2服从X^2(p)(kafang)分布,T为样本容量,p为你想检验的自相关阶数,查kafang分布表,置信度为95%也就是阿尔法=0.5,如果T*R^2>查出来的结果即存在你想验证的自相关阶数。修正用广义差分法(AR(p))广义差分方法 对模型: Yt= 0+ 1X t+ut ------(1) ,如果ut具有一阶自回归形式的自相关,既 ut= u t-1 +vt 式中 vt满足通常假定.假定, 已知,则: Y t-1= 0+ 1X t-1+u t-1 两端同乘 得:Y t-1= 0 + 1 X t-1+ u t-1-------(2) (1)式减去(2)式得: Yt- Y t-1= 0 (1- )+ 1X (Xt- X t-1)+vt 令:Yt*= Yt- Y t-1 ,Xt*= (Xt- X t-1), 0 *= 0(1- )则: Yt*= 0 * + 1 Xt*+vt 称为广义差分模型,随机项满足通常假定,对上式可以用OLS估计,求出 .为了不损失样本点,令Y1*= X1*= 以上解决自相关的变换称为广义差分变换, =1,或 =0 , =-1是特殊情况.广义差分变换要求 已知,如果 未知,则需要对 加以估计,下面的方法都是按照先求出 的估计值,然后在进行差分变换的思路展开的。 如果差分修正还是效果不好,那就是你回归变量的问题了,有一些统计数据本身就是有很强的自相关,比如GDP等,这是无法避免的,有些数据要先 去势,协整以后才可以做回归的,详细在这里解释不清,你应该仔细看计量经济学教科书有关章节。 不明白的还可以问我 《数理统计与管理》2008年第27卷第1期!本文研究了n维随机变量分量间的线性相关性,给出了衡量线性相关性程度的量以及具有(在概率1意义下)严格线性关系的充分必要条件

你还是进谷歌论文搜索吧

统计学毕业论文选题

毕业论文的题目是开始写作的关键,先选好题,再下笔。下面是我整理的统计学毕业论文选题,希望大家喜欢。

统计学毕业论文选题

1、具有预测能力的呼叫中心系统的设计与实现

2、PVAR模型在研究经济增长与能源消费关系中的应用

3、基于有限元的深基坑组合型围护结构可靠度分析

4、一些带有偏序结构的完全码

5、Stein方法在复合泊松分布近似中的应用

6、各类分布产生的背景

7、保险金融中的计数过程的若干渐近性

8、高中概率教学的现状、问题及对策研究

9、随机变量序列的极限定理

10、Cayley树上非对称马氏链及任意相依随机变量序列强极限定理的若干研究

11、一类混合随机序列的概率极限定理

12、保证齿轮质量的结构和工艺措施研究

13、道路施工机群资源配置和计划调度沥青混凝土路面机械化施工系统状态分析与技术经济评价研究

14、高速公路服务区合理规模与布局研究

15、基于图像区域统计特征的隐写分析技术研究

16、统计收敛的测度理论

17、关于φ-混合随机变量序列的矩完全收敛性的研究

18、混合相依随机变量序列极限理论的若干结果

19、两两NQD列的一些收敛性质

20、电力市场环境下的电能质量评估研究

21、本科概率论试验课程设计初探

22、基于随机模拟试验的稳健优化设计方法研究

23、随机变量序列部分和乘积的几乎处处中心极限定理

24、AQSI序列的强极限定理

25、几类相依混合随机变量列的大数律和L~r收敛性

26、现代经济计量学建立简史

27、任意随机变量序列的相关定理

28、新建电气化铁路电能质量影响预测研究

29、鞅差与相依随机变量序列部分和精确渐近性

30、ND序列若干收敛性质的研究

31、证券组合投资决策的均匀试验设计优化研究

32、相依随机变量序列部分和收敛速度

33、行为两两NQD随机变量阵列加权和的收敛性

34、数值计算的统计确认研究与初步应用

35、基于证据理论的足球比赛结果预测方法

36、城市工业用地集约利用评价与潜力挖掘

37、节理化岩体边坡稳定性研究

38、随机变分不等式及其应用

39、基于模糊综合评价的靶场实时光测数据质量评估

40、基于路径的加权地域通信网可靠性研究

41、LNQD样本近邻估计的大样本性质

42、20CrMoH齿轮弯曲疲劳强度研究

43、我国股票市场与宏观经济之间的协整分析

44、一类Copula函数及其相关问题研究

45、乐透型彩票N选M中奖号码的概率分析

46、协整理论在汽车发动机系统故障诊断中的应用

47、2010年上海世博会会展中断风险分析和保险建议

48、贝儿康有限公司激励设计研究

49、云模型在系统可靠性中的应用研究

50、离散更新模型破产概率及赤字的上下界估计

51、输电线微风振动与疲劳寿命

52、电器产品模糊可靠性分析中模糊可靠度的研究

53、变分不等式及变分包含解的存在性与算法

54、隧道测量误差控制方案的'研究

55、塔式起重机臂架可靠性分析软件开发

56、分布式认证跳表及其在P2P分布式存储系统中的应用

57、房地产行业企业所得税纳税评估实证研究

58、天然气管道断裂事故分析

59、粗集理论及其在数据预处理过程中的应用

60、集装箱码头后方堆场荷载统计分析和概率模型

61、多工序制造过程计算机辅助误差诊断控制系统

62、实(复)值统计型测度的表示理论及其它在统计收敛上的应用

63、应用统计教育部重点实验室程序库建设

64、基于个体的捕食系统模型

65、相依样本下移动平均过程的矩完全收敛

66、基坑变形监测分析及单撑—排桩墙支护结构抗倾覆可靠度研究

67、基于综合的交通冲突技术的城市道路交叉口安全评价方法研究

68、暗挖地铁车站下穿对既有结构安全性影响分析

69、随机变量阵列的强收敛性

70、基于随机有限元的疲劳断裂可靠性研究

71、高中数学教学概率统计部分浅析

72、敏感问题二阶段抽样调查的统计方法及应用

73、三大重要分布及其性质的进一步研究

74、随机变量的统计收敛性及统计收敛在数据处理方面的应用

75、多变量密度函数小波估计的一致中心极限定理

76、混合Copula构造及相关性应用

77、数学职前教师对正态分布的理解水平的研究

78、煤矿事故系统脆性模型的建立与仿真

79、基于贝叶斯网络的客户信用风险评估及系统设计

80、河北北方学院学生成绩关联分析及预测

81、房地产项目现金流管理研究

82、高压电磁感应信号的采集及处理算法的研究

83、基于神经网络的逆变电源可靠性研究

84、跳频序列的局部随机性与线性复杂度分析

85、金川二矿区中段平面运输系统数据分析与模拟模型研究

86、房地产投资风险定量评价与规避策略研究

87、审计统计抽样技术方法研究与设计运行

88、几种概率统计滤波法在重磁数据处理中的研究及应用

89、模糊随机变量序列的极限定理

90、数据挖掘的若干新方法及其在我国证券市场中应用

91、城市道路交通流特征参数研究

92、辽宁红沿河核电厂可能最大风暴潮的估算

93、潜油电泵轴的可靠性分析与设计

94、起重机金属结构极限状态法设计研究

95、相依随机变量极限理论的若干结果

96、局部次高斯随机序列的强极限定理

97、基于自然风险度量的农业保险定价及其财政补贴研究

98、NA和(ρ|~)混合序列的某些收敛性质

99、可交换随机变量序列的极限理论

100、一类相依重尾随机序列的强极限定理及其应用

关于随机变量独立性的研究论文

随机变量独立的充要条件:对于连续型随机变量有:F(X,Y)=FX(X)FY(Y),f(x,y)=fx(x)fy(y);对于离散型随机变量有:P(AB)=P(A)P(B)概率为P 设X,Y两随机变量,密度函数分别为q(x),r(y), 分布函数为G(x), H(y),联合密度为p(x,y),联合分布函数F(x,y), A,B为西格玛代数中的任意两个事件。常用的证明方法有三种:1 证明P(X∈A, Y∈B)=P(X∈A)P(Y∈B)2 证明 p(x,y)=q(x)r(y)3 证明 F(x,y)=G(x)H(y)随机变量独立的充要条件:对于连续型随机变量有:F(X,Y)=FX(X)FY(Y),f(x,y)=fx(x)fy(y);对于离散型随机变量有:P(AB)=P(A)P(B)设两个变量为X、Y,对应的事件为A、B(1)当X、Y均服从0、1分布,即X={1,A发生;0,A不发生};Y={1,A发生;0,A不发生};写出X、Y、XY的分布列,因为X、Y不相关,则cov(X,Y)=EXY-EXEY=P(AB)-P(A)P(B)=0,推出P(AB)=P(A)P(B),所以X、Y相互独立(2)若为其他分布,则不能推出另外若X、Y为二维正态分布,则不相关等价于独立仅供参考整体独立,部分当然独立。概率论中两个随机变量的函数的分布_ …… 》 你对x求积分了,出来的公式中不会有x了,上下限怎么可能会有x……对x积分,是横坐标上积分,x=z-y,所以下限是0,上线是z-y,可以重新去看一下微积分里二重积分怎么算的概率论,两个随机变量的函数分布_ …… 》 E(X1-2X2) =E(X1)-2E(X2) =0 D(X1-2X2) =D(X1)+4D(X2) =4+16 =20 X1-2X2~N(0,20)概率论两个随机变量的函数分布x服从标准正态分布,y的概率分布为p{y=0}=p{y=1}=0.5记F(z)为随机变量Z=xy的分布函数,则函数F(z)间断求间断点个数_作业帮 …… 》 没有间断点,否则如果有那么在间断点Z0处P(Z=Z0)=P>0,这与X是连续随机变量矛盾.

随机变量独立的充要条件:

对于连续型随机变量有:F(X,Y)=FX(X)FY(Y),f(x,y)=fx(x)fy(y);

对于离散型随机变量有回:P(AB)=P(A)P(B)

概率为P 设X,Y两随机变量,密答度函数分别为q(x),r(y), 分布函数为G(x), H(y),联合密度为p(x,y),联合分布函数F(x,y), A,B为西格玛代数中的任意两个事件。

常用的证明方法有三种:

1、证明P(X∈A, Y∈B)=P(X∈A)P(Y∈B)

2、证明 p(x,y)=q(x)r(y)

3、证明 F(x,y)=G(x)H(y)。

扩展资料:

在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:

一类是确定性现象,指在一定条件下,必定会导致某种确定的结果。例如,同性电荷相互排斥,异性电和相互吸引;在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。

另一类是不确定性现象这类现象在一定条件下的结果是不确定的,即人们在未作观察或试验之前,不能预知其结果。例如,向桌上抛一枚硬币,我们不能预知向上的是正面还是反面随机地找一户家庭调查其收入情况,我们亦不能预知其收入是多少。

在相同的情况下,会出现这种不确定的结果的原因:

我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。但另一方面,对这些不确定性现象进行大量、重复的实验时,人们会发现,其结果会出现某种“统计规律性”:重复抛一枚硬币多次,出现正、反两面的次数大致会各占一半;

调查多户家庭,其收入会呈现“两头小,中间大”的状况,即处于中间状态的是大多数。这种在每次试验中呈现不确定性,而在大量重复试验中又呈现某种统计规律性的现象较随机现象。概率统计就是研究随机现象并揭示其统计规律性的一个数学分支,它在自然科学及社会科学的诸多领域都有着广泛的应用。

复变函数与解析函数论文研究

待证命题实际上是解析函数的平均值定理:如果函数f(z)在单连通域D上解析,z0是区域D内的一点,曲线C是区域D内以z0点为圆心的圆周,那么f(z0)等于函数f(z)在曲线C上的平均值,即 f(z0)=1/2π*∫f(z0+re^iΘ)dΘ,其中r是圆周C的半径,积分范围是0到2π 因此这道题的关键在于通过这个调和函数u(x,y)构造出解析函数f(z) 下面给出构造得到的解析函数f(z): 设f(z)=u(x,y)+iv(x,y),其中u,v都是实函数,并且v函数满足: 可以证明v是u的共轭调和函数,而且u、v满足柯西黎曼方程,因此函数f(z)是区域D上的解析函数 (详细过程这里没有给出,可以参考这篇论文:《由调和函数构造解析函数的一种方法》,可以在中国知网查找) 因此根据柯西积分公式 由于C圆周的特殊性,可以令 所以 由实部和虚部对应相等即得到待证命题

复变函数复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

解析函数是区域上处处可微分的复函数。17世纪,L.欧拉和J.leR.达朗贝尔在研究水力学时已发现平面不可压缩流体的无旋场的势函数Φ(x,y)与流函数Ψ(x,y)有连续的偏导数,且满足微分方程组,并指出f(z)=Φ(x,y)+iΨ(x,y)是可微函数,这一命题的逆命题也成立。

柯西把区域上处处可微的复函数称为单演函数,后人又把它们称为全纯函数、解析函数。B.黎曼从这一定义出发对复函数的微分作了深入的研究,后来,就把上述的偏微分方程组称为柯西-黎曼方程,或柯西-黎曼条件。

解析函数是一类比较特殊的复变函数。200多年来,其核心定理“柯西-黎曼”方程组一直被数学界公认是不能分开的。王见定发现,尽管解析函数已形成比较完善的理论并得到多方面的应用,但自然界能够满足“柯西-黎曼”方程组条件的现象很少,使解析函数的应用受到较大的限制。由此,寻找把“柯西-黎曼”方程组分开的途径,并在1981年以《半解析函数》为题撰写毕业论文。

先后得出了一系列描述半解析函数特性的重要定理。发表了《半解析函数》.《半解析函数开拓》、《与半解析函数定义等价的几个定理》、《复变函数分解定理》等多篇学术论文,终于初步形成了半解析函数理论。

在这个理论中,王见定大胆地将“柯西-黎曼”方程组的两个方程式分开,将满足其中任一个方程式的函数定义为半解析函数,从而实现了对解析函数的推广,为研究解析函数所不能解决的一般函数提供了一个通用的办法。

参考资料来源:百度百科-解析函数

解:根据复数的对数计算规则,有Lnz=lnz+2kπi=ln丨z丨+iargz+i2kπ,其中,-π≤argz≤π,k=±1,±2,……。

∴Ln(2)=ln2+i2kπ。Ln(-1)=ln1+iπ+i2kπ=(2k+1)πi。

∵1+i=(√2)(1/√2+i/√2)=(√2)e^(πi/4)。

∴ln(1+i)=(1/2)ln2+πi/4。

以复数作为自变量和因变量的函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。

扩展资料:

如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。

复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。

把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。

参考资料来源:百度百科——复变函数

复变函数的结课论文题目

复变函数---虽被纯数学所歧视,但现代数学人人都离不开它。复变函数的柱石---柯西积分公式,把可微复函数与复幂级数联系起来,现代数学一刻也离不开它。首先,黎曼利用它把zeta函数延拓到整个复平面,这一成果成为后世追随者的崇拜对象。调和分析复方法,第一个必须引用柯西积分公式。由于其基础性的作用,代数复几何,如基本的霍奇定理,解析数论(更是完全依赖zeta函数的解析性质) 如素数大定理的非初等证明,素数分布的诸多结论,都极端依赖于可微复函数和幂解析的等价性。 略微知晓现代数学的结论的人如我,都晓得,复变函数对现代数学意味着什么。然而可微复函数和幂解析的等价性不成立,Gamma函数,zeta函数就是反例,问题就发生在柯西积分公式,柯西的杰出之处---在我们看来,体现在它的证明上就是把围道的积分极限为围道小至一点的积分,这不错,然而,他接下来的计算出错了, 这个极限的意思是,计算有限围道的积分,再作积分的极限。 但他以小至一点的围道的无穷小分析代替之。 这类错误在极限理论不发达的柯西时代司空见惯, 然而非常奇怪,当其他错误结论消失已久之后柯西的结论却幸存下来,并且“发扬光大”。 复变函数何其重要,看看fields 奖的各届名单吧,抽去支撑的棉梗--柯西积分公式,还有几人能不化为灰烬。 不仅如此,还有更可悲的错误,在数学界,有一段仿佛把一些不完整的围道,如两条平行线,也当作完整围道处理,虽然我的高中老师也能指出其错误,但是它也被后人继承下来当作正确的做法,Langlands纲领的吊颈绳---hecke反定理是一例。 历史上复变函数是一笔了不完的帐。

实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。

100个自动化概论课结课论文题目1. 智能压力传感器系统设计 2. 智能定时器 3. 液位控制系统设计 4. 液晶控制模块的制作 5. 嵌入式激光打标机运动控制卡软件系统设计 6. 嵌入式激光打标机运动控制卡硬件系统设计 7. 基于单片机控制的数字气压计的设计与实现 8. 基于MSC1211的温度智能温度传感器 9. 机器视觉系统 10. 防盗与恒温系统的设计与制作 11. 防盗报警器 12. AT89S52单片机实验系统的开发与应用 13. 在单片机系统中实现SCR(可控硅)过零控制 14. 微电阻测量系统 15. 基于单片机的电子式转速里程表的设计 16. 基于GSM短信模块的家庭防盗报警系统 17. 公交车汉字显示系统 18. 基于单片机的智能火灾报警系统 19. WIN32环境下对PC机通用串行口通信的研究及实现 20. FIR数字滤波器的MATLAB设计与实现方法研究 21. 无刷直流电机数字控制系统的研究与设计 22. 直线电机方式的地铁模拟地铁系统制作 23. 稳压电源的设计与制作 24. 线性直流稳压电源的设计 25. 基于CPLD的步进电机控制器 26. 全自动汽车模型的设计制作 27. 单片机数字电压表的设计 28. 数字电压表的设计 29. 计算机比值控制系统研究与设计 30. 模拟量转换成为数字量的红外传输系统 31. 液位控制系统研究与设计 32. 基于89C2051 IC卡读/写器的设计 33. 基于单片机的居室安全报警系统设计 34. 模拟量转换成为数字量红外数据发射与接收系统 35. 有源功率因数校正及有源滤波技术的研究 36. 全自动立体停车场模拟系统的制作 37. 基于I2C总线气体检测系统的设计 38. 模拟量处理为数字量红外语音传输接收系统的设计 39. 精密VF转换器与MCS-51单片机的接口技术 40. 电话远程监控系统的研究与制作 41. 基于UCC3802的开关电源设计 42. 串级控制系统设计 43. 分立式生活环境表的研究与制作(多功能电子万年历) 44. 高效智能汽车调节器 45. 变速恒频风力发电控制系统的设计 46. 全自动汽车模型的制作 47. 信号源的设计与制作 48. 智能红外遥控暖风机设计 49. 基于单片控制的交流调速设计 50. 基于单片机的多点无线温度监控系统 51. 蔬菜公司恒温库微机监控系统 52. 数字触发提升机控制系统 53. 农业大棚温湿度自动检测 54. 无人监守点滴自动监控系统的设计 55. 积分式数字电压表设计 56. 智能豆浆机的设计 57. 采用单片机技术的脉冲频率测量设计 58. 基于DSP的FIR滤波器设计 59. 基于单片机实现汽车报警电路的设计 60. 多功能数字钟设计与制作 61. 超声波倒车雷达系统硬件设计 62. 基于AT89C51单片机的步进电机控制系统 63. 模拟电梯的制作 64. 基于单片机程控精密直流稳压电源的设计 65. 转速、电流双闭环直流调速系统设计 66. 噪音检测报警系统的设计与研究 67. 转速闭环(V-M)直流调速系统设计 68. 基于单片机的多功能函数信号发生器设计 69. 基于单片机的超声波液位测量系统的设计 70. 仓储用多点温湿度测量系统 71. 基于单片机的频率计设计 72. 基于DIMM嵌入式模块在智能设备开发中的应用 73. 基于DS18B20的多点温度巡回检测系统的设计 74. 计数及数码显示电路的设计制作 75. 矿井提升机装置的设计 76. 中频电源的设计 77. 数字PWM直流调速系统的设计 78. 开关电源的设计 79. 基于ARM的嵌入式温度控制系统的设计 80. 锅炉控制系统的研究与设计 81. 智能机器人的研究与设计 ——\u001F自动循轨和语音控制的实现 82. 基于CPLD的出租车计价器设计——软件设计 83. 声纳式高度计系统设计和研究 84. 集约型无绳多元心脉传感器研究与设计 85. CJ20-63交流接触器的工艺与工装 86. 六路抢答器设计 87. V-M双闭环不可逆直流调速系统设计 88. 机床润滑系统的设计 89. 塑壳式低压断路器设计 90. 直流接触器设计 91. SMT工艺流程及各流程分析介绍 92. 大棚温湿度自动控制系统 93. 基于单片机的短信收发系统设计 ――硬件设计 94. 三层电梯的单片机控制电路 95. 交通灯89C51控制电路设计 96. 基于D类放大器的可调开关电源的设计 97. 直流电动机的脉冲调速 98. 红外快速检测人体温度装置的设计与研制 99. 基于8051单片机的数字钟 100. 48V25A直流高频开关电源设计

相关百科

热门百科

首页
发表服务