首页

> 学术发表知识库

首页 学术发表知识库 问题

与积分因子有关的论文答辩问题

发布时间:

与积分因子有关的论文答辩问题

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学毕业论文 ★

★ 大学生数学毕业论文  ★

★ 大学毕业论文评语大全 ★

★ 毕业论文答辩致谢词10篇 ★

中学数学论文题目

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究

答:

积分因子,你可以当作是一个补充品,或缺漏品

如果没有这个补充品的话,函数是不能凑出微分形式的?

何谓微分形式?就是指某个函数的导数,没有没有积分因子的话,是凑不出这个原函数出来的,所以若是乘上这个因子的话,微分形式就迎刃而解了

这里有个普遍情况,如图所示:

研究生本人并没有什么好处呢? 在学校发的论文,有的学校会根据杂志的影响因子给予一定的积分和经济奖励。毕业后这些论文就没什么用了,单位评职称都是

这个题目很简单,但是计算量非常大。有这么几种方法都能行。1、根据恰当方程(常微分方程)和积分因子的定义。把积分因子u=[1/(xM+yN)]同时乘以方程的左右两端。那么原方程变为Mudx+Nudy=0是恰当方程。再根据恰当方程的定义,假如现在的方程满足a(Mu)/ay=a(Nu)/ax,则说明结论成立。实际上就是把积分因子带入原方程以后计算变化后的方程是否是恰当方程。2、根据定理:如果u是微分方程Mdx+Ndy=0的积分因子,则满足N*au/ax-M*au/ay=(aM/ay-aN/ax)u。直接把u带入到这个式子,算偏导验证等号成立即可。这两种方法我在matlab里面运行都是成立的。3、直接凑微分。一般只适用于具体函数证明。直接按照积分因子的定义带入,把方程的左端凑成某个函数的全微分形式即得证。

恰当方程与积分因子毕业论文

常微分方程发展经历了几百年的历史,其中恰当方程的部分,是解决各类常微分方程的重要方法。历史上恰当方程在解决很多理科数学,力学,天文学,以及我们现在的大学生建模竞赛等等方面起到了重要作用,特别近三十年来在自然科学中,混沌现象和孤立子及分形等新现象的发现在计算机领域的出现让我们对恰当方程和计算机的结合有了更紧密的联系。

回,楼上就是要求个计算过程,道理都明白的。。。。

恰当方程一种微分方程,它可以直接解出而不需要用到这学科的任何特殊技巧。单变量的一阶微分方程称为恰当方程或恰当微分方程,如果它是简单微分的结果。方程P(x,y)y′+Q(x,y)=0〔或者等价地P(x,y)dy+Q(x,y)dx=0〕是恰当方程,如果Px(x,y)=Qy(x,y)。这时,存在函数R(x,y),它对x的偏微商为P,对y的偏微商为Q,结果方程R(x,y)=c(c为常数)将定义隐函数y,它满足原来的微分方程。 例如,在方程(x2+2y)y′+2xy+1=0中,P=x2+2y对x的偏微商是2x,而Q=2xy+1对y的偏微商也是2x,函数R=yx2+x+y2满足条件Rx=P与Ry=Q,从而由yx2+x+y2=c所定义的隐函数是原方程的解。有时一个方程不是恰当的,但可以用一个适当的函数乘每一项使它成为恰当的,这个适当的函数称为一个积分因子,通常它由1/(Px±Qy)给出。 例如,方程3y+2xy′=0用1/5xy去乘,变成3/x+2y′/y=0,它是方程3ln x+2ln y=c的直接微分的结果。这方程可以写成x3y2=c,它定义的隐函数满足原来的微分方程。高阶方程也可以称为恰当方程,如果它是一个较低阶的方程微分的结果。例如,二阶方程p(x)y〞+q(x)y′+r(x)y=0是恰当的,假如存在一阶表达式p(x)y′+s(x)y,使它的微分恰好等于给定的方程的左方。因此这个方程是恰当的,当且仅当p〞-q′+r=0,这时上面的s等於q-p′。如果方程不是恰当的,可能存在z(x)(也称为积分因子),使得方程乘以z後变成恰当的。

积分因子是微分方程中的概念,就是在解微分方程时在方程的两边同时乘以一个因子或同时除以一个因子,使得积分更加容易。

由于恰当方程可以比较方便的求出通解,于是人们想到能否将一非恰当方程化为恰当方程呢?由此就引入了积分因子的概念。

如果存在连续可微函数

使得

为一恰当方程,即存在函数

使

则称

为方程

的积分因子。这时

即为方程

的通解,因而也就是方程

的通解。

扩展资料:

积分因子存在性

可以证明,只要方程

有解存在,则必有积分因子存在,且不是唯一的。

事实上,设该方程有通解

,对其微分可得

与原方程

对比可得

从而,

。由此可见,

即为方程的积分因子。

例如,

可以取

中的任何一个函数作为积分因子。

参考资料来源:百度百科 —积分因子

定积分论文答辩过程所提的问题

论文答辩老师一般会提的问题,因为学校不同,老师不同,问题也会不同,以下问题参考:(1)辨别论文真伪,检查是否为答辩人独立撰写的问题;(2)测试答辩人掌握知识深度和广度的问题;(3)论文中没有叙述清楚,但对于本课题来讲尤为重要的问题;(4)关于论文中出现的错误观点的问题;(5)课题有关背景和发展现状的问题;(6)课题的前景和发展问题;(7)有关论文中独特的创造性观点的问题;(8)与课题相关的基本理论和基础知识的问题;(9)与课题相关的扩展性问题。1、自己为什么选择这个课题?2、研究这个课题的意义和目的是什么?3、全文的基本框架、基本结构是如何安排的?4、全文的各部分之间逻辑关系如何?5、在研究本课题的过程中,发现了那些不同见解?对这些不同的意见,自己是怎样逐步认识的?又是如何处理的?6、论文虽未论及,但与其较密切相关的问题还有哪些?7、还有哪些问题自己还没有搞清楚,在论文中论述得不够透彻?8、写作论文时立论的主要依据是什么?有的老师会提问论文中的一些专业术语,自己一定要弄懂论文中的一些专业术语。答辩的基本流程:一、自我介绍自我介绍作为答辩的开场白,包括姓名、学号、专业。介绍时要举止大方、态度从容、面带微笑,礼貌得体的介绍自己,争取给答辩小组一个良好的印象。好的开端就意味着成功了一半。二、提问与答辩答辩教师的提问安排在答辩人自述之后,是答辩中相对灵活的环节,有问有答,是一个相互交流的过程。一般为3个问题,采用由浅入深的顺序提问,采取答辩人当场作答的方式。答辩教师提问的范围在论文所涉及的领域内,一般不会出现离题的情况。提问的重点放在论文的核心部分,通常会让答辩人对关键问题作详细、展开性论述,深入阐明。答辩教师也会让答辩人解释清楚自述中未讲明白的地方。论文中没有提到的漏洞,也是答辩小组经常会问到的部分。再有就是论文中明显的错误,这可能是由于答辩人比较紧张而导致口误,也可能是答辩人从未意识到,如果遇到这种状况,不要紧张,保持镇静,认真考虑后再回答。还有一种判断类的题目,即答辩教师故意以错误的观点提问,这就需要答辩人头脑始终保持清醒,精神高度集中,正确作答。仔细聆听答辩教师的问题,然后经过缜密的思考,组织好语言。回答问题时要求条理清晰、符合逻辑、完整全面、重点突出。如果没有听清楚问题,请答辩教师再重复一遍,态度诚恳,有礼貌。当有问题确实不会回答时,也不要着急,可以请答辩教师给予提示。答辩教师会对答辩人改变提问策略,采用启发式的引导式的问题,降低问题难度。出现可能有争议的观点,答辩人可以与答辩教师展开讨论,但要特别注意礼貌。答辩本身是非常严肃的事情,切不可与答辩教师争吵,辩论应以文明的方式进行。三、致谢感谢在毕业设计论文方面给予帮助的人们并且要礼貌地感谢答辩教师。答辩注意事项(1)克服紧张、不安、焦躁的情绪,自信自己一定可以顺利通过答辩。(2)注意自身修养,有礼有节。无论是听答辩教师提出问题,还是回答问题都要做到礼貌应对。(3)听明白题意,抓住问题的主旨,弄清答辩教师出题的目的和意图,充分理解问题的根本所在,再作答,以免答非所问的现象。(4)若对某一个问题确实没有搞清楚,要谦虚向教师请教。尽量争取教师的提示,巧妙应对。用积极的态度面对遇到的困难,努力思考做答,不应自暴自弃。(5)答辩时语速要快慢适中,不能过快或过慢。过快会让答辩小组成员难以听清楚,过慢会让答辩教师感觉答辩人对这个问题不熟悉。(6)对没有把握的观点和看法,不要在答辩中提及。(7)不论是自述,还是回答问题,都要注意掌握分寸。强调重点,略述枝节;研究深入的地方多讲,研究不够深入的地方最好避开不讲或少讲。(8)通常提问会依据先浅后深、先易后难的顺序。(9)答辩人的答题时间一般会限制在一定的时间内,除非答辩教师特别强调要求展开论述,都不必要展开过细。直接回答主要内容和中心思想,去掉旁枝细节,简单干脆,切中要害。四、答辩常见问题在答辩时,一般是几位相关专业的老师根据学生的设计实体和论文提出一些问题,同时听取学生个人阐述,以了解学生毕业设计的真实性和对设计的熟悉性;考察学生的应变能力和知识面的宽窄;听取学生对课题发展前景的认识。

根据常规情况可能会问的问题:(1)你的创新点在哪里?(2)目前研究条件具备吗?(3)可行性有多高?(4)技术路线是怎么回事?

论文答辩有关数据分析会问的问题

毕业论文答辩老师一般会提以下几类问题:

一、选题:

选题合适与否对于论文的质量有着很大的影响,如果选题过大,可能会使得研究成果过于表面,没有实际价值;选题过小,研究狭窄,不能做到以小见大。因而在论文答辩的时候,答辩老师一般会就选题对学生进行提问,从中了解学生对于该领域前人研究成果的了解程度以及论文的自主性程度。

二、论文结构/内容:

论文的结构和内容框架展现了论文作者的思维模式,能够在一定程度上反映作者的学术水平,因而关于论文结构的问题是答辩老师经常会问到的问题。

三、论文材料:

行文讲究有理有据,论文的材料、实验数据的使用必须有据可循,因而答辩老师可能会对论文中的某些材料或者是数据的来源、引用、分析等提出相应的问题。

举些例子以示说明:这部分的数据材料你是通过实验获得还是前人的研究成果?这部分材料与你要得到的结论之间是如何串联的?......

四、创新点和不足之处

创新点是一篇论文的真正价值所在,而不足之处是论文未来修改和发展的方向,对于一篇论文具有举足轻重的作用,自然也成为了答辩老师们问得最多的问题了。

五、其他

除了论文本身外,有些答辩老师可能还会问一些未来发展方向等相关的问题,这些只要据实回答即可,不必过于紧张。

不论答辩老师问什么问题,我们在答辩前都要做好相应得准备,对论文得内容和结构等要十分熟悉,材料使用等也要有理有据;答辩时回答简明扼要,对老师提出的修改意见虚心接纳,并在答辩后予以修正。

论文答辩一般会问什么问题

学校论文答辩时,老师一般会问些什么问题?以下是我精心整理的论文答辩一般会问的问题,希望对大家有所帮助。

一、毕业论文答辩常见问题

1、自己为什么选择这个课题?

2、研究这个课题的意义和目的是什么?

3、全文的基本框架、基本结构是如何安排的?

4、全文的各部分之间逻辑关系如何?

5、在研究本课题的过程中,发现了那些不同见解?对这些不同的意见,自己是怎样逐步认识的?又是如何处理的?

6、论文虽未论及,但与其较密切相关的问题还有哪些?

7、还有哪些问题自己还没有搞清楚,在论文中论述得不够透彻?

8、写作论文时立论的主要依据是什么?

对以上问题应仔细想一想,必要时要用笔记整理出来,写成发言提纲,在答辩时用。这样才能做到有备无患,临阵不慌。

二、毕业论文答辩技巧

学生首先要介绍一下论文的概要,这就是所谓“自述报告”,须强调一点的是“自述”而不是“自读”。这里重要的技巧是必须注意不能照本宣读,把报告变成了“读书”。“照本宣读”是第一大忌。

这一部分的内容可包括写作动机、缘由、研究方向、选题比较、研究范围、围绕这一论题的最新研究成果、自己在论文中的新见解、新的理解或新的突破。做到概括简要,言简意赅。不能占用过多时间,一般以十分钟为限。

所谓“削繁去冗留清被,画到无时是熟时”,就是说,尽量做到词约旨丰,一语中的。要突出重点,把自己的最大收获、最深体会、最精华与最富特色的部分表述出来。这里要注意一忌主题不明;二忌内容空泛,东拉西扯;三忌平平淡淡,没有重点。

在答辩时,学生要注意仪态与风度,这是进入人们感受渠道的第一信号。如果答辩者能在最初的两分种内,以良好的仪态和风度体现出良好的形象,就有了一个良好的开端。

有人将人的体态分解为最小单位来研究(如头、肩、胸、脊、腰等),认为凹胸显现怯懦、自卑,挺胸显示情绪高昂——但过分则为傲慢自负;肩手颈正显示正直、刚强,脊背挺拔体现严肃而充满自信。

但过于如此,就会被人看作拘泥刻板保守,略为弯腰有度,稍稍欠身可表示谦虚礼貌。孙中山先生曾说过“其所具风度姿态,即使全场有肃然起敬之心,举动格式又须使听者有安静详和之气”他的这番金玉良言,对我们确实有很大的启发。

听取教师提问时所要掌握的技巧

1、沉着冷静,边听边记

2、精神集中,认真思考

3、既要自信,又要虚心

4、实事求是,绝不勉强

5、听准听清,听懂听明

回答问题的内容实质上是一段有组织的“口头作文”,所要掌握的技巧是,构思时要求每个问题所要答的“中心”“症结”“关健”在哪里,从哪一个角度去回答问题最好,应举什么例子来证明。

回答问题注意事项

1、文章应有论点、论据

2、有开头主体与结尾

3、有条理、有层次

4、应用词确当,语言流畅

5、应口齿清楚、语速适度

开头要简洁:单刀直入,是最好的开头,开门见山地表述观点,在答辩中是最好的办法。主体部份的表述可条分缕析,即把所要回答的内容逐条归纳分析,实际上是对自己掌握的材料由此及彼,由表及里地做整理。这样的表述就不会流于表面,而能深入本质。

条分缕析可以把自己掌握的一些实际例子合并,整理成若干条目,列成几个小标题:分成几点,一点一点,一条一条地说出。满碗的饭必须一口一口吃,满肚子的道理也必须一条一条讲出来,环环相扣,条条相连,令人听完后有清楚的印象。

假如在准备的时候已经准备了一个较完整的提纲,那么沿着回答问题的主线,再穿上一些玉珠(举例子)就可以做到中心明确,条理清楚,有理有例了。

三、回答问题的技巧

进行毕业论文答辩注意以下几个问题,对提高成绩是有益的。

1、熟悉内容

作为将要参加论文答辩同学,首先而且必须对自己所著的毕业论文内容有比较深刻理解和比较全面的熟悉。这是为回答毕业论文答辩委员会成员就有关毕业论文的深度及相关知识面,对毕业论文有横向的把握,而可能提出的论文答辩问题所做的准备。

2、图表穿插

任何毕业论文,无论是文科还是理科,都或多或少地涉及到用图表表达论文观点的可能,故我认为应该有此准备。图表不仅是一种直观的表达观点的方法,更是一种调节论文答辩会气氛的手段,特别是对私人论文答辩委员会成员来讲,长时间地听述,听觉难免会有排斥性,不再对你论述的内容接纳吸收,这样,必然对你的毕业论文答辩成绩有所影响。所以,应该在论文答辩过程中适当穿插图表或类似图表的其它媒介以提高你的论文答辩成绩。

3、语流适中

进行毕业论文答辩的同学一般都是首次。无数事实证明,他们论文答辩时,说话速度往往越来越快,以致毕业答辩委员会成员听不清楚,影响了毕业答辩成绩。故毕业答辩学生一定要注意在论文答辩过程中的语流速度,要有急有缓,有轻有重,不能像连珠炮似地轰向听众。

4、目光移动

毕业生在论文答辩时,一般可脱稿,也可半脱稿,也可完全不脱稿。但不管哪种方式,都应注意自己的目光,使目光时常地瞟向论文答辩委员会成员及会场上的同学们。这是你用目光与听众进行心灵的交流,使听众对你的论题产生兴趣的一种手段。在毕业论文答辩会上,由于听的时间过长,委员们难免会有分神现象,这时,你用目光的投射会很礼貌地将他们的神“拉”回来,使委员们的思路跟着你的.思路走。

5、体态语辅助

虽然毕业论文答辩同其它论文答辩一样以口语为主,但适当的体态语运用会辅助你的论文答辩,使你的论文答辩效果更好。特别是手势语言的恰当运用会显得自信、有力、不容辩驳。相反,如果你在论文答辩过程中始终直挺挺地站着,或者始终如一地低头俯视,即使你的论文结构再合理、主题再新颖,结论再正确,论文答辩效果也会大受影响。所以在毕业论文答辩时,一定要注意使用体态语。

6、时间控制

一般在比较正规的论文答辩会上,都对辩手有答辩时间要求,因此,毕业论文答辩学生在进行论文答辩时,应重视论文答辩时间的掌握。对论文答辩时间的控制要有力度,到该截止的时间立即结束,这样,显得有准备,对内容的掌握和控制也轻车熟路,容易给毕业论文答辩委员会成员一个良好的印象。故在毕业论文答辩前应该对将要答辩的内容有时间上的估计。当然在毕业论文答辩过程中灵活地减少或增加也是对论文答辩时间控制的一种表现,应该重视。

7、紧扣主题

在校园中进行毕业论文答辩,往往辩手较多,因此,对于毕业论文答辩委员会成员来说,他们不可能对每一位的毕业论文内容有全面的了解,有的甚至连毕业论文题目也不一定熟悉。因此,在整个论文答辩过程中能否围绕主题进行,能否最后扣题就显得非常重要了。另外,委员们一般也容易就论文题目所涉及的问题进行提问,如界能自始至终地以论文题目为中心展开论述就会使评委思维明朗,对你的毕业论文给予肯定。

8、人称使用

在毕业论文答辩过程中必然涉及到人称使用问题,我建议尽量多地使用第一人称,如“我”“我们”。即使论文中的材料是引用他人的,用“我们引用”了哪儿哪儿的数据或材料,特别是毕业论文大多是称自己作的,所以要更多使用而且是果断地、大胆地使用第一人称“我”和“我们”。如果是这样,会使人有这样的印象:东西是你的,工作做了不少

在学习、工作生活中,大家都不可避免地要接触到论文吧,论文可以推广经验,交流认识。写起论文来就毫无头绪?以下是精心整理的论文答辩老师一般会提哪些问题,仅供参考,希望能够帮助到大家。

1、老师一般会问的第一个问题:一般在答辩前老师会首先检验一下论文是不是学生自身的研究成果,是不是有抄袭和剽窃的现象。因此他们通常会提出这些问题,比如“你是怎么想到要选择这个题目的?”、“你在写这篇论文时是怎何在?”等等。

2、老师一般会问的第二个问题:在答辩开始前,答辩老师一般都会让学生介绍一下论文的大概内容,也就是你这篇论文主要写的是什么内容。这个问题很简单,你只要叙述一下文章的整体框架就可以了,即这篇文章主要包括几个部分,每个部分各自写的是什么。一般学生根据文章的大标题来说就可以了。

3 、老师一般会提问的第三个问题:

针对论文中某些论点模糊不清或者不够准确和确切的地方,对论据不够充分的地方,对论证层次比较混乱、条理难辩的地方提出问题。论文中没有说周全、没有论述清楚或者限于篇幅结构没有详细展开细说的问题,答辩委员也可能提问。

有关不定积分的论文题目

微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。

摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.

关键词:微积分;背景;作用;函数

一、微积分进入高中课本的背景及必要性

在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。

柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。

从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!

二、微积分在中学数学中的作用

1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.

2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。

3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。

三、国际上一些教材对微积分知识的处理

以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。

当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!

摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。

关键词:微积分;起源;内容;方法

微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:

一、微积分起源的介绍

微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。

介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。

二、介绍微积分内容及方法

微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。

三、为什么要学习高等数学

微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:

微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。

前言

21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。

一、我国微积分教学改革的现状

目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。

首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。

其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。

再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。

二、微积分课改的必要性

随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。

(1)社会高度发展提出的要求

微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。

(2)科技的发展提出的需要

当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。

(3)人类思维发展的需要

微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。

三、微积分课改的内容

根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。

1、课程基本理念的改革

微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。

2、课程内容的改革

根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。

3、课程设计的改革

原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。

4、教学方法的革新

(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。

(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。

5、教学工具的革新。

现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。

四、小结

问题一:不定积分在实际生活中哪些方面有应用?二重积分在实际生活中有什么用?急切求参考! 不定积分,是为定积分打基础的。 因为大量的定积分,都是通过不定积分+牛顿莱布尼茨公式来解的。 二重积分的物理意义, 如果z=f(x,y)是个曲面的话,那么∫∫f(x,y)dxdy表示以z为穹顶的曲面圆柱体的体积。 当然如果一个平面放置于xoy面上,他的面密度为f(x,y)的话,那么∫∫f(x,y)dxdy表示的就是这个平面的质量。 还可以,比如在(x,y)∈D的范围内,求f(x,y)的平均值。 设D的面积为S,那么平均值m=(1/S)∫∫f(x,y)dxdy 问题二:二重积分的本质是什么 不定积分是求全体原函数。 定积分,二重积分是和式的极限。 面积、体积是几何意义。 问题三:定积分 不定积分 微分方程 10分 1、(1)sin(3x)dx=(1/3)sin(3x)d(3x)=-(1/3)d(cos(3x))-->int(sin(3x))=-(1/3)*cos(3x)+C (2).展开被积函数代公式:=3*exp(x)-x+C 2.(1)分部积分=-2 (2)直接代公式=14/3 3.(1)分离变量:dy/y=2xdx-->y= C*exp(x^2) (2)y(x) = (x+C)*x^2:常数变易法,先求奇次方程的特解为Y=A*x^2,再另A=A(x),对 Y=A*x^2求导,代如原方程即可解出A(x)=x+C 问题四:求定积分,有什么窍门吗。。 奇函数,等于0 问题五:求这个不定积分,比较复杂 我算不出 这就是个一阶线性方程:

相关百科

热门百科

首页
发表服务