首页

> 学术发表知识库

首页 学术发表知识库 问题

二氧化钛的研究论文

发布时间:

二氧化钛的研究论文

硅单晶原子纳米扫描隧道显微镜影象单个细菌用肉眼是根本看不到的,用显微镜测直径大约是五微米。举个例子来说,假设一根头发的直径是0.05毫米,把它径向平均剖成5万根,每根的厚度大约就是一纳米。也就是说,一纳米大约就是0.000001毫米.纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。我国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 对于固体粉末或纤维,当其有一维尺寸小于100nm,即达到纳米尺寸,即可称为所谓纳米材料,对于理想球状颗粒,当比表面积大于60m2/g时,其直径将小于100nm,即达到纳米尺寸。[编辑本段]纳米技术的含义 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米 纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 纳米技术(纳米科技nanotechnology) 纳米技术其实就是一种用单个原子、分子制造物质的技术。 从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。 纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。 虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究。[编辑本段]纳米电子器件的特点. 以纳米技术制造的电子器件,其性能大大优于传统的电子器件: . 工作速度快,纳米电子器件的工作速度是硅器件的1000倍,因而可使产品性能大幅度提高。功耗低,纳米电子器件的功耗仅为硅器件的1/1000。信息存储量大,在一张不足巴掌大的5英寸光盘上,至少可以存储30个北京图书馆的全部藏书。体积小、重量轻,可使各类电子产品体积和重量大为减小。纳米材料“脾气怪” 纳米金属颗粒易燃易爆 几个纳米技术纳米的金属铜颗粒或金属铝颗粒,一遇到空气就会产生激烈的燃烧,发生爆炸。因此,纳米金属颗粒的粉体可用来做成烈性炸药,做成火箭的固体燃料可产生更大的推力。用纳米金属颗粒粉体做催化剂,可以加快化学反应速率,大大提高化工合成的产出率。 纳米金属块体耐压耐拉 将金属纳米颗粒粉体制成块状金属材料,强度比一般金属高十几倍,又可拉伸几十倍。用来制造飞机、汽车、轮船,重量可减小到原来的十分之一。 纳米陶瓷刚柔并济 用纳米陶瓷颗粒粉末制成的纳米陶瓷具有塑性,为陶瓷业带来了一场革命。将纳米陶瓷应用到发动机上,汽车会跑得更快,飞机会飞得更高。 纳米氧化物材料五颜六色 纳米氧化物颗粒在光的照射下或在电场作用下能迅速改变颜色。用它做士兵防护激光枪的眼镜再好不过了。将纳米氧化物材料做成广告板,在电、光的作用下,会变得更加绚丽多彩。 纳米半导体材料法力无边 纳米半导体材料可以发出各种颜色的光,可以做成小型的激光光源,还可将吸收的太阳光中的光能变成电能。用它制成的太阳能汽车、太阳能住宅有巨大的环保价值。用纳米半导体做成的各种传感器,可以灵敏地检测温度、湿度和大气成分的变化,在监控汽车尾气和保护大气环境上将得到广泛应用。 纳米药物治病救人 把药物与磁性纳米颗粒相结合,服用后,这些纳米药物颗粒可以自由地在血管和人体组织内运动。再在人体外部施加磁场加以导引,使药物集中到患病的组织中,药物治疗的效果会大大提高。还可利用纳米药物颗粒定向阻断毛细血管,“饿”死癌细胞。纳米颗粒还可用于人体的细胞分离,也可以用来携带DNA治疗基因缺陷症。目前已经用磁性纳米颗粒成功地分离了动物的癌细胞和正常细胞,在治疗人的骨髓疾病的临床实验上获得成功,前途不可限量。 纳米卫星将飞向天空 在纳米尺寸的世界中按照人们的意愿,自由地剪裁、构筑材料,这一技术被称为纳米加工技术。纳米加工技术可以使不同材质的材料集成在一起,它既具有芯片的功能,又可探测到电磁波(包括可见光、红外线和紫外线等)信号,同时还能完成电脑的指令,这就是纳米集成器件。将这种集成器件应用在卫星上,可以使卫星的重量、体积大大减小,发射更容易,成本也更便宜。纳米技术走入百姓生活 9月27日,中国科学院化学所的专家宣布研制成功新型纳米材料———超双疏性界面材料。这种材料具有超疏水性及超疏油性,制成纺织品,不用洗涤,不染油污;用于建筑物表面,防雾、防霜,更免去了人工清洗。专家称:纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”。 随着科学家的一次次努力,“纳米”这个几年前对我们还十分生疏的字眼,眼下却频频出现在我们的视线。 纳米是一个长度单位,1纳米等于十亿分之一米,20纳米相当于1根头发丝的三千分之一。90年代起,各国科学家纷纷投入一场“纳米战”:在0.10至100纳米尺度的空间内,研究电子、原子和分子运动规律和特性。 中国当然不甘人后,1993年,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字,标志着我国开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。 1998年,清华大学范守善小组在国际上首次把氮化镓制成一维纳米晶体。同年,我国科学家成功制备出金刚石纳米粉,被国际刊物誉为:“稻草变黄金———从四氯化碳制成金刚石。” 1999年,北京大学教授薛增泉领导的研究组在世界上首次将单壁碳纳米管组装竖立在金属表面,并组装出世界上最细且性能良好的扫描隧道显微镜用探针。 中科院成会明博士领导的研究组合成出高质量的碳纳米材料,被认定为迄今为止“储氢纳米碳管研究”领域最令人信服的结果。 中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管———直径0.5纳米,已十分接近碳纳米管的理论极限值0.4纳米。这个研究小组,还成功地合成出世界上最长的碳纳米管,创造了“3毫米的世界之最”。 在主题为“纳米”的争夺战中,中国人频频露脸,尤其在碳纳米管合成以及高密度信息存储等领域,中国实力不容小觑。 科学界的努力,使“纳米”不再是冷冰冰的科学词语,它走出实验室,渗透到中国百姓的衣、食、住、行中。 居室环境日益讲究环保。传统的涂料耐洗刷性差,时间不长,墙壁就会变得斑驳陆离。现在有了加入纳米技术的新型油漆,不但耐洗刷性提高了十多倍,而且有机挥发物极低,无毒无害无异味,有效解决了建筑物密封性增强所带来的有害气体不能尽快排出的问题。 人体长期受电磁波、紫外线照射,会导致各种发病率增多或影响正常生育。现在,加入纳米技术的高效防辐射服装———高科技电脑工作装和孕妇装问世了。科技人员将纳米大小的抗辐射物质掺入到纤维中,制成了可阻隔95%以上紫外线或电磁波辐射的“纳米服装”,而且不挥发、不溶水,持久保持防辐射能力。 同样,化纤布料制成的衣服因摩擦容易产生静电,在生产时加入少量的金属纳米微粒,就可以摆脱烦人的静电现象。 白色污染也遭遇到“纳米”的有力挑战。科学家将可降解的淀粉和不可降解的塑料通过特殊研制的设备粉碎至“纳米级”后,进行物理结合。用这种新型原料,可生产出100%降解的农用地膜、一次性餐具、各种包装袋等类似产品。农用地膜经4至5年的大田实验表明:70到90天内,淀粉完全降解为水和二氧化碳,塑料则变成对土壤和空气无害的细小颗粒,并在17个月内同样完全降解为水和二氧化碳。专家评价说,这是彻底解决白色污染的实质性突破。 从电视广播、书刊报章、互联网络,我们一点点认识了“纳米”,“纳米”也悄悄改变着我们。纳米精确新闻 1959年 理论物理学家理查·费伊曼在加州理工学院发表演讲,提出,组装原子或分子是可能的。 1981年 科学家发明研究纳米的重要工具———扫描隧道显微镜,原子、分子世界从此可见。 1990年 首届国际纳米科技会议在美国巴尔的摩举办,纳米技术形式诞生。 1991年 碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是铁的10倍,成为纳米技术研究的热点。 1993年 继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字、1999年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字。 1997年 美国科学家首次成功地用单电子移动单电子,这种技术可用于研制速度和存储容量比现在提高成千上万倍的量子计算机。同年,美国纽约大学科学发现,DNA可用于建造纳米层次上的机械装置。 1999年 巴西和美国科学家在进行碳纳米管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的“秤”,打破了美国和巴西科学家联合创造的纪录。同年,美国科学家在单个分子上实现有机开关,证实在分子水平上可以发展电子和计算装置。 纳米花边新闻 倾听细菌游弋 美国加利福尼亚州Pasadena市的喷气飞机推进器实验室目前正在研制一种被称为“纳米麦克风”的微型扩音器,据《商业周刊》报道,这种微型传感器可以使科学家倾听到正在游弋的单个细菌的声音,以及细胞体液流动的声音。这种人造纳米麦克风由细微的碳管制成,正是因为构成物体积细小和灵敏度极高,这种麦克风才能够在受到非常小的压力作用下作出反应,使得对其进行监测的研究人员获得相关的声音信息。 利用这种新产品,科学家将可以对其他星球上是否存在生命进行探测,可以探测到生物体内单个细胞的生长发育。这一仪器研制项目已获得美国航空航天局(NASA)的批准,而且NASA还向上述实验室提供了必要的技术支持。[编辑本段]“纳米水”防强暴. 据《人民日报》报道,最近,广州一家公司宣称生产出一种用麦饭石和纳米特殊材料制作而成的“纳米珠”,只要把它放在水里,多脏的水也能喝。长期饮用“纳米水”,可抗疲劳,耐缺氧,甚至“增强女士防匪徒强暴的能力”。据了解,每盒纳米珠要300元,买齐整套设备(一台饮水机、一桶水和十盒纳米珠)则需3800元。76岁的何姓老人在推销员的百般说服下,不但相信纳米水的神奇疗效,还看中了纳米水的销售方式。老人背着家里人一共拿出22万元,买下75套纳米水机套装产品,然后等着每月2万元钱的分红。 广州市工商局东山分局经济检察中队在4月3日查处了该公司,其准备创造科技神话的纳米水根本没有科技鉴定说明,该公司的纳米水套装产品既无生产许可证,也没有产品合格证。光也能“吹动”物体 纳米世界,光也能“吹动”物体。当光照射在物体上,也会对物体产生作用力,就像风吹动帆一样。从儒勒·凡尔纳到阿瑟·C·克拉克,科幻作家们不止一次幻想过运用太阳光的作用力来推动“太阳帆”,驱动飞船在星际中航行。然而,在地球上,太阳光的作用力实在微乎其微,没有人能用阳光来移动一个物体。但是,在11月27日的《自然》杂志上,在美国耶鲁大学从事研究的中国学者发表文章,首次证实在纳米世界里,光真的可以驱动“机器”——由半导体做成的纳米机械。 这项研究,结合了相关图书两个最前沿的纳米科学领域,即纳米光子学和纳米力学。“在宏观尺度上,光的力实在太微弱,没有人能感觉到。但是在纳米尺度上,我们发现光具有相当可观的力,足以用来驱动像集成电路上的三极管一样大小的半导体机械装置。”领导此项研究的耶鲁大学电子工程系教授唐红星这样介绍。其实,此前光的力已经被物理学家和生物学家应用于一种叫做“光镊”的技术中,用来操控原子和微小的颗粒。“我们的研究则是把光集成在一块小小的芯片上,使它的强度增加数百万倍,从而用来操控纳米半导体器件。”这篇论文的第一作者、博士后研究员李墨进一步阐释说。 在耶鲁大学的实验室里,两位科学家和来自北京大学的研究生熊驰及合作者们一起,使用最先进的半导体制造技术,在硅芯片上铺设出一条条光的线路,称之为“光导”。当激光器发出的光被接入这样的芯片后,光就可以像电流在导线里一样,沿着铺好的光导线路“流”动。理论预测,在这样的结构中,光会对引导它的导线产生作用力。为了证实这样的预测,他们把一小段只有10微米长的光导悬空,让它可以像吉他弦般产生振动。如果光确实产生力并作用在它上面,那么当光的强度被调制到和光导的振动一致的频率时,共振就会产生。这样的共振就会在透射的光中产生同样频率的一个峰。这正是3位中国科学家经过半年多的实验和计算,最终在他们的测量仪器上看到的令人信服的现象。之后,他们通过大量实验证明,这个作用力的大小和理论预期非常一致。因为光的速度比电流要快得多,所以这种光产生的力预期可以以几十吉赫兹(GHz)的速度驱动纳米机械。 此项研究成果有望引领出新一代半导体芯片技术——用光来取代电。未来运用这种新技术,科学家和工程师们可以实现基于光学和量子原理的高速高效的计算和通信。[编辑本段]纳米探针在药物筛选中首获应用 英国伦敦纳米技术中心的研究人员研制出一种新型纳米探针,利用该纳米探针可以检测出某种抗生素药物是否能够与细菌结合,从而减弱或破坏细菌对人体的破坏能力,达到治疗疾病的目的。这是科学家第一次将纳米探针运用于药物筛选,相关试验的初步结果已经刊登在最新一期的《自然?纳米技术》杂志上。 人们在用抗生素治病的过程中,引起疾病的细菌很容易产生抗药性,从而使得抗生素失去药效。抗生素的作用原理是与致病细菌的细胞壁结合后破坏细胞壁的结构,使得致病细菌死亡,一旦产生抗药性,细菌的细胞壁结构发生改变,细胞壁变厚,抗生素无法与细胞壁结合。 研究人员在一排纳米探针上覆盖组成细菌细胞壁的蛋白质,一旦抗生素与细胞壁结合,探针的表面重量就会增加,这一表面压力会导致纳米探针发生弯曲。通过对万古霉素药物的研究发现,抗药性细菌的细胞壁硬度是非抗药性细菌的1000倍。所以通过纳米探针探测出各种药物对细菌细胞壁的结构改变,筛选出对致病细菌破坏力最大的抗生素。纳米探针的运动轨迹 纳米金属用途简介 钴(Co) 高密度磁记录材料。利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。 吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光——红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 铜(Cu) 金属和非金属的表面导电涂层处理。纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 高效催化剂。铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 导电浆料。用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。 铁(Fe) 高性能磁记录材料。利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。 吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光——红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 导磁浆料。利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。 纳米导向剂。一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。 镍(Ni) 磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。 高效催化剂。由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。 高效助燃剂。将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。 导电浆料。电子浆料广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要作用。用镍、铜、铝纳米粉体制成的电子浆料性能优越,有利于线路进一步微细化。 高性能电极材料。用纳米镍粉辅加适当工艺,能制造出具有巨大表面积的电极,可大幅度提高放电效率。 活化烧结添加剂。纳米粉末由于表面积和表面原子所占比例都很大,所以具有高的能量状态,在较低温度下便有强的烧结能力,是一种有效的烧结添加剂,可大幅度降低粉末冶金产品和高温陶瓷产品的烧结温度。 金属和非金属的表面导电涂层处理。由于纳米铝、铜、镍有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 锌(Zn) 高效催化剂。锌及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。

本论文共分六章.第一章为文献综述部分,第二章至第六章为实验研究部分.(略)一章几种纳米氧化物半导体光催化剂的制备和性能及二氧化钛的光催化与超亲水性(略)年来几种纳米氧化物半导体光催化剂在制备和性能方面的研究成果,阐述了纳米氧化物半导体材料的光催化原理.详细评述了二氧化钛纳米粒(略)光催化降解作用,讨论了几个影响光催化反应的重要因素.介绍了二氧化钛薄膜的光催化与超亲水特性及应用进展.展望了纳米氧化物半导体光催化材料的发展方向和应用前景.第一章铁酸锌的制备、表征及光催化性质本部分以燃烧合成法制备了铁酸锌(Zn(略)4)纳米晶.该法是在还原条件下,以相应的金属硝酸盐的放热反应为基础从而产生了超细粉末,然后通过加热使其转化为纯的ZnFe_2O_4相.该法操作简单,过程容易实现,所用试剂价廉.将这种方法制得的样品通过XRD、AFM、IR和TEM等方(略)显微结构进行了研究.结果表明,所得超细粉末为具有尖晶石结构的ZnFe_2O_4,其粒径范围在15-25nm之间.通过姜黄素溶液的降解实验对纳米ZnFe_2O_4...

二氧化钛论文摘要

不给个邮箱,怎么发给你?已经下载过了。

摘 要:自剑桥大学D J Fray等人发表以TiO2直接电解提取钛(即FFC法)的论文后,研究由氧化物直接电解制取钛成为热潮。根据国内外已发表的相关研究论文,结合相关的研究成果,对电解法制取钛的研究进展进行简要总结。 关键词:FFC法;OS法;USTB法;EMR/MSE法;PRP工艺 引言 钛具有密度小、比强度大(强度与密度之比)、耐腐蚀、无毒、温度适应范围广的优良性质,而且钛矿藏储量丰富,地壳中钛的含量约为0.46%,在结构金属中居第四位,仅次于铝、铁、镁,它是当代最具技术魅力的金属材料。但钛与氧的亲和力较强,两者之间不仅会生成化合物,而且还能形成多种固溶体。当钛中的氧、氮的含量只为百分之几时,即足以使钛合金变脆,所以工业中对钛的纯度要求很高,导致制备钛的工艺比较复杂,如何在现有技术的基础上发展一种提取钛的经济有效的方法成了国内外专家关注的焦点 1 FFC 法的研究进展 1.1 FFC法简介 英国剑桥大学科学家Fray等人提出了熔融盐电解TiO2制备金属钛的FFC法[1]。方法一经提出便引起世界钛冶金科研工作者的广泛关注[2]。FFC 方法采用直接电化学还原,在无水CaCl2融盐中电解TiO2得到海绵钛,此方法已在实验室取得成功。FFC法有着成本低、产品质量高、周期短应用范围广等特点,是一种清洁的绿色生产工艺。 1.2 FFC法工艺过程 FFC法具体工艺过程是:将TiO2粉末压制成形,烧结后作为融盐电解槽阴极,石墨作阳极,以CaCl2融盐作为电解质,置于钛或石墨坩埚中,在800℃~1000℃下进行电解,所加电压为2.8V~3.2V,当电流通过时,阴极TiO2电离出氧离子,发生还原反应;而在阳极上,发生氧化反应,氧元素与碳结合生成CO2在阳极区放出,金属钛则留在阴极,从而得到的金属钛,其组织结构与镁热法生产的粒状、多孔的海绵钛一样,整个工艺过程中不存在液态钛或离子态钛。 电解反应如下: 阴极还原反应:TiO2+4e=Ti+2O2- 阳极氧化反应:2O2--4e=O2 总反应:TiO2=Ti+O2 电解简图如图1 所示: 1.3 FFC法的优点: (1)工艺过程简单。原料和设备不需要什么特殊要求,流程短易操作。传统方法生产Ti时需要进行真空精练才能得到纯Ti;而采用FFC法生产,可以直接得到纯净的Ti,甚至用它可以直接生产出半成品的Ti产品[3],缩短了生产周期。 (2)反应温度低,一般在800~1000℃。表1列出了一些金属单质和合金的传统制备方法[4],这些方法大部分需要反应物在熔融态开始反应,其反应需要的温度较高。这不仅需要消耗很多的能量,而且高温对设备的要求也很严格,生产成本也会增加。 表1一些金属或合金的传统制备方法 合金应用传统制备方法 Nb3Sn,NbTi超导体熔融法,粉末冶金法 Nd-Fe-B,Sm-Co永磁体熔融法,粉末冶金法 Al,Mg,Be,Ni,Co结构合金熔融法 Ti,Ta,Co医学熔融法,粉末冶金法 Pt,Pd催化剂熔融法 (3)产物纯度高、杂质含量低,产品的形貌和粒度颗粒大小可以控制。如果能控制好电解时的工作电压以及电解时间,就可以使产物的氧含量降到很低,得到产品需要的形貌和颗粒大小。如FFC法制备的Ti产物氧含量仅为:200×10-6[5]。FFC法生产过程中可能污染产物的只有电解质熔盐CaCl2和NaCl,经过水洗可以将熔盐溶掉。 (4)生产成本低,原料易得,电解质廉价。电解所需要的CaCl2和NaCl熔盐廉价易得,而该工艺一般反应的温度低,也是降低成本的一个方面。而且该工艺可以省去铸造、机械加工等昂贵的加工工程,因此可以节省大量的生产成本。据报道,采用FFC法生产钛,其成本可以降低到仅为Kroll法的1 /2[3,6,7~9]。 (5)FFC法可以用于制备其它方法难以生产的金属或合金,如TiNi记忆形状合金。生产这种合金由于原料成分的配比和合金密度很难控制,不易生产。如果采用FFC法则简单多了,只要在制作阴极片时根据所需合金成分来配比原料中TiO2和NiO2的量,通过电解就可以获得事先要求成分的合金。又如W-Al合金,由于钨的熔点高于铝的沸点,所以采用传统方法制备极其困难,而利用FFC法制备这种合金就会变得很简单。 (6)FFC法被称为绿色环保工艺,而且可以实现连续化生产,不像Kroll法制备金属钛过程中出现的Cl2和TiCl4这些强腐蚀性的化学物质,是一种绿色环保工艺。 1.4 FFC法目前还存在一些需要解决的问题: (1)FFC法的电解脱氧机理还不是非常清楚,而且电解过程中的热力学和动力学问题需要进一步研究。要探讨影响电解工艺条件,以及在电解过程中如何控制这些条件使产物达到设计的要求。 (2)FFC法的电解脱氧过程效率很低,如采用FFC法电解一个几克的Nb2O5阴极片需要48h才能使其残余氧含量降低到3000×10-6[10]。如果进行较大规模的电解生产,要使产品中的氧含量降至较低的值,可能就需要更长的时间。所以如何提高电解效率,缩短电解时间是一个关键技术。 (3)在合金制备过程中,还有许多问题需要解决,比如合金中不同金属的脱氧、金属合金化,以及合金成分的均匀化等问题还需要进一步的研究。 (4)最关键的一点就是解决扩大化生产中遇到的问题。虽然工艺比较简单,设备操作方便,但是针对大规模生产能否重现实验室中理想的结果,以及如何生产出合格的产品,还需要更多的资金和人力去研究探索。 2 OS法 2.1 OS法简介 针对FFC法,日本Kyoto大学的One和Suzuki在2002年钛协会年会上首次提出了OS法[11]。其实质仍为CaCl2熔盐电解,是一种在CaCl2熔盐中钙热还原TiO2的工艺。 2.2 OS法工艺过程 其主要反应过程如下:在900℃时,CaCl2可以分别溶解摩尔分数为3.9%和20%的Ca和CaO。当电解电压在CaO分解电压(CaO在CaCl2中的电解电压只有1.66 V )以上并在CaCl2分解电压(CaCl2的电解电压为3.2 V)以下时,Ca2+在阴极被还原为金属Ca,阳极相应产生O2。如果阴极掺入了TiO2颗粒,将会得到含氧量很低的金属Ti。其电极反应为: 阴极反应:Ca2++2e→Ca 阳极反应:C+2O2-→CO2+4e 总反应:TiO2+2Ca→Ti+2O2-+2Ca2+ 据称,此方法可大幅度降低生产成本,并用来生产钛粉,与FFC工艺有相似的优缺点。其实验简图如图2 所示。 3 USTB工艺 3.1 USTB工艺介绍 由北京科技大学(USTB)研究团队提出的可溶阳极熔融盐电解的方式(USTB新型清洁钛提取技术)较好地解决了产品质量、稳定运行和规模扩大的问题(授权专利号:ZL200510011684.6)。这种新型清洁钛提取冶炼新工艺以二氧化钛和碳为原料在1500 ℃左右的温度下碳热还原制备出导电性良好的碳氧化钛(TiCxOy)[13],并以此为阳极在400~1000℃的熔盐体系中电解,阴极上得到的碳和氧含量均低于5×10-4的金属钛(图3) 该方法主要分为TiC·TiO 固溶体的制备与TiC·TiO 固溶体的熔融盐电解制备金属钛两个过程。可溶性固溶体的制备TiO2与C粉或TiO2与TiC按摩尔质量比为1:2充分混合后,在2940~9800N/cm2的压力下压制成型,然后在1273~1673K 温度下真空烧结4h制得[14-15]。电解过程以烧结成型固溶体为阳极,碳钢棒为阴极,NaCl-KCl 共熔盐为电解质,在1073K温度下电解制取金属钛。其反应过程如下: 阳极反应:TiC·TiO→2Ti2++CO+4e 阴极反应:Ti2++2e→Ti 3.2 USTB新型钛提取技术优势 (1)碳热还原工艺简单,还原效率高,以钛物料和碳质还原剂为原料能够实现低成本制备TiCxOy; (2)原料适应性好,钛物料可为各类氧化钛、富钛料及复合矿; (3)TiCxOy为阳极材料,电解过程中碳、氧结合为气体从阳极界面释放,无阳极泥产生,残极回收率高; (4)原料和产品分别在阳极和阴极,可以通过更换电极实现连续化生产。通过USTB新型清洁钛提取技术有望将金属钛的生产成本降低到现行工业化方法(Kroll法)的60%左右,被冶金业内研究者认为是最有希望实现工业化生产金属钛的新方法。 4 EMR/MSE法 4.1 EMR/MSE法简介 EMR/MSE 法是EMR 与MSE 法的联合方法[16]。IIPark 等人[17]为了降低还原产物中杂质的含量,研究出了EMR法;Suzuki在OS法基础上提出制取金属钙的MSE法。 4.2 EMR/MSE法工艺过程 EMR/MSE法是将盛有TiO2粉末或成型体的不锈钢容器沉浸在熔融CaCl2中,采用钙镍液态合金由EMR法制取金属钛,并通过MSE法电解溶解在熔盐中的副产物Ca2+再次合成钙镍合金,为后续反应提供还原剂。其中分别包括还原槽(EMR)反应和电解槽(MSE)反应,在还原槽(EMR)反应中二氧化钛与钙反应生成钛;在电解槽(MSE)反应中钙离子被电解还原成金属钙,还原槽生成的氧离子转移到阳极上与碳生成碳氧化合物。EMR 法工艺流程主要包括以下几步: 1)电解实验前将作为电解质的无水CaCl2在真空装置中干燥12 h(473K); 2)1173K 时将TiO2在氩气保护气氛下电解,TiO2的还原过程主要是通过还原剂合金释放的电子来完成的; 3)还原结束后,将不锈钢容器从反应器中拿出,用蒸馏水浸泡24 h以便溶解CaCl2,实验结束后用用醋酸和盐酸过滤得到钛粉; 4)用蒸馏水、酒精和病酮漂洗,最后在真空容器中干燥,最终可得到金属钛。其电极反应为: 阴极还原反应:TiO2+4e→Ti+2O2- 阳极氧化反应:2Ca→2Ca2++4e 总反应:TiO2+2Ca→Ti+2Ca2++2O2 电解装置简图如图4 所示: EMR/MSE 法的主要特点是TiO2不与还原剂直接进行物理接触,而是通过熔融CaCl2传导还原剂释放的电子给TiO2阴极。这不仅有效控制了杂质在产物中的积累,大大提高了能量利用率,而且还实现了金属钛还原过程与还原剂钙镍合金制备过程的独立进行。与Kroll法相比,EMR/MSE 法可以在保证较低产品杂质含量的情况下实现半连续化生产金属钛粉。但是,EMR/MSE法同样面临着产物与熔盐难以分离的问题。 5 PRP工艺 5.1 PRP工艺介绍 PRP工艺是Okabe在直接气相还原TiO2粉末的基础上提出的一种预成型气相钙热还原制备金属钛的改进方法[18-19]。 实验中,首先将TiO2粉末、助焊剂(CaCl2,CaO)、粘结剂(火胶棉)按适当比例混合充分后预制成一定的形状,在1073 K下烧结成型,然后置于密闭不锈钢容器中,在1073~1273 K温度下用钙蒸气进行还原,最后产品进行酸洗和真空干燥得到金属钛。反应过程钙蒸气渗入预制体中与TiO2反应生成海绵钛与CaO。反应过程见图5 为了更好地优化PRP工艺,科研工作者进行了广泛的研究。贾金刚等人[20]通过研究得出CaCl2对钙蒸气还原TiO2发挥着不可或缺的作用,预制品中的CaCl2在高温烧结过程中有水蒸气逸出并产生气孔,从而促进钙蒸汽进入预制品与TiO2充分接触,有利于还原反应的进行。万贺利等人[21-22]通过对实验影响因素分析得出,当TiO2与CaCl2质量比为4:1、钙蒸气还原时间6 h、反应温度在1273 K时,可得到平均纯度在99.55%的钛粉。PRP工艺的优点在于可有效地控制产物的纯度与形态生产规模可灵活控制,非常适合生产粒径均匀的钛粉。采用钙蒸气还原预制品,且预制品与反应容器无物理接触,使产品杂质沉积少而且更易于分离。但是,还原剂成本较高是PRP 工艺一直未实现工业生产的主要原因。 5 结语 金属钛凭借优异的性能,使其成为可取代铁、铝的21世纪金属,但由于目前世界上普遍采用的Kroll 法存在工艺流程复杂、生产周期长、成本高等缺点,使得钛的应用受到了极大的限制。FFC剑桥法,采用TiO2直接熔融盐电解法,缩短了工艺流程,但存在生产条件苛刻和电解电流效率低的不足,还有待进行深入研究。 EMR/MSE法较OS法提高了产物纯度与能量利用率,但产物与熔盐电解质的分离仍然非常困难。PRP工艺主要缺点是还原剂成本太高,一旦能够实现还原剂的低成本生产,PRP法无疑将成为最有可能实现规模化生产的金属钛制备新工艺。USTB工艺既克服了FFC剑桥法电流效率低的缺点,又充分保证了钛的纯度,仅通过更换电极便可完成产物与熔盐电解质的分离实现连续化生产,是目前最有望实现工业化生产的钛制备工艺。目前,工艺流程短、生产成本低、生产连续化是钛生产工艺的主要发展方向,USTB工艺和PRP工艺实现了实验室条件下低成本、短流程生产,经过工业化放大试验与研究后,很有可能取代传统的Kroll法,实现金属钛制备技术的跨越式发展。参考文献 [1] Chen G Z ,FrayD J , Farthing T W. Direct electrochemical reduction of titanium dioxide totitanium in molten calcium chloride [J] . Nature , 2000 , 407 : 361-364 . [2] 刘喜波,罗志涛,高贵华,等.熔盐电解法. [3] 陈远望.英美联合推进FFC———剑桥法的工业化生产.世界有色金属, 2003 , 12:57 . [4] Fenn Andrew J , Cooley Graham,et al.Exploiting the FFCCambridge Process.Adv Mater Proce , 2004 , 162(2):51 . [5] 刘美凤,郭占成.金属钛制备方法的新进展.中国有色金属学报, 2003 , 13 (5) :1238. [6] 苏鸿英.世界钛工业简介.世界有色金属, 2004 , 7:46 . [7] 高敬,郭琦.降低钛生产成本的工艺———电解法.稀有金属, 2002 , 26 (6) : 483. [8] 高敬,屈乃琴.海面钛生产工艺概述.钢铁钒钛, 2002 , 23 (3) : 44. [9] 杨遇春.钛材降低成本的途径.宇航材料工艺, 2004 , 1:23 . [10] 刘永忠,郭有仪,郁永章.冷冻干燥过程的计算模型及其应用.西安交通大学学报, 1999 , 33 (12): 61 . [11] 韩庆文等.降低制备金属钛成本概要[J].稀有金属快报, 2004 , 23 (8) : 7 . [12] 韩庆文等.降低制备金属钛成本概要[J].稀有金属快报, 2004 , 23 (8) : 7. [13] 龙翔,李保金,汪云华,等.熔盐电解TiO2制取钛金属工艺研究进展[J] . 材料导报,2013 (S2) :78-82. [14] Jiao S , Zhu H . Novel metallurgical process fortitanium production [J]. Journal of Materials Research , 2006 , 21 (9) :2172-2175 . [15] Jiao S , Zhu H . Electrolysis of Ti2CO solidsolution prepared by TiC and TiO2[J]. Journal of Alloys andCompounds , 2007 , 438 (1) : 243-246. [16] 尚青亮,刘捷,方树铭,等.金属钛粉的制备工艺[J]. 材料导报:纳米与新材料专辑,2013,27 (1) :97-100. [17] Park I I,Abiko T , Okabe T H. Production of titaniumpowder directly from TiO2in CaCl2through anelectronically mediated reaction (EMR) [J]. Journal of Physics and Chemistry ofSolids , 2005 , 66 (2) : 410-413. [18] Okabe T H , Oda T , Mitsuda Y . Titanium powderproduction by preform reduction process (PRP) [J]. Journal of Alloys andCompounds , 2004 , 364 (1) : 156-163. [19] 洪艳,沈化森,曲涛,等.钛冶金工艺研究进展[J] . 稀 有金 属, 2007 , 31 (5) : 694-700. [20] 贾金刚,徐宝强,徐敏,等.真空钙热还原二氧化钛制备钛粉的研究[J].钢铁钒钛,2013, 34 (2) :1-6. [21] 万贺利,徐宝强,杨斌,等.真空钙热还原法制备金属钛粉的研究[J]. 真空科学与技术学报,2012 , 32 (6):539-544. [22] 万贺利,徐宝强,戴永年,等.钙热还原二氧化钛的钛粉制备及其中间产物CaTiO3的成因 [J]. 中国有色金属学报,2012 , 22 (7) : 2075-2081 .

钛合金氧化对组织的影响研究论文

关于钛合金的污染。当钛合金与氧等物质接触时候,就会发生氧化,将会使表面颜色发生变化,其具体变化视氧化程度和热处理温度而定。当氧化轻微时,钛合金表面金相观察会有氧化皮,当与基体发生作用时候,才会出现Alpha 层,因氧、铝等是Alpha稳定元素,所以发生氧化后,表面会富集Alpha相,也叫白亮Alpha层。使表面脆化

对磨损性能和结合力进行了测试。用用威虎氧化技术。在不同的电解液体系下,钛合金表面制备了陶瓷磨成通过扫描电镜和X射线颜色已进行分析,偏铝酸钠,磷酸钠,硅酸钠三种盐复合电解液体系下所得到的磨成耐腐蚀某种性能和结合力最优,硅酸盐的加入会让表面相对粗糙,表面孔径较大,磷酸盐的加入有利于金红石相形成,并且表面孔径较小。电解液是化学电池,电解电容使用的介质,主要用于不同行业代表的内容相差较大。

镍钛记忆合金其变形次数可以达到千万次不会断裂。表面光滑,尺寸高,塑性良好,冷加工变形量大可达到40%以上,经处理后可获得优异的超弹性,是制作高档立体组合眼镜架的理想材料。陕西格美特新材料有限公司专业生产各种镍钛记忆合金材料。

一般钛合金在800摄氏度以上热变形过程中发生的晶粒形成与长大的现象是动态再结晶 静态再结晶一般是冷变形后再次加热退火等热处理过程中变形拉长晶粒再次等轴化和长大的现象,也有可能是多次锻压过程中,锻压间隙会发生利用余热发生静态再结晶。

二氧化碳的制取的研究的论文

《光明日报》5月4日报道,从中国科学院获悉,中科院大连化学物理研究所孙剑、葛庆杰研究员团队发现了CO2高效转化新过程,并设计了一种新型Na-Fe3O4/HZSM-5多功能复合催化剂,首次实现了二氧化碳(CO2)直接加氢制取高辛烷值汽油,相关过程和催化材料已申报多项发明专利。

该研究成果2日发表于英国学术刊物《自然通讯》杂志上,被誉为“CO2催化转化领域的突破性进展”。

二氧化碳加氢“变”汽油

《自然通讯》是全球排名第三的多学科类期刊,仅次于《自然》和《科学》。该刊2010年创刊时为混合型期刊,出版开放获取及订阅形式的论文,每月收到的投稿约1500篇。该刊发表的所有科学研究都代表着某一领域具有重要意义的研究进展,这涵盖生物学、物理、化学和地球科学等学科。

难题:CO2的活化与选择性转化

在自然界中,植物从空气中吸收CO2,经光合作用转化为有机物和氧气,该过程缓慢,所以一直以来化学家们努力想通过化学方式回收利用CO2。

如果以CO2作为原料生产汽油,将是一种潜在替代化石燃料的清洁能源策略,不仅可有效降低CO2造成的温室效应,还可减轻对传统化石能源的依赖。

科学家解释,用CO2作为原料生产汽油是一种潜在的替代化石燃料的清洁能源策略,但CO2的活化与选择性转化是个难题。

孙剑说:“相比于更活泼的‘孪生兄弟’一氧化碳,二氧化碳分子非常稳定,难以活化,与经典的费托合成路线相比,CO2与氢分子的催化反应更易生成甲烷、甲醇、甲酸等小分子化合物,而很难生成长链的液态烃燃料。”

技术优势

据科学网5月3日报道,为了解决这一问题,研究团队设计了一种高效稳定的Na-Fe3O4/HZSM-5多功能复合催化剂。

孙剑介绍,这种催化剂有三个优势:

一是,在接近工业生产的条件下,该催化剂实现了甲烷和一氧化碳的低选择性,烃类产物中汽油馏分烃(C5-C11)的选择性达到78%,有利于大规模生产;

二是,这种方法生产的汽油排放能满足环保要求,汽油馏分主要为高辛烷值的异构烷烃和芳烃,基本满足国V标准对苯、芳烃和烯烃的组成要求;

三是,该催化剂还具有较好的稳定性,可连续稳定运转1000小时以上,显示出潜在的应用前景。

此外,对CO2直接转化制取汽油的反应途径研究表明,对多活性位结构及其亲密性效应(proximity effect)的精准调控是实现CO2加氢制汽油的关键。

该技术不仅为CO2加氢制液体燃料的研究拓展了新思路,还为间歇性可再生能源(风能、太阳能、水能等)的利用提供了新途径。

(文章转载于微信公众号:观察者网)

很多花瓣撒下来,刚刚上传这张是,很多小圆球在环绕旋转!

探究:坚持理论联系实际的原则,紧密结合教材,在开展社会实践活动的基础上,运用所学知识和方法,解决社会.生活.或生产过程中遇到的有关实际问题.格式:依次是题目,摘要,正文,参考文献.

因为二氧化碳会溶于水

二氧化硫对铜的腐蚀研究论文

您好,二氧化硫会使氧化铜变成绿色。当二氧化硫和氧化铜接触时,氧化铜会发生变色反应,变成一种绿色,这是由于氧化铜中的铜原子被二氧化硫氧化而形成了一种绿色的氧化物。这种变色反应可以用来检测二氧化硫的存在,因为当它们接触时,氧化铜会变成绿色。

二氧化硫能与铜反应,条件是加热,反应有两种情况:1.少量二氧化硫时SO2+2Cu=加热=S+2CuO(S+Cu=加热=CuS)2.过量二氧化硫SO2+2Cu=加热=S+2CuO冷却后SO2+CuO=CuSO3

二氧化琉在化学反应中一般表现为还原性(如使酸性高锰酸钾和卤素单质,铁离子退色等),具有弱氧化性,只有强氧化性才能使铜氧化成铜离子,所以应该不能。

氧化铜在二氧化硫的作用下会变成深绿色,有时带有灰色或褐色,这种颜色是由于氧化铜和二氧化硫在表面形成复合物,其中含有若干金属元素,这些金属元素会使氧化铜呈现出深绿色或灰色。

相关百科

热门百科

首页
发表服务