大学高数论我知道怎么做
你找一下关于导数的相关资料,然后总结一下就可以了,可以参考以下:
新年好!Happy Chinese New Year !1、经常看到这样类似的问题,不禁悲从中来。 出题教师,好像还活在500年前,甚至2000年前。糊弄学生可以糊弄到这种地步?! 无论是极限的、导数的、积分的、行列式的、、、、几百年前就已经成熟,当今的 应用渗透到科学、工程、社会、经济、管理的每一个领域。这些只知道只会鬼混的 教师神经病兮兮,好像这些理论是刚刚建立,正在建立,把学生当猴耍,当白痴顽。 民脂民膏白白糟蹋,这些行尸走肉的教师怎么就出不出一道有启发性的有研究价值 的论文题目?2、只要涉及瞬时变化,空间逐点变化的问题,通通需要导数知识,没有了导数知识, 西方人建立的任何定量理论都将瘫痪,整个世界回到原始社会。导数的研究方法 是极限,极限概念在古代中国也有过自发的原始概念,由于我们的大大咧咧性格, 迄今为止,依然有很多鬼混的教授学者把古希腊的paradox当成诡辩学在批判,完 全不顾他们从中建立起limit theory的贡献,而从此西学高歌猛进,我们在原地踏 步,不争气的后人,至今全无寸功。更加糟糕的是,我们的微积分教科书上误导 俯拾皆是,罄竹难书,触目惊心,很多鬼混教授写的书一直在最最基本的概念上 胡搅蛮缠、、、、再写下去,死无葬身之地。
导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f'(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导数)。y=f(x)的导数有时也记作y',即 f'(x)=y'=limΔx→0[f(x+Δx)-f(x)]/Δx物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。求导数的方法(1)求函数y=f(x)在x0处导数的步骤: ① 求函数的增量Δy=f(x0+Δx)-f(x0) ② 求平均变化率 ③ 取极限,得导数。 (2)几种常见函数的导数公式: ① C'=0(C为常数函数);② (x^n)'= nx^(n-1) (n∈Q); ③ (sinx)' = cosx;④ (cosx)' = - sinx;⑤ (e^x)' = e^x;⑥ (a^x)' = a^xlna (ln为自然对数)⑦ (Inx)' = 1/x(ln为自然对数)⑧ (logax)' =(xlna)^(-1),(a>0且a不等于1)补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。(3)导数的四则运算法则: ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2(4)复合函数的导数 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。 导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了卓越的贡献!导数的应用 1.函数的单调性(1)利用导数的符号判断函数的增减性利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想.一般地,在某个区间(a,b)内,如果>0,那么函数y=f(x)在这个区间内单调递增;如果<0,那么函数y=f(x)在这个区间内单调递减.如果在某个区间内恒有=0,则f(x)是常函数.注意:在某个区间内,>0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在内是增函数,但.(2)求函数单调区间的步骤①确定f(x)的定义域;②求导数;③由(或)解出相应的x的范围.当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数.2.函数的极值(1)函数的极值的判定①如果在两侧符号相同,则不是f(x)的极值点;②如果在附近的左侧,右侧,那么,是极大值或极小值.3.求函数极值的步骤①确定函数的定义域;②求导数;③在定义域内求出所有的驻点,即求方程及的所有实根;④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.4.函数的最值(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念.(2)求f(x)在[a,b]上的最大值与最小值的步骤①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.5.生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题,优化问题也称为最值问题.解决这些问题具有非常现实的意义.这些问题通常可以转化为数学中的函数问题,进而转化为求函数的最大(小)值问题.
1、从实际需求出发:比如说家人去买菜用哪种方式比较快捷到达目的地,又运用哪些方法可以省钱。这些实际的生活非常能够让孩子思考,孩子也容易理解,往往数学思维在不知不觉中形成了 。2、从问题的突破口出发:比如说方程类的解答,孩子遇到某个题目觉得很繁琐,利用方程就会很简单,当孩子遇到某些难题难以解决的时候,总会需要找到突破口,比如逆向思维、对比思维等,这些突破口的过程,本身就是一场数学思维。3、从实际的案例出发:有很多实际的典型案例,这些案例在课本上都有,利用这些案例,看看书本上是怎么分析的,哪怕孩子不能独立去完成,背会本身也有好处,可惜很多人只会说束手无策,导致越来越恶化。4、结合逻辑思维来做训练。事实上数学思维本身就是一种逻辑思维,并且两者相辅相成。家长可以帮助孩子选择一些书籍,亦或是相关的逻辑训练工具,并且总结逻辑给孩子带来的好处等等, 用这些来指导数学思考方式。5、鼓励孩子多提问:不要抑制孩子在学习过程的提问,这种提问和好奇是孩子学习的动力,将知识点与孩子年龄段能接受的方法告诉孩子才是最重要的,需要多加以引导。
数学论文培养大学生数学思维的能力论文摘要:数学不应该被看成单纯的工具,它对思维训练也有着十分重要的意义。大学生应该培养数学的形象、抽象、直觉与函数思维。培养大学生数学思维,需要优化大学生思维方式,培养逻辑思维能力与直觉思维能力。关键词:数学;大学生;思维能力一、数学思维的概念及结构分析数学思维作为思维的一种特殊形式,是人脑运用数学符号与数学语言对数学对象间接概括的反映过程。具体地说,数学思维是以数学概念为细胞,通过数学判断和数学推理的形式揭示数学对象的本质和内在联系的认识过程。数学思维既从属于一般的人类思维,受到一般思维规律的制约,又具有不同于一般思维的特点,数学思维是一种高级形态的思维,属于现代抽象思维的范畴。数学思维的功能性结构是一个三维的立体结构,三条坐标轴分别是思维内容、思维方法和个体发展水平,这三部分的相互作用就构成了数学思维能力。数学思维能力是各种数学能力的核心,内容是思维主体面临的思维对象,包括数学概念、法则、命题以及各种数学理论问题与实践问题等。数学思维方法是数学方法的核心,是数学思维活动的步骤和格式,是对思维内容进行加工的方式和程序。个体发展水平则是指主体的思维品质和非智力品质,其中思维品质包括深刻性、广阔性和灵活性等,非智力品质包括动机、情感和意志等,它们在思维活动中发挥着重要的作用。二、培养什么样的数学思维能力(一)形象思维。形象思维即具体思维,它包括非操作性的形式(观察、感知等)和操作性形式(对事物或其模型直接进行操作等)。大学生在感观、操作等方面较以前都有了很大的提高,能力有了一定的增强,记忆方式由机械性记忆逐步向理解性记忆转变,他们渴望进行自主学习。(二)抽象思维。抽象思维是与抽象化活动密切联系的思维活动,是高等数学的核心和基础,抽象思维充分体现了高等数学学科的高度严密性和严谨性,也是学生需要着重培养的一种数学思维。这里的抽象化有双重性,即在抽取其本质属性的同时剥离其余的非本质属性。(三)直觉思维。直觉思维是认识的特殊方法,它是对数学对象、结构以及规律关系的敏锐想象和迅速判断的思维方式,其特点是直接解决问题或得出真理。(四)函数思维。函数思维是指从数学对象、性质之间的相互关系中认识事物的一种思维。函数是高等数学中一个重点的研究对象,我们解决现实生活中的许多问题都涉及函数关系的确定和解决。三、如何培养大学生的数学思维能力要培养大学生具备较好的数学思维是一个长期艰巨的过程。基本策略是:重思想的形成、促观念的培养。要特别注意做到以下几点:(一)优化思维方式。如果学生在学习过程中,对所学知识的理解不够深刻、准确,或者其新旧知识不能建立联系,就会造成认识上的不足和理解上的偏差,在解决具体问题时,出现思维不够严密或者不够灵活的现象。因此,应该引导学生优化思维方式,培养思维的严密性和灵活性。1、修正思维的误差,培养思维的严密性部分学生在解决数学问题时,不注意挖掘所研究问题中的隐含条件,产生了思维误差,影响了问题的正确解决。所以,要教会学生充分挖掘隐含条件,及时调控思维过程,修正思维误差,培养思维的严密性。2、转换思维角度,培养思维的灵活性。学生在解题时习惯于从已知出发推演结论,形成单向思维,给解题带来一定的思维障碍。对逆向思维的培养要贯穿于整个学习过程中。3、培养和发展学生的数学探索能力,进而激发学生的创新思维。数学的探索及创新能力是数学思维中最具创造性和挑战性的要素,也是数学思想的核心,数学几千年的发展史就是人们不断探索和创新的历史。(二)培养逻辑思维能力。逻辑思维能力是思维能力的重要组成部分,逻辑思维的主要形式是概念、判断和推理,它是证明结论的主要工具。在抽象定义、推导公式、证明定理、运用知识解决问题时,都在运用逻辑思维。1、培养理解概念、应用概念解决问题的能力。理解能力是学习数学的基础,学生在学习过程中,如果对一些数学概念或数学原理的发生、发展过程没有深刻地理解,就不能把握问题的本质。因此,要深刻理解概念、法则、公式、定理的实质,应用概念去解决问题。2、培养推理判断的能力。推理判断能力是逻辑思维能力的重要组成部分,培养推理判断能力要在学生深刻理解概念的基础上,学生应该掌握必要的推理和判断方法,如归纳法、演绎法、类比法、穷举法、特例法、反证法等,并通过一定的训练加以巩固,从而提高推理判断的能力。提高学生的推理能力要注意推理过程的学习(包括逻辑推理和直觉推理),一开始就要养成推理过程,步步有根据步步都严密的习惯。3、培养学生的抽象概括能力。要善于将数学材料中反映的数与形的关系从具体的材料中抽象出来,概括为特定的一般关系和结构,做好抽象概括的示范工作,要特别注意重视分析和综合的学习;另外,在解题中要注意发掘隐藏在各种特殊细节后面的普遍性,找出其内在本质,善于抓住主要的、基本的和一般的东西;要鼓励学生平时对于一些问题进行经常性的概括和总结,培养学生概括的习惯。
大学高数论我知道怎么做
导数的定义以及导数在实际中的应用如下:
导数的定义:导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点可导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
导数在实际中的应用:导数是用来分析变化的。以一次函数为例,我们知道一次函数的图像是直线,在解析几何里讲了,一次函数刚好就是解析几何里面有斜率的直线,给一次函数求导,就会得到斜率。
导数是微分学的重要组成部分,是研究函数性质、曲线性态的重要工具,也是解决实际生活中某些优化问题的重要方法。探讨了运用导数求解实际生活中有关用料、成本、利润及选址方面问题的方法。
导数的计算:
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
小学数学论文浅谈估算教学的现状与改进措施大溪二小 徐再立摘 要:估算教学让我们觉得有很多困惑,如学生的"先算后估","估算速度慢于精确计算"以及"估算方法举棋不定"等现象,说明了我们的估算教学有待改进.改进估算教学法就要转变教师观念,重视估算教学;结合具体情境,培养估算意识;教给估算策略,提高估算能力.关键词:估算教学效果 教师观念 估算意识 估算能力估算教学随着新课程的诞生而成为了广大教师讨论的焦点问题之一.我们不难发现,虽然我们对估算教学进行着积极探讨,但估算教学还是让我们觉得有很多困惑.例如学生的"先算后估","估算速度慢于精确计算"以及"估算方法举棋不定"等现象,都说明了我们的估算教学有待改进.那么,到底是什么原因使得估算教学效果不好 我们又该怎么做才能提高估算的教学效果呢 我想从教师和学生两个层面来谈谈对改进估算教学的初浅想法.转变教师观念,重视估算教学现状分析从现状看,教师并不象课程标准那么重视估算教学.原因有以下三个:1.教师受传统教学观念的影响.估算教学在老教材中是选学内容,在新教材中是必学内容,而且在教材的各册各章节中都有要求.但是教师受传统教学观念的影响,没有将估算教学作为一种计算能力来培养,往往是教材有安排则教,无安排则不教,没有自始至终地坚持培养,根本没有将估算教学与精确计算平起平坐,并肩作战.2.教师对估算教学功能认识不明确.我从个人和同行者身上发现,我们很多教师都认为估算的功能就是在没必要精确计算时充当一种简便计算方法,或者是充当检验精确计算是否正确的验算方法.很多教师都没有认识到,估算除了以上两种功能之外,它更重要的功能是在培养学生的数感和数学素养上.3.估算教学的评价现状使得教师对估算教学不重视.由于估算教学不是作为独立单元安排教学,对估算教学效果的评价也不是独立而显著的,往往只是在纸笔测验中加入少量几道只要求给出估算结果的估算题.这样少量几道题的分数相对一张试卷来说,失与得的差别也不是很大,因此,估算教学效果也不被教师怎样看重.(二)改进措施1.走出传统教学观念的辐射圈.教师要从老教材中走出来,阅读新课程标准,了解估算教学目标;教师还要纵观新教材,梳理整套教材安排体系,了解估算教学在整个教材体系中的安排情况;理清新教材对估算教学的重视程度,不要再受传统教学观念的影响,重视估算教学.教师要明白口算,笔算与估算是三种基本计算技能,口算能力,笔算能力与估算能力组成了一个人完整的计算能力,要培养学生的数学能力,这三种技能缺一不可.因此,我们在平时的教学中要注意,以前对估算有所轻视,现在应着重花时间来弥补,不能因学生的估算能力欠缺而影响他的数学能力.因此,教师要足够重视估算的教学.2.认清估算教学的功能.估算是一种计算方法,它的基本功能是在不需要精确计算时使用它来快速计算;估算还经常充当验算的角色.估算除了这两个功能外还有一个重要的功能是它可以培养学生的数感与数学素养.如通过对数与量的估算,可以使学生亲身体验所学的数与量的大小与多少,例如, 当学习了自然数1-100后,可让学生去估算一把黄豆有多少粒,一个教室有多少人,待估算出结果后再去精确地算一算, 看二者之间的差距, 从中体验1—100等数到底有多少.这不正体现了新课标提出的让学生在体验中学习数学吗 通过估算教学还可以促进学生建立用数学的意识, 提高用数学的能力.例如,在超市购物时,估算需要多少钱 买水果时,感觉一袋水果有多重.这些问题都可以使学生将书本知识转化为实际生活问题,加强书本知识与生活问题之间的联系.因此,我们说估算教学是很有必要的,需要引起教师的足够重视.3.改变估算教学效果的评价机制.要改变估算教学效果的评价机制,学生估算能力的评价应避免简单的只看估算结果的纸笔方法,重视估算过程的考查[1].可以采用以下措施:⑴写出估算过程.如49×3≈50×3;⑵写出估算结果的大致范围.49×3300人,答:他们不能同时上船."看到这种状况,我与学生有了如下对话:师:"这道题必须要精确计算吗 "沉默片刻,生1:"不用."师:"为什么 "生1:"因为100加200就有300了."师:"他是用什么方法计算的.这种方法你们觉得怎么样 "生2:"他用估算的方法,比较简便.可以就写作138+202 〉300."师:"那你们为什么不这样做 "学生哑然.这个案例使我想到,我们的学生是怎么了,他们在写题时不是都不喜欢多写字吗 那他们为什么宁可多写几个字,也不用估算的方法呢 我们苦苦教学的估算,不是成了"纸上谈兵"了吗 这样学估算还有意义吗 2.习惯使然.学生估算意识不强的还有一个现状是学生习惯于看到题就精确计算,而不先思考用什么方法计算更合适.(二)改进措施1.要提高小学生的估算能力,首先要让学生明确估算的意义,这样才提高他们学习估算的积极性[2].这就必须要求我们创造具体情境,结合具体情境,培养学生的估算意识.如果不是在具体情境中谈培养估算意识就比较空洞.比如著名特级教师吴正宪老师上的《估算》一课,她在课的开始环节,就创设了一个情境,青青和妈妈去超市购物,选好了商品后,妈妈的问题是:妈妈带了200元钱,够不够 再让学生判断在下列哪种情况下,使用估算有意义:A,妈妈考虑200元够不够时;B,营业员要将每种商品的价格输入收银机时;C,妈妈被告知要付多少钱时.在这里,吴老师没有问"买这几件物品大约需要多少钱 "而是设计了这样一道选择题,显然是从培养学生估算意识角度考虑的.像吴老师这样,在教学估算之前,先让学生来判断什么时候需要估算 什么时候需要精确计算 使学生明白了我们为什么要学估算 学估算有什么用 不正是数学课程标准提出的"人人都要学有用的数学"吗 这比我们口口声声的告诉学生"估算很有用","估算比精确计算要简便"来得有效得多.当然,这里所指的具体情境并不都是指上面购物环境,还可以是在碰到其他有具体情况的问题时,如下列算式中,得数比800大的算式是( )A,462+335 B,397×2 C,1000-209 D,215×4很明显,像这样的题用估算解决比较快.所以通过比较解决这道题的速度,也可以培养学生的估算意识.2.培养学生的估算意识除了要使学生明白什么时候用估算之外,还要使学生养成估算的习惯.培养估算习惯要靠时间与毅力来实现.如计算之前,先估一估得数大致在什么范围,精确计算之后,又估一估值是不是在这个范围之内等.课堂上多些"请估一估","说说你是怎么估的"这样的要求.经过一定时间这样的训练之后,学生就会有估算的意识和习惯.当然,这里行要求教师自身要有估算意识和习惯.三,教给估算策略,提高估算能力(一)现状分析1."先算后估"现状存在.我们不难发现有一部分学生(特别是中差生)碰到估算题时是先精确计算出结果,再对精确结果求出近似值的.这种状况在新课改刚开始几年存在的相当多,目前仍然部分存在.主要原因是学生估算速度慢于精确计算,估算能力不强造成的.2.估算方法"举棋不定".根据我的教学经验及调查结果发现,有一部分学生不喜欢估算而喜欢精确计算的原因是:精确计算答案唯一,方法也常常具有唯一性,而估算的方法和结果都具有多样性,学生在估算能力不强的情况下对使用估算方法感到信心不足,举棋不定.3.片面的训练"先估后算"教学模式.教师在估算教学中,往往很注重估着算,就是着重让学生在通过近似后的算.这样也是片面的,有些题目可以能通过不用求近似数就能估出来的,也就是说估算策略是很重要的.(二)改进措施虽然估算的方法灵活多样, 答案也不具有唯一性, 但估算并非无法可依,无章可循, 也是可以总结出一般的估算策略的.要使学生能灵活,主动地使用估算,我们必须要教给学生估算的策略与技巧,提高估算能力.1.熟练撑握求近似值的方法.求近似值是估算教学的基础,这就要求我们多设计类似于"这个数接近几","这是一个多大的数","看到这个数,你想到了什么数"等问题,使学生看到一个数就能在头脑中反应出它的近似数.对于学生取近似数时出现不同的结果,如378看作380,400,350等不同的近似数,我们都要做出相宜的评价,而不能以教师心中的满意答案来否定学生的想法.我们要鼓励学生敢于取近似值,敢于表达自己的想法,学生的数感就会逐渐得到增强,估算的速度也会得到提高.2.学会调整策略,培养优化意识.估算是非常讲究策略性的一种计算方法.我们要让学生充分体验估算的方法多样化与优化的过程,给他们自己体验选择估算策略的过程.如著名特级教师吴正宪法老师在《估算》一课中对估算的调整策略很重视.她先通过学生自己得出"最好用中估,凑调估或大小估的方法进行估算".再安排了以下两道练习来感悟估算的策略意识.(1)学校组织350名同学去春游, 租了7辆汽车, 每辆汽车有56个座位, 要求每人一个座位, 够吗 (2)一辆卡车, 自重986千克, 车上载有6箱货物, 每箱285千克, 能顺利通过一座限重3吨的桥吗 吴老师组织学生讨论: "对于这种问题, 大估,小估……哪种估算方法好啊 " "大估有把握, 还是小估有把握 ""以后要估算的时候, 是大估或小估, 还是…… " 学生自己得出"要根据实际情况确定估算的方法, 有时大估比较有把握, 有时小估保险些……".像这些需要调整策略来估算的问题是学生的薄弱之处,特别是中差生,所以,我们平时要加强估算调整策略的训练,使学生在经验支持下灵活使用估算本领.3.运用策略灵活估.⑴灵活利用数学规律,性质来估算[3].利用数学规律和性质来估算,可以省去求近似值的步骤,能使估算更简洁,更快速.如利用一个不是0的数乘纯小数,积小于这个数的规律,就可以判定4.9×0.6的积必定小于4.9,在比较〇 时,可以想>,=.所以>.熟练掌握数学规律与性质,可以使估算速度更快.⑵根据实际需要选用估计方法.估算并非都是要求近似值的,有些情况下可以省去求近似值的步骤.如我们在教学"吨的认识"时,就只要让学生感觉50千克有多重,想象1吨即1000千克,有20个50千克的重量,实际上这也是估一估的过程.在一些生活实例中,有时也可以不用求近似值来估.如估一个会场的人数,我们是不会把一个人当单位,然后想有多少个这样的一个人.而应该是先想我们班有50人,那么这里大概有多少个50,当然也可在想想100人大概是多少后,再想想这里有多少个100人.参考文献:[1]张俊英,对小学数学估算教学的思考,小学教学研究,2008(6)[2]张丽珍,小学数学教学中估算能力的培养,甘肃教育,2001(9)[3]周 豪,小学生估算能力的培养,小学教学参考,2001(3)小学数学论文计算教学中 "情景串"教学资源的开发和利用温岭市横湖小学 鲍 淼[内容摘要]在计算课中自始至终发挥导向作用,使学生通过解决"情景串"中的问题引发对数学计算的学习,将解决问题与计算学习二者紧密结合,让学生既经历计算知识与技能的形成过程,又能把学到的计算知识作为解决问题的工具,把应用意识的培养贯穿于数学学习的全过程,这是"情景串"教学的核心内涵.教师应找准"支点",创设具有"数学韵味"的"情景串",在计算课中真正发挥其应有的价值.本文从以下几方面来阐述"情景串"教学资源的开发:一,动态的情景串来源于静态的主题情景图;二,动态的情景串来源于贴近的生活实践;三,动态的情景串来源于生动的动画故事;四,动态的情景串来源于有趣的游戏活动.[关键词]动态情景串 静态主题图 生活实践 动画故事 游戏 [正文]美国国家委员会在《人人关心数学教育的未来》报告中指出:"今天一个数学本领仅限于计算的人,几乎没有什么可贡献于当今的社会,因为廉价的计算器就能够把事办得更好".如果现在还是把计算教学的目标定位于牢记计算法则,形成计算技能,显然是缺乏现实意义的,教师应该借助计算教学这个载体,引领学生主动参与,积极探索,使他们在获得计算知识的同时,情感,态度,价值观等方面得到和谐的发展.因而,计算教学目标的确定,不能只满足于让学生掌握方法,学会计算,而是着眼于让学生体会计算学习的需要,让学生经历计算策略的探索,感悟计算思维的魅力,真正发挥计算教学的育人价值,从而使学生在获得计算知识的同时,情感,态度和价值观得到和谐发展.如何加强计算与应用的有机结合成为了数学教学中一块难啃的"骨头".数学课需要学生注意力高度集中,思维积极活动才能完成学习任务.而对于小学生来讲,课堂注意力集中的时间相对较短,更何况是内容相对枯燥的计算课.如果我们把课堂上学习的内容通过创设相关联的一组情景将整节课链接成"情景串",即整堂课中围绕着一个主题的大情景来组织教学,将教学内容分散地设计在相联系的情景的各个环节中,即各个"情景串"中.从而引发了一系列相对独立的又有着一定逻辑关系的问题,形成"问题串",还计算教学一个现实生活的背景,加强了"书本世界"与学生"生活世界"的沟通, 这无疑会大大增加所学知识的趣味性和吸引力,防止学生"注意力疲劳",有助于营造"动态生成"的课堂.下面就结合我平时的教学,说一说我在数学计算教学中是怎样进行"情景串"教学资源的开发和利用.一,动态的情景串来源于静态的主题情景图实施情景串教学并非无源之水,无本之木.新教材在排版上明显文字叙述少了,随之而来的是一幅幅生动有趣,五彩缤纷的主题图嵌入我们师生的视野,也深深地吸引着我们.正是这些将一幅幅寓知识,思想,情感于一体的主题图融入我们的课堂教学,为我们的教学设计提供了丰富的资源,给枯燥的数学赋予了新鲜的生命,使我们的情景串教学成了有源之水,有本之木.充分挖掘主题图,以学生感兴趣的相对独立的故事或活动演绎"主题图"情景,把丰富的情景画面与具体的数学知识有机结合起来,让丰富的情景设置在学生学习的过程中自始至终发挥一定的导向作用,帮助学生在快乐的氛围中学习知识.如第四册"表内除法(二)"的第一课时,例1给出了学生庆祝节日的主题情景图,而配备的练习1——4的主题图分别是小猴爬竿,小兔采蘑菇,小鸟送信,小猪吹泡泡.而低年级学生对静态信息窗的兴趣持续时间过短,相对独立的主题图使课堂显得过于松懈,存在一节课中前半节课学生兴致高昂,后半节课学生死气沉沉,按部就班的现象,于是我尝试着把静态的,相对独立的几个信息窗转变为一个动态的连贯的情景串.把整节课设计成以学生喜欢的"庆祝六一"为主线,通过"布置联欢会场"(例1的教学内容)—— "参加快乐的游园活动"( 练习1——4的教学内容)展开教学. 情景一:布置节日的教室(教学例1)."今天是快乐的六一儿童节,你们高兴吗 小朋友们为了庆祝自己的节日,要把教室打扮一番,我们一起去看看吧!"(课件呈现)这一环节的设计目的是根据信息窗提出问题串,探讨计算的方法.使学生体会因为要解决问题才有了计算,计算是伴随解决问题而产生的.情景二:游园活动"盲人问路"(练习1)老师准备带你们去参加六一节的游园活动,你们想不想参加呢 盲人问路的游戏规则:一人蒙眼随意指题,其他学生参与计算.情景三,情景四,情景五分别是游园活动"小猫钓鱼","水中捞月","吹泡泡",相对应的是练习2——练习4.通过对教材的有效调整,把静态的信息窗变为动态的情景串,将用乘法口诀求商的计算技能以图画,操作,语言等形式为载体,潜意识地传递给学生,让学生能在直观,生动的游戏情境中兴趣盎然地去计算,使他们体会到用乘法口诀求商是帮助人们解决实际问题的工具,让学生发现数学就在身边,对数学产生亲切感.二,动态的情景串来源于贴近的生活实践选取学生熟悉的生活情景,可以直接选取教材中提供的学生熟悉的日常生活情景进行加工或自己创设学生感兴趣的现实生活情景,将学生感兴趣的生活实践活动情景贯穿起来,编排成"情景串". 如第四册表内乘除法的练习课中我是这样设计的:情景串大背景:星期天老师带领同学们到游乐园去玩.情景一:出发前,班长清点人数. 师:我先请班长清点一下我们今天一共来了几组 (6组)小 朋友看一看每组有多少人 (4人)师:板书:一共6组,每组4人.师:谁能根据这两条信息提出一个问题 (一共有多少人 )谁能解决这个问题 情景二:开始出发,如何租车 课件画面:停车场里有8辆车,每辆车限坐3人.情景三:来到游园门口,准备买票.课件画面:游乐园门口,张贴有游客须知及门票价格(每人2元).情景四:进入游乐园,设计游乐项目及游览路线.课件画面:游乐园内各项游乐设施的价格及相关规定.情景五:休息,到游乐园内的食品超市购物.课件画面:游乐园一食品超市内,矿泉水2瓶6元,汽水每瓶4元.在以上一连串相关的情景中,有明,暗两条线,明线是游览,暗线是"观察画面,搜集信息——根据获取信息提出问题——合作交流,计算解决问题",在整个学习过程中,学生兴致勃勃,积极动脑,热烈参与,在看似游玩的过程中,既巩固熟练了表内乘除法,又培养了应用知识解决实际问题的能力.一节课,始终围绕"游览"这一情景而展开,教师给学生创设了一个又一个的情景,引发一环又一环的问题,为学生自主学习,自主探索活动提供了一个有效的平台,促使学生层层深入地思考,体验与感悟,让学生自觉地,全身心地投入到计算学习活动中,用心发现,用心思考,真诚交流,在跌宕起伏的情感体验中自主完成对知识的建构.创造性地巧构情景串,将计算的内容,知识与技能溶入了丰富多彩,生动有趣,具体现实的生活场景中,激活了学生学习的积极性;激活了学生思维的灵活性;激活了学生问题意识,形成了问题串;改变了学生的学习方式,使学生在现实的"情景串"中,会应用数学思想,发现问题,提出问题,自主探究计算解决问题;在"情景串"中合作交流体验到学习数学的乐趣,促进学生的发展.三,动态的情景串来源于生动的动画故事单靠一幅图,一段话是很难创设出让学生感兴趣的情景的.动画故事是小学生的最爱,小学生对于动画故事非常感兴趣,他们思维也就容易被启迪,开发,激活.对来源于动画故事的情景串就会产生可持续的动机,这是一种催化剂,使计算教学跳出纯粹为计算而计算的技能训练的老路子,让学生在生动具体的情景中学习数学,算用结合,使课堂充满生趣.如第一册在教学"用数学"时,上课伊始,我就以"森林里的早晨"那美丽的画面,鸟儿的叫声吸引孩子们的注意力,使孩子们仿佛身临其境.整节课我设计了引导一系列学生去郊游大森林的事理情景串,把教材中的例题,习题有机地串联了起来,使学生仿佛置身于愉快的旅途之中,让学生在玩中学,乐中学,学中乐.把抽象的知识具体化,静态的画面动态化,使学生的各种感官参与学习活动,形成了生动活泼,兴趣盎然的学习氛围,促成了认识活动的探索化,动态化和情感化.如第五册第六单元中"一个因数中间有0的乘法",我尝试着把静态的,相对独立的信息窗改变以学生喜欢的《西游记》神话故事为主线的一个动态的情景串.情景一:(例5主题图)王母娘娘要过大寿,她派7个仙女到蟠桃园去摘仙桃为自己祝寿,仙女们到蟠桃园一看,大吃一惊,只见孙悟空正坐在桃树大口大口地吃着桃子,树上一个仙桃也没有了,仙女们赶快回来向王母娘娘禀报:"仙桃都被孙悟空吃光了,一个也没摘到".让学生列加法算式与乘法算式,讨论得出:0和任何数相乘都得0.情景二:(例6主题图)小朋友,吃了蟠桃真的能长寿吗 (不能)是啊,生命在与运动,我们应该像这位老寿星一样每天坚持体育锻炼.老寿星每天要在公园步行3圈,每圈508米,你能算出老寿星每天步行多少米吗 想一想,要算老寿星每天步行多少米,怎样列算式 学生探究算法,得出:不管因数中间是否有0,都要用这个一位数去乘多位数里的每一个数位上的数,即使十位上是0也要乘,如果没有进位,积的十位上要用0占位.情景三:(巩固深化,拓展应用)现在正是小朋友长身体的时候,所以我们一定要参加体育锻炼,你们瞧,聪聪就要去参加智力长跑了,我们也去参加好吗 (具体练习略,在以下闯关练习中渗透了基础题,提高题,拓展题)这一情景串的创设亲切,简单,自然,让学生在熟悉的动画故事情景中提出有关的计算问题,学生在故事中练习,在故事中学到知识,不仅感到轻松,愉快,而且在不知不觉中,就把一节课的知识学会了,直到下课时还意犹未尽.四,动态的情景串来源于有趣的游戏活动来源于生动有趣的游戏活动的情景串特别适用于计算练习课与复习课.计算练习复习课,大家都无所适从,要不一题一题照着讲,要不分类来讲,的确枯燥,不知不觉成了我们数学老师心中永远的痛.对于学生尤其是中低年级的小学生而言,单纯地出示练习复习材料让学生直接练习,仅仅停留在对知识简单回炉上,他们会觉得枯燥乏味.但如果根据练习复习内容,用情景串将知识进行有效整合,提升,枯燥的练习复习课就会变得有趣有益.如第三册数学第二单元"100以内数的加法和减法"的整理复习课, 整堂课我设计了三个阶梯式情景游戏.游戏一:"比比谁取到的收获卡多",要求任选一张收获卡填出并贴在黑板上,对的为优胜者,主要是归纳100以内两位数加,减两位数笔算法则.学了"100以内的加法和减法",你们都有哪些收获 如我学会了用竖式计算加法和减法,在用竖式计算时要注意( )对齐;笔算加法时,( )位满十,要向( )位进1;;笔算减法时,( )位不够减,就要从( )位退( );解决问题时,当结果不需要十分精确时,可以用( )的方法找到与结果相近的数.游戏二:"请你露一手"用自己喜欢的竖式计算各题.每生领到一张题卡,在规定时间内算对的为优胜者.主要检验计算的正确率和速率.游戏三:"智取宝盒",小精灵聪聪和明明看到小朋友这么能干,想邀请你们到他们的聪明屋游玩,聪明屋中有两个宝盒,里面装着许多智慧星和聪明豆,你们想得到吗 要想拿到智慧星和聪明豆,赶紧解决宝盒上的题卡,题卡设计将实际生活与现实情境相结合,包含了购物的估算,解决生活中的数学问题.思路表达清晰,解答方法正确的为优胜者.这样的设计让学生耳目一新,克服了单调,枯燥,以题讲题的弊端,让课堂绽放出万花筒般斑斓的色彩,达到情意共鸣,互动生成的课堂氛围."情景串"的创设,应是充满计算课堂的整个时空,只要有计算活动的进行,就有相应的计算背景,它应当是多维度,全方位的,应当在学生整个的计算学习过程中自始至终发挥一定的导向作用,促进学生进行自主,有效的学习.以激发学生的计算兴趣为支柱,以培养学生的数学问题意识为导向,以促进教学目标的有效达成为目的,努力创设"合适的"情景串.让情景串以"数学"为支撑,让情景串多一点"数学味",使我们的数学课堂不失"数学味",使我们的计算课堂不失"生活味"!- -
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 追问: 呃、好像不符合老师的要求回答: 为什么呢? 追问: 我们要写的是关于某道题目的解析过程、而且是六年级的,教材是江苏版的
摘要: 估算是发展学生数感的有效途径之一,也是保证计算正确的重要环节,尤其对提高学生的计算能力很有益处。在估算的教学中,更重要的是使学生形成估算的意识,根据不同的问题情境选择适当的估算策略,并能加以解释,灵活运用估算方法对计算结果的合理性加以判断。估算教学对于全面提升学生数学能力具有非常深远的意义。 关键词: 估算教学 意识 策略 评价估算是发展学生数感的有效途径之一,也是保证计算正确的重要环节,计算前进行估算,可以估计出大致结果,为计算的准确性创设条件;计算后进行估算,能判断计算有无错误,为及时纠错提供了根据。在平时的学习中把估算内化为学生一种自觉、自主的意识,使其具有一定的估测能力,势必会有利于学生计算、推理、反思能力的培养。经过一段时间的实践,笔者对优化估算教学有几点感悟:一、创设情境,激发内需——“我要估”。华罗庚曾经说过“人们对于数学产生枯燥无味,神秘难懂的印象,原因之一便是脱离实际。”由于小学生生活经验不丰富,他们很难体会到估算在现实生活中的应用价值,所以估算教学需要结合具体情境来进行。作为教师,要想强化学生的估算意识,培养学生的估算能力,首先要学会创设具体的情境去改变学生对估算的态度,学生才会产生强烈的探索欲望,才会自发地调动全部感观,积极、主动地参与到估算学习中去,从而感受估算魅力,增强估算意识,使学生变“要我估”为“我要估”。例如,妈妈带钱去超市,要买洗衣粉(每袋6元)、毛巾(每条8元)、洗发水(每瓶28元)、大米(每袋33元)各一件,带100元够吗?这是教学中创设的生活中的一个购物情景,有的孩子看到题就拿起笔计算,花费了很多力气;而有的孩子刚读完题就有了答案,问他怎么会这么快找到答案的,方法是:把28看成30,33也看成30,6看成10,8也看成10,30+30+10+10=80(元),100元钱够的。在对比中,学生充分体会到了运用估算的优越性,觉得平时学的精算虽然十分有用,但有时运用估算解决问题也是一种有效的手段,对于生活中“够不够”“能不能”的问题,往往不需要精确计算,只要“抓大放小”,粗略估计即可。又如:小红喜欢书店里的4本书,《小学生作文》9.80元,《趣味数学》7.40元、《童话故事》7.60元,《脑筋急转弯》7.20元,她带了16元钱,买了其中两本书,猜一猜她买的可能是哪两本书?这样具有一定挑战性的问题,很容易激发学生的学习兴趣,并能积极调动学生的思维,增强学生估算意识,变“被动”估算为“主动”估算。二、注重指导,形成策略——“怎么估”估算和学生的思维活动紧密相关,我们教师要在不同的场合提供学生估算的机会,让学生在各种具体情境中逐步地体验、感悟估算的过程。当然,生活中的估算有时受实际情况的限制,会有各种不同的情况,我们要指导学生根据客观实际探索合适的估算方法,灵活运用估算策略,去解决生活中的问题,这样也便于培养学生思维的灵活性。(1) 取近似值估算法取近似值法就是对算式中的数先取近似值,最好是取整十、整百的数,然后再进行计算,这样计算起来就简单多了? 例如,算98乘32的积是多少,可以将98看成100,将32看成30,那么就先计算100×30;还可以将98看成100,将32不变,计算100×32。用近似数估算的方法,可以简化题目,使问题易于口算。取近似值估算法尤其适用于多位数的乘法,检验得数是否正确。(2)数位估算法数位估算法就是根据因数、被除数、除数的位数,估计积或商是几位数。例如,四年级教学三位数乘(除以)两位数的乘、除法时,积的位数等于两个因数位数之和或比这个和少1,商的位数等于被除数的位数减去除数的位数所得的差或比这个差多1。如:376×54,学生可以根据这一经验推出它的积是五位数。 (3)经验估算法。经验估算法就是根据学生的生活常识和经验进行估算的一种方法。如二年级(下册)“倍数的实际问题”新课结束后,出示这样一道题:爸爸今年36岁,是爷爷岁数的一半,是儿子年龄的4倍,爷爷和儿子今年各几岁?学生可以根据自身的生活经验和常识,很快就可以判断出爷爷年龄不会少于36岁,儿子则不可能多于36岁。这样,学生在解题,估算中体会到他们所学习的不是枯燥、刻板的东西,而是有趣的、富有生气的,同时也是有用的数学,进而激发自主学习的兴趣。(4)首尾估算法 首尾估算法比较适用于整数运算,就是根据算式中每个数的个位上的数,估计得数个位上的数。例如,检验3668-408-104=3104是否正确,只需算一下个位上的数:8-8=0,10-4=6,因此可以断定得数3104是错的。又如:在乘法计算中,计算356×74用尾数估算6×4=24可判定得数的个位是4;3058÷7商的最高位是“4”,否则就错。(5)循规估算法。根据有规律进行估算,如小数或分数乘除法,根据一个因数(0除外)小于1,积小于另一个因数,一个因数大于1,积大于另一个因数;除数大于1,商小于被除数,除数小于1,商大于被除数……估算的方法是多样的,教师不能简单地用“哪种估算结果更精确”或“哪种估算方法更简单”的单一要求作为评价的标准,应该更为关注估算过程是否合情合理;判断推理是否合乎逻辑,有条有理。要鼓励学生积极解释自己的观点,交流自己的看法,不要轻易地用一两句话就否定学生的思考方法。三、合理评价,培养意识——“我会估”由于学生选择估算策略的差异,必然也导致学生对同一问题估算出来的结果的不一致。对此,教师是否能够以单一的标准去评价学生呢?显然是否定的。教师应当关注学生的估算过程,关注学生的差异,作出不同的评价,既保证结果的合理性,又体现评价的层次性。1、鼓励估算方法的多样,引领学生交流优化由于每个学生独特的生理遗传、不同的文化环境、家庭背景和生活经历,对相关数学知识和技能的掌握情况及思维方式、水平的不同,估算时必然会有各种各样不同的方法。教师要尊重每一个学生的个性特征,鼓励学生估算方法多样化,同时组织学生积极地开展交流,让学生表达自己的想法,解释估算的过程。交流时,有的学生的估算方法对其他学生而言,具有一定的启发性;而有的学生在其他学生的启发下,又能得到新的估算方法。互相取长补短,使学生认识到另外视角的观点和策略,体会到同一个问题可以有不同的解决方法,促使学生进行比较和优化。在各抒已见、畅所欲言中,学生的思维得到了碰撞,能力得到了提高。让每个学生都能根据自己的认知水平和学习能力选择适合自己的认知方式与思维策略进行估算,势必会出现另一番令人惊喜的景象:学生因相互间的启发而带来更多更新的策略与方法的有效生成,教师可以引导学生再一次去了解、经历或体验估算的内容、意义和方法,使之逐步内化为他们算法策略的一部分。因此在估算的评价中我们切忌用“这个估法好” 一语定乾坤,垄断学生的思维,阻止学生思维水平的发展、数感的培养。我们还可以尝试这样说:“你是怎么想的?”、“说说你的理由”、“为什么可以这样想?”久而久之,估算会成为学生们自觉而明智的一种选择。2、允许估算结果的多样,引领学生体会合理精确计算的结果是唯一的,而估算往往把算式中的数据看成近似数来估算,由于对数据的处理不同,必然会产生不同的估算结果。因此,在估算教学中,教师要跳出传统计算教学答案唯一的框框,不必也不能把估算结果局限于某个特定的答案,更不能以是否接近精确值作为衡量、评价估算正确与否的依据,重要的是要关注估算结果是否合情合理。估算主要有两类,一类是根据实际问题来进行估算,另一类是脱离实际问题的情境,纯算式的进行估算。根据实际问题,选择合理的估算策略,结果合理方为正确;脱离实际问题情境,属于纯算式的估算,只要结果落在区间内,就算正确。但要根据不同年龄的学生的认知实际,给予针对性的评价。笔者也认为这样评价估算结果才能有助于新课程标准中估算目标的达成。例如教学三位数乘两位数:四年级同学去秋游,每套门票和车票49元,一共需要104套票,问应该准备多少钱买票?列式为104×49。估算方法一:49≈50, 104≈100 ,50×100=5000;估算方法二:49≈50 ,104≈110 ,50×110=5500。解决后应该引导学生思考,谁估得更好些,为什么?通过比较后学生认为第二种方法好,并分析总结出了这种购票或购物的问题时,不能就是想用“四舍五入”的基本方法解决问题,而要考虑实际情况,即“少钱不卖,多钱可剩”的估计原则,并且学生从中进一步的明确了解决现实问题时要做到具体问题具体分析的真正意义。因此不同的情境会选择不同的估算方法,有时把两个或几个数同时估大比较合理,有时把两个数同时估小也能解决问题。教师应让学生根据问题的需要,运用生活经验,灵活选择估算方法。再如低年级学生刚刚接触估算,它的估算结果落在区间内,但是范围比较大,也是可以的。高年级的学生已经有了一定的估算经验,就要引导他不断地进行再反思,再调整,把估算的结果能落在更趋于合理的位置上。比如78×365≈( ),刚开始学习的时候,学生可能这样估70×300,或者80×300,或者80×400,这样我们都可以视为是合理的。有了一定的计算技能以后,老师要引导学生不断地去进行反思,还可以估成80×350,这时候的范围就比原来要小多了。估算能力的培养不是一蹴而就的,这样随着学生年龄的增大,经验的不断积累,学生慢慢学会比较分析哪种估算策略最接近精确结果,逐渐学会合理、灵活的估算。所以对于学生估算的评价,我们更应该关注的不是结果,而是估算的过程。估算既是一种技能,一种策略;更是一种意识,一种经历。我们不仅要着眼于培养训练学生估算的具体思维方式方法,又要让学生感受、体验到估算的价值进而迸发对运用估算的主观能动反应,两者不能偏废,行为与意识并重。因此,估算教学,任重而道远。
小课题研究报告----如何使小学数学教学生活化一、课题的提出“数学是人们生活、劳动和学习必不可少的工具”,“对数学的认识不仅要从数学本质的观点去领悟,更要从数学活动的亲身实践中去体验”。这充分说明了数学来源于生活,又运用于生活,数学与学生的生活经验存在着密切的联系。在数学教学中我发现数学教学总是与生活有所隔离,这样就使学生接触到的数学知识更加抽象,也增加了教学难度,为此,我觉得教师应该在课题研究中应充分挖掘数学知识本身所蕴含的生活性、趣味性,调动学生善于质疑、自主研究,主动寻觅数学与生活之间的密切关系,探索生活材料数学化、数学课堂生活化的教法,使学生轻松愉快地掌握数学。因此我确立了小课题----如何使小学数学教学生活化。二、课题研究的目的1、培养学生积极稳定的学习态度。通过教师在指导学生学习数学知识的同时,有目的地引导学生对该知识点的相关背景从多种渠道中加以发掘,凸现出该知识在社会生活中的历史与现实背景,呈现知识的产生、发展、变化过程,揭示该知识的发展规律和本质,认识对人类社会生活的现实影响和真实意义,从而增强学生深刻理解相关知识点赋予个人的现实意义,促使学生形成端正、稳定的学习态度。2、加强学生数学生活经验积累,培养学生数学学习主动性的研究通过引导学生从日常所处的校园、家庭、社会等周围生活环境中,有目的地发现和收集与生活密切相关的数学问题,加以认真观察和详细记录,鼓励学生主动以多种途径去寻求问题的情景,并尝试运用数学知识从不同角度加以分析、讨论和解释,引导学生用准确、严格、简练的数学语言或文字表达自己的不同见解,得出不同形式的结论。3、创设生活化数学教学情景,培养学生数学兴趣的研究,通过教师对学生生活及兴趣的理解,以学生生活经验为依据,对教学内容进行二次加工和整合,重新组织学习材料,使新知识呈现形式贴近学生的生活经验,即教学内容生活化。同时,在教学过程中,运用直观语言、实物演示、游戏活动、多媒体教学、实践活动教学的方法和手段来模拟、再现和创设生活情境,寓生活中的数学问题于教学全过程,沟通数学与生活的联系,建立一种开放的,与生活相结合的、生动的课堂教学方式,即教学过程生活化。通过设置开放性、实践性等作业形式,使学生及时将数学知识应用、验证于日常生活,并将此过程中再次积累的新经验反复验证于课堂与生活之间,即作业形式生活化。4、丰富学生数学生活实践体验,培养学生数学应用能力的研究,通过对课内知识的延伸与拓展,将抽象知识学习过程转变为实践性、开放性的学习过程,以多种途径、形式的数学生活实践活动,引导学生利用已有数学经验,留心发现问题,大胆提出猜想,多方解决问题,促使学生主动应用、验证数学知识,不断形成、积累、拓展新的数学生活经验。5、挖掘学生现实生活教育资源,培养学生自我拓展的意识及学习品质的研究通过对学生所处的社会生活、家庭生活、学校生活等现实环境的关注,从中挖掘与学生数学学习密切相关的生活要素,结合学生个体或者群体的实际认知水平,加以开发、提炼、加工和整合,使之成为学生数学学习的有效生活教育资源而进行合理的利用,引导学生在对知识经验的积累、验证、巩固、应用等过程中,不断自我拓展、自我完善其数学意识及数学学习品质。三、 课题研究原则:1、主体性学生是学习的主人,是课堂学习活动的主体。而老师则是学生学习的组织者、引导者与合作者。教材的教学内容及呈现形式都是以学生为中心,不是单纯地依赖教师的讲解让学生去获得知识,而是为学生提供了大量的观察、操作、独立思考及讨论交流的机会,进而获得数学结论,以促进学生各方面的发展,这是教学过程的本质和基本规律决定的。2、实践性现代数学教学理论认为:好的数学教学应该从学习者的生活经验和已有的知识背景出发,给学生提供充分的数学实践活动和交流机会,一旦离开了学习实践,学生就不能成为主体,因此课堂教学中应该注重学生的个体参与和学生的个性发展,加强数学与生活实际的联系,促进学生生动、活泼、主动的发展。3、开放性数学课堂生活化,就必须打破常规的教学模式,给学生提供大量的观察、实验、活动的机会,使新教材的教学更容易体现“提出问题——相互交流——汇报总结——巩固实践”的开放式课堂教学模式。在课堂教学中引进和用好开放题,给每个学生提供更多参与机会和成功的机会,让每个学生在参与中得到发展,努力提高教学质量,提升学生的数学素质。四、课题研究的实施过程。数学来源于生活。新课程标准指导下的数学教学就应该联系生活、贴近生活,让学生熟知、亲近、现实的数学走进他们的生活,进入课堂,使之产生亲近感,变的具体、生动,诱发学生的内在知识潜能,使学生主动地动手、动口、动脑,想办法来探索知识的形成过程,以达到对自我生活、心理需要的满足,获得成功的喜悦感。同时也增强其学习数学的主动性,发展求异思维,培养实事求是的科学态度和勇于探索、创新的精神,再利用所学的数学知识走进生活、大胆实践,解决身边的数学问题,真正实现小学数学生活化。课题探究的内容具体从以下几个方面来体现:1、联系实际,引导学生自主发现生活中的数学问题。“兴趣是最好的老师。”在我们的生活中,数学问题无处不在,教师在教学中要善于让学生在生活实践中产生数学问题,并激发学生解决数学问题的欲望。在平时教学活动中,应十分重视让学生归纳已有生活经验,并设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,让学生“提出有关的数学问题,以激发学生学习的兴趣与动机,使学生初步感受到数学与日常生活的密切联系。”例如,在教学“角的认识”、“长方形、正方形、三角形和圆的认识”时,先用投影片出示学生平时常见的扇子、书、红领巾、皮球等实物,然后抽去实物,留下角、长方形、正方形、三角形和圆形等几何图形,让学生发现这些图形原来就在我们的身边,无形中产生了自主探究的兴趣。再如,在教学“商的近似值”时,可以让学生试着做一下如“150÷44”一类的除法式题,当学生除不尽时,结合学生学习生活实际,数学问题自然产生,再学习“商的近似值”知识,适时地满足了学生解决问题的需求。2、创设情境、实现课堂教学“生活化”。新知识呈现方式发生了变化,必须要求教师的教学观念的改变,从而探索出“生活化”的课堂教学新模式。新课程的实施要求每一位教师必须有充分的课前准备,真正“让学生在生动具体的情境中学习数学”,尽可能让学生在课堂上摸摸、拼拼、涂涂、量量,在“生活化”的动手操作中,潜移默化地接受新知识。3、走进生活,用新学知识解决生活中的数学问题。学生学习数学是为了运用所学的数学知识和方法解决一些简单的实际问题,所以“数学是人们生活、劳动和学习不可少的工具”。引导学生把所学知识联系、运用于生活实际,可以促进学生的探索意识和创新意识的形成,培养学生初步的实践能力,“以体会数学在现实生活中的应用价值”。例如,学习“长方形面积”后,可以布置学生回家测量家里客厅的长和宽,求出面积,再测量一下一块地砖的长和宽并计算面积,最后算一算客厅里铺这样的地砖需要多少块?如果一块地砖28元,一共需要多少元?这就必然实现了课堂教学的延伸,让学生在生活中学习数学。但更重要的是把课内外紧紧结合起来,把所学的知识应用于生活实践中,从而培养了学生的应用意识和实践能力。4、开展实践活动,真正实现小学数学“生活化”。《数学课程标准》指出:实践与综合运用将帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力。为了让学生在学习数学知识的同时,初步接触和逐渐掌握数学思想,不断增强数学意识,就必须拓宽数学教学空间,开展丰富多彩的数学实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实生活中的认知和行为与数学问题之间的联系与区别,以提高学习效率和教学水平。例如:在教学数学广角烙饼时,我就让他们回家观察妈妈平时是怎样做的,这样既容易学会知识又增长了他们的生活的经验。这样,让学生养成留心身边事物,有意识的用数学的观点去认识周围事物的习惯,并自觉的把所学习的知识与现实中的事物建立联系。使学生自己发现的问题富有魅力,对于提高学生应用数学知识的能力和增强学习的积极性都十分的重要。五、课题研究的实践探索及措施落实在研究的初级阶段,我发现学生学习知识与运用知识解决生活问题两者还是有所隔离,学生还是在教师的带领下学习知识,然后又在教师的指引下解决问题,缺乏自主地根据实际生活的需要而去主动获取知识与解决生活问题的能力,这个问题的根源归根到底还是我们教师设计的活动是否称得上是真正有效的活动。因此,本阶段要通过研究,使教师逐步把课题思想贯穿到平时的教学中去,注重数学与实际生活的紧密结合,注重学习活动的设计,使我的课堂有新的起色,无论拿到怎样一个内容都知道从生活中找寻它的模型。并引导老师在反思中不断发现问题,解决问题,重点解决如何设计有效的学习活动。下面就从几个方面谈一下课题的实践探索及措施落实:首先捕捉“生活现象”,引入新知生活中到处有数学,到处存在着数学思想,关键是教师是否善于结合课堂教学内容,去捕捉“生活现象”,采撷生活数学实例,为课堂教学服务。如我在教学“分数的初步认识”时,引入学生感兴趣的生日时我们切生日蛋糕,怎样分才公平,才分得一样多?学生讨论,然后自己动手也来分一下,要求分得一样多……最后,得出“人→分→份(得到份)”,分得一样多(每份同样多),这叫“平均分”。这样利用人分物品的生活现象,引出“平均分”,不但使学生增加了动手操作的机会,而且使学生对新概念感到新颖、亲切。利用捕捉到的“生活现象”引入新知,使学生对数学有一个亲近感,感到数学与“生活”同在,并不神秘。同时,也激起了学生大胆探索的兴趣。其次联系“生活画面”,揭示规律学生的非形式数学知识,生活中的数学常识、经验的建立首先必须依赖于实践活动,使数学知识成为学生看得见,摸得着,听得到的现实,是有源之水,有本之木。教师若能创造性地将数学知识融合于生活中,勾勒出“生活画面”,就可以帮助学生学好数学。如我在教学“简单的分数加法”时,创设生活场面,每个学生拿出两个八分之八的圆,先让学生组成小组给圆涂色(涂成不同的几份),然后把两个圆重叠,看一下两个圆的涂色部分加起来是多少?这样一来学生很容易就理解了。再次设计“生活情景”,开展演练数学知识应加以演练才得以巩固,数学技能也应加以反复练习才能习得。数学教学如能在具体的生活情景中加以演练,会有利于实实在在地提高能力。如在教学相遇问题的应用题时,在学生对此类应用题的结构和解法有基本了解时,我布置了这样一个活动:同桌两个同学合作,将相遇问题的应用题中的情节表演出来,并口头编应用题,解答……那么,如果没有同桌帮忙,你一个人可以表演吗?学生兴趣很浓,纷纷举手示范。经过这样的演练,学生对“两地,同时,相向(对),相遇”等有了实实在在的了解。教师应该善于挖掘数学内容中的生活情景,让数学贴近生活,使学生发现数学就在身边,让学生认识生活中充满了数学,生活真有趣,数学真有趣。最后返回“生活天地”,广为沟通在数学生活化的学习过程中,教师引导学生作广泛沟通,会使学生“领悟”出数学源于生活,又用于生活,数学有很强的应用价值这个重要道理。这就要求教师注重“实践第一”的观点,在生活数学的天地中求新、求美。教师只有把学生真正的带到生活中去,将课堂中的数学知识与学生生活实际密切结合起来,才能真正使学生体验到数学的美和创造的美。六、课题研究取得的成效。1、加强了学生数学生活经验的积累,提高了学生的学习兴趣。2、增强了学生学习数学的主动性。3、降低了教学难度。4、培养了学生应用数学的能力。5、提高了教师自身的科研能力。一年来,我的科研能力得到了提高,主要体现在课堂教学能力的提高和理论素养的提升这两方面。。反思一年多的研究过程,我的体会颇多:第一,本课题的研究在我的努力下,在“数学知识的呈现方式生活化”方面已取得了明显的成效,但我的研究还只是停留在较为浅显的层次,今后研究还需不断加深,向更深的层次延伸,以期全面提高自己的数学课堂教学效果。第二,对本课题的研究不能仅停留在“教师”的角度,更主要的是要加大力度进行“学生”方面的研究,即对“学生参与”的研究还需更全面、更深入。第三,课堂是本课题研究的一个主要方面,它比较好地解决了研究过程中的方法问题,但我感觉在这方面做得还很不到位,特别是对课堂教学效益的提高方面还需加大监控力度,以进一步做好质的研究。七、课题研究中存在的主要问题和困难1、本课题具有很强的实践性,要求课教师能在平时的实践中,将某些现象、想法、感受及时总结、提炼,并能上升至理论层面,而在这方面,我觉得自己还远远没有达到。2、对个案的理解不全面,实践中有应付思想,只求有,不求精,这样的态度需在今后的实验中加以改进。3、探讨出“小学数学教学生活化”的教育教学实践,形成具有指导性、可操作性的教学模式也是一个难点。4、学生层次不整齐,加上现有的条件有限(如学生家庭条件的限制)使得课题的研究在一定程度上受到影响。5、本课题研究成果主要通过课题总结报告、教学研究论文等形式呈现。但是,如何使这些成果能够深刻体现设想中“生活化”的教育思想,真正落实到日常具体教学过程中,还也是是一个研究的难点。八、对今后工作的几点思考1、如何改变组织形式,让每个学生都参与到“生活化的数学”活动中来,是今后应该改进的地方。2、通过研究探讨、摸索出“生活——数学——生活”的数学教学模式,并加以推广,用它指导我今后的数学教学工作。总之,该课题实施一年来,我觉得自己的理论素养提高了。而且在平时的教学实践中,能够立足于学生的现实生活,及时收集与学生的生活密切相关的数学问题,培养学生学会从生活中提出数学问题,然后再把这些问题移进课堂,通过对现行教材资源的有效整合和合理利用,使数学教学内容源于学生现实生活,教学过程中的方法、手段贴近学生现实生活,学生学习活动应用、验证于日常生活,不断向学生渗透应用数学的意识,并能够从数学的角度出发提出一些生活中的问题,用数学的思想和方法去分析和解决问题,用数学的语言去解释得出的答案或结论,从而促进学生数学情感、态度、价值观的形成以及学生的数学学习能力和生活能力与心理素质的协同发展,达到提高和完善学生的数学素养的目的。“让讲台成为舞台、让教室成为社会、让学生成为演员、让教师成为导演”,将数学与生活、学习、活动有机结合起来,将学生运用数学的过程趣味化、生活化,使学生感受到数学源于生活,从而激发学生学习数学的兴趣和欲望,培养学生的数学综合素养,这就是我今后研究的主要方向。
太多了, 谈谈计算教学的改革 小学数学数与计算教学的回顾与思考 小学数学教材结构的研究与探讨 小学数学应用题的研究(一) 改进教学方法培养创新技能 21世纪我国小学数学教育改革展望 面向21世纪的小学数学课程改革与发展 不拘一格育“鸣凤” 使学生真正成为学习的主人 改革课堂教学的着力点 谈素质教育在小学数学教学中的实施 素质教育与小学数学教育改革 浅谈学生数学思维能力的培养 浅议表象积累与培养学生的思维能力 也谈学生创新意识培养 实施创新教学策略 培养学生创新意识 10以内加法整理和复习 改良“有余数除法计算”教法 给学生创新的时间和空间 和谐愉悦 主动探索——一年级《统计》教学片断评析 小学数学教育--教师之家--教师培训 教学策略A、B、C 面向21世纪的数学素质及其培养 能被3整除的数的特征 年、月、日 培养自学能力 推进素质教育 浅谈小学数学总复习的“步步反馈,逐层提高”法 入情才能入理 激情方能启思 实施“生活数学”教育 培养自主创新能力 数学作业批改中巧用评语 提高元认知水平 培养自学能力 “圆的面积”的教案 圆柱的认识 运用多媒体辅助教学 优化数学教学方法 组织课堂讨论 优化课堂教学 ---------以上更新日期为2002.04.17(来自同下) 重视学生获取知识的思维过程 小论文巧算圆的面积 倒推转化巧拿硬币 联系生活实际提高课堂效率 数学教学中如何调动学生的学习积极性 根据心理学的理论进行计算法则教学 简单应用题教学再探 创设情境,培养学生创造个性 数学教学中培养学生创造思维能力 启动学海搁浅之舟—— 转化数学学习后进生的体会 学生“四会”能力的培养 联系实际,强化操作,努力优化数学教学 重视学法指导,培养自学能力 让生活问题走进数学课堂教学,培养学生问题意识 主动探究发展能力 创新教育中学生创新能力的培养 构建数学生活的美好乐园——数学“研究性学习”理论的实践与思索 营造探究氛围一例 实施创新教育 培养创新人格 课堂纯真 《9和几的进位加法》教学设计 信息技术与小学数学课程整合的研究与实践 运用CAI技术,优化素质教育 合理运用学具 提高数学课堂教学效率 略谈“问题解决”与小学数学教学 渗透数学思想方法 提高学生思维素质 引导学生参与教学过程 发挥学生的主体作用 优化数学课堂练习设计的探索与实践 实施“开放性”教学促进学生主体参与 数学练习要有趣味性和开放性 “五、四、三自主式学法指导”教学模式初探 引导学生主动参与教学活动 改进几何初步知识教学的初步探索 多媒体课件在优化课堂教学中的功能及其策略研究 创新从习惯抓起 培养学生的创新意识要处理好的几个关系 让学生在数学学习中获得持续发展 小学数学创新学习的实验与研究 小学数学课题教学中学生创新意识的培养
一、选题的目的与意义 我们原有的数学课堂教学在新一轮课程改革大潮的冲击下,逐渐显露出它对促进学生可持续发展的无耐和乏力。在这种形势下,我们教育工作者渴求有力的支撑。无论从何种角度讲,我们都呼唤并迫切的想找到一把能解开这种困惑的钥匙。随着新课程的纵深推进,我们开始了基础教育新课程教学策略的研究,我们经历了艰难的摸索,在各种形式、各个层面的推敲和论证下,最终将研究的目标锁定在数学“小课题”研究 二组织形式的封闭性呼唤“小课题”研究来打破。我们的组织形式采用的是“班级授课制” 三数学学习的价值需要“小课题”研究来体现。学生学习数学最为重要的价值莫过于“认识数学与生活的联系”和“思考”。 二、课题的研究内容 小课题研究生成问题的途径有:途径一:教师开发教材资源而设定的。在我们的教材中就蕴藏着大量的小课题研究内容。因此,在小课题研究开展的初期阶段,为了保证所选课题有可研究的价值,实施时切实可行,由老师结合教材内容开发资源、设定选题是一个较为便捷的途径。途径二:学生从生活中提炼出来的。由学生提炼的前提必须是学生在进行了一段小课题的研究后,渐渐地养成了“学数学看生活,生活中想数学”思维习惯才能进行的。学生观察生活的角度与成人不尽相同,来自他们的灵感更鲜活,他们在生活中引发的思考都有可能成为他们小课题研究的目标。小课题学习是一种研究性学习,它具有以下几个特点: ⑴专题性。 ⑵开放性。 ⑶主体性 ⑷实践性。 三、课题的价值 一培养信息收集和处理的能力。从认知心理的角度看,学生开展学习的过程,实质上就是信息处理的过程。“小课题研究”是围绕一个需要解决的问题展开,以解决问题结束,在整个过程中,如何多渠道收集资料、整理资料,尤其是在一个开放的环境中如何自主收集和处理加工信息是个关键。 二提高应用知识的能力。“小课题研究”中学生围绕某个感兴趣的主题展开学习活动,需要学生去应用、分析、综合、评价知识,每个主题所包含的知识并不是唯一的、确定的,而是一种动态性的知识,所以学生尽可以发挥自己的聪明才智,从多种角度进行发散性、批判性思考,从而增强学生自身的创造性,提高综合运用知识的能力。 三获得亲身参与探究的积极体验。“小课题研究”的过程也是情感活动的过程,一般来说,学生在课题学习中的成果往往是个人或同伴知识基础上的创新,达不到原始创新。因此,重要的是通过让学生自主参与类似于科学家探索的活动来获得体验,逐步形成一种日常学习与生活中喜爱质疑、乐于探索、努力求知的心理倾向。 四学会沟通与合作。“小课题研究”的过程是一个人际沟通与作用的过程,要完成一个课题,不仅需要自身的积极探索,更需要小组成员的共同努力,相互帮助,培养学生乐于合作的团队精神和交往能力至关重要。 四、研究基础 课题组成员曾经参与小学生数学综合实践活动教材的编写工作,对数学活动课程有着较深的研究。数学实践活动虽不同于“小课题”研究,但长期的研究积累,为研究小学数学中高年级学生“小课题”研究提供了许多可以值得参考的理论基础和依据。 课题组成员多年来一直从事小学数学中高年级教学工作,积极指导学生参加数学兴趣小组活动,对数学“小课题”进行过长期的实践与探索。所辅导的学生曾经连续五年在省数学“探索”与“应用”技能大赛中荣获团体奖桂冠,辅导的学生有多篇数学小论文在省级报刊发表,这些教学实践都为“小课题”研究工作积累了丰富的经验基础。
已发你邮箱,共5篇,而且并非网上复制粘贴,请放心采用,不用担心版权问题。