首页

> 学术发表知识库

首页 学术发表知识库 问题

数据挖掘英文文献论文

发布时间:

数据挖掘英文文献论文

能。专硕是专业型硕士的简称,属于学位类型的一种。专硕毕业论文就是专业型硕士在毕业前写的毕业论文。文献内容可以是中文或者英文,很多博士生毕业论文、硕士生毕业论文通常对自己的研究很有帮助,很适合作为参考文献。专硕毕业论文能写文献数据挖掘。数据挖掘指的是在大型的数据库中对有价值的信息知识进行获取,属于 一种先进的数据信息模式。

google 搜索一下太多了。A.A. Markov. "Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot druga". Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya, tom 15, pp. 135–156, 1906.A.A. Markov. "Extension of the limit theorems of probability theory to a sum of variables connected in a chain". reprinted in Appendix B of: R. Howard. Dynamic Probabilistic Systems, volume 1: Markov Chains. John Wiley and Sons, 1971.Classical Text in Translation: A. A. Markov, An Example of Statistical Investigation of the Text Eugene Onegin Concerning the Connection of Samples in Chains, trans. David Link. Science in Context 19.4 (2006): 591–600. Online: Breiman. Probability. Original edition published by Addison-Wesley, 1968; reprinted by Society for Industrial and Applied Mathematics, 1992. ISBN 0-89871-296-3. (See Chapter 7.)J.L. Doob. Stochastic Processes. New York: John Wiley and Sons, 1953. ISBN 0-471-52369-0.S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. London: Springer-Verlag, 1993. ISBN 0-387-19832-6. online: . Second edition to appear, Cambridge University Press, 2009.S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007. ISBN 978-0-521-88441-9. Appendix contains abridged Meyn & Tweedie. online: https://netfiles.uiuc.edu/meyn/www/spm_files/CTCN/CTCN.htmlBooth, Taylor L. (1967). Sequential Machines and Automata Theory (1st ed.). New York: John Wiley and Sons, Inc. Library of Congress Card Catalog Number 67-25924. Extensive, wide-ranging book meant for specialists, written for both theoretical computer scientists as well as electrical engineers. With detailed explanations of state minimization techniques, FSMs, Turing machines, Markov processes, and undecidability. Excellent treatment of Markov processes pp. 449ff. Discusses Z-transforms, D transforms in their context.Kemeny, John G.; Hazleton Mirkil, J. Laurie Snell, Gerald L. Thompson (1959). Finite Mathematical Structures (1st ed.). Englewood Cliffs, N.J.: Prentice-Hall, Inc. Library of Congress Card Catalog Number 59-12841. Classical text. cf Chapter 6 Finite Markov Chains pp. 384ff.E. Nummelin. "General irreducible Markov chains and non-negative operators". Cambridge University Press, 1984, 2004. ISBN 0-521-60494-XSeneta, E. Non-negative matrices and Markov chains. 2nd rev. ed., 1981, XVI, 288 p., Softcover Springer Series in Statistics. (Originally published by Allen & Unwin Ltd., London, 1973) ISBN 978-0-387-29765-1Kishor S. Trivedi, Probability and Statistics with Reliability, Queueing, and Computer Science Applications, John Wiley & Sons, Inc. New York, 2002. ISBN 0-471-33341-7.K.S.Trivedi and R.A.Sahner, SHARPE at the age of twenty-two, vol. 36, no. 4, pp.-52-57, ACM SIGMETRICS Performance Evaluation Review, 2009.R.A.Sahner, K.S.Trivedi and A. Puliafito, Performance and reliability analysis of computer systems: an example-based approach using the SHARPE software package, Kluwer Academic Publishers, 1996. ISBN 0-7923-9650-2.G.Bolch, S.Greiner, H.de Meer and K.S.Trivedi, Queueing Networks and Markov Chains, John Wiley, 2nd edition, 2006. ISBN 978-0-7923-9650-5.

大数据数据挖掘论文

浅谈基于大数据时代的机遇与挑战论文推荐

在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。

浅谈基于大数据时代的机遇与挑战论文

1、大数据的基本概况

大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。

2、大数据的时代影响

大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:

(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。

(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。

(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。

另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。

3、大数据的应对策略

3.1 布局关键技术研发创新。

目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。

3.2 提高软件产品发展水平。

一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。

3.3 加速推进大数据示范应用。

大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。

3.4 优化完善大数据发展环境。

信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。

做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。

大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。

结构

论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。

1、论文题目

要求准确、简练、醒目、新颖。

2、目录

目录是论文中主要段落的'简表。(短篇论文不必列目录)

3、内容提要

是文章主要内容的摘录,要求短、精、完整。

4、关键词定义

关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。

5、论文正文

(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:

a.提出问题-论点;

b.分析问题-论据和论证;

c.解决问题-论证方法与步骤;

d.结论。

6、参考文献

一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。

7、论文装订

论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。

数据挖掘论文python

本案例是基于水质图像来对水质进行分类,所以是图像分类问题,一般的,可以直接构建CNN深度模型来分析,效果会非常好,但此处我们首先从图像中提取特征,然后用SVM分类器来分类。 水色分类的类别分别为: 整个分析流程为: 数据的收集过程为:拍摄水样,采集水样图片,从图像中提取出关键特征指标。所以此处的图像特征提取是图像识别或分类的关键步骤。 图像特征有非常多,比如颜色特征,问你特征,形状特征,空间关系特征等,其中颜色特征处理中常用直方图法,颜色矩方法等。 其中颜色矩包含各个颜色通道的一阶矩,二阶矩,三阶矩,对于RGB图像,每个通道有三个矩,故而有9个分量。 本案例采用颜色矩的方法来对图像进行分类。 采集的图像中包含有容器等其他无关信息,所以要对图像进行切割,得到最终将的101x101的小图像。 分别计算小图像中每个像素点的每个通道的一阶颜色矩,二阶颜色矩,三阶颜色矩。 最终得到数据集。 最终得到的数据集为: 参考资料: 《Python数据分析和挖掘实战》张良均等

文本挖掘:从大量文本数据中抽取出有价值的知识,并且利用这些知识重新组织信息的过程。

一、语料库(Corpus)

语料库是我们要分析的所有文档的集合。

二、中文分词

2.1 概念:

中文分词(Chinese Word Segmentation):将一个汉字序列切分成一个一个单独的词。

eg:我的家乡是广东省湛江市-->我/的/家乡/是/广东省/湛江市

停用词(Stop Words):

数据处理时,需要过滤掉某些字或词

√泛滥的词,如web、网站等。

√语气助词、副词、介词、连接词等,如 的,地,得;

2.2 安装Jieba分词包:

最简单的方法是用CMD直接安装:输入pip install jieba,但是我的电脑上好像不行。

后来在这里:下载了jieba0.39解压缩后 放在Python36Libsite-packages里面,然后在用cmd,pip install jieba 就下载成功了,不知道是是什么原因。

然后我再anaconda 环境下也安装了jieba,先在Anaconda3Lib这个目录下将jieba0.39的解压缩文件放在里面,然后在Anaconda propt下输入 pip install jieba,如下图:

2.3 代码实战:

jieba最主要的方法是cut方法:

jieba.cut方法接受两个输入参数:

1) 第一个参数为需要分词的字符串

2)cut_all参数用来控制是否采用全模式

jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode

jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list代码示例( 分词 )

输出结果为: 我 爱

Python

工信处

女干事

每月 经过 下属 科室 都 要 亲口

交代

24 口 交换机 等 技术性 器件 的 安装

工作

分词功能用于专业的场景:

会出现真武七截阵和天罡北斗阵被分成几个词。为了改善这个现象,我们用导入词库的方法。

但是,如果需要导入的单词很多,jieba.add_word()这样的添加词库的方法就不高效了。

我们可以用jieba.load_userdict(‘D:PDM2.2金庸武功招式.txt’)方法一次性导入整个词库,txt文件中为每行一个特定的词。

2.3.1 对大量文章进行分词

先搭建语料库:

分词后我们需要对信息处理,就是这个分词来源于哪个文章。

四、词频统计

3.1词频(Term Frequency):

某个词在该文档中出现的次数。

3.2利用Python进行词频统计

3.2.1 移除停用词的另一种方法,加if判断

代码中用到的一些常用方法:

分组统计:

判断一个数据框中的某一列的值是否包含一个数组中的任意一个值:

取反:(对布尔值)

四、词云绘制

词云(Word Cloud):是对文本中词频较高的分词,给与视觉上的突出,形成“关键词渲染”,从而国旅掉大量的文本信息,使浏览者一眼扫过就可以领略文本的主旨。

4.1 安装词云工具包

这个地址: ,可以搜到基本上所有的Python库,进去根据自己的系统和Python的版本进行下载即可。

在python下安装很方便,在anaconda下安装费了点劲,最终将词云的文件放在C:UsersAdministrator 这个目录下才安装成功。

五、美化词云(词云放入某图片形象中)

六、关键词提取

结果如下:

七、关键词提取实现

词频(Term Frequency):指的是某一个给定的词在该文档中出现的次数。

计算公式: TF = 该次在文档中出现的次数

逆文档频率(Inverse Document Frequency):IDF就是每个词的权重,它的大小与一个词的常见程度成反比

计算公式:IDF = log(文档总数/(包含该词的文档数 - 1))

TF-IDF(Term Frequency-Inverse Document Frequency):权衡某个分词是否关键词的指标,该值越大,是关键词的可能性就越大。

计算公式:TF - IDF = TF * IDF

7.1文档向量化

7.2代码实战

数据挖掘论文参考文献

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

4.1市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

4.2金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

物联网毕业论文参考文献推荐

大学生活在不经意间即将结束,毕业论文是每个大学生都必须通过的,毕业论文是一种、有准备的检验大学学习成果的形式,优秀的毕业论文都具备一些什么特点呢?以下是我帮大家整理的物联网毕业论文参考文献,欢迎大家借鉴与参考,希望对大家有所帮助。

[1]瞿中,熊安萍,蒋溢.计算机科学导论(第3版). 北京:清华大学出版社,2010年3月

[2]Peter Norton著;杨继萍,钱伟等译.计算机导论(第6版).北京:清华大学出版社,2009年1月

[3]郭卫斌,杨建国. 计算机导论.上海:华东理工大学出版社,2012年8月

[4]吴功宜,吴英.物联网工程导论. 北京:高等教育出版社, 2012年7月

[5]刘云浩. 物联网导论.北京:科学出版社, 2011年3月

[6]张雯婷.物联网导论.北京:清华大学出版社, 2012年4月

[7]董荣胜. 计算机科学导论-思想与方法. 北京:机械工业出版社, 2007年8月

[8]陈国良.计算思维导论.北京:高等教育出版社, 2012年10月

[9] 彭力.基于案例的物联网导论.北京:化学工业出版社, 2012年10月

[10]王志良,王粉花.物联网工程概论.北京:机械工业出版社, 2011年4月

[11]石志国,王志良,丁大伟.物联网技术与应用.北京:清华大学出版社, 2012年8月

[12]詹青龙,刘建卿.物联网工程导论.北京:清华大学出版社, 2012年1月

《高等学校计算机科学与技术专业公共核心知识体系与课程》(清华大学出版社,2008年10月)

《高等学校计算机科学与技术专业专业能力构成与培养》(机械工业出版社,2010年3月)

《高等学校物联网工程专业实践教学体系与规范(试行)》(机械工业出版社,2012年7月)

《高等学校物联网工程专业发展战略研究报告暨专业规范(试行)》(机械工业出版社,2012年7月)

[1].吕淑玲与侍红军,主从多智能体网络快速随机一致性.山东大学学报(理学版),2014(01):第65-70页.

[2].彭换新与戚国庆,离散高阶分布式一致性算法.计算机应用研宄,2013(09):第2700-2703 页.

[3].赵海与刘倩,一种面向多智能体群集的避障算法.东北大学学报(自然科学版),2014(03):第347-350页.

[4].范国梁与王云宽,基于几何方法的多智能体群体刚性运动的路径规划.机器人,2005(04):第362-366页.

[5].朱旭,不同延迟下离散多智能体系统的一致性.电子与信息学报,2012(06):第1516-1520 页.

[6].杨洪勇,具有领航者的时延多智能体系统的一致性.电子学报,2011(04):第872-876 页.

[7].孟红云与刘三阳,求解多目标优化问题的多智能体遗传算法.西北大学学报(自然科学版),2005(01):第13-16页.

[8].闫超与朱伟,具有动态拓扑和不同时延的二阶多智能体系统的一致性分析.重庆邮电大学学报,2011(04):第478-482页.

[9].Zhao, H.Y., et al., Distributed output feedback consensus of discrete-timemulti-agent systems. NEUROCOMPUTING, 2014. 138: 86-91.

[10].Hu, J.P. and G. Feng, Distributed tracking control of leader-follower multi-agent systems under noisy measurement. AUTOMATICA, 2010. 46(8): 1382-1387.

[11].Yan, H.C.,et al.,Decentralized event-triggered consensus control for second-ordermulti-agent systems. NEUROCOMPUTING, 2014. 133: 18-24.

[1]郭愈强,樊玮.数据挖掘技术在民航CRM中的应用[J],计算机工程,2005(31):169-171.

[2]刘彬,白万民.浅析数据挖掘技术在CRM中的应用[J].电子世界,2014,01(17):16-17.

[3]杨虎猛,朱汝岳.金融业分型CRM系统探索与应用[J].计算机应用与软件,2013,07(30):259-261.

[4]徐国庆,段春梅.数据挖掘技术在CRM中的应用研究[J].网络安全技术与应用,2012,02(12):38-40.

[5]王一鸿.体检中心CRM构建及数据挖掘的应用研究[D].华东理工大学,2011.

[6]潘光强.基于数据挖掘的CRM设计与应用研究[D].安徽工业大学,2011.

[1]王顺.PHP网站开发实践指南[M].北京:清华大学出版社,2012.

[2]黄缙华.MySQL入门很简单[M].北京:清华大学出版社,2011.

[3][CP/OL].http://www.w3school.com.cn/php/.

[4]钟伟财.精通PHP4.0与MySQL架构Wed数据库实务[M].北京:中国青年出版社,2000.

[5]赵鹤芹.设计动态网站的`最佳方案:Apache+PHP+MySQL[J].计算机工程与设计,2007(28).

[6]贾素来.常见动态网页技术比较[J].大众科技,2008(9).

[7]张晋芳.PHP在网站后台建设中的优势[J].电脑开发与应用,2012(12).

[8]徐旭阳.浅谈SQLServer2008+JSP网站开发[J].计算机光盘软件与应用,2013(20).

[1]安德森ASP NET高级编程[M]北京:清华大学出版社,2002

[3]秦鑫,朱绍文NET框架数据访问结构[J]计算机系统应用[M]2002,12

[4]张辉鹏基于NET的电子商务系统的研究和设计[D]武汉:武汉理工大学计算机科学与技术学院,2006

[5]廖新彦ASP NET交互式Web数据库设计[M]北京:中国铁道出版社,2004

[6]Jeffrey Richter Applied Microsoft NET Framework Programming[M].北京:清华大学出版社,2004

[8]蒋秀英SQL Server 2000数据库与应用[M]北京:清华大学出版社,2006

[9]龚小勇关系数据库与SQL Server 2000[M]北京:机械工业出版社,2007

[10]萨师煊,王珊数据库系统概论(第三版)[M]北京:高等教育出版社,2000

[11]李中华基于NET的模式实现与应用[D]四川:四川大学,2006

[12]任开银,黄东在NET上架构公司级应用程序[J]微型机与应用2003,1

[13]叶春阳基于Web服务的流程协作研究[D]北京:中国科学院研究生院,2003

[14]李琳NET开发平台核心服务的研究与应用[D]武汉:武汉理工大学计算机科学与技术学院,2003

[15]张莉,王强,赵文防,董莉,SQL server数据库原理及应用教程[M],清华大学出版社,2004 06

[26]王国荣,ASP net网页制作教程[M],华中科技大学出版社,2002

[17]吴晨,ASP NET数据库项目案例导航[M],清华大学出版社,2004

[18]郝文华,ASP NET与网络数据库开发培训教程[M],机械工业出版社,2004

[19]李律松,VisualC#数据库高级教程[M],清华大学出版社,2005 06

[20]申朝阳,宋颜浩,ASP NET与相关数据库技术[M],水利水电出版社,2005 1

数据挖掘论文8000字

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):234-235.208

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

4.1市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

4.2金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

相关百科

热门百科

首页
发表服务