首页

> 学术发表知识库

首页 学术发表知识库 问题

关于传感器的论文1200字

发布时间:

关于传感器的论文1200字

CMOS模拟集成温度传感器的设计

一、红外辐射的产生及其性质红外辐射是由于物体(固体、液体和气体)内部分子的转动及振动而产生的。这类振动过程是物体受热而引起的,只有在绝对零度(-273.16℃)时,一切物体的分子才会停止运动。所以在绝对零度时,没有一种物体会发射红外线。换言之,在一般的常温下,所有的物体都是红外辐射的发射源。例如火焰、轴承、汽车、飞机、动植物甚至人体等都是红外辐射源。红外线和所有的电磁波一样,具有反射、折射、散射、干涉及吸收等性质,但它的特点是热效应非常大,红外线在真空中传播的速度c=3×108m/s,而在介质中传播时,由于介质的吸收和散射作用使它产生衰减。红外线的衰减遵循如下规律 (9-2-1)式中,I为通过厚度为x的介质后的通量;I0为射到介质时的通量;e为自然对数的底;K为与介质性质有关的常数。金属对红外辐射衰减非常大,一般金属材料基本上不能透过红外线;大多数的半导体材料及一些塑料能透过红外线;液体对红外线的吸收较大,例如厚l(mm)的水对红外线的透明度很小,当厚度达到lcm时,水对红外线几乎完全不透明了;气体对红外辐射也有不同程度的吸收,例如大气(含水蒸汽、二氧化碳、臭氧、甲烷等)就存在不同程度的吸收,它对波长为1~5μm,8~14μm之间的红外线是比较透明的,对其他波长的透明度就差了。而介质的不均匀,晶体材料的不纯洁,有杂质或悬浮小颗粒等,都会引起对红外辐射的散射。实践证明,温度愈低的物体辐射的红外线波长愈长。由此在工业上和军事上根据需要有选择地接收某一范围的波长,就可以达到测量的目的。 二、红外传感器的组成:我们先看看红外系统的组成、主要光学系统和辅助光学系统,在此基础上对红外的关键元件进行详细的探讨。其实,红外传感器的工作原理并不复杂,一个典型的传感器系统各部分工作原理(如图所示): 三、红外传感系统的分类:红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图象;(4)红外测距和通信系统;(5)混合系统,是指以各类系统中的两个或者多个的组合。四、红外传感器工作原理:(1)待侧目标。根据待侧目标的红外辐射特性可进行红外系统的设定。(2)大气衰减。待测目标的红外辐射通过地球大气层时,由于气体分子和各种气体以及各种溶胶粒的散射和吸收,将使得红外源发出的红外辐射发生衰减。(3)光学接收器。它接收目标的部分红外辐射并传输给红外传感器。相当于雷达天线,常用是物镜。(4)辐射调制器。对来自待测目标的辐射调制成交变的辐射光,提供目标方位信息,并可滤除大面积的干扰信号。又称调制盘和斩波器,它具有多种结构。(5)红外探测器。这是红外系统的核心。它是利用红外辐射与物质相互作用所呈现出来的物理效应探测红外辐射的传感器,多数情况下是利用这种相互作用所呈现出来的电学效应。此类探测器可分为光子探测器和热敏感探测器两大类型。(6)探测器制冷器。由于某些探测器必须要在低温下工作,所以相应的系统必须有制冷设备。经过制冷,设备可以缩短响应时间,提高探测灵敏度。(7)信号处理系统。将探测的信号进行放大、滤波,并从这些信号中提取出信息。然后将此类信息转化成为所需要的格式,最后输送到控制设备或者显示器中。(8)显示设备。这是红外设备的终端设备。常用的显示器有示波器、显象管、红外感光材料、指示仪器和记录仪等。

建议去科技论文网去查,你去你们学校图书馆问问,有没有买什么数据库,一般学校都有的。然后输入你的关键字去查都能查到。透光脉动传感器的影响因素研究 论文透光脉动传感器是一种非接触式光电检测装置,通过对混凝过程中形成的絮体颗粒的检测,可以得到反映颗粒聚集状态的检测参数R。其检测不受混凝剂种类以及原水水质等条件的限制,其输出值不受取样管管壁的粘污以及电子元件老化、漂移等不利因素的影响,广泛适用于饮用水处理以及工业废水处理中混凝过程的在线连续检测[1]。以该传感器为核心的透光脉动混凝投药控制系统在高浊度水的混凝剂自动投加控制方面得到了良好的应用[2],近年来开始在常规浊度水的混凝剂自动投加控制方面得到应用[3]。在实际使用中,透光脉动传感器的检测性能受诸多因素的限制。作者在综合实践应用经验和试验结果的基础上对透光脉动传感器的主要影响因素进行了研究,并确定了其最优工作参数。1 透光脉动传感器 透光脉动传感器由水样检测部分和信号处理部分构成,分别完成信号的检测和处理,其工作原理如图1所示。由光源发射一束狭窄的光照射到传感器取样管中流动的悬浮液,透过光由光检测器接收并转换成电信号,然后通过后续的信号处理电路完成对电信号的处理,输出透光脉动检测值。检测值可以通过数码显示器(LED)显示,也可以通过输出端子输出,通过接口与计算机等连接,以实现检测值的在线采集和分析处理。式中:L—取样管管径; A—光柱有效照射面积; Ni—第i种颗粒的数量浓度; Ci—第i种颗粒的散射截面积。 从表达式可以看出,在被检测对象即悬浮液中颗粒的性质一定的情况下,检测值受光源的有效照射面积及取样管管径等因素的影响。在实际应用中,取样流速和传感器信号处理部分的放大倍数等因素也对检测值有明显影响,下面将对这些影响因素进行具体分析。2 影响因素分析2.1 光源的影响 对于透光脉动传感器来说,光源的选择无疑是至关重要的。受透光脉动检测技术的限制,只有当被测水样体积足够小时,颗粒的脉动现象才能被传感器检测到。在实际应用中为保证检测效果,必须尽量减小光柱的有效照射面积,因此应选择发射角小的光源,如激光二极管。 在水处理领域,国际标准化组推荐使用波长为860nm的近红外光和550nm的紫外光作为光源[4]。为了保证传感器的灵敏度,光源发射光的波长应随着被测颗粒尺寸的增大而增大,对于透光脉动传感器来说,它检测的是尺寸较大的絮体颗粒,因此宜选择发射波长为860nm的光源。在860nm处水中的溶解性物质对光的吸收非常弱,这一点对于没有色度补偿的透光脉动传感器来说很重要。2.2 取样流速的影响 由透光脉动检测技术特性可知[5],颗粒的脉动频率与取样流速有关,只有在保证最低取样流速,使得被检测水样能及时得到一定程度的更新的前提下,经过处理后的检测信号才能真实地反映出颗粒的脉动情况,且此时检测值应与取样流速无关。为了验证取样流速对检测值的影响,用内径为3mm的取样管分别对未混凝和混凝的悬浮液进行了连续检测。对于未混凝的悬浮液,当取样流量小于20mL/min时,此时水样流速太小,脉动信号的频率过低,其在信号处理过程中被滤波电路滤掉一部分,从而导致检测值偏小。取样流量在20mL/min左右时检测值波动较大,而当取样流量大于25mL/min时检测值比较稳定,仅当取样流量达到100mL/min时,检测值才略有下降。从试验结果可得,当取样流量在25mL/min以上即取样流速在0.06m/s以上时,检测值与取样流速无关。对于混凝的悬浮液,当取样流量为25~40mL/min即取样流速为0.06~0.094m/s时,流量变化对检测值的影响很小,而当取样流量大于50mL/min后,取样管中层流剪切力造成絮体明显破碎,导致检测值随流量的增大有明显的下降趋势,当取样流量降低后,絮体破碎程度降低,检测值则重新升高。 试验结果表明,当取样管管径为3mm时,对于未混凝的悬浮液,取样流速在0.06m/s以上时检测值与取样流速无关;而对于混凝的悬浮液,为了保证检测值能反映絮体颗粒真实的聚集情况,应尽量避免絮体在取样过程中的破碎,将取样流速合理的控制在0.06~0.094m/s。2.3 取样管管径的影响絮体在取样管中层流剪切力的作用下会有一定程度的破碎,检测值将受到影响。研究表明,层流的平均剪切率和管径的立方成反比,和流速成正比,因此除通过适当降低取样流速外,还可以通过增大取样管管径的方式来减小剪切率。取样管管径可以根据使用目的以及所检测水样的絮凝情况综合考虑,例如在实验室小试研究中,为了尽量节约试验用水,取样管管径宜选择得小一些,如3mm,在适当控制取样流速的情况下,可以保证絮体基本不破碎。从图4可看出,当取样管管径小至1mm时管中的平均剪切率变得非常大,例如当取样流量仅为2.5mL/min时,剪切率即达到约300s-1,这样高的剪切率很容易造成絮体的破碎。因此,在实际应用中往往不是用1mm的取样管来检测颗粒的聚集过程,而是充分利用层流剪切力对悬浮液中颗粒的破碎作用,将其用于研究絮体颗粒的抗剪性能或者颗粒物质在悬浮液中的分散过程等[6]。 在水处理工艺中,混凝效果良好时形成的絮体颗粒粒径较大,絮体强度相对较小,特别是在原水浊度较高、投药量较大的情况下;另外,为了保证在长时间运行时取样管不易被沉积物堵塞,必须保证较大的取样流速,这样都容易导致絮体的破碎。当取样管管径仅为3mm时,颗粒破碎程度明显增大,此时需要选择管径较大的取样管。生产实践表明,当取样管管径增加到5mm左右时,就可以保证水样流过取样管时絮体基本不会破碎,当然,也可以根据原水性质选用直径更大的取样管,如在高浊度水絮凝过程的检测中则建议使用内径为8mm左右的取样管2.4 放大倍数的影响 透光脉动传感器直接检测到的脉动信号很微弱,必须经信号处理部分放大和滤波等处理后才能参与控制。为了研究信号处理部分的放大倍数对检测值的影响,选取放大倍数分别为K1和K2的两个传感器进行了试验研究,在改变水样的絮凝程度时的检测 传感器的放大倍数K1较小,其检测值的变化幅度相当小,仅在1.2%~9.5%之间变化,而2号传感器的放大倍数K2较大,检测值在11.7%~50.7%之间变化,由此可见放大倍数对于检测值的输出具有相当大的影响。把两条曲线绘于不同的坐标下时发现其变化规律非常接近,说明两个传感器的检测性能基本相同,只是由于信号处理部分的放大倍数不同,导致输出值差异很大。对于投药控制系统来说,传感器信号处理部分的放大倍数过高,检测值波动太大,导致系统稳定性差;放大倍数过低,检测值无法准确反映出絮体颗粒的变化情况,控制系统无法调节投药量,因此在控制系统投入运行之前必须调节好放大倍数。一般来说,放大倍数可以根据所检测水样的性质现场调节,其调节可以分为两步:首先将絮凝充分的水样通过传感器,调节放大倍数使得检测值在40%左右,然后较大幅度地改变取样流速或者水样的絮凝程度,使检测值大约在20%~80%之间变化即可。3 结论通过对传感器的工作参数进行优化,可以改善传感器的检测性能,使其在生产中获得更加良好的应用,主要应注意以下几个方面: (1)光源应选择发射光的波长范围窄、发射角小的激光二极管等,波长宜选择860nm; (2)对于混凝的悬浮液,其检测值受取样流速的影响,在生产中应合理控制取样流速; (3)为了减小絮体在取样管中的破碎,应根据悬浮液的絮凝程度合理选用取样管,试验研究中一般选用1~3mm,生产应用中则选用5~8mm; (4)传感器信号处理部分的放大倍数对检测值的输出有很大影响,为了保证控制系统的控制性能,必须合理确定好放大倍数,其值可根据被检测水样的性质在现场调节确定。参考文献:[1] Gregory, J. , Nelson, D.W. A New Optical Method for Flocculation Monitoring[A]. Solid-Liquid Separation[C]. Chichester,Ellis Horwood:1984.172-182.[2] 于水利, 李邦宜, 曹世杰, 李虹, 李圭白. 新型在线光学絮凝检测仪的原理、设计与制造[J]. 传感器技术, 1997, 16(1):18-20.[3] 孙连鹏. 透光率脉动混凝投药控制系统的应用研究及系统优化[D]. 哈尔滨:哈尔滨工业大学, 2001.[4] ISO 7027.Water qulity-Determination of turbidity[S].[5] Gregory, J. Laminar dispersion and the monitoring of flocculation processes[J]. J. of Colloid Interface Sci., 1987,118(2):397-409.[6] 李星, 张正磊, 齐文明. 颗粒分散和破碎过程在线检测研究[J]. 哈尔滨建筑大学学报, 1999,32(6):31-34. [来源:论文天下论文网 lunwentianxia.com] 论文天下 希望对你有帮助

微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 �0�710-6g/l[22]。一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器—对pH敏感的电子晶体管和热敏性的薄膜电极,以及三种酶—尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的Harold H.Weetal指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。

关于传感器的论文1000字左右

传感器在环境检测中可分为气体传感器和液体传感器,这是我为大家整理的传感器检测技术论文,仅供参考!

试述传感器技术在环境检测中的应用

摘要:传感器在环境检测中可分为气体传感器和液体传感器,其中气体传感器主要检测氮氧化合物和含硫氧化物;液体传感器主要检测重金属离子、多环芳香烃类、农药、生物来源类。本文阐述了传感器技术在环境检测方面的应用。

关键词:气体传感器 液体传感器 环境检测

中图分类号:O659 文献标识码:A 文章编号:

随着人们对环境质量越加重视,在实际的环境检测中,人们通常需要既能方便携带,又可以够实现多种待测物持续动态监测的仪器和分析设备。而新型的传感器技术就能够很好的满足上述需求。

传感器技术主要包括两个部分:能与待测物反应的部分和信号转换器部分。信号转换器的作用是将与待测物反应后的变化通过电学或光学信号表示出来。根据检测方法的不同,我们将传感器分为光学传感器和电化学传感器;根据反应原理的不同,分为免疫传感器、酶生物传感器、化学传感器;根据检测对象不同,分为液体传感器和气体传感器。

1气体传感器

气体传感器可以对室内的空气质量进行检测,尤其是有污染的房屋或楼道;也可以对大气环境中的污染物进行检测,如含硫氧化物、氮氧化合物等,检测过程快速方便地。

以含氮氧化物(NOx)为例。汽车排放的尾气是含氮氧化物的主要来源,但随着时代的发展,国内消费水平的提高,汽车尾气的排放量呈逐年上升趋势。通过金属氧化物半导体对汽车尾气及工厂废气中的含氮氧化物进行直接检测。如Dutta设计的传感器,采用铂为电极,氧化钇和氧化锆为氧离子转换器,安装到气体排放口,可以检测到含量为10-4~10-3的NO。含硫氧化物是造成酸雨的主要物质,也是目前环境检测的重点项目,因为在大气环境中的含量低于10-6,需要更高灵敏度的传感器。如高检测的灵敏度的表面声波设备。

Starke等人采用直径为8~16nm的氧化锡、氧化铟、氧化钨纳米颗粒制作的纳米颗粒传感器,对NO和NO2的检测下限可达到10-8,提高反应的比表面积,增加反应灵敏度,且工作温度比常规的传感器大大降低,减少了能源消耗。

2液体传感器

在实际环境检测中,液体传感器大多应用于水的检测。由于水环境中的污染物种类广泛,因此液体传感器比气体传感器的应用更为广泛和重要。水中的污染物除了少量的天然污染物以外,大部分都是人为倾倒的无机物和有机物。无机物中,重金属离子为重点检测对象;有机污染物包括杀虫剂、激素类代谢物、多环芳香烃类物质等。这些污染物的过度超标,会严重影响到所有生物体的健康和安全。

2.1重金属离子检测

采水体中重金属离子的主要来源包括开矿、冶金、印染等企业排放的废水。这些生产废水往往混合了多种废水,所含的重金属离子种类繁多,常见的有汞、锰、铅、镉、铬等。重金属离子会不断发生形态的改变和在不同相之间进行转移,若处置不当,容易形成二次污染。生物体从环境中摄取到的重金属离子,经过食物链,逐渐在高级生物体内富集,最终导致生物体的中毒。因此如果供人类食用的鱼类金属离子超标,将对人类产生严重的影响,因此对于重金属离子的检测显得尤为重要。

Burge等人发明的传感器,可以利用1,2,2联苯卡巴肼和分光光度计,可以检测地下水中的重金属铬浓度是否超标。

除了通过化学反应检测外,采用特殊的生物物质,也可以方便和灵敏地检测重金属离子。如大肠杆菌体内有一种蛋白质可以结合镍离子,有人在这种蛋白质的镍离子结合位点附近插入荧光基团,当蛋白质结合镍离子后,荧光基团会被淬灭,由于荧光的强度与镍离子浓度成反比,从而实现对镍离子的定量检测,检测范围未10-8~10-2mol/L。日方法也可应用于检测Cu2+、Co2+、Fe2+和Cd2+等几种离子中。他们还结合了微流体技术,该技术只需消耗几十纳升体积的待测液体,就可以对100nmol/L以下浓度的Pb2+进行检测。Matsunaga小组将TPPS固定在多孔硅基质中,当环境中存在Hg2+时,随着Hg2+浓度的变化,TPPS的颜色会从橘黄色逐渐转变成绿色,该传感器的检测限为17.5nmol/L,通过加入硅铝酸去除干扰离子Ni2+和Zn2+。

利用传感器技术不仅可以准确测定待测物的浓度,而且由于传感器的微型化技术特点,还可以通过传感器的偶联,进行多项指标的检测。Lau等人设计了基于发光二极管原理的传感器,可以同时检测Cd2+和Pb2+,该传感器对Cd2+和Pb2+的检测限分别为10-6和10-8。

2.2农药残留物质的检测

农药是一类特殊的化学品,它在防治农林病虫害的同时,也会对人畜造成严重的危害。中国是农业大国,每年的农药使用量相当庞大,因此有必要对其进行监测。采用钴-苯二甲蓝染料和电流计就能方便地检测三嗪类除草剂,无需脱氧,直接检测的下限为50Lg/L,如果通过预处理进行样品浓缩后,检测限可以达到200ng/L。

采用带有光纤的红外光谱传感器可以进行杀虫剂的快速检测。将光纤内壁涂覆经非极性有机物修饰的气溶胶材料后,能显著改善光纤中水分子对信号的耗散作用,并且能够提取出溶液中的有机磷类杀虫剂进行光谱分析。此类传感器对于有机溶剂,如苯、甲苯、二甲苯的检测限则可达10-8~8*10-8。

2.3多环芳香烃类化合物的检测

多环芳香烃类物质是另外一大类有害的污染物质,这类物质具有致癌性,但在许多工业生产过程中均会使用或产生此类物质。水体中的多环芳香烃类物质含量非常低,一般在10-9范围内,因此需要借助高灵敏度的检测传感器,Schechter小组发明了光纤光学荧光传感器。在直接检测过程中,待测样本中还可能存在一些如泥土这样的干扰物质,会降低检测信号值,如果用聚合物膜先将非极性的PAH富集,然后对膜上的物质进行荧光检测,从而解决信号干扰问题,报道称这种经膜富集后的传感器技术,对pyrene的检测可达到6*10-11,蒽类物质则可达4*10-10。Stanley等人利用石英晶振微天平作为传感器,在芯片表面固定上蒽-碳酸的单分子膜,检测限可达到2*10-9。

基于免疫分析原理,采用分子印迹的方法,在传感器表面印上能够结合不同待测物质的抗体分子,可以实现多种不同物质的检测。近年来发展起来的微接触印刷技术,也可应用到该领域,这样制备得到的传感器体积可以更加微型化。

2.4生物类污染物质

除了以上的无机和有机合成类污染物质,还有生物来源的一些潜在污染分子。如激素类分子及其代谢物的污染常常会引起生物体生长、发育和繁殖的异常。Gauglitz带领的研究小组采用全内反射荧光生物传感器和睾丸激素抗体,对河流中的睾丸激素直接进行了即时检测,其检测限为0.2ng/L。该技术无需样品的预处理,对于不同地区的自然界水体均可以进行睾丸激素的现场直接检测,检测范围为9~90ng/L。

另外,致病菌和病毒也是被检测的对象,水体中出现某些特定菌种,可以表明水体受到了某种污染,利用传感器技术非常容易检测到这些生物样本的存在,而且选择性非常高,如可以从烟草叶中快速地发现植物病毒烟草花叶病毒,采用QCM可以直接检测到酵母细胞的数量。

3结论和展望

目前,传感器技术已开始应用于各环境监测机构的应急检测,但是实际应用中有诸多的局限性,比如在对大气中的某些有害物质进行检测时,由于其含量往往低于传感器的最低检测限,因此在实际应用过程中,还需要进行气体的浓缩处理,这样就使传感器不容易实现微型化,或者需要借助更高灵敏度的传感器;同样,在野外水体检测时,常常会出现待测水体含有多种复杂干扰成分的情况,无法与实验室的标准化条件相比;在有些以膜分离分析技术为原理的传感器中,其膜的使用寿命往往较短,而频繁更换新膜的价格较为昂贵,因此仍然无法得到广泛的应用。

尽管如此,随着传感器技术的不断发展和完善,仍然有望应用于将来工厂企业排气、排污的现场直接检测和野外环境的动态无人监测,而且其结果能与实验室常规仪器的检测结果相符,这样将大大加快对环境监测和治理的步伐。

参考文献

[1]NaglS,eta.lTheAnalyst,2007,132:507-511.

[2]GuptaVK.Chimia,2005,59:209-217.

[3]HanrahanG,eta.lJournalofenvironmentalmonitoring,2004,6:657-664.

[4]HoneychurchKC,eta.lTrendsinAnalyticalChemistry,2003,22:456-469.

[5]AmineA,eta.lBiosensorsandBioelectronics,2006,21:1405-1423

传感器与自动检测技术教学改革探讨

摘要:传感器与自动检测技术是电气信息类专业重要的主干专业课,传统授课方法侧重于理论知识的传授,而忽略了应用层面的培养。针对此问题试图从教学目的、教学内容、教学形式、教学效果等多个方面进行分析,对该课程的教学方案改革进行探讨,提出一套技能与理论知识相结合、行之有效的教学方案。

关键词:传感器与自动检测技术;教学内容;教学模式;工程思维

“传感器与自动检测技术”是电气信息类专业重要的主干专业课,是一门必修课,也是一门涉及电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。

“传感器与自动检测技术”课程于20世纪80年代开始在我国普通高校的本科阶段和研究生阶段开设。本课程侧重于传感器与自动检测技术理论的传授,重知识,轻技能;教师之间也缺乏沟通,教学资源不能得到充分利用,教学效果不理想,学生学习兴趣不高。

一、教学过程中发现的问题及改革必要性分析

笔者在独立学院讲授“传感器与自动检测技术”课程已有四年,最开始沿用了研究型大学的教学计划和教学大纲,由于研究型大学是以培养研究型人才为主,而独立学院是以培养应用型人才为主,在人才培养目标上有较大差异,在逐渐深入的过程中发现传统方案不太符合学院培养应用型人才的定位,存在以下几方面的问题。

1.重理论,轻实践

该课程是应用型课程,其中也有大量的理论知识、数学推导,而传统的研究型教学方法普遍都以理论教学为主,在课堂上大篇幅讲解传感器的原理,进行数学公式推导,相比而言传感器的应用通常只是通过一个实例简单介绍,导致最后大多数学生只是粗略地知道该传感器的结构,而不知道如何用,在哪里用。

2.教学模式单一

该课程传统上以讲授的教学方式为主,将现成的结论、公式和定理告诉学生,学生不能主动地思考和探索,过程枯燥乏味,导致学生产生了厌学情绪。同时理论教学与实训、实践教学脱节问题也很严重。

3.教学实验安排不合理

传统的实验课程安排,验证性实验比例高达80%,综合设计性实验极少,缺少实训、实践环节。然而应用型人才的培养应该以实践教学为核心,重点培养学生的工程思维和实践能力、动手能力,以在学生毕业时达到企业对技术水平与能力的要求,使学生毕业后能尽快适应工作岗位。

二、适合独立学院培养应用型人才的教学方案改革

传统的传感器与自动检测技术课程重理论、轻实践,教学模式单一,教学实验以验证性实验为主,这种方案能够培养研究型人才,但却无法培养合格的应用型人才。在教学过程中,笔者潜心研习,并反复实践,总结出以下几个可以改革的方面。

1.优化教学内容,注重工程思维

本课程一个很重要的内容是各种类型传感器的原理,传统的教学要讲清楚其中的来龙去脉,而本人则认为针对应用型人才培养,充分讲授清楚基本概念、基本原理和基本方法即可,涉及大额数学公式可以选择重要的进行讲解,其他则可作为学生的自学内容,让学生课余自学。同时应该重点讲解该传感器的工程应用实例;另一方面要结合最新实际工程讲解。这样才能激发学生的学习兴趣,培养学生应用型工程学习思维。

2.改革教学方法,改变教学模式

传统的教学是“灌输式”的方法,无论学生是否接受,直接把要讲的内容全部讲述给学生,而这也违背了培养学生分析问题和解决问题的能力以及创新能力的出发点和归宿。笔者认为应该应用工程案例教学,实行启发式、讨论式、研究式等与实践相结合的教学方法,发挥学生在教学活动中的主体地位。

3.与工程实际相结合,与其他课程相结合

教学过程中要从不同行业提取典型的工程应用实例,精简以后作为实例进行讲解。在进行教学时,要培养学生的系统观,让学生明白这不是一门独立的课程,而是与自动控制原理、智能控制理论等课程相融合的,以达到融会贯通的学习效果。

4.实验环节改革

实验教学主要是为了提高学生的动手能力、分析问题和解决问题的能力,加深学生对课堂教学中理论、概念的感性认识。以往该课程的实验内容大部分为原理性、验证性的实验,学生容易感到枯燥无味,毫无学习积极性,很少有学生进行独立思考并发现问题,实验效果极不理想。为了改变这种模式化的教育,笔者将实验内容由传统的验证性实验调整为设计开发型实验。在实验教学中根据客观条件在适当减少验证性实验的基础上,增加了开拓性实验项目以及设计综合性实验。

5.改革教学评价方法,提高课堂教学效率

高效的学习成果反馈机制是促进教学相长的必要手段,目前该课程都是通过课程作业进行学习效果反馈,可以采用每一个章节布置一道设计型题目,让学生更加广泛地查阅资料,并在一定知识广度的基础上深入分析题目中用到的内容,进而从更深的层面分析解决问题,以达到深度、广度相结合的效果。

本文针对传感器与自动检测技术传统研究型大学的方案,提出了三个方面的问题,并根据四年的教学积累,在教学内容、教学模式、实验环节、教学评价及反馈等几个方面进行了探讨分析并提出了一套改革的方法和措施。本方案以实际工程应用实例为核心,在教学内容上侧重于传感器应用方面的讲解,以提出问题、分析问题、解决问题为主线调动学生的学习积极性和主动性,培养学生的工程思维和能力,重视实验环节,以设计性、综合性实验代替验证性实验培养学生将抽象的知识具体化、培养学生的实际应用能力、动手能力和创新能力。

参考文献:

[1]吴建平,甘媛.“传感器”课程实验教学研究[J].成都理工大学学报.

[2]曹良玉,赵堂春.传感器技术及其应用.课程改革初探[J].中国现代教育装备.

[3]李玉华,胡雪梅.传感器及应用.课程教学改革的探讨Ⅱ技术与市场.

室内空气质量检测与传感器的应用 [摘要]室内空气品质对人的影响至关重要,利用传感器检测空气质量是当今流行的一种方法,本文介绍了传感器在空气质量检测方面的原理应用,分析了当前气体传感器的优点和不足,以及气体传感器的发展趋势和前景。 [关键词]空气质量 气体传感器 室内环境污染 一、空气对于人的重要性 人们每时每刻都离不开氧,并通过吸入空气而获得氧。一个成年人每天需要吸入空气达6500升以获得足够的氧气,因此,被污染了的空气对人体健康有直接的影响。人的一生中有90%以上时间在室内度过,可见,室内空气品质对人的影响更是至关重要。 二、室内环境污染背景 当今,人类正面临“煤烟污染”、“光化学烟雾污染”之后,又出现了“室内空气污染”为主的第三次环境污染。美国专家检测发现,在室内空气中存在500多种挥发性有机物,其中致癌物质就有 20多种,致病病毒 200多种。危害较大的主要有:氡、甲醛、苯、氨以及酯、三氯乙烯等。大量触目惊心的事实证实,室内空气污染已成为危害人类健康的“隐形杀手”,也成为全世界各国共同关注的问题。据统计,全球近一半的人处于室内空气污染中,室内环境污染已经引起35.7%的呼吸道疾病,22%的慢性肺病和15%的气管炎、支气管炎和肺癌。 三、关于开展室内空气质量服务的几点设想 1.着手调查国内家庭和办公室内空气质量的基本情况。 2.了解并着手引进室内空气质量检测设备。 3.进行规模较大的宣传活动,首先应由气象主管部门与环保主管部门联合建立室内空气质量问题的管理机制。 4.对国际环保部门有关室内空气质量的法规、技术标准、室内污染测定方法及对测定仪器等问题进行专门的调查和研究。 四、空气检测仪的强力武器——传感器 检测技术是人们认识和改造世界的一种必不可少的重要技术手段。而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要工具。下面将介绍六种在空气质量检测方面发挥重要作用的传感器。 1.金属氧化物半导体式传感器。金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 2.催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,是温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 3.定电位电解式传感器。定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 4.迦伐尼电池式氧气传感器。迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10-30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器 5.红外式传感器。红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。 6.PID光离子化气体传感器。PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。 五、气体检测仪器仪表产业发展现状深度分析 近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元;2007年仪器仪表行业总产值达3078亿元,增长率高达28.5%;据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 1755.9亿元,同比增长23.8%,其中分析仪器、环境监测仪器仪表增长率高达32%。 科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。 从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。 六、对未来空气质量检测的展望 随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。 参考文献: [1]陈艾.敏感材料与传感器[M].北京:高等教育出版社. [2]高晓蓉.传感器技术[M].成都:西安交通大学出版社. [3]彭军.传感器与检测技术[M].北京:高等教育出版社. [4]王元庆.新型传感器原理及应用[M].北京:机械工业出版社. [5]赵茂泰.智能仪器原理及应用[M].北京:电子工业出版社.

微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 �0�710-6g/l[22]。一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器—对pH敏感的电子晶体管和热敏性的薄膜电极,以及三种酶—尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的Harold H.Weetal指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。

关于压力传感器的毕业论文

浅谈传感器的现状以及发展趋势2007-1-25 16:39:00 转:中国工控展览网 供稿1 微型化(Micro)为了能够与信息时代信息量激增、要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性、可靠性、灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小、重量轻、反应快、灵敏度高以及成本低等优点。1.1 由计算机辅助设计(CAD)技术和微机电系统(MEMS)技术引发的传感器微型化目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本、高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。对于微机电系统(MEMS)的研究工作始于20世纪60年代,其研究范畴涉及材料科学、机械控制、加工与封装工艺、电子技术以及传感器和执行器等多种学科,是一个极具前景的新兴研究领域。MEMS的核心技术是研究微电子与微机械加工与封装技术的巧妙结合,期望能够由此而制造出体积小巧但功能强大的新型系统。经过几十年的发展,尤其最近十多年的研究与发展,MEMS技术已经显示出了巨大的生命力,此项技术的有效采用将信息系统的微型化、智能化、多功能化和可靠性水平提高到了一个新的高度。在当前技术水平下,微切削加工技术已经可以生产出来具有不同层次的3D微型结构,从而可以生产出体积非常微小的微型传感器敏感元件,象毒气传感器、离子传感器、光电探测器这样的以硅为主要构成材料的传感/探测器都装有极好的敏感元件[1],[2]。目前,这一类元器件已作为微型传感器的主要敏感元件被广泛应用于不同的研究领域中。1.2 微型传感器应用现状就当前技术发展现状来看,微型传感器已经对大量不同应用领域,如航空、远距离探测、医疗及工业自动化等领域的信号探测系统产生了深远影响;目前开发并进入实用阶段的微型传感器已可以用来测量各种物理量、化学量和生物量,如位移、速度/加速度、压力、应力、应变、声、光、电、磁、热、PH值、离子浓度及生物分子浓度等2 智能化(Smart)智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用领域,如分布式实时探测、网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。2.1 智能化传感器的特点智能化传感器是指那些装有微处理器的,不但能够执行信息处理和信息存储,而且还能够进行逻辑思考和结论判断的传感器系统。这一类传感器就相当于是微型机与传感器的综合体一样,其主要组成部分包括主传感器、辅助传感器及微型机的硬件设备。如智能化压力传感器,主传感器为压力传感器,用来探测压力参数,辅助传感器通常为温度传感器和环境压力传感器。采用这种技术时可以方便地调节和校正由于温度的变化而导致的测量误差,而环境压力传感器测量工作环境的压力变化并对测定结果进行校正;而硬件系统除了能够对传感器的弱输出信号进行放大、处理和存储外,还执行与计算机之间的通信联络。通常情况下,一个通用的检测仪器只能用来探测一种物理量,其信号调节是由那些与主探测部件相连接着的模拟电路来完成的;但智能化传感器却能够实现所有的功能,而且其精度更高、价格更便宜、处理质量也更好。与传统的传感器相比,智能化传感器具有以下优点:1.智能化传感器不但能够对信息进行处理、分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。2.智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输入信号给出相关的诊断信息。当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内部检测链路找出异常现象或出了故障的部件。3.智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测与应用领域,而微处理器的介入使得智能化传感器能够更加方便地对多种信号进行实时处理。此外,其灵活的配置功能既能够使相同类型的传感器实现最佳的工作性能,也能够使它们适合于各不相同的工作环境。4.智能化传感器既能够很方便地实时处理所探测到的大量数据,也可以根据需要将它们存储起来。存储大量信息的目的主要是以备事后查询,这一类信息包括设备的历史信息以及有关探测分析结果的索引等;5.智能化传感器备有一个数字式通信接口,通过此接口可以直接与其所属计算机进行通信联络和交换信息。此外,智能化传感器的信息管理程序也非常简单方便,譬如,可以对探测系统进行远距离控制或者在锁定方式下工作,也可以将所测的数据发送给远程用户等。2.2 智能化传感器的发展与应用现状目前,智能化传感器技术正处于蓬勃发展时期,具有代表意义的典型产品是美国霍尼韦尔公司的ST-3000系列智能变送器和德国斯特曼公司的二维加速度传感器,以及另外一些含有微处理器(MCU)的单片集成压力传感器、具有多维检测能力的智能传感器和固体图像传感器(SSIS)等。与此同时,基于模糊理论的新型智能传感器和神经网络技术在智能化传感器系统的研究和发展中的重要作用也日益受到了相关研究人员的极大重视。指出的一点是:目前的智能化传感器系统本身尽管全都是数字式的,但其通信协议却仍需借助于4~20 mA的标准模拟信号来实现。一些国际性标准化研究机构目前正在积极研究推出相关的通用现场总线数字信号传输标准;不过,在眼下过渡阶段仍大多采用远距离总线寻址传感器(HART)协议,即Highway Addressable Remote Transducer。这是一种适用于智能化传感器的通信协议,与目前使用4~20mA模拟信号的系统完全兼容,模拟信号和数字信号可以同时进行通信,从而使不同生产厂家的产品具有通用性。能化传感器多用于压力、力、振动冲击加速度、流量、温湿度的测量,如美国霍尼韦尔公司的ST3000系列全智能变送器和德国斯特曼公司的二维加速度传感器就属于这一类传感器。另外,智能化传感器在空间技术研究领域亦有比较成功的应用实例[6]。发展中,智能化传感器无疑将会进一步扩展到化学、电磁、光学和核物理等研究领域。可以预见,新兴的智能化传感器将会在关系到全人类国民生的各个领域发挥越来越大作用。3 多功能传感器(Multifunction)如前所述,通常情况下一个传感器只能用来探测一种物理量,但在许多应用领域中,为了能够完美而准确地反映客观事物和环境,往往需要同时测量大量的物理量。由若干种敏感元件组成的多功能传感器则是一种体积小巧而多种功能兼备的新一代探测系统,它可以借助于敏感元件中不同的物理结构或化学物质及其各不相同的表征方式,用单独一个传感器系统来同时实现多种传感器的功能。随着传感器技术和微机技术的飞速发展,目前已经可以生产出来将若干种敏感元件综装在同一种材料或单独一块芯片上的一体化多功能传感器。3.1 多功能传感器的执行规则和结构模式概括来讲,多功能传感器系统主要的执行规则和结构模式包括:(1) 多功能传感器系统由若干种各不相同的敏感元件组成,可以用来同时测量多种参数。譬如,可以将一个温度探测器和一个湿度探测器配置在一起(即将热敏元件和湿敏元件分别配置在同一个传感器承载体上)制造成一种新的传感器,这样,这种新的传感器就能够同时测量温度和湿度。(2) 将若干种不同的敏感元件精巧地制作在单独的一块硅片中,从而构成一种高度综合化和小型化的多功能传感器。由于这些敏感元件是被综装在同一块硅片中的,它们无论何时都工作在同一种条件下,所以很容易对系统误差进行补偿和校正。(3)借助于同一个传感器的不同效应可以获得不同的信息。以线圈为例,它所表现出来的电容和电感是各不相同的。(4)在不同的激励条件下,同一个敏感元件将表现出来不同的特征。而在电压、电流或温度等激励条件均不相同的情况下,由若干种敏感元件组成的一个多功能传感器的特征可想而知将会是多么的千差万别!有时候简直就相当于是若干个不同的传感器一样,其多功能特征可谓名副其实。3.2 多功能传感器的研制与应用现状多功能传感器无疑是当前传感器技术发展中一个全新的研究方向,日前有许多学者正在积极从事于该领域的研究工作。如将某些类型的传感器进行适当组合而使之成为新的传感器,如用来测量流体压力和互异压力的组合传感器。又如,为了能够以较高的灵敏度和较小的粒度同时探测多种信号,微型数字式三端口传感器可以同时采用热敏元件、光敏元件和磁敏元件;这种组配方式的传感器不但能够输出模拟信号,而且还能够输出频率信号和数字信号.从目前的发展现状来看,最热门的研究领域也许是各种类型的仿生传感器了,而且在感触、刺激以及视听辨别等方面已有最新研究成果问世。从实用的角度考虑,多功能传感器中应用较多的是各种类型的多功能触觉传感器,譬如人造皮肤触觉传感器就是其中之一,这种传感器系统由PVDF材料、无触点皮肤敏感系统以及具有压力敏感传导功能的橡胶触觉传感器等组成。据悉,美国MERRITT公司研制开发的无触点皮肤敏感系统获得了较大的成功,其无触点超声波传感器、红外辐射引导传感器、薄膜式电容传感器、以及温度、气体传感器等在美国本土应用甚广。与其它方面的研究成果相比,目前在人工嗅觉方面的研究还似乎远远不尽人意。由于嗅觉元件接收到的判别信号是非常复杂的,其中总是混合着成千上万种化学物质,这就使得嗅觉系统处理起这些信号来异常错综复杂。人工嗅觉传感系统的典型产品是功能各异的Electronic nose(电子鼻),近10多年来,该技术的发展很快,目前已有数种商品化的产品在国际市场流通,美、法、德、英等国家均有比较先进的电子鼻产品问世。“电子鼻”系统通常由一个交叉选择式气体传感器阵列和相关的数据处理技术组成,并配以恰当的模式识别系统,具有识别简单和复杂气味的能力,主要用来解决一般情况下的气味探测问题。根据应用对象的不同,“电子鼻”系统传感器阵列中传感器的构成材料及配置数量亦有所不同,其中,构成材料包括金属氧化物半导体、导电聚合物、石英晶振等,配置数量则从几个到数十个不等。总之,“电子鼻”系统是气体传感器技术和信息处理技术进行有效结合的高科技产物,其气体传感器的体积很小,功耗也很低,能够方便地捕获并处理气味信号。气流经过气体传感器阵列进入到“电子鼻”系统的信号预处理元件中,最后由阵列响应模式来确定其所测气体的特征。阵列响应模式采用关联法、最小二乘法、群集法以及主要元素分析法等方法对所测气体进行定性和定量鉴别。美国Cyranosciences公司生产的Cyranose 320电子鼻是目前技术较为先进、适用范围也比较广的嗅觉传感系统之一,该系统主要由传感器阵列和数据分析算法两部分组成,其基本技术是将若干个独特的薄膜式碳-黑聚合物复合材料化学电阻器配置成一个传感器阵列,然后采用标准的数据分析技术,通过分析由此传感器阵列所收集到的输出值的办法来识别未知分析物。据称,Cyranose 320电子鼻的适用范围包括食品与饮料的生产与保鲜、环境保护、化学品分析与鉴定、疾病诊断与医药分析以及工业生产过程控制与消费品的监控与管理等。4 无线网络化(wireless networked)无线网络对我们来说并不陌生,比如手机,无线上网,电视机。传感器对我们来说也不陌生,比如温度传感器、压力传感器,还有比较新颖的气味传感器。但是,把二者结合在起来,提出无线传感器网络(Wireless Sensor Networks)这个概念,却是近几年才发生的事情。这个网络的主要组成部分就是一个个可爱的传感器节点。说它们可爱,是因为它们的体积都非常小巧。这些节点可以感受温度的高低、湿度的变化、压力的增减、噪声的升降。更让人感兴趣的是,每一个节点都是一个可以进行快速运算的微型计算机,它们将传感器收集到的信息转化成为数字信号,进行编码,然后通过节点与节点之间自行建立的无线网络发送给具有更大处理能力的服务器4.1 传感器网络传感器网络是当前国际上备受关注的、由多学科高度交叉的新兴前沿研究热点领域。传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端。从而真正实现“无处不在的计算”理念。传感器网络的研究采用系统发展模式,因而必须将现代的先进微电子技术、微细加工技术、系统SOC(system-on-chip)芯片设计技术、纳米材料与技术、现代信息通讯技术、计算机网络技术等融合,以实现其微型化、集成化、多功能化及系统化、网络化,特别是实现传感器网络特有的超低功耗系统设计。传感器网络具有十分广阔的应用前景,在军事国防、工农业、城市管理、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等许多领域都有重要的科研价值和巨大实用价值,已经引起了世界许多国家军界、学术界和工业界的高度重视,并成为进入2000 年以来公认的新兴前沿热点研究领域,被认为是将对二十一世纪产生巨大影响力的技术之一。4.2 传感器网络研究热点问题和关键技术传感器网络以应用为目标,其构建是一个庞大的系统工程,涉及到的研究工作和需要解决的问题在每一个层面上都很多。对无线传感器网络系统结构及界面接口技术的研究意义重大。如果我们把传感器网络按其功能抽象成五个层次的话,将会包括基础层(传感器集合)、网络层(通信网络)、中间件层、数据处理和管理层以及应用开发层。其中,基础层以研究新型传感器和传感系统为核心,包括应用新的传感原理、使用新的材料以及采用新的结构设计等,以降低能耗、提高敏感性、选择性、响应速度、动态范围、准确度、稳定性以及在恶劣环境条件下工作的能力。4.3 传感器网络的应用研究传感器网络有着巨大的应用前景,被认为是将对21 世纪产生巨大影响力的技术之一。已有和潜在的传感器应用领域包括:军事侦察、环境监测、医疗、建筑物监测等等。随着传感器技术、无线通信技术、计算技术的不断发展和完善,各种传感器网络将遍布我们生活环境,从而真正实现“无处不在的计算”。以下简要介绍传感器网络的一些应用。(1)军事应用传感器网络研究最早起源于军事领域,实验系统有海洋声纳监测的大规模传感器网络,也有监测地面物体的小型传感器网络。现代传感器网络应用中,通过飞机撒播、特种炮弹发射等手段,可以将大量便宜的传感器密集地撒布于人员不便于到达的观察区域如敌方阵地内,收集到有用的微观数据;在一部分传感器因为遭破坏等原因失效时,传感器网络作为整传感器网络体仍能完成观察任务。传感器网络的上述特点使得它具有重大军事价值,可以应用于如下一些场景中:▉监测人员、装备等情况以及单兵系统:通过在人员、装备上附带各种传感器,可以让各级指挥员比较准确、及时地掌握己方的保存状态。通过在敌方阵地部署各种传感器,可以了解敌方武器部署情况,为己方确定进攻目标和进攻路线提供依据。▉监测敌军进攻:在敌军驻地和可能的进攻路线上部署大量传感器,从而及时发现敌军的进攻行动、争取宝贵的应对时间。并可根据战况快速调整和部署新的传感器网络。▉评估战果:在进攻前后,在攻击目标附近部署传感器网络,从而收集目标被破坏程度的数据。▉核能、生物、化学攻击的侦察:借助于传感器网络可以及早发现己方阵地上的生、化污染,提供快速反应时间从而减少损失。不派人员就可以获取一些核、生、化爆炸现场的详细数据。(2)环境应用应用于环境监测的传感器网络,一般具有部署简单、便宜、长期不需更换电池、无需派人现场维护的优点。通过密集的节点布置,可以观察到微观的环境因素,为环境研究和环境监测提供了崭新的途径传感器网络研究在环境监测领域已经有很多的实例。这些应用实例包括:对海岛鸟类生活规律的观测;气象现象的观测和天气预报;森林火警;生物群落的微观观测等▉洪灾的预警:通过在水坝、山区中关键地点合理地布置一些水压、土壤湿度等传感器,可以在洪灾到来之前发布预警信息,从而及时排除险情或者减少损失。▉农田管理:通过在农田部署一定密度的空气温度、土壤湿度、土壤肥料含量、光照强度、风速等传感器,可以更好地对农田管理微观调控,促进农作物生长。(3)家庭应用建筑及城市管理各种无线传感器可以灵活方便地布置于建筑物内,获取室内环境参数,从而为居室环境控制和危险报警提供依据。▉ 智能家居:通过布置于房间内的温度、湿度、光照、空气成分等无线传感器,感知居室不同部分的微观状况,从而对空调、门窗以及其他家电进行自动控制,提供给人们智能、舒适的居住环境[16]。▉建筑安全:通过布置于建筑物内的图像、声音、气体检测、温度、压力、辐射等传感器,发现异常事件及时报警,自动启动应急措施。▉智能交通:通过布置于道路上的速度、识别传感器,监测交通流量等信息,为出行者提供信息服务,发现违章能及时报警和记录[17]。反恐和公共安全通过特殊用途的传感器,特别是生物化学传感器监测有害物、危险物的信息,最大限度地减少其对人民群众生命安全造成的伤害。(4)结论无线传感器网络有着十分广泛的应用前景,它不仅在工业、农业、军事、环境、医疗等传统领域有具有巨大的运用价值,在未来还将在许多新兴领域体现其优越性,如家用、保健、交通等领域。我们可以大胆的预见,将来无线传感器网络将无处不在,将完全融入我们的生活。比如微型传感器网最终可能将家用电器、个人电脑和其他日常用品同互联网相连,实现远距离跟踪,家庭采用无线传感器网络负责安全调控、节电等。无线传感器网络将是未来的一个无孔不入的十分庞大的网络,其应用可以涉及到人类日常生活和社会生产活动的所有领域。但是,我们还应该清楚的认识到,无线传感器网络才刚刚开始发展,它的技术、应用都还还远谈不上成熟,国内企业应该抓住商机,加大投入力度,推动整个行业的发展。无线传感器网络是新兴的通信应用网络,其应用可以涉及到人类生活和社会活动的所有领域。因此,无线传感器网络将是未来的一个无孔不入的十分庞大的网络,需要各种技术支撑。目前,成熟的通信技术都可能经过适当的改进和进一步发展,应用到无线传感器网络中,形成新的市场增长点,创造无线通信的新天地。5 结语当前技术水平下的传感器系统正向着微小型化、智能化、多功能化和网络化的方向发展。今后,随着CAD技术、MEMS技术、信息理论及数据分析算法的继续向前发展,未来的传感器系统必将变得更加微型化、综合化、多功能化、智能化和系统化。在各种新兴科学技术呈辐射状广泛渗透的当今社会,作为现代科学“耳目”的传感器系统,作为人们快速获取、分析和利用有效信息的基础,必将进一步得到社会各界的普遍关注。微波传感器依靠微波的很多优点,将广泛地用于微波通讯、卫星发送等无线通讯,和雷达、导弹诱导、遥感、射电望远镜中。并且在一些非接触式的监测和控制中也有很好的应用。

生物传感器的研究现状及应用摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。 关键词:生物传感器;发酵工业;环境监测。中图分类号:tp212.3 文献标识码:a 文章编号:1006-883x(2002)10-0001-06一、 引言 从1962年,clark和lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(pcr)的发展,应用pcr的dna生物传感器也越来越多。二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1). 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌(e.coli)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌―胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2). 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3). 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1). 生化需氧量的测定生化需氧量(biochemical oxygen demand ?bod)的测定是监测水体被有机物污染状况的最常用指标。常规的bod测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种spt1和spt2,并将其固定在玻璃碳极上以构成微生物传感器用于测量bod,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中bod的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中bod的测定提供了快捷简便的方法[4]。 除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的bod值。该传感器的反应时间是15min,最适工作条件为30°c,ph=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(fe3+、cu2+、mn2+、cr3+、zn2+)所影响。该传感器已经应用于河水bod的测定,并且获得了较好的结果[4]。现在有一种将bod生物传感器经过光处理(即以tio2作为半导体,用6 w灯照射约4min)后,灵敏度大大提高,很适用于河水中较低bod的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的bod值。它使用三对发光二极管和硅光电二极管,假单胞细菌(pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(nox-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的nox-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在ph=2.5、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是chromatium.sp,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌(e.coli)中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:ph=7.4、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸gf/a,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶g,与自动系统cl-fia台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°c下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --np-80e)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围0.5~6.0mg/l内,电信号与np-80e浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(alcaligenes eutrophus (ae1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母cup1基因上的铜离子诱导启动子与大肠杆菌lacz基因的融合体。其工作原理,首先是cup1启动子被cu2+诱导,随后乳糖被用作底物进行测量。如果cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围(0.5~2)´10-3mol范围内测定cuso4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(pcr)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用pcr技术的dna压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的dna样品进行同样的杂交反应并由pcr放大,产物为气单胞菌属(aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的psp毒素[20]。dna传感器也在迅速的得到应用,目前有一种小型化dna生物传感器,能将dna识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 ´10-6g/l[22]。 一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器―对ph敏感的电子晶体管和热敏性的薄膜电极,以及三种酶―尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的harold h.weetal指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。 总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。--------------------------------------------------------------------------------参考文献[1]韩树波,郭光美,李新等.伏安型细菌总数生物传感器的研究与应用[j].华夏医学,2000,63(2):49-52 [2]蔡豪斌.微生物活细胞检测生物传感器的研究[j]. 华夏医学,2000,13(3):252-256[3] trosok sp, driscoll bt, luong jht mediated microbial biosensor using a novel yeast strain for wastewater bod measurement[j]. applied micreobiology and biotechnology,2001, 56 (3-4): 550-554 [4] 张悦,王建龙,李花子等.生物传感器快速测定bod在海洋监测中的应用[j].海洋环境科学,2001,20(1):50-54[5] yoshida n, mcniven sj, yoshida a,etc.a compact optical system for multi-determination of biochemical oxygen demand using disposable strips[j]. field analytical chemistry and technology,2001,5 (5): 222-227[6] meyer rl, kjaer t, revsbech np. use of nox- microsensors to estimate the activity of sediment nitrification and nox- consumption along an estuarine salinity, nitrate, and light gradient[j]. aquatic microbial ecology, 2001,26 (2): 181-193[7]王晓辉,白志辉,孙裕生等.硫化物微生物传感器的研制与应用[j]. 分析试验室,2000,19(3):83-86[8] alexander d c,costanzo m a, guzzo j, cai j, etc.blazing towards the next millennium: luciferase fusions to identify genes responsive to environmental stress[j].water, air and soil pollution, 2000,123(1-4):81-94[9] makarenko aa, bezverbnaya ip, kosheleva ia,etc. development of biosensors for phenol determination from bacteria found in petroleum fields of west siberia[j].applied biochemistry and microbiology, 2002,38 (1): 23-27[10]semenchuk in, taranova la, kalenyuk aa,etc. effect of various methods of immobilization on the stability of a microbial biosensor for surfactants based on pseudomonas rathonis t[j]. applied biochemistry and microbiology, 2000, 36 (1): 69-72[11]yamazaki t, meng z, mosbach k,etc. a novel amperometric sensor for organophosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center[j]. electrochemistry,2001,69 (12): 969-97[12] nakamura h. phosphate ion determination in water for drinking using biosensors[j]. bunseki kagaku,2001,50 (8): 581-582[13] a, lucaciu i, fleschin s, magearu v. microbial biosensor for nonyl-phenol etoxylate (np-80e) [j].south african jounal of chemistry-suid-afrikaanse tydskrif vir chemie , 2000,53 (1): 14-17[14] leth s, maltoni s, simkus r,etc. engineered bacteria based biosensors for monitoring bioavailable heavy metal[j].electroanalysis, 2002,14 (1): 35-42 [15] lehmann m, riedel k, adler k,etc. amperometric measurement of copper ions with a deputy substrate using a novel saccharomyces cerevisiae sensor[j]. biosensors and bioelectronics, 2000, 15 (3-4): 211-219[16] riether kb, dollard ma, billard p. assessment of heavy metal bioavailability using escherichia coli zntap lux and copap lux-based biosensors[j]. applied microbiology and biotechnology,2001,57 (5-6): 712-716[17] karlen c, wallinder io, heijerick d, etc. runoff rates and ecotoxicity of zinc induced by atmospheric corrosion[j]. science of the total environment,2001,277 (1-3): 169-180[18] campanella l,cubadda f,sammartino m p,etc.an algal biosensor for the monitoring of water toxicity in estuarine enviraonments[j].wate research, 2001,35(1):69-76[19] tombelli sara,mascini marco,soca cristiana,etc.a dna piezoelectric biosensor assay coupled with a polyerase chain reaction for bacterial toxicity determination in environmental samples[j]. analytica chimica acta,2000,418(1):1-9[20] lee hae-ok,cheun byeung soo,yoo jong su,etc.application of a channel biosensor for toxicity measurements in cultured alexandrium tamarense[j]. journal of natural toxins,2000, 9(4):341-348[21] wang,j.miniaturized dna biosensor for detecting cryptosporidium in water samples. technical . comletion-311, 2000(3), 26p [22]nakamura c, kobayashi t, miyake m,etc. usage of a dna aptamer as a ligand targeting microcystin[j]. molecular crystals and liquid crystals, 2001, 371: 369-374 [23]arkhypova vn, dzyadevych sv, soldatkin ap, etc. multibiosensor based on enzyme inhibition analysis for determination of different toxic substances[j]. talanta,2001, 55 (5): 919-927the recent research and application of biosensorabstract: in this article, the recent research progress and application of biosensors ,especially the micro- biosensors, are reviewed, and the prospect of biosensors development is also prognosticated. biosensors are made up of bioelectrode , using immobile organism as sensitive material for molecule recognition, together with oxygen-electrode, membrane -eletrode and fuel-electrode. biosensors are broadly used in zymosis industry, environment monitor, food monitor and clinic medicine. fast, accurate, facilitate as biosensors is,there will be an excellent prospect for biosensors in the marketkeywords:biosensor, zymosis -industry, environment-monitor作者简介:何星月:中国科学技术大学生命科学院,合肥230027刘之景,中国科学技术大学天文与应用物理系教授,合肥230026电话:0551―3601895

关于传感器检测应用论文

室内空气质量检测与传感器的应用 [摘要]室内空气品质对人的影响至关重要,利用传感器检测空气质量是当今流行的一种方法,本文介绍了传感器在空气质量检测方面的原理应用,分析了当前气体传感器的优点和不足,以及气体传感器的发展趋势和前景。 [关键词]空气质量 气体传感器 室内环境污染 一、空气对于人的重要性 人们每时每刻都离不开氧,并通过吸入空气而获得氧。一个成年人每天需要吸入空气达6500升以获得足够的氧气,因此,被污染了的空气对人体健康有直接的影响。人的一生中有90%以上时间在室内度过,可见,室内空气品质对人的影响更是至关重要。 二、室内环境污染背景 当今,人类正面临“煤烟污染”、“光化学烟雾污染”之后,又出现了“室内空气污染”为主的第三次环境污染。美国专家检测发现,在室内空气中存在500多种挥发性有机物,其中致癌物质就有 20多种,致病病毒 200多种。危害较大的主要有:氡、甲醛、苯、氨以及酯、三氯乙烯等。大量触目惊心的事实证实,室内空气污染已成为危害人类健康的“隐形杀手”,也成为全世界各国共同关注的问题。据统计,全球近一半的人处于室内空气污染中,室内环境污染已经引起35.7%的呼吸道疾病,22%的慢性肺病和15%的气管炎、支气管炎和肺癌。 三、关于开展室内空气质量服务的几点设想 1.着手调查国内家庭和办公室内空气质量的基本情况。 2.了解并着手引进室内空气质量检测设备。 3.进行规模较大的宣传活动,首先应由气象主管部门与环保主管部门联合建立室内空气质量问题的管理机制。 4.对国际环保部门有关室内空气质量的法规、技术标准、室内污染测定方法及对测定仪器等问题进行专门的调查和研究。 四、空气检测仪的强力武器——传感器 检测技术是人们认识和改造世界的一种必不可少的重要技术手段。而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要工具。下面将介绍六种在空气质量检测方面发挥重要作用的传感器。 1.金属氧化物半导体式传感器。金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 2.催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,是温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 3.定电位电解式传感器。定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 4.迦伐尼电池式氧气传感器。迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10-30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器 5.红外式传感器。红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。 6.PID光离子化气体传感器。PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。 五、气体检测仪器仪表产业发展现状深度分析 近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元;2007年仪器仪表行业总产值达3078亿元,增长率高达28.5%;据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 1755.9亿元,同比增长23.8%,其中分析仪器、环境监测仪器仪表增长率高达32%。 科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。 从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。 六、对未来空气质量检测的展望 随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。 参考文献: [1]陈艾.敏感材料与传感器[M].北京:高等教育出版社. [2]高晓蓉.传感器技术[M].成都:西安交通大学出版社. [3]彭军.传感器与检测技术[M].北京:高等教育出版社. [4]王元庆.新型传感器原理及应用[M].北京:机械工业出版社. [5]赵茂泰.智能仪器原理及应用[M].北京:电子工业出版社.

浅谈重金属检测传感器技术的应用论文

摘要: 随着经济的迅猛发展和社会的日新月异, 人们对重金属的开采及加工越来越频繁, 这使得不少重金属存在于大气水以及土壤中, 在很大程度上加重了环境污染, 科学技术的迅猛发展为重金属检测传感器技术的研究提供了很好的途径。针对上述背景下, 对重金属检测传感器技术研究与应用进行合理性阐述, 以促进重金属检测传感器技术的进一步发展。

关键词: 重金属检测; 传感器技术; 环境污染;

重金属污染是环境污染的一个重要组成部分, 重金属在自然界中广泛存在, 随着人类的开采、冶炼、加工活动而使得重金属转变成化学状态或化学形态广泛分布于大气、水、土壤中, 随着时间的积累而不断留存、迁移, 从而引发严重的环境污染问题;重金属甚至还会随着废水的排出而流入海洋中, 对鱼和贝类造成严重的危害;重金属还会附着在人类的鼻腔和食物上, 造成人类呼吸道感染和重金属中毒[1]。重金属具有沉积性和不可降解性, 是一种非常危险的污染源, 因此对于重金属的研究与检测是十分关键的。通过调查与研究, 发现重金属检测传感器技术主要分为离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术四个方面, 本文通过对这四种传感器技术在重金属检测中的研究与应用作简要分析, 以推动重金属检测传感器技术的发展。

1 离子选择性电极传感器技术。

离子选择性电极传感器技术是一种操作简单、性价比高、准确有效的重金属检测传感器技术。离子选择性电极传感器技术因为不需要提前对样品进行操作而被广泛应用于重金属的在线检测中。目前, 国内外学者对离子选择性电极传感器技术进行了大量的研究, 发现选择性高、经济简单的离子选择性电极主要分为基于聚氯乙烯膜的离子选择性电极和基于流系玻璃膜的离子选择性电极两种[2]。

1.1 基于聚氯乙烯膜的离子选择性电极。

目前在对基于聚氯乙烯膜的离子选择性电极的研究中, 主要是对离子选择性电极的重金属离子的识别以及聚氯乙烯膜的结构和性能进行研究, 同时, 对不同的载体和膜增塑剂对离子选择性电极性能的影响作简要分析, 从而提高对重金属的识别能力。

1.2 基于流系玻璃膜的离子选择性电极。

基于硫系玻璃膜的离子选择性电极良好的红外线透过性是其他离子选择性电极无法相提并论的。许多发达国家都通过购买硫系玻璃膜的离子选择性电极来用于重金属检测工作。

2 光纤化学传感器技术。

对于光纤化学传感器技术的研究比离子选择性电极传感器技术的研究还要早, 光纤化学传感器技术的研究始于美国研究所, 从那以后, 许多国家都在实验室中对光纤化学传感器技术进行研究, 并应用到重金属检测中。陈雷等人对基于聚氯乙烯膜的光纤传感器进行研究并应用到铜离子的检测中, 取得了良好的效果[3]。李学强等人将注册分析法和激光激发荧光光谱技术应用到对金属离子传感器的研制中, 使我国饮用水中的重金属检测工作取得了很大的进展。

3 生物传感器技术。

第一个生物传感器始于Red String仪器公司。之后, 又在多个公司相继推出, 这些生物传感器主要是对人类血糖和尿糖中的重金属物质进行检测。重金属物质在人体中的留存和迁移会对人体的健康造成极大的威胁, 生物传感器可以与人体生物识别因素相互影响, 以达到对人体中的重金属含量进行检测, 从而预防重金属中毒的目的。通过研究发现, 生物传感器主要分为蛋白质为基础的'生物传感器以及整个细胞为基础的重金属传感器两种。

3.1 蛋白质为基础的生物传感器。

生物识别因素主要是促进消化的酶、防止病毒入侵的抗体、增强体质的金属键键合蛋白以及脱辅基酶蛋白质。以这几种生物识别因素为基础制作蛋白质为基础的生物传感器, 用来检测铜离子、锌离子、汞离子以及铅离子等金属离子。传统的生物传感器存在灵敏度低、选择性差等一系列缺点, 因此必须研制出选择性高的新型传感器来实现对重金属离子的检测, 这种新型传感器被称为蛋白质为基础的生物传感器。

3.2 整个细胞为基础的重金属传感器。

整个细胞为基础的重金属传感器可以实现对微型有机体生物标识的检测, 它具有所受干扰因素少、反应速度快等一系列优点, 可以实现对苔藓、海藻、酵母等海洋生物中的重金属的检测。随着生物医学和环境工程的蓬勃发展, 可以通过改进主传感器的途径来解决重金属检测过程中的干扰问题, 即在基因层次上设计细胞器。

4 结语。

综上所述, 本文通过对重金属检测传感器技术研究与应用进行分析, 主要从离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术这四个方面作简要分析, 为传感器检测技术在重金属中的研究与应用提供理论支持, 以减少重金属污染现象的发生。

参考文献

[1]张涛, 苏倡, 刘艳, 等.泥蚶 (Tegillarca granosa) 重组铁蛋白富集重金属离子的特性及化学传感器的研究[J].海洋与湖沼, 2017, 48 (4) :870-876.

[2]吕攀攀, 肖芳兰, 严锡娟, 等.构建一种基于双启动子模型的特异性检测镉离子的大肠杆菌传感器[J].生物工程学报, 2015, 31 (11) :1601-1611.

[3]贾朔.边超, 佟建华, 等.基于纳米金Core-satellites等离子体耦合增强效应的汞离子光纤传感器的研究[J].分析化学, 2017, 45 (6) :785-790.

关于传感器的毕业论文参考文献

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

室内空气质量检测与传感器的应用 [摘要]室内空气品质对人的影响至关重要,利用传感器检测空气质量是当今流行的一种方法,本文介绍了传感器在空气质量检测方面的原理应用,分析了当前气体传感器的优点和不足,以及气体传感器的发展趋势和前景。 [关键词]空气质量 气体传感器 室内环境污染 一、空气对于人的重要性 人们每时每刻都离不开氧,并通过吸入空气而获得氧。一个成年人每天需要吸入空气达6500升以获得足够的氧气,因此,被污染了的空气对人体健康有直接的影响。人的一生中有90%以上时间在室内度过,可见,室内空气品质对人的影响更是至关重要。 二、室内环境污染背景 当今,人类正面临“煤烟污染”、“光化学烟雾污染”之后,又出现了“室内空气污染”为主的第三次环境污染。美国专家检测发现,在室内空气中存在500多种挥发性有机物,其中致癌物质就有 20多种,致病病毒 200多种。危害较大的主要有:氡、甲醛、苯、氨以及酯、三氯乙烯等。大量触目惊心的事实证实,室内空气污染已成为危害人类健康的“隐形杀手”,也成为全世界各国共同关注的问题。据统计,全球近一半的人处于室内空气污染中,室内环境污染已经引起35.7%的呼吸道疾病,22%的慢性肺病和15%的气管炎、支气管炎和肺癌。 三、关于开展室内空气质量服务的几点设想 1.着手调查国内家庭和办公室内空气质量的基本情况。 2.了解并着手引进室内空气质量检测设备。 3.进行规模较大的宣传活动,首先应由气象主管部门与环保主管部门联合建立室内空气质量问题的管理机制。 4.对国际环保部门有关室内空气质量的法规、技术标准、室内污染测定方法及对测定仪器等问题进行专门的调查和研究。 四、空气检测仪的强力武器——传感器 检测技术是人们认识和改造世界的一种必不可少的重要技术手段。而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要工具。下面将介绍六种在空气质量检测方面发挥重要作用的传感器。 1.金属氧化物半导体式传感器。金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 2.催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,是温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 3.定电位电解式传感器。定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 4.迦伐尼电池式氧气传感器。迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10-30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器 5.红外式传感器。红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。 6.PID光离子化气体传感器。PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。 五、气体检测仪器仪表产业发展现状深度分析 近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元;2007年仪器仪表行业总产值达3078亿元,增长率高达28.5%;据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 1755.9亿元,同比增长23.8%,其中分析仪器、环境监测仪器仪表增长率高达32%。 科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。 从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。 六、对未来空气质量检测的展望 随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。 参考文献: [1]陈艾.敏感材料与传感器[M].北京:高等教育出版社. [2]高晓蓉.传感器技术[M].成都:西安交通大学出版社. [3]彭军.传感器与检测技术[M].北京:高等教育出版社. [4]王元庆.新型传感器原理及应用[M].北京:机械工业出版社. [5]赵茂泰.智能仪器原理及应用[M].北京:电子工业出版社.

相关百科

热门百科

首页
发表服务