data=[85 88 67 87 76 87 79 75 85 80 78 64 74 80 67 90 54 86 75 64 95 86 82 64 86 86 93 56 68 89 67 76 78 95 90 75 79 80 92 45 87 85 83 83 79 60 91 78 65 85 ];data=data(:); %所有数据转成一列的数据x=0:10:100; %分数区间y=hist(data,x) %各区间人数yy=y/length(data);%各区间人数占学生的百分比bar(x,yy)xlabel('分数')ylabel('百分比')这个函数也是有一点问题的
编写M脚本文件,将某班学生某门课程的成绩:60,75,85,97,52,36,86,56,94,84,77,统计各个分段的学生人数,并将每个人的学生成绩变为优,良,中,及格和不及格表示,统计人数和成绩变换都用子程序表示。x=[60 75 85 96 52 36 86 56 94 84 77];c=count1(x)d=change1(x)function z1=count1(xx)n=size(xx);z1=zeros(5,1);for n1=1:n(2)x1=fix(xx/10);switch x1(n1)case 9z1(1)=z1(1)+1;case 8z1(2)=z1(2)+1;case 7z1(3)=z1(3)+1;case 6z1(4)=z1(4)+1;otherwisez1(5)=z1(5)+1;endendfunction z1=change1(xx)我把这些输入,它说??? Undefined function or method 'count1' for input arguments of type 'double'. 我加了function caculation,不再提示之前的那个,但变成这样了>> function caculationx=[60 75 85 96 52 36 86 56 94 84 77];c=count1(x)d=change1(x)function z1=count1(xx)n=size(xx);z1=zeros(5,1);for n1=1:n(2)
1、首先需要写明matlab在数字电路的作用。2、其次按照自己的想法对matlab在数字电路进行改变的用途。3、最后即可完成小论文。
matlab在微分方程中的应用毕业论文大纲书写方法为1、先写前言。2、第一部分解释matlab的基本概念。3、第二部分描述其在微分方程中的应用。
围绕自己在那个学校的学习生涯来学- - 我作文不是很好 说说试试 ̄. ̄
您还可以输入9999个字
google搜索 Matlab GUI很多
[1]毛纲源. 一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质[J]. 应用数学,1995,(3). [2]游兆永,姜宗乾,. 分块矩阵的对角占优性[J]. 西安交通大学学报,1984,(3). [3]曹重光. 体上分块矩阵群逆的某些结果[J]. 黑龙江大学自然科学学报,2001,(3). [4]庄瓦金. 非交换主理想整环上分块矩阵的秩[J]. 数学研究与评论,1994,(2). [5]曹礼廉,李芳芸,柴跃廷. 一种用于MRP的分块矩阵方法[J]. 高技术通讯,1997,(7). [6]逄明贤. 分块矩阵的Cassini型谱包含域[J]. 数学学报,2000,(3). [7]杨月婷. 一类分块矩阵的谱包含域[J]. 数学研究,1998,(4). [8]何承源. R-循环分块矩阵求逆的快速傅里叶算法[J]. 数值计算与计算机应用,2000,(1). [9]马元婧,曹重光. 分块矩阵的群逆[J]. 哈尔滨师范大学自然科学学报,2005,(4). [10]游兆永,黄廷祝. 两类分块矩阵的性质与矩阵正稳定和亚正定判定[J]. 工程数学学报,1995,(2).
既然要画散点图,自然就需要一些离散的数据了,下面我们就利用matlab生成这些数据,实际应用中我们获得的数据是从其他方式获得的。具体的指令和结果如下图所示:首先需要先画出点图,即把每一个数据点的位置画出来,所使用的指令为:scatter(x,y1,'k'),该指令主要用于绘制点图,后面''里面的k标示的是每一个点用黑色画出,里面也可以一起添加一些其他的参数:如下图所示:下面是利用第一步生成的数据和第二步的指令画出的点图,如下图所示,绿色的是y1的数据,红色的是y2的数据。4下面就把点串起来,就大功告成了,使用的指令是:plotyy(x,y1,x,y2,'plot');具体的图形如下图所示:
首先要确定下你想做什么类型的图,另外MATLAB是一种数学计算工具,讲究数据的重要性,如果有算法流程正确,或者是数据满足要求,是很容易做出各类图标的。
数据,,有,,
是2篇?各一份还是什么? 概率论与数理统计”是理工科大学生的一门必修课程,由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的。� “概率论与数理统计”的学习应注重的是概念的理解,而这正是广大学生所疏忽的,在复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚。对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件。如函数y=f(x),当x确定后y有确定的值与之对应。而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错。由于基本概念没有搞懂,即使是十分简单的题目也难以得分。从而造成低分多的现象。另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算。因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。� 根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果。下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。�一、 学习“概率论”要注意以下几个要点 1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。 此外若对一切实数集合B,知道P(X∈B)。 那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。 就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。� 2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。P(B)>0,则A,B独立则一定相容。类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。� 3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。� 4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。二、 学习“数理统计”要注意以下几个要点� 1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义。了解数理统计能解决那些实际问题。对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。� 2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住。事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。
概率论与数理统计课程的改革与实践论文
摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。
Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.
关键词: 概率论与数理统计;改革;实践
Key words: probability and mathematical statistics; reform; practice
概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。
1 概率论与数理统计课程教学改革的必要性与重要性
教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。
现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。
信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。
但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。
从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。
《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。
2 概率论与数理统计课程教学改革的思路与原则
通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。
因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。
在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。
3 概率论与数理统计课程教学改革的内容与措施
首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。
为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。
为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。
为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。
为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。
为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。
为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。
由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。
为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。
4 概率论与数理统计课程教学改革与实践的效果
通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。
随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文。
此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。
参考文献:
[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).
[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).
[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).