β细胞是人体的胰岛素“工厂”。它们对升高的血糖作出反应,分泌出胰岛素,向肌肉细胞发出信号,以吸收并利用血液中的葡萄糖。
糖尿病患者的β细胞往往不能产生足够的胰岛素:对于2型糖尿病患者而言,是由于β细胞随着时间的推移而功能下降。对于1型糖尿病患者而言,是由于自身免疫系统发生故障,并攻击、损坏了β细胞。
在一些糖尿病患者中,β细胞衰竭是基因缺陷所导致的结果。在过去的十年里,研究人员发现基因代码中的少数几个地方,一旦发生微小的错误就会干扰身体感应或产生胰岛素的能力。其结果就是医学上所说的“单基因糖尿病”。
这种单基因突变导致的糖尿病远比人们所知的要多。美国纽约哥伦比亚大学Naomi Berrie糖尿病中心的干细胞生物学家Dieter Egli博士指出,大约1%到5%的糖尿病患者属于单基因糖尿病,在全球范围内这个数字以百万计,因此“单基因糖尿病”并不是一种罕见的疾病。
几十年来,替换失去功能的β细胞一直是治疗所有类型糖尿病的“圣杯”(注:代指具有神奇能力的事物)。研究人员已经尝试了从移植胰腺到植入β细胞的多种方法,但是,这些手术的成本很高,因为它们是外来器官、细胞,身体会排斥它们,控制这种免疫排斥反应需要借助强大的免疫抑制药物,或是用某种方法将所移植的β细胞“封装”起来,以瞒过自身免疫系统。
由于单基因糖尿病是单一基因缺陷或突变的结果,新的基因技术为单基因糖尿病患者提供了治愈的希望,甚至一些2型糖尿病患者也有望获得治愈。在美国糖尿病协会(American Diabetes Association,ADA)的资助下,Dieter Egli博士和他的科研团队正在进行单基因糖尿病的研究,特别是对于一些出生时或出生不久后身体就不能产生胰岛素的病例,他们制造出干细胞,借由干细胞再制造某些特定的人体组织,包括β细胞、神经组织等。
然后,他们使用了一种名为“CRISPR-Cas9”的尖端技术,来修复那些阻止β细胞正常工作的基因错误 [1] 。在过去的一年里,这项研究取得了可喜的成果,他们已经能够纠正干细胞的突变,使β细胞重新产生胰岛素。
下一步预期,可将经过修正的 β细胞 重新植入患者体内。因为它们来源于患者自身的细胞,所以可以被身体接受而不需要应用免疫抑制药物,植入后预计能像正常β细胞那样对血糖水平做出反应,并且产生胰岛素。
然而,基因编辑所依托的科学技术太前沿了,以至于还没有被美国食药监局(FDA)批准用于人体试验。为了观察新的β细胞是否能起作用,Dieter Egli博士将修正后的人类β细胞植入β细胞受损的实验动物体内。人们欣喜地看到,通过将β细胞移植到小鼠体内,可以保护缺乏 β细胞 的小鼠免于罹患糖尿病。
Dieter Egli博士说,如果能将修正后的β细胞安全地植入患有单基因糖尿病的人体内,那就相当于治愈了糖尿病。
在基因编辑技术应用于人类之前,还有很多工作要做。一些研究者担心,用于编辑基因突变的技术可能会在其他地方引起意想不到的“偏离目标”的影响。Egli博士表示,“利用老鼠模型是一个很好的开始,但是只有在人类身上进行尝试,我们才能最终得到答案。”
即使Egli博士和其他领域的研究人员能够证明这种基因治疗是安全的,与试纸、血糖仪和胰岛素注射相比,要获得好的成本-效益比,可能还需要一些时间。虽然到那时,患者不再需要支付胰岛素、口服降糖药和其他血糖管理用品的费用,但预计个性化干细胞治疗也可能会花费每位患者数万美元,甚至更多。
据了解,目前在国内也有一些学者在进行相关研究 [2] 。因此,笔者愿意乐观地相信,随着研究的深入、技术的成熟和普及,这种可能会治愈糖尿病的新疗法将会有走出实验室、走近你我身边的那一天。让我们一同拭目以待,继续关注来自这一领域的好消息吧!
参考文献:
[1] Hasegawa Y, Hoshino Y, Ibrahim AE, et al. Generation of CRISPR/Cas9-mediated bicistronic knock-in Ins1-cre driver mice[J]. Exp Anim, 2016,65(3):319-327.
[2] 曹曦,宋丽妮,张怡尘,等. 应用CRISPR/Cas9技术制备MrgD基因敲除小鼠模型[J]. 首都医科大学学报,2018,39(4):517-521.
二十一世纪,世界生物技术的发展突飞猛进,随之也引发了一系列法律上的新问题。分析微生物及其基因是专利法意义上的发明还是科学发现?探讨其是否具备专利法保护所应具备的条件,了解发达国家加强生物技术专利保护的国际惯例,对我国的生物技术专利保护具有重要意义。
建议你多多参考下(微生物前沿)
生物教学论文参考文献
生物教学论文参考文献有哪些呢?生物教学论文参考文献是毕业论文的重要的组成部分。欢迎阅读我整理的生物教学论文参考文献,希望能够帮到大家。
1、生物教学论文参考文献
[1]刘冬.关于做好初高中生物教学衔接的思考[J].新课程(教师版),2011(1).
[2]杨茜.浅谈高中生物与初中生物教学的衔接[J].小作家选刊(教学交流),2014(8).
[3]马淑霞.浅谈交互式电子白板在初中生物教学中的应用[J].学周刊,2014(14).
[4]刘闯,陈娟.交互式电子白板在课堂教学中的应用优势[J].教学仪器与实验,2010(10).
[5]邵永刚,赵林川.构建互动生物课堂———交互式电子白板在初中生物教学中的运用[J].中国教育信息化,2012,16:54-56.
[6]杨滨,任新英.基础教育阶段交互式电子白板教学应用现状及发展研究[J].电化教育研究,2014,06:71-77.
2、生物教学论文参考文献
[1]蒋丽丽.浅议初中生物实验教学中的“说”[J].新课程导学,2014(20).
[2]张俊梅.新课标下农村初中生物实验教学面临的挑战和应对策略[J].中学教学参考,2011(11).
[3]赵晓君.初中生物探究性实验教学之我见[J].关爱明天,2015,(1):161-161.
[4]赵秀娟.浅谈目前农村初中生物实验教学现状[J].中华少年:研究青少年教育,2012,(15):343-343.
[5]钱顺虎.对初中生物课堂教学有效性策略的研究[J].新课程中学,2013(5):173.
[6]郭荣满.关于初中生物概念教学的现状与有效策略研究[J].教育教学论坛,2014(12):60-61.
[7]田庆森.初中生物实验教学面临的困难及对策浅析[J].软件(教育现代化)(电子版),2015,(11):285-285.
[8]杨美晶.边疆地区初中生物学实验面临的`困难及对策[J].生物学教学,2009,34(8):53-54.
[9]刘宏.初中生物实验课教学初探[J].中华少年(研究青少年教育),2011.
[10]黄胜.新课程理念下的初中生物实验教学初探[J].中国校外教育(基教版),2010.
[11]孙炳军.初中生物实验教学对策研究[J].中学生数理化(教与学),2015(12).
[12]曾瑞清.初中生物实验有效教学策略研究[J].考试周刊,2013(83).
[13]刘欣.初中生物生活化教学的策略研究[J].考试周刊,2012(57):148-149.
[14]谭启鹏.新课程背景下初中生物有效教学策略的研究[J].学周刊:b,2011(12):28-29.
3、生物教学论文参考文献
[1]徐芳英.初中生物分层教学策略研究[J].课程教育研究:学法教法研究,2015(1):69.
[2]黄敏.初中生物分层教学策略探究[J].新课程研究旬刊,2016(1).
[3]黄鹤.初中生物学科探究教学现状分析[D].东北师范大学,2012.
[4]王飞.初中生物教学现状研究与对策探析[J].教育教学论坛,2013(43).
[5]黄月欢.当前初中生物教学现状分析及建议[J].新课程研究(下旬刊),2013(2).
[6]谢小荣.重视初中生物教学中问题情境的创设[J].江苏教育学院学报(自然科学版),2010(5):9-10,17.
[7]笪春梅.初中生物教学中如何创设问题情境[J].理科考试研究,2015(18):91.
[8]徐远群.试谈情境创设在初中生物教学中的应用[J].中国校外教育,2011(19):46.
拓展内容: 生物基因工程论文的参考文献
[1] Brackett B G, Baranska W, Sawicki W,et al. Uptake of heterologous genome by mammalianspermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA,1971,68(2):353-357.
[2] Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived frompreimp antation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 1974,71 (4): 1250-1254.
[3] Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggsmicroinjected with metallothionein-growth hormone fusion genes. Nature, 1982,300(5893):611-615.
[4] 李宁.动物克隆与基因组编辑.中国农业大学出版社,2012.
[5] Hammer R E, Pursel V G, Rexroad C J, et al. Production of transgenic rabbits, sheep and pigs bymicroinjection. Nature, 1985,315(6021):680-683
[6] 杜伟,崔海信,王琰,等.精子载体法制备转基因动物的研究进展.生物技术通报,2012(12):13-18.
[7] Maione B,Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice. Mol ReprodDev, 1998,50(4):406-409.
[8] Lavitrano M, Bacci M L, Forni M, et al. Efficient production by sperm-mediated gene transfer ofhuman decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Matl Acad SciUSA, 2002,99(22):14230-14235.
[9] Sperandio S, Lulli V,Bacci M L, et al. Sperm - mediated DNA transfer in bovine and swinespecies. Animal biotechnology, 1996,7(1):59-77.
[10] 武坚,刘明军,李文蓉,等.精子载体介导法生产转基因绵羊的研究.草食家畜,2001(S2):186-190.
[11] Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis inliving animals by fluorescence imaging. Mol Ther,2001,3(3):319-322.
[12] Lois C, Hong E J, Pease S, et al. Germline transmission and tissue-specific expression oftransgenes delivered by lentiviral vectors. Science, 2002,295(5556):868-872.
[13] Hofmann A, Kessler B, Ewerling S,et al. Efficient transgenesis in farm animals by lentiviralvectors. EMBO Rep, 2003,4( 11): 1054-1060.
[14] Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgenic cattle by lentiviral genetransfer into oocytes’ Biol Reprod, 2004,71 (2):405-409
[15] Lillico S G, Sherman A, McGrew M J,et al. Oviduct-specific expression of two therapeuticproteins in transgenic hens. Proc Natl Acad Sci USA,2007,104(6): 1771-1776.
[16] Lyall J,Irvine R M, Sherman A, et al. Suppression of avian influenza transmission in geneticallymodified chickens. Science,2011,331(6014):223-226.
[17] Golding M C, Long C R,Carmell M A, et al. Suppression of prion protein in livestock by RNAinterference. Proc Natl Acad Sci USA, 2006,103(14):5285-5290.
[18] 杨春荣,窦忠英.利用干细胞生产转基因动物研究进展.西北农林科技大学学报(自然科学版),2006(07):37-40.
[19] Hai T, Teng F,Guo R, et al. One-step generation of knockout pigs by zygote injection ofCRISPR/Cas system. Cell Res, 2014,24(3):372-375.
[20] Hongbing H, Yonghe M A, Tao W, et al. One-step generation of myostatin gene knockout sheepvia the CRISPR/Cas9 system. Frontiers of Agricultural Science and Engineering, 2014,1(1):2-5.
[21] Swanson M E,Martin M J, O'Donnell J K, et al. Production of functional human hemoglobin intransgenic swine. Biotechnology (N Y),1992,10(5):557-559.
[22] Zbikowska H M,Soukhareva N, Behnam R, et al. Uromodulin promoter directs high-levelexpression of biologically active human alpha 1-antitrypsin into mouse urine. Biochem J, 2002,365(Pt1):7-11.
[23] Golovan S P,Hayes M A, Phillips J P,et al. Transgenic mice expressing bacterial phytase as amodel for phosphorus pollution control. Nat Biotechnol, 2001,19(5):429-433.
[24] Rapp J C, Harvey A J, Speksnijder G L, et al. Biologically active human interferon alpha-2bproduced in the egg white of transgenic hens. Transgenic Res, 2003,12(5):569-575.
[25] Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1 -antitrypsin inthe milk of transgenic sheep. Biotechnology (N Y), 1991,9(9):830-834.
[26] Li S, Ip D T, Lin H Q, et al. High-level expression of functional recombinant humanbutyrylcholinesterase in silkworm larvae by Bac-to-Bac system. Chem Biol Interact,2010,187(1-3):101-105.
[27] 刘英,张瑞君,伍志伟,等.转基因疾病动物模型的研究进展.动物医学进展,2006(12):44-49.
[28] Kragh P M, Nielsen A L, Li J, et al. Hemizygous minipigs produced by random gene ion andhandmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res,2009,18(4):545-558.
[29] Lee M K, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson'sdisease-linked Ala-53 Thr mutation causes neurodegenerative disease with alpha-synucleinaggregation in transgenic mice. Proc Natl Acad Sci USA, 2002,99(13):8968-8973.
β细胞是人体的胰岛素“工厂”。它们对升高的血糖作出反应,分泌出胰岛素,向肌肉细胞发出信号,以吸收并利用血液中的葡萄糖。
糖尿病患者的β细胞往往不能产生足够的胰岛素:对于2型糖尿病患者而言,是由于β细胞随着时间的推移而功能下降。对于1型糖尿病患者而言,是由于自身免疫系统发生故障,并攻击、损坏了β细胞。
在一些糖尿病患者中,β细胞衰竭是基因缺陷所导致的结果。在过去的十年里,研究人员发现基因代码中的少数几个地方,一旦发生微小的错误就会干扰身体感应或产生胰岛素的能力。其结果就是医学上所说的“单基因糖尿病”。
这种单基因突变导致的糖尿病远比人们所知的要多。美国纽约哥伦比亚大学Naomi Berrie糖尿病中心的干细胞生物学家Dieter Egli博士指出,大约1%到5%的糖尿病患者属于单基因糖尿病,在全球范围内这个数字以百万计,因此“单基因糖尿病”并不是一种罕见的疾病。
几十年来,替换失去功能的β细胞一直是治疗所有类型糖尿病的“圣杯”(注:代指具有神奇能力的事物)。研究人员已经尝试了从移植胰腺到植入β细胞的多种方法,但是,这些手术的成本很高,因为它们是外来器官、细胞,身体会排斥它们,控制这种免疫排斥反应需要借助强大的免疫抑制药物,或是用某种方法将所移植的β细胞“封装”起来,以瞒过自身免疫系统。
由于单基因糖尿病是单一基因缺陷或突变的结果,新的基因技术为单基因糖尿病患者提供了治愈的希望,甚至一些2型糖尿病患者也有望获得治愈。在美国糖尿病协会(American Diabetes Association,ADA)的资助下,Dieter Egli博士和他的科研团队正在进行单基因糖尿病的研究,特别是对于一些出生时或出生不久后身体就不能产生胰岛素的病例,他们制造出干细胞,借由干细胞再制造某些特定的人体组织,包括β细胞、神经组织等。
然后,他们使用了一种名为“CRISPR-Cas9”的尖端技术,来修复那些阻止β细胞正常工作的基因错误 [1] 。在过去的一年里,这项研究取得了可喜的成果,他们已经能够纠正干细胞的突变,使β细胞重新产生胰岛素。
下一步预期,可将经过修正的 β细胞 重新植入患者体内。因为它们来源于患者自身的细胞,所以可以被身体接受而不需要应用免疫抑制药物,植入后预计能像正常β细胞那样对血糖水平做出反应,并且产生胰岛素。
然而,基因编辑所依托的科学技术太前沿了,以至于还没有被美国食药监局(FDA)批准用于人体试验。为了观察新的β细胞是否能起作用,Dieter Egli博士将修正后的人类β细胞植入β细胞受损的实验动物体内。人们欣喜地看到,通过将β细胞移植到小鼠体内,可以保护缺乏 β细胞 的小鼠免于罹患糖尿病。
Dieter Egli博士说,如果能将修正后的β细胞安全地植入患有单基因糖尿病的人体内,那就相当于治愈了糖尿病。
在基因编辑技术应用于人类之前,还有很多工作要做。一些研究者担心,用于编辑基因突变的技术可能会在其他地方引起意想不到的“偏离目标”的影响。Egli博士表示,“利用老鼠模型是一个很好的开始,但是只有在人类身上进行尝试,我们才能最终得到答案。”
即使Egli博士和其他领域的研究人员能够证明这种基因治疗是安全的,与试纸、血糖仪和胰岛素注射相比,要获得好的成本-效益比,可能还需要一些时间。虽然到那时,患者不再需要支付胰岛素、口服降糖药和其他血糖管理用品的费用,但预计个性化干细胞治疗也可能会花费每位患者数万美元,甚至更多。
据了解,目前在国内也有一些学者在进行相关研究 [2] 。因此,笔者愿意乐观地相信,随着研究的深入、技术的成熟和普及,这种可能会治愈糖尿病的新疗法将会有走出实验室、走近你我身边的那一天。让我们一同拭目以待,继续关注来自这一领域的好消息吧!
参考文献:
[1] Hasegawa Y, Hoshino Y, Ibrahim AE, et al. Generation of CRISPR/Cas9-mediated bicistronic knock-in Ins1-cre driver mice[J]. Exp Anim, 2016,65(3):319-327.
[2] 曹曦,宋丽妮,张怡尘,等. 应用CRISPR/Cas9技术制备MrgD基因敲除小鼠模型[J]. 首都医科大学学报,2018,39(4):517-521.
DOI: 10.1038/s41467-018-05773-6
microhomology-mediated end-joining (MMEJ)
DNA double-strand break (DSB)
local accumulation of DSB repair molecules (LoAD) system
homologous recombination (HR)
non-homologous end-joining (NHEJ)
homology-independent targeted integration (HITI) system
precise integration into target chromosome (PITCh) system
single-strand template repair (SSTR)
Gaps: 以往的研究从未在多个基因组位点同时产生多种模式或多个报告基因的组合。基因插入在每个位点独立进行,在不同的基因位点上进行双或三重敲入需要一定的步骤。
横向比较: CRISPR-Cas9基因标记使用的方法有(1)同源修复HR,(2)非同源end-joining NHEJ,(3)微同源介导的end-joining MMEJ。虽然HR的方法可以非常精准的knockin,但它的载体的构建和效率远低于end-joining的方法。
工作简介 :
[图片上传失败...(image-b8ca62-1554368657582)]
原因在于:MS2可以与RNA结合,从而报告RNA的情况,将MS2与CtIP融合,可将CtIP导向到sgRNA所在的位置,形成一个滞留,发挥CtIP增加MMEJ的功效,从而造成了更多的DNA断裂,插入效率增加。
之前我看过一篇文章,说的是CRISPR-Cas9的效果由于P53的存在而大打折扣,而P53对抗HDR是CRISPR-Cas9造成DSB无法被修复,从而介导了CRISPR-Cas9的细胞毒性。那么就会有以下两种情况:(1)P53存在时,CRISPR-Cas9效果不好,且有细胞毒性;(2)P53敲除时,CRISPR-Cas9效率增加,但有致癌的风险。以此引发临床安全性的思考,提醒在人体上使用CRISPR-Cas9治疗需要注意的安全性问题,从而以一个相对简单的故事,发表在了Nature Medicine上。所以,我们在使用基因编辑工具的时候,需要注意一下它的细胞毒性情况。
老板亲自传授的文献阅读方法
(1)FACS结果显示,没有毒性:首先转入已被证实具有细胞毒性的载体来作为对照,MS2-CtIP组没有对细胞增殖产生影响,而ZFN组有。
(2)如我前面所说,DSB如无法被修复,则是细胞毒性。在这里作者也使用DSB修复实验来代表细胞毒性实验,首先使用依托泊苷诱导DSB,然后使用anti-γ-H2AX染色来查看修复情况,发现MS2-CtIP组DSB修复活性显著高于对照组。
以上结果表明,MS2-CtIP是通过诱导DSB修复来达到低(无)细胞毒性的效果。
我就不写了。。。因为我没看明白,嘤嘤嘤。
第一部分主要讲基因编辑系统的构建及基本情况,接下来就要讲一讲它作为一个基因编辑工具的基本素养了。
太多啦!简单说一下,就是对比了MMEJ和NHEJ它们在精确敲入,非精确敲入和未敲入这三个方面的情况,得到MMEJ几乎完败NHEJ的结论咯。 看看这图画得多漂亮!
回归前面说的Gaps,同时对多个基因进行编辑呢?结果显示是可以高效、准确的对多个基因进行编辑。这部分是灰常灰常棒的。
学习一下人家的思路~
创新点在于MS2的定位效应,MS2-CtIP的增强效应,MMEJ的精巧性。
参考文献: Nakade S, Mochida K, Kunii A, et al. Biased genome editing using the local accumulation of DSB repair molecules system[J]. Nature communications, 2018, 9(1): 3270.
可以。基因基因基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。2015年10月,中国科学家利用基因编辑技术CRISPR/Cas9,对抑制狗骨骼肌生长的基因(MSTN)进行了敲除,培育出两只肌肉发达的“大力神”狗,成功构建了世界首个基因敲除狗模型。
嗨~来看点更专业的回答吧 ♪(・ω・)ノ
CRISPR/Cas基因编辑系统
CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/Cas)系统是目前被广泛运用的基因编辑系统,其原理是由CRISPR转录产生的gRNA介导Cas核酸酶靶向目标序列,对序列进行切割。
CRISPR/Cas9基因编辑示意图
(图源:Wellcome Trust Sanger Institute,Sanger)
CRISPR/Cas基因敲除
CRISPR/Cas9系统中sgRNA(smallguideRNA)识别并结合目标基因的靶向序列,引导Cas9对结合位点进行剪切,产生DNA双链断裂(double-strandbreak,DSB),机体自身通过非同源重组(non-homologousendjoining,NHEJ)的方式修复DSB,参与修复的蛋白经常会在DNA末端插入或删除几个碱基,修复后的基因由于产生突变而导致功能丧失,从而实现机体内的基因敲除。应用:基因敲除细胞系建立、基因敲除建立动物疾病模型。技术优势:相较于在mRNA水平“敲低”目的基因的RNAi而言,CRISPR/Cas9系统造成基因序列的缺失,从而能完全沉默(即敲除)目的基因。
CRISPR/Cas基因敲入
CRISPR/Cas9系统中sgRNA(smallguideRNA)识别并结合目标基因的靶向序列,引导Cas9对结合位点进行剪切,产生DNA双链断裂(double-strandbreak,DSB),通过细胞内的同源重组(homologousrecombination,HR)修复方式,将外源供体DNA定点导入至基因组的靶位点中,从而实现基因敲入。应用:基因片段敲入细胞系建立、基因单碱基突变细胞系建立、基因敲入建立动物疾病模型。技术优势:操作简易、效率高、具有广谱性且提供BSL-1和BSL-2病毒注射及实验操作平台。
CRISPR/dCas9调控内源基因的转录激活与抑制
CRISPR-dCas9系统即是dCas9与转录激活因子(如VP64)或转录抑制因子(如KRAB)融合后,结合sgRNA能促进或抑制目的基因的表达。应用:目的基因在内源环境中过表达、诱导iPSC、抑制表达等。技术优势:操作简易、效率高、具有广谱性且提供BSL-1和BSL-2病毒注射及实验操作平台,同时可与RNAi联合作用。
==========================
如果您正在研究或者学习神经科学,生物病毒,基因治疗等方向,或是正在使用各类工具病毒做科研实验,可以百度搜索 布林凯斯braincase,官网上有更详细的案例分析和专业解读哦~
基因编辑是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。目前最高效最常用的基因编辑方法是利用CRISPR/Cas9技术进行体内体外的基因编辑。这个系统的原理是利用gRNA特异性识别靶序列,并引导Cas9核酸内切酶对靶序列的PAM上游进行切割,从而造成靶位点DNA双链断裂,随之利用细胞的非同源末端连接(NHEJ)或同源重组(HDR)的方式对切割位点进行修复,实现DNA水平的敲除、敲入或点突变。
你好,很高兴为你解答:
基因编辑什么意思基因编辑,又称基因组编辑或基因组工程,是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。基因编辑技术指能够让人类对目标基因进行定点“编辑”,实现对特定DNA片段的修饰。基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂(DSB),诱导生物体通过非同源末端连接(NHEJ)或同源重组(HR)来修复DSB,因为这个修复过程容易出错,从而导致靶向突变。
基因编辑已经开始应用于基础理论研究和生产应用中,这些研究和应用,有助于生命科学的许多领域,从研究植物和动物的基因功能到人类的基因治疗。下面主要介绍基因编辑在动植物上的应用。
动物基因的靶向修饰基因编辑和牛体外胚胎培养等繁殖技术结合,允许使用合成的高度特异性的内切核酸酶直接在受精卵母细胞中进行基因组编辑。 CRISPR -Cas9进一步增加了基因编辑在动物基因靶向修饰的应用范围。CRISPR-Cas9允许通过细胞质直接注射(CDI)从而实现对哺乳动物受精卵多个靶标的一次性同时敲除(KO)。单细胞基因表达分析已经解决了人类发育的转录路线图,从中发现了关键候选基因用于功能研究。使用全基因组转录组学数据指导实验,基于CRISPR的基因组编辑工具使得干扰或删除关键基因以阐明其功能成为可能。植物基因的靶向修饰植物基因的靶向修饰是基因编辑应用最广泛的领域。首先可以通过修饰内源基因来帮助设计所需的植物性状。例如,可以通过基因编辑将重要的性状基因添加到主要农作物的特定位点,通过物理连接确保它们在育种过程中的共分离,这又称为“性状堆积”。其次,可以产生耐除草剂作物。比如,使用ZFN辅助的基因打靶,将两种除草剂抗性基因(烟草乙酰乳酸合成酶SuRA和SuRB)引入作物 。再次,可以用来防治各种病害如香蕉的条纹病毒。此外,基因编辑技术还被应用于改良农产品质量,比如改良豆油品质和增加马铃薯的储存潜力。
你说的基因编辑的话,是指分子生物学相关的实验操作。专业的话分子生物学,其实其他专业也会应用到这样的实验操作,什么微生物学啊等等。本科生有些也会做些分子相关的实验操作。硕士会做,博士的话会做得更深入。
什么是基因编辑技术
基因编辑又称基因组编辑或基因组工程是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。
基因编辑,就是基因工程么,哎,现在的专业名词真实哗众取宠啊...如果科研单位,这个答案是必须的,学历越高越好。如果是公司,这个你本科就可以,就像社会招聘了,不过有些科研单位也有社会招聘。我有同学分别在在中科院和华生科技,所以楼主的问题我可以解答。另外,如果你对科研没有很大兴趣,转行也无不可。
生物基因工程论文参考文献汇总 生物基因工程论文参考文献怎么写?有哪些格式要求,下面我就为大家推荐一些优秀的范例,希望大家喜欢![1] Brackett B G, Baranska W, Sawicki W,et al. Uptake of heterologous genome by mammalianspermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA,1971,68(2):353-357. [2] Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived frompreimp antation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 1974,71 (4): 1250-1254. [3] Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggsmicroinjected with metallothionein-growth hormone fusion genes. Nature, 1982,300(5893):611-615. [4] 李宁.动物克隆与基因组编辑.中国农业大学出版社,2012. [5] Hammer R E, Pursel V G, Rexroad C J, et al. Production of transgenic rabbits, sheep and pigs bymicroinjection. Nature, 1985,315(6021):680-683 [6] 杜伟,崔海信,王 琰 ,等.精子载体法制备转基因动物的'研究进展.生物技术通报,2012(12):13-18. [7] Maione B,Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice. Mol ReprodDev, 1998,50(4):406-409. [8] Lavitrano M, Bacci M L, Forni M, et al. Efficient production by sperm-mediated gene transfer ofhuman decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Matl Acad SciUSA, 2002,99(22):14230-14235. [9] Sperandio S, Lulli V,Bacci M L, et al. Sperm - mediated DNA transfer in bovine and swinespecies. Animal biotechnology, 1996,7(1):59-77. [10] 武坚,刘明军,李文蓉,等.精子载体介导法生产转基因绵羊的研究.草食家畜,2001(S2):186-190. [11] Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis inliving animals by fluorescence imaging. Mol Ther,2001,3(3):319-322. [12] Lois C, Hong E J, Pease S, et al. Germline transmission and tissue-specific expression oftransgenes delivered by lentiviral vectors. Science, 2002,295(5556):868-872. [13] Hofmann A, Kessler B, Ewerling S,et al. Efficient transgenesis in farm animals by lentiviralvectors. EMBO Rep, 2003,4( 11): 1054-1060. [14] Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgenic cattle by lentiviral genetransfer into oocytes’ Biol Reprod, 2004,71 (2):405-409 [15] Lillico S G, Sherman A, McGrew M J,et al. Oviduct-specific expression of two therapeuticproteins in transgenic hens. Proc Natl Acad Sci USA,2007,104(6): 1771-1776. [16] Lyall J,Irvine R M, Sherman A, et al. Suppression of avian influenza transmission in geneticallymodified chickens. Science,2011,331(6014):223-226. [17] Golding M C, Long C R,Carmell M A, et al. Suppression of prion protein in livestock by RNAinterference. Proc Natl Acad Sci USA, 2006,103(14):5285-5290. [18] 杨春荣,窦忠英.利用干细胞生产转基因动物研究进展.西北农林科技大学学报(自然科学版),2006(07):37-40. [19] Hai T, Teng F,Guo R, et al. One-step generation of knockout pigs by zygote injection ofCRISPR/Cas system. Cell Res, 2014,24(3):372-375. [20] Hongbing H, Yonghe M A, Tao W, et al. One-step generation of myostatin gene knockout sheepvia the CRISPR/Cas9 system. Frontiers of Agricultural Science and Engineering, 2014,1(1):2-5. [21] Swanson M E,Martin M J, O'Donnell J K, et al. Production of functional human hemoglobin intransgenic swine. Biotechnology (N Y),1992,10(5):557-559. [22] Zbikowska H M,Soukhareva N, Behnam R, et al. Uromodulin promoter directs high-levelexpression of biologically active human alpha 1-antitrypsin into mouse urine. Biochem J, 2002,365(Pt1):7-11. [23] Golovan S P,Hayes M A, Phillips J P,et al. Transgenic mice expressing bacterial phytase as amodel for phosphorus pollution control. Nat Biotechnol, 2001,19(5):429-433. [24] Rapp J C, Harvey A J, Speksnijder G L, et al. Biologically active human interferon alpha-2bproduced in the egg white of transgenic hens. Transgenic Res, 2003,12(5):569-575. [25] Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1 -antitrypsin inthe milk of transgenic sheep. Biotechnology (N Y), 1991,9(9):830-834. [26] Li S, Ip D T, Lin H Q, et al. High-level expression of functional recombinant humanbutyrylcholinesterase in silkworm larvae by Bac-to-Bac system. Chem Biol Interact,2010,187(1-3):101-105. [27] 刘英,张瑞君,伍志伟,等.转基因疾病动物模型的研究进展.动物医学进展,2006(12):44-49. [28] Kragh P M, Nielsen A L, Li J, et al. Hemizygous minipigs produced by random gene insertion andhandmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res,2009,18(4):545-558. [29] Lee M K, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson'sdisease-linked Ala-53 Thr mutation causes neurodegenerative disease with alpha-synucleinaggregation in transgenic mice. Proc Natl Acad Sci USA, 2002,99(13):8968-8973. ;
生物教学论文参考文献
生物教学论文参考文献有哪些呢?生物教学论文参考文献是毕业论文的重要的组成部分。欢迎阅读我整理的生物教学论文参考文献,希望能够帮到大家。
1、生物教学论文参考文献
[1]刘冬.关于做好初高中生物教学衔接的思考[J].新课程(教师版),2011(1).
[2]杨茜.浅谈高中生物与初中生物教学的衔接[J].小作家选刊(教学交流),2014(8).
[3]马淑霞.浅谈交互式电子白板在初中生物教学中的应用[J].学周刊,2014(14).
[4]刘闯,陈娟.交互式电子白板在课堂教学中的应用优势[J].教学仪器与实验,2010(10).
[5]邵永刚,赵林川.构建互动生物课堂———交互式电子白板在初中生物教学中的运用[J].中国教育信息化,2012,16:54-56.
[6]杨滨,任新英.基础教育阶段交互式电子白板教学应用现状及发展研究[J].电化教育研究,2014,06:71-77.
2、生物教学论文参考文献
[1]蒋丽丽.浅议初中生物实验教学中的“说”[J].新课程导学,2014(20).
[2]张俊梅.新课标下农村初中生物实验教学面临的挑战和应对策略[J].中学教学参考,2011(11).
[3]赵晓君.初中生物探究性实验教学之我见[J].关爱明天,2015,(1):161-161.
[4]赵秀娟.浅谈目前农村初中生物实验教学现状[J].中华少年:研究青少年教育,2012,(15):343-343.
[5]钱顺虎.对初中生物课堂教学有效性策略的研究[J].新课程中学,2013(5):173.
[6]郭荣满.关于初中生物概念教学的现状与有效策略研究[J].教育教学论坛,2014(12):60-61.
[7]田庆森.初中生物实验教学面临的困难及对策浅析[J].软件(教育现代化)(电子版),2015,(11):285-285.
[8]杨美晶.边疆地区初中生物学实验面临的`困难及对策[J].生物学教学,2009,34(8):53-54.
[9]刘宏.初中生物实验课教学初探[J].中华少年(研究青少年教育),2011.
[10]黄胜.新课程理念下的初中生物实验教学初探[J].中国校外教育(基教版),2010.
[11]孙炳军.初中生物实验教学对策研究[J].中学生数理化(教与学),2015(12).
[12]曾瑞清.初中生物实验有效教学策略研究[J].考试周刊,2013(83).
[13]刘欣.初中生物生活化教学的策略研究[J].考试周刊,2012(57):148-149.
[14]谭启鹏.新课程背景下初中生物有效教学策略的研究[J].学周刊:b,2011(12):28-29.
3、生物教学论文参考文献
[1]徐芳英.初中生物分层教学策略研究[J].课程教育研究:学法教法研究,2015(1):69.
[2]黄敏.初中生物分层教学策略探究[J].新课程研究旬刊,2016(1).
[3]黄鹤.初中生物学科探究教学现状分析[D].东北师范大学,2012.
[4]王飞.初中生物教学现状研究与对策探析[J].教育教学论坛,2013(43).
[5]黄月欢.当前初中生物教学现状分析及建议[J].新课程研究(下旬刊),2013(2).
[6]谢小荣.重视初中生物教学中问题情境的创设[J].江苏教育学院学报(自然科学版),2010(5):9-10,17.
[7]笪春梅.初中生物教学中如何创设问题情境[J].理科考试研究,2015(18):91.
[8]徐远群.试谈情境创设在初中生物教学中的应用[J].中国校外教育,2011(19):46.
拓展内容: 生物基因工程论文的参考文献
[1] Brackett B G, Baranska W, Sawicki W,et al. Uptake of heterologous genome by mammalianspermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA,1971,68(2):353-357.
[2] Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived frompreimp antation blastocysts injected with viral DNA. Proc Natl Acad Sci USA, 1974,71 (4): 1250-1254.
[3] Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggsmicroinjected with metallothionein-growth hormone fusion genes. Nature, 1982,300(5893):611-615.
[4] 李宁.动物克隆与基因组编辑.中国农业大学出版社,2012.
[5] Hammer R E, Pursel V G, Rexroad C J, et al. Production of transgenic rabbits, sheep and pigs bymicroinjection. Nature, 1985,315(6021):680-683
[6] 杜伟,崔海信,王琰,等.精子载体法制备转基因动物的研究进展.生物技术通报,2012(12):13-18.
[7] Maione B,Lavitrano M, Spadafora C, et al. Sperm-mediated gene transfer in mice. Mol ReprodDev, 1998,50(4):406-409.
[8] Lavitrano M, Bacci M L, Forni M, et al. Efficient production by sperm-mediated gene transfer ofhuman decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Matl Acad SciUSA, 2002,99(22):14230-14235.
[9] Sperandio S, Lulli V,Bacci M L, et al. Sperm - mediated DNA transfer in bovine and swinespecies. Animal biotechnology, 1996,7(1):59-77.
[10] 武坚,刘明军,李文蓉,等.精子载体介导法生产转基因绵羊的研究.草食家畜,2001(S2):186-190.
[11] Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis inliving animals by fluorescence imaging. Mol Ther,2001,3(3):319-322.
[12] Lois C, Hong E J, Pease S, et al. Germline transmission and tissue-specific expression oftransgenes delivered by lentiviral vectors. Science, 2002,295(5556):868-872.
[13] Hofmann A, Kessler B, Ewerling S,et al. Efficient transgenesis in farm animals by lentiviralvectors. EMBO Rep, 2003,4( 11): 1054-1060.
[14] Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgenic cattle by lentiviral genetransfer into oocytes’ Biol Reprod, 2004,71 (2):405-409
[15] Lillico S G, Sherman A, McGrew M J,et al. Oviduct-specific expression of two therapeuticproteins in transgenic hens. Proc Natl Acad Sci USA,2007,104(6): 1771-1776.
[16] Lyall J,Irvine R M, Sherman A, et al. Suppression of avian influenza transmission in geneticallymodified chickens. Science,2011,331(6014):223-226.
[17] Golding M C, Long C R,Carmell M A, et al. Suppression of prion protein in livestock by RNAinterference. Proc Natl Acad Sci USA, 2006,103(14):5285-5290.
[18] 杨春荣,窦忠英.利用干细胞生产转基因动物研究进展.西北农林科技大学学报(自然科学版),2006(07):37-40.
[19] Hai T, Teng F,Guo R, et al. One-step generation of knockout pigs by zygote injection ofCRISPR/Cas system. Cell Res, 2014,24(3):372-375.
[20] Hongbing H, Yonghe M A, Tao W, et al. One-step generation of myostatin gene knockout sheepvia the CRISPR/Cas9 system. Frontiers of Agricultural Science and Engineering, 2014,1(1):2-5.
[21] Swanson M E,Martin M J, O'Donnell J K, et al. Production of functional human hemoglobin intransgenic swine. Biotechnology (N Y),1992,10(5):557-559.
[22] Zbikowska H M,Soukhareva N, Behnam R, et al. Uromodulin promoter directs high-levelexpression of biologically active human alpha 1-antitrypsin into mouse urine. Biochem J, 2002,365(Pt1):7-11.
[23] Golovan S P,Hayes M A, Phillips J P,et al. Transgenic mice expressing bacterial phytase as amodel for phosphorus pollution control. Nat Biotechnol, 2001,19(5):429-433.
[24] Rapp J C, Harvey A J, Speksnijder G L, et al. Biologically active human interferon alpha-2bproduced in the egg white of transgenic hens. Transgenic Res, 2003,12(5):569-575.
[25] Wright G, Carver A, Cottom D, et al. High level expression of active human alpha-1 -antitrypsin inthe milk of transgenic sheep. Biotechnology (N Y), 1991,9(9):830-834.
[26] Li S, Ip D T, Lin H Q, et al. High-level expression of functional recombinant humanbutyrylcholinesterase in silkworm larvae by Bac-to-Bac system. Chem Biol Interact,2010,187(1-3):101-105.
[27] 刘英,张瑞君,伍志伟,等.转基因疾病动物模型的研究进展.动物医学进展,2006(12):44-49.
[28] Kragh P M, Nielsen A L, Li J, et al. Hemizygous minipigs produced by random gene ion andhandmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res,2009,18(4):545-558.
[29] Lee M K, Stirling W, Xu Y, et al. Human alpha-synuclein-harboring familial Parkinson'sdisease-linked Ala-53 Thr mutation causes neurodegenerative disease with alpha-synucleinaggregation in transgenic mice. Proc Natl Acad Sci USA, 2002,99(13):8968-8973.