首页

> 学术发表知识库

首页 学术发表知识库 问题

仿生学应用的论文

发布时间:

仿生学应用的论文

人类通过仿生学而发明了声纳系统,声纳是英文缩写“SONAR”的音译,其中文全称为:声音导航与测距,是利用声波在水下的传播特性,通过电声转换和信息处理对水下目标进行探测、定位和通信的电子设备。分主动式和被动式两种类型,属于声学定位的范畴。声纳是水声学中应用广泛的装置。是1906年由英国海军的刘易斯·尼克森所发明。他发明的第一部声纳仪是被动式的聆听装置,主要用来侦测冰山。这种技术,到第一次世界大战时被应用到战场上侦测藏在水底的潜水艇。 科学家在研究海豚中发现,海豚依赖回声定位进行捕食,甚至可以用高声强击晕猎物。海豚使用频率在200-350千赫以上的超声波的进行“回音定位”, 海豚之间的联络在海水用声波传递信息,海豚叫声是海豚同类间互通消息低频段声音。海豚声呐的灵敏度很高,能发现几米以外直径0.2mm的金属丝和直径lmm的尼龙绳,能区别开只相差200卜s时间的两个信号,能发现几百米外的鱼群,能遮住眼睛在插满竹竿的水池子中灵活迅速地穿行而不会碰到竹竿;海豚声呐的“目标识别”能力很强,不但能识别不同的鱼类,区分开黄铜、铝、电木、塑料等不同的物质材料,还能区分开自己发声的回波和人们录下它的声音而重放的声波;海豚声呐的抗干扰能力也是惊人的,如果有噪声干扰,它会提高叫声的强度盖过噪声,以使自己的判断不受影响;而且,海豚声呐还具有感情表达能力,已经证实海豚是一种有“语言”的动物,它们的“交谈”正是通过其声呐系统。尤其是仅存于世的四种淡水豚中最珍贵的一种-我国长江中下游的白鳍豚,它的声呐系统“分工”明确,有为定位用的,有为通讯用的,有为报警用的,并有通过调频来调制位相的特殊功能。

乌贼和鱼雷诱饵 乌贼体内的囊状物能分泌黑色液体,遇到危险时它便释放出这种黑色液体,诱攻击者上当。潜艇设计者们仿效乌贼的这一功能读者设计出了鱼雷诱饵。鱼雷诱醋似袖珍潜艇,可按潜艇的原航向航行,航速不变,也可模拟噪音、螺旋节拍、声信号和多普勒音调变化等。正是它这种惟妙惟肖的表演,令敌潜艇或攻击中的鱼雷真假难辩,最终使潜艇得以逃脱。 蜘蛛和装甲 生物学家发现蜘蛛丝的强度相当于同等体积的钢丝的5倍。受此启发,英国剑桥一所技术公司试制成犹如蜘蛛丝一样的高强度纤维。用这种纤维做成的复合材料可以用来做防弹衣、防弹车、坦克装甲车等结构材料。 长颈鹿和“抗荷服” 长颈鹿是目前世界上最高的动物,其大脑和心脏的距离约3米,完全是靠高达160~260毫米汞柱的血压把血液送到大脑的。按一般分析,当长颈鹿低头饮水时,大脑的位置低于心脏,大量的血液会涌入大脑,使血压更加增高,那么长颈鹿会在饮水时得脑充血或血管破烈等疾病而死。但是裹在长颈鹿身上的一层、厚皮紧紧箍住了血管,限制了血压,飞机设计师和航空生物学家依照长颈鹿皮肤原理,设计出一种新颖的“抗荷服”,从而解决了超高速歼击机驾驶员在突然加速爬升时因脑部缺血而引起的痛苦。这种“抗荷服”内有一装置,当飞机加速时可压缩空气,也能对血管产生相应的压力,这比长颈鹿的厚皮更高明了。 鲸鱼和潜艇的“鲸背效应” 当代核潜艇能长时间潜航于冰海之下,但若在冰下发射导弹,则必须破冰上浮,这就碰到了力学上的难题。潜舴专家从鲸鱼每隔10分钟必须破冰呼吸一次中得到启迪,在潜艇顶部突起的指挥台围壳和上层建筑方面,作了加强材料力度和外形仿鲸背处理,果然取得了破冰时的“鲸背效应”。 蝴蝶和卫星控温系统 遨游太空的人造卫星,当受到阳光强烈辐射时,卫星温度会高达200摄氏度;而在阴影区域,卫星温度会下降至零下200摄氏度左右,这很容易烤坏或冻坏卫星上的精密仪器仪表,它一度曾使航天科学家伤透了脑筋。后来,人们从蝴蝶身上受到启迪。原来,蝴蝶身体表面生长着一层细小的鳞片,这些鳞片有调节体温的作用。每当气温上升、阳光直射时,鳞片自动张开,以减少阳光的辐射角度,从而减少对阳光热能的吸收;当外界气温下降时,鳞片自动闭合,紧贴体表,让阳光直射鳞片,从而把体温控制在正常范围之内。科学家经过研究,为人造地球卫星设计了一种犹如蝴蝶鳞片般的控温系统。

请看 义务教育小学四年级下册

hjkhrrrvbahrbgrihejgnjg

纳米材料仿生学应用论文

纳米材料的特点和用途论文如下当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。

2008年8月Angewandte Chemie杂志报道了澳大利亚莫纳什大学的利昂·斯皮西亚、罗宾·布里姆布来可比和安妮特·可罗,澳大利亚联邦科学与工业研究组织(CSIRO)的格哈德·斯伟格斯和美国普林斯顿大学的查尔斯·迪斯莫克斯共同开发了由一层涂层和维持植物光合作用的基本化学物质——锰组成的系统。该系统可模拟植物的光合作用,为利用阳光将水分解成氢和氧开辟了一条新途径。此项技术突破有望革新制氢工艺,从而利用太阳光大规模生产清洁的绿色能源——氢气。光合作用是植物、藻类和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为有机物,并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是赖以生存的关键,而在面临能源和环境瓶颈的今天,这一过程中的能量转换也为人类提供了极其重要的启示。由于自然光谱的吸收率等原因,光合作用在多数植物中效率非常低,通常均低于0.5%。在人工设计的系统中,研发人员借鉴其光反应与电子传递的机制,并提高通量转化的效率,使其适于太阳能的转化利用。事实上,在上述模拟光合作用的研究取得突破前,微生物制氢的已经成为了研究热点。自然界已发现有类似甲烷菌的制氢菌,但其菌种繁育不如甲烷菌那样简单。若能建立合适的菌种群落,制造氢气也会像制造沼气一样得到大规模应用。模拟光合作用制氢或者微生物制氢过程正是仿生学“向自然学习”的思想典型。20世纪40年代以来,工程技术领域中出现了调节理论,人们开始在一般意义上把生物与机器进行类比,认识到二者包含自动调节系统。此后,科学研究和生产实践完全证实了生物和机器在许多问题上的共同之处。而控制论则把生物科学和工程技术从理论上联系起来,成为在原理上沟通生物系统与技术系统的桥梁,奠定了生物与机器在控制与通信方面进行类比的科学理论基础。之后,斯蒂尔提出了仿生学的研究理念。自上个世纪末以来,人们认识到大约35亿年的生命演化与协同进化过程优化了生物体宏观与微观结构,形态与功能具有无可比拟的优越性,仿生学也因此显示出巨大的生命力。从研究模式上看,仿生学作为模仿生物建造技术装置的科学,是一门新兴的边缘科学,研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和设备,创造新技术。模拟光合作用制氢过程的例子很好地诠释了这一点。在植物的光合作用中,锰参与几种酶系统。由于锰可以在正二价和正四价两种化合价之间转换,所以主要在氧化还原和电子转移中发挥作用。这一思想为斯皮西亚等人的研究提供了启发。他们在确定锰簇是植物利用水、二氧化碳和阳光制造碳水化合物和氧气的中心枢纽后,开发出这种人造锰簇,并利用这些分子的能力将水分解成氢和氧。研究者将一层质子导体――Nafion薄膜覆盖在一个电极上,形成一层仅几微米厚的聚合体膜,这层聚合体膜充当锰簇的载体。锰在正常情况下不溶解于水,但可以和Nafion薄膜小孔中的催化剂结合,形成不易分解的稳定结构,当水到达此催化剂时,在阳光的照射下便发生氧化反应。在能源和环境领域,这一技术显示了仿生技术的巨大应用潜力和价值。初步测试表明,此催化剂连续使用3天之后还有活性,由此分解出来的氢气和氧气可以在燃料电池中结合成水,产生电力供住宅和电动车全天24小时使用,且不排放碳而是排放水。虽然此系统的效率还有待提高,但研究者可以不断地从自然界中学习,使之更为高效,从而使氢这一能效高且没有碳排放的绿色清洁能源为未来社会所用。生物体的电子传递过程在能源仿生技术上的另一重点研究领域是生物发光。生物发光和光合作用都是“电子传递”现象,而从某个角度上看,生物发光可以看作是光合作用的逆反应。光合作用是绿色植物吸取环境中的二氧化碳和水分,在叶绿体中,利用太阳光能合成碳水化合物,同时放出氧气。光能从水分子上释放电子,并把电子加到二氧化碳上,产生碳水化合物,这是一个还原过程。光合作用把光能转变成化学能,而生物发光是电子从荧光素分子上脱下来和氧化合,形成水,产生光。生物发光是将化学能转变成光能。生物光作为冷光源,具有效能高、效率大、不发热、不产生其它辐射、不会燃烧、不产生磁场等特点,对于手术室、实验室、易燃物品库房、矿井以及水下作业等,都是一种安全可靠的理想照明光源。通过模仿发光生物把一种形式的能量转换成另一种形式的能量,制造冷光板使其不需要复杂的电路和电力,就能白天吸收太阳光,晚上再将光能释放。人们先是从发光生物中分离出纯荧光素,后来又分离出荧光酶。现在已能人工合成荧光素,这就使人类模仿生物发光,创造一种新的高效光源——冷光源成为可能。然而,人们对于萤火虫等发光机制的研究仍然有待深入。如果将光合作用和生物发光机制在仿生学框架下同时加以研究,就有可能在能量利用的电子传递现象中取得进展,从而实现能源利用更为巨大的进步。从仿生学的诞生、发展,到现在短短几十年的时间内,研究成果已经非常可观。仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力,在能源技术上的应用潜力也极其巨大,有助于破解人们所面临的能源瓶颈问题,同时解决石化能源等所带来的环境问题。

仿生学在汽车设计上的应用论文

[摘要]本文中研究了凹坑型非光滑车身表面的减阻特性.首先探讨了凹坑单元体矩形、菱形、等差等不同排列方式的减阻效果,选取了减阻效果较好的矩形排列方式;然后以单元体直径D、横向间距W和纵向间距L为设计变量,以气动阻力最小为目标,采用拉丁方试验设计方法进行优化;接着利用CFD仿真得到各样本点的响应值,并据此建立Kriging近似模型;最后在验证了近似模型的可信度基础上,以近似模型进行全局优化:结果表明:凹坑单元体矩形排列最大可达7. 62%的减阻效果。关键词:汽车;凹坑型非光滑表面;减阻;CFD仿真;Kriging模型;优化Analysis and Optimization on the Drag Reduction Characteristics of Car with Pit-type Non-smooth Surface[Abstract]Drag reduction characteristic of pit-type non-smooth car body surface is studied in this paper. Firstly the drag reduction effects of rectangle, thombus and equal-different pit arrangement are investigated, and the rectangular arrangement with better drag reduction effect is chosen. Then an optimization by the design of experiment with Latin Hypercube scheme is performed with the diameter and longitudinal and transverse spacing of pit as design variables and minimizing drag as objective. Next, the responses of different sample points are obtained by CFD simulation, and based on which a Kriging metamodel is built. Finally after the confidence of metamodel is verified a global optimization with the metamodel is conducted. The results show that a maximum drag reduction effect up t0 7.62% can be achieved with rectangular pit arrangement.Keywords: car; pit-type non-smooth surface; drag reduction; CFD simulation; Kriging model; optimization前言日前汽车空气动力学的气动阻力特性优化主要通过车身的流线形化和局部改进等方法来实现,由于这些方法研究日益成熟,降低阻力的空间越来越小,汽车减阻进入一个瓶颈期。近年来,基于工程仿生学理论的凹坑型非光滑表面结构的减阻研究迅速发展。其中最典型的应用便是高尔夫凹坑球面。高尔夫球在飞行过程中由于凹坑的存在使空气形成的边界层紧贴球的表面,使平滑的气流顺着球形多往后走一些,延迟了边界层与球体的分离,减小了尾流区,减少了前后的压差阻力,从而使凹坑型球面的高尔夫球比光滑球面的高尔夫球飞得更远。受其启发,本文中将凹坑型非光滑表面运用在汽车表面上,并通过CFD数值仿真,研究其减阻效果。首先研究了凹坑单元体不同排列方式对汽车减阻效果的影响;然后以减阻效果最佳的排列方式为基础,选取相关设计变量,运用拉丁方试验设计方法选出样本点;接着建立了Kriging近似模型-3-;最后通过多岛遗传算法对近似模型进行全局寻优。1 原车模型CFD计算与试验验证1.1计算模型的建立采用UG软件建立了某轿车1:1的实车模型。对模型进行了适当的简化,忽略了门把手、雨刮器、雨水槽等,同时对底盘进行了平整化处理,从而提高了分析效率。轿车模型的长×宽×高分别为5 088×2 036x1 497( mm),整车模型如图1所示。1.2建立计算网格及求解整车计算域为一围绕车身的长方体,人口距模型前端3倍车长,出口距模型后端7倍车长,总高度为5倍车高,总宽度为7倍车宽。采用ANSYS ICEM CFD软件生成非结构化的四面体网格,在车身要凹坑非光滑处理的表面上进行网格加密,以便更加准确地获取所需的流场信息,同时在车身表面拉伸出与其平行的三棱柱网格作为附面层,以消除壁面函数的影响。为避免网格差异对仿真结果的影响,在仿真过程中,保持棋型相同部分的网格尺寸不变。每次模拟生成的整车总网格数约为360多万。边界条件的设置如下:计算域入口设置为速度人口边界,速度为40m/s,计算域出口为压力出口边界,车身表面设置为无滑移壁面边界条件,计算域地板设置为移动壁面边界条件,计算域上表面及左右侧面均为滑移壁面边界条件。选用Relizable k-ε湍流模型,采用二阶迎风格式进行离散求解,计算域温度为常温进行CFD稳态仿真计算。1.3风洞试验验证通过风洞试验来验证边界条件和湍流模型设置的准确性。试验模型根据CAD模型通过数控加工中心加工成1:3的模型,从而保证了试验用物理模型与数值仿真用CAD模型的一致性。在湖南大学风工程试验研究中心HD-2风洞中进行测力试验,用六分力浮框式测力天平测量模型的气动力。试验风速为40 m/s,启动地面附面层抽吸装置,消除了由于风洞试验引起的地面边界层的影响。轿车模型风洞试验如图2所示。通过风洞试验测得模型的风阻系数CD,并将CFD仿真结果与试验进行对比,如表1所示。风阻系数的相对误差为3. 86%,在工程允许误差5%以内,从而验证了数值仿真的可靠性。2 非光滑处理区域的选定与单元体尺寸的估算非光滑处理区域应该选在能较好控制尾流区的表面,以减小湍能损失和压差阻力,而车身顶盖是对尾流区域影响最大的表面,故本文中主要研究对车身顶盖进行凹坑非光滑处理后的减阻效果,凹坑非光滑区域如图3所示。有关研究表明,无论是气流分离所引起的压差阻力还是由于气体的黏性作用而引起的摩擦阻力,它们总是和边界层及其厚度有关。仿生非光滑减阻方法的实现途径就是通过对边界层的控制来减少湍流猝发强度,减小湍动能的损失。可见,非光滑结构的选择应该和边界层有关,非光滑单元体的尺寸高度或深度应该小于车身表面到对数律区之间的距离。目前国际上关于凹坑减阻的研究仍然较少,没有形成理论体系。因此,在研究初期凹坑型单元体尺寸主要是根据边界层的厚度来确定。平板层流边界层的厚度计算公式为3 凹坑结构尺寸设计与排列方式3.1 凹坑结构尺寸设计在进行凹坑型单元体排列时主要考虑单元体的尺寸:直径D、横向间距W、纵向间距L和凹坑深度S,见图4。为了设计与排列方便,取深度S为直径D的一半。根据计算模型最大边界层厚度、车身顶盖的尺寸、汽车行驶速度和凹坑单元体之间防干涉的要求,给定D、W、L和S的取值范围分别为[10,40]、[60,160]、[60,160]和[5,20],单位为mm。3.2 凹坑单元体排列方式的影响根据大量的仿生学实验可知,例如土壤动物蜣螂在土中运动自如一方面得益于其体表的非光滑单元体凹坑形状,另一方面得益于其凹坑单元体的排列方式。为此在研究凹坑型非光滑车身表面的减阻性能时,要考虑其排列方式的影响。本文中选取了常见的3种排列方式:矩形排列、菱形排列和等差排列,如图5所示。本文中选取D= 15mm,形=120mm.£=120mm.对这3种排列方式进行CFD仿真,其结果见表2。由表2可知,3种凹坑型单元体排列方式中矩形排到减阻效果最佳,降阻率达2. 13%。4 凹坑型非光滑表面优化设计4.1 优化流程与设计变量的选取根据3种排列方式的CFD仿真结果知,矩形排列方式减阻效果最佳,故以矩形排列凹坑型非光滑表面作为优化对象。整个分析与优化过程如下:(1)确定设计变量,使用拉丁方设计方法选取样本点;(2)通过CFD仿真得出各样本点的响应值,并以样本点和响应值构建近似模型;(3)选取3组新的样本点验证近似模型的精度,若不精确则须重新选取样本点;(4)在验证近似模型可信度的基础E,利用优化算法在满足约束条件的区域内实现全局寻优,得到最优解,最后再回代到仿真模型中校核计算,如图6所示。以D、W和L为设计变量,寻求最优的组合,以达到最大的减阻效果,即求得最小CD值。4.2试验设计 ,根据设计变量的取值范围,采用拉丁方抽样方法。选取20组样本点进行CFD模拟计算,得到20组响应值。各设计变量对CD值的影响关系如图7所示,D等表示单个设计变量对CD的影响,D-W等表示两个变量对CD交互影响,D�0�5等表示设计变量平方对CD的影响。从图7可见,对CD影响最大的设计变量是L,D次之,W影响最小。D与形之间的交互效应最为明显,L和D次之,形和£之间的交互效应最小。虽然W对气动阻力的影响较小,但是W与其他参数之间交互效应对CD的影响不能忽视。4.3近似模型的建立近似模型是指在不降低计算精度情况下构造的一个计算量小、计算周期短,但计算结果与数值分析或物理实验结果相近的数学模型;用于代替计算代价高昂的仿真分析软件,大幅提高分析效率,同时剔除仿真软件的“计算噪声”。用于构建近似模型的方法主要有:响应面模型、Kriging模型、径向基神经网络模型和泰勒级数模型等。与其他模型相比,Kriging模型构建的近似面可以覆盖所有的样本点,近似面质量很高,因此采用Kriging模型构建近似模型。为r检验所建立的近似模型的拟合精度,在设计空间中选取试验设计方案外的任意3个实验点进行CFD仿真,并与近似模型的计算结果进行对比,如表3所示。由表3可知,验证点的CFD值与近似模型值相差均在2%以内,这表明所建立的近似模型可以很好地描述设计变量与响应值之间的关系,可信度较高,可取代直接的CFD计算。4.4优化结果与分析多岛遗传算法(multiple island genetic algorithm,MIGA)建立在传统遗传算法基础上。它小同于传统遗传算法的特点是:每个种群的个体被分成几个子群,这些子群称为“岛”:传统遗传算法的所有操作,例如:选择、交叉、变异分别在每个岛上进行,每个岛上选定的个体定期地迁移到另外岛上,然后继续进行传统遗传算法操作。迁移过程由迁移间隔和迁移率这两个参数进行控制。迁移间隔表示每次迁移的代数,迁移率决定在一次迁移过程中每个岛上迁移的个体数量的百分比。多岛遗传算法中的迁移操作保持了优化解的多样性,提高了包含全局最优解的机会。本文中采用多岛遗传算法对所建立的近似模型进行寻优,初始种群个数为50,岛数为10,迭代代数为100,最终得出近似模型最优解为D= 40mm,W=100mm,L=69mm。对得到的最优解进行CFD仿真,相对误差为0. 80%。对车身表面进行凹坑型非光滑处理后,最大的降阻率可达7. 62 %,其具体数值见表4。图8和图9分别给出了原车与优化后的汽车尾部压力云图和速度流线图。对比图8和图9可以看出,优化后汽车尾部的负压区域明显减小,正压区显著增大,进而减小了前后压差阻力,同时改善了尾部的涡流,减小了车辆的气动阻力,降低了汽车的燃油消耗。5结论(1)在车身表面进行凹坑型非光滑处理具有良好的减阻效果,能有效降低汽车的气动阻力,进而降低油耗,提高燃油经济性。(2)凹坑型非光滑表面的减阻特性与凹坑单元体的排列方式有关,其中矩形排列方式减阻效果较佳。选取矩形排列时凹坑单元体直径、横向间距和纵向间距作为设计变量进行试验设计,建立近似模型,并采用多岛遗传算法进行优化,优化后最大降阻率可达7. 62%。(3)试验设计、近似模型和优化算法相结合的方法,能为车身凹坑型非光滑表面减阻的研究和优化提供一定的工程指导。参考文献[1]谷正气.汽车空气动力学[M].北京:人民交通出版社,2005.[2] 韩志武,许小侠,任露泉,凹坑形非光滑表面微观摩擦磨损试验回归分析[J].摩擦学学报,2005,25(6):578-582.[3] 容江磊,谷正气,杨易,等,基于Kriging模型的跑车尾翼断面形状的启动优化[J].中国机械工程,2010,22(2):243 -247.[4]谷正气,何忆斌,等,新概念车外流场数值仿真研究[J].中国机械工程,2007,18( 14):1760-1763.[5]薛祖绳,边界层理论[M].北京:水利电力出版社,1995.[6]方开泰,马长兴,正交与均匀试验设计[M].北京:科学出版社,2001.[7] 肖立峰,张』“泉,张烈都.基于Kriging代理模型的结构形状优化方法[J].机械设计,2009,26(7):57 -60.[8]石秀华,孟祥众,杜向党,等.基于多岛遗传算法的振动控制传感器优化配置[J].振动测试与诊断,2008,28 (1):62-65.(来源:中国技师网)

在人们日常生活中,仿生学的运用无处不在:锯子的发明是受到丝茅草的启发;高强度的纤维源于对蜘蛛丝的研究;防水粘合剂灵感来自海底贝类的吸附能力;防毒面具来源于对野猪鼻子的研究;鞋底纹理的设计来源于对山羊蹄的研究;潜水服是对青蛙蹼的模仿等等。

汽车作为日常生活中使用频率最高的交通工具,某种意义上来说也是仿生学设计的产物:由马车进化而来。并且在汽车设计历史上,不少汽车设计师们也以动物形态或其特殊功能作为创作灵感,通过模仿自然界生物进行汽车设计,不仅表达出对个性及速度的追求,也包含对自然的向往。

汽车设计中使用的仿生学,主要从以下几个方面体现:

1.仿生物形态

顾名思义,仿生物形态就是从外形上对生物进行模仿,形态仿生最直接的莫过于吉利熊猫、大众甲壳虫、比亚迪F0了,整个外造型都采用模仿动物外形的设计,话不多说,直接看图:

吉利熊猫完全以国宝为意向图,采用黑白双色设计,两个呆萌的带黑眼圈的眼睛加上可爱的圆形大嘴格栅,将熊猫的憨厚萌态展露无遗;甲壳虫作为大众几十年的经典,比例姿态、外形细节都和“甲壳虫”一样,可爱的外形成为年轻消费者,特别是都市女白领的心头爱;比亚迪F0则是以生海底总动员的小丑鱼Nemo为蓝本,可爱的眼睛和微笑进气格栅成为F0的标志性特征。

玛莎拉蒂的大进气格栅已经成为家族式设计,但其设计灵感竟然来自于鲶鱼的大嘴!虽然但看鱼嘴并不能看出什么花来,但是运用在玛莎拉蒂前脸上,竟然有一种别致的内敛与优雅呢。并且作为一款高性能的车,必须要用大格栅才能解决散热问题。

提到鱼类就不得不再提一下三菱欧蓝德的鲨鱼嘴,整个前脸采用十分具有攻击性的鲨鱼嘴设计,看起来强悍凶猛,从视觉上就给人一种具有很强的越野性能的感觉。

形态仿生不仅在整车外形、大部件上体现,汽车设计的细节处也有许多仿生设计学的影子。

早期汽车的天线其实是左图这个样子的,但是这样传统的天线在汽车行驶时会产生很大的风噪还不美观,受鲨鱼鳍的启发,现在的汽车天线不仅形状小巧美观,还有导出静电,降低风噪,接收GPS信号等功能,顶部流线型还能有效克服空气阻力,使汽车不被干扰,降低油耗!(但是PS的PS哦,必须是原厂配备的鲨鱼鳍才有这些功效,网上卖的只能起到装饰作用,如果安装不当还有掉落的风险,容易砸到后车,这样得不偿失哦!)

宝马的鹰眼大灯也是在细节上仿生的例子,鹰眼总是给人一种专注、犀利和炯炯有神的感觉,由克里斯班戈带头设计的鹰眼大灯,使整个汽车看起来挺拔有神,这也使得宝马5系的鹰眼大灯成为经典。

2.仿肌理质感

BMW VISION NEXT 100概念车以实现人工智能与感知技术合二为一为目的,在仪表台和侧翼子板上采用800个三角形构成动态几何系统,这些三角形既像大海中的鱼群,又像天空中的鸟群。就像鸟儿排列不同形状来传递信号一样,这些三角形肌理通过相应的动作变化传递信息,与人类进行交互体验。

这车咋一看给人一种密集恐惧症的感觉…其实它是由一位24岁设计师设计的仿鱼鳞结构和行为的太阳能概念车:宝马LOVOS。车上每一块鳞片上都安装了太阳能电池,能够在竖起的鳞片和贴合鳞片上互相转换,使用鱼鳞仿生则是想传递给大家简单的生活也是很美的概念。

宝马GINA(PS:突然有种肌理仿生都被宝马包场了的感觉),是一款织物材料概念跑车,模仿生物皮肤可以产生皱褶,动物眼睛都可以睁开闭上的特征,这款跑车在开门时会因为织物材料的压缩产生褶皱,大灯包裹的织物材料也可控制开合,这也使得这款车被称为“宝马眨眼车”,十分的灵性。

3.仿生物功能

纵观汽车设计至今100多年的历史,仿生物功能设计其实贯穿了整个汽车发展过程。为了追求更快的速度和更安全的性能,汽车外形主要经历了以下几个阶段:马车型车身-箱型车身-甲虫型车身-船型车身-鱼型车身-楔形车身,其中多次改变都是由动物中的灵感启发而成。

马车型车身:以马车造型为灵感,直接将马车车厢移植到汽车上,虽然说车身造型基本沿用了马车的形式,并没有多大的技术创新,但也毕竟是人们跨出汽车设计的第一步。

甲虫型车身:以甲壳虫圆润的外形为灵感,为提高车速减少风阻而研发的甲虫型车身,车身截面由箱型车身的四方形变为椭圆形,减少迎风面积,从而减小了空气阻力,大众甲壳虫汽车是此类车型代表。

鱼型车身:由于船型车身尾部突出过长,高速行驶时汽车尾部容易产生涡流,设计师们研究了鱼背造型可以使鱼在水里游弋自如的特点,将船型汽车尾部改为鱼背造型,使得汽车尾部气流平顺,减少了涡流阻力。

可以看到,由马车进化而来的汽车雏形,到由甲壳虫受启发的降低风阻,到通过鱼背研发出的减少空气涡流,人们在进行汽车设计的过程中,并不是凭空想象造型形态,而是以自然界动物为参考,模仿他们的外形或行为,做出合理的设计。

2009年,受到鱼群在前行时能够避开障碍物同时避免互相碰撞的启发,日产汽车研发了新型机器人概念车“EPORO”。鱼类的避免碰撞、同排移动、靠近同伴三种行为规则通过激光测距仪和超宽带无线电波技术被实现在EPORO上(原理见上图),这使得EPORO成为世界上首个实现这个功能的智能机器人汽车,这也是最直接的体现仿生物功能设计。

鲨鱼腮是鲨鱼嘴后的条状呼吸系统,在海里可以增加水流流动性、整合水流,使鲨鱼庞大的身体也能在水里灵活游动,受这种功能的启发,鲨鱼腮式散热孔诞生了。大多用在F1赛车上,既可以导流,也能增加散热,奔驰SLR迈凯伦也有这种设计,这让它被称为“公路上的F1”。

不管是仿生外形也好,肌理仿生、功能仿生也罢,我们完全可以发出地球上最神奇的事物莫过于生命的感叹!不论是动物还是植物,都在数百万年的进化中获得了近乎完美的生存适应性,我们再从这些生物中获得灵感,通过仿生设计创造出对我们生活有用可行的方案,真是造物主的鬼斧神工和人类聪明才智的完美融合。

汽车的天线,汽车的天线就是受鲨鱼鳍的启发,这样的汽车天线不仅形象小巧美观,还可以导出静电降低风噪。

2008年8月Angewandte Chemie杂志报道了澳大利亚莫纳什大学的利昂·斯皮西亚、罗宾·布里姆布来可比和安妮特·可罗,澳大利亚联邦科学与工业研究组织(CSIRO)的格哈德·斯伟格斯和美国普林斯顿大学的查尔斯·迪斯莫克斯共同开发了由一层涂层和维持植物光合作用的基本化学物质——锰组成的系统。该系统可模拟植物的光合作用,为利用阳光将水分解成氢和氧开辟了一条新途径。此项技术突破有望革新制氢工艺,从而利用太阳光大规模生产清洁的绿色能源——氢气。光合作用是植物、藻类和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为有机物,并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是赖以生存的关键,而在面临能源和环境瓶颈的今天,这一过程中的能量转换也为人类提供了极其重要的启示。由于自然光谱的吸收率等原因,光合作用在多数植物中效率非常低,通常均低于0.5%。在人工设计的系统中,研发人员借鉴其光反应与电子传递的机制,并提高通量转化的效率,使其适于太阳能的转化利用。事实上,在上述模拟光合作用的研究取得突破前,微生物制氢的已经成为了研究热点。自然界已发现有类似甲烷菌的制氢菌,但其菌种繁育不如甲烷菌那样简单。若能建立合适的菌种群落,制造氢气也会像制造沼气一样得到大规模应用。模拟光合作用制氢或者微生物制氢过程正是仿生学“向自然学习”的思想典型。20世纪40年代以来,工程技术领域中出现了调节理论,人们开始在一般意义上把生物与机器进行类比,认识到二者包含自动调节系统。此后,科学研究和生产实践完全证实了生物和机器在许多问题上的共同之处。而控制论则把生物科学和工程技术从理论上联系起来,成为在原理上沟通生物系统与技术系统的桥梁,奠定了生物与机器在控制与通信方面进行类比的科学理论基础。之后,斯蒂尔提出了仿生学的研究理念。自上个世纪末以来,人们认识到大约35亿年的生命演化与协同进化过程优化了生物体宏观与微观结构,形态与功能具有无可比拟的优越性,仿生学也因此显示出巨大的生命力。从研究模式上看,仿生学作为模仿生物建造技术装置的科学,是一门新兴的边缘科学,研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和设备,创造新技术。模拟光合作用制氢过程的例子很好地诠释了这一点。在植物的光合作用中,锰参与几种酶系统。由于锰可以在正二价和正四价两种化合价之间转换,所以主要在氧化还原和电子转移中发挥作用。这一思想为斯皮西亚等人的研究提供了启发。他们在确定锰簇是植物利用水、二氧化碳和阳光制造碳水化合物和氧气的中心枢纽后,开发出这种人造锰簇,并利用这些分子的能力将水分解成氢和氧。研究者将一层质子导体――Nafion薄膜覆盖在一个电极上,形成一层仅几微米厚的聚合体膜,这层聚合体膜充当锰簇的载体。锰在正常情况下不溶解于水,但可以和Nafion薄膜小孔中的催化剂结合,形成不易分解的稳定结构,当水到达此催化剂时,在阳光的照射下便发生氧化反应。在能源和环境领域,这一技术显示了仿生技术的巨大应用潜力和价值。初步测试表明,此催化剂连续使用3天之后还有活性,由此分解出来的氢气和氧气可以在燃料电池中结合成水,产生电力供住宅和电动车全天24小时使用,且不排放碳而是排放水。虽然此系统的效率还有待提高,但研究者可以不断地从自然界中学习,使之更为高效,从而使氢这一能效高且没有碳排放的绿色清洁能源为未来社会所用。生物体的电子传递过程在能源仿生技术上的另一重点研究领域是生物发光。生物发光和光合作用都是“电子传递”现象,而从某个角度上看,生物发光可以看作是光合作用的逆反应。光合作用是绿色植物吸取环境中的二氧化碳和水分,在叶绿体中,利用太阳光能合成碳水化合物,同时放出氧气。光能从水分子上释放电子,并把电子加到二氧化碳上,产生碳水化合物,这是一个还原过程。光合作用把光能转变成化学能,而生物发光是电子从荧光素分子上脱下来和氧化合,形成水,产生光。生物发光是将化学能转变成光能。生物光作为冷光源,具有效能高、效率大、不发热、不产生其它辐射、不会燃烧、不产生磁场等特点,对于手术室、实验室、易燃物品库房、矿井以及水下作业等,都是一种安全可靠的理想照明光源。通过模仿发光生物把一种形式的能量转换成另一种形式的能量,制造冷光板使其不需要复杂的电路和电力,就能白天吸收太阳光,晚上再将光能释放。人们先是从发光生物中分离出纯荧光素,后来又分离出荧光酶。现在已能人工合成荧光素,这就使人类模仿生物发光,创造一种新的高效光源——冷光源成为可能。然而,人们对于萤火虫等发光机制的研究仍然有待深入。如果将光合作用和生物发光机制在仿生学框架下同时加以研究,就有可能在能量利用的电子传递现象中取得进展,从而实现能源利用更为巨大的进步。从仿生学的诞生、发展,到现在短短几十年的时间内,研究成果已经非常可观。仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力,在能源技术上的应用潜力也极其巨大,有助于破解人们所面临的能源瓶颈问题,同时解决石化能源等所带来的环境问题。

仿生材料的研究与应用论文结论

鲨鱼皮肤-泳衣 一件泳衣,在悉尼奥运会上改变了世界泳坛的格局。几乎大半金牌得主都穿上一种特殊的泳衣———连体鲨鱼装。这种鲨鱼装仿造了海中霸王鲨鱼的皮肤结构,泳衣上设计了一些粗糙的齿状凸起,能有效地引导水流,并收紧身体,避免皮肤和肌肉的颤动。 此后,仿生泳衣越仿越精。第二代鲨鱼装又增加了一些新的亮点,加入了一种叫做“弹性皮肤”的材料,可使人在水中受到的阻力减少4%。此外,还增加了两个附件,附在前臂上由钛硅树脂做成的缓冲器能使运动员游起来更加轻松;附在胸前和肩后的振动控制系统能帮助引导水流。 海蜇-水母耳 每当风暴来临前,最古老的腔肠生物海蜇仿佛能未卜先知,早早就离岸游向大海避灾。原来,海蜇有个“顺风耳”,其“耳”(细柄上的小球)中有小小的听石,上面布满神经感受器,能听到风暴产生时发出的次声波(由空气和波浪摩擦而产生,频率为8赫兹-13赫兹,传播比风暴、波浪的速度快)。 模拟海蜇感受次声波的器官,科技人员设计出一种“水母耳”仪器,可提前15小时左右预报风暴。它由喇叭、接受次声波的共振器和把这种振动转变为电脉冲的转换器以及指示器组成。将这种仪器安装在船的前甲板上,喇叭做360°旋转。当它接收到8赫兹-13赫兹的次声波时,旋转自动停止,喇叭所指示的方向,就是风暴将要来临的方向。指示器还可以告诉人们风暴的强度。 仿生成果走向产业 京沪两地科学界级别最高的“香山科学会议”和“东方科技论坛”最近联合就仿生学召开学术研讨会,此举在科学界引起不小震动:为何给予仿生学如此高规格? 缘自国际科研和高新技术产业的竞争态势。越来越多的科学家认识到:模仿自然更有无限的潜力和机会,更有可能提升原始创新的能力。 人类进化只有500万年的历史,而生命进化已经历了约35亿年。大自然的奥秘不胜枚举。每当我们发现一种生物奥秘,就有可能成为我们一种新的设计可能性,也可能带给我们新的生存方式,仿生思维就是在大自然中寻找解决问题的方程式。10年前,许多国家就开始通过仿生学,提升科技创新活力和产业能级。在美国,有一项长期研究计划与仿生科技紧密相关,其优先发展的先进制造、先进材料和先进军事装备等,不少是从模拟与仿真入手;德国研究与技术部已就“21世纪的技术”为题,从仿生学出发,在电子技术、纳米技术、富勒碳材料、光子学、材料、生物传感器等领域投入了相当大的财力和人力;英国、日本、俄罗斯以及韩国等国都有相应的仿生科技和仿生产业中长期计划,在先进制造、材料、生物技术、高性能计算与通信计划等领域开展基础性研究。 仿生成果已不断涌现,并开始从基础研究发展到商业化竞争阶段。中科院上海生命科学研究院植物生理生态研究所研究员杜家纬介绍,这些仿生学成果应用于经济、军事和人类卫生事业后,在全球经济中所创造的份额会越来越大。如德国轮胎设计专家根据跑行中的猫前爪垫的功能和蜘蛛网的柔顺结构及其稳定性,设计出一种AMC垫型轮胎,其表面的柔软性和硬性网状结构设计,具有较大的抓地性和运行精度,增加了轮胎与地面的摩擦力,使刹车距离从现在的19米缩短为9米,大大提高了安全性。这种轮胎已完成了实地试验,一旦投产,对世界轮胎业产生的冲击可想而知。又如,德国米勒公司新设计的一款洗衣机内桶表面结构仿造蜂巢和龟背壳形状,所洗的衣服非常干净,但洗涤过程却非常柔顺,不伤衣料。据统计,我国每年洗衣机更新量为500万台,有关专家已经担忧,一旦这种仿生洗衣机进入市场,将大大挤压我国的洗衣机市场。 将仿生研究纳入国家战略 机器人、纳米自洁涂料、生物农药……仿生科研在本市和全国其它城市的不少领域已有开展,但始终难以形成规模产业,缘于仿生学缺乏系统的研究规划和研究体系,因此源头创新性研究还远远不够。为此有关专家认为,科研主管部门、科技界和产业界都应转变观念和视角,从模仿国外转变为模仿自然,向大自然汲取科技创新的灵感。 据了解,我国当前优先发展的高技术产业化重点领域共有141个方面,其中将近有30个领域与仿生学相关。例如:光传输系统,生物医学材料及体内植入物和人造器官,生物反应器及分离技术与成套设备,医药新剂型,新型医用精密诊断及治疗仪器,新型材料-纳米材料,膜工程技术,子午线轮胎生产技术及关键设备和原材料,新型传感器,工业机器人及机器人自动化生产线,环境与污染源监测仪器及自动监测系统,高效、安全新农药、兽药及生物防治技术,新型墙体材料等。由此可见,加强仿生科研和仿生成果的转化,将使我国的高新技术产业的质与量都产生飞跃。 杜家纬介绍,21世纪的仿生学,正朝着微观、系统、智能、精细、洁净方向发展,更多地表现为将生物系统构造和生命活动过程融合到技术创新的设计思想中去。当前仿生结构和力学的研究在国际上受到高度关注,研制微型飞行器,机器昆虫和机器鱼等正形成热潮。在新材料研究方面,世界各国也都将目标放在模仿生物界的结构,如海洋壳类构造、蜘蛛丝、植物表面超微结构、动物角趾皮肤等等。 仿生学是多学科的交叉,需要多学科的专家,尤其是生命科学家和工程技术专家的共同关注与参与。专家呼吁:要将仿生学的发展放在国家重要战略地位加以考虑,把握21世纪国际仿生学的发展方向和前沿,加强原始创新研究,从仿生结构与力学,仿生材料与微纳系统,仿生功能器件及控制,分子仿生,神经和信息科学等五大“仿生科学与技术”系统性基础研究方向,建立复杂生物体系的研究与发现体系。在仿生材料,仿生工艺,仿生机械,仿生功能器件,微纳米仿生技术,仿生传感器,基因仿生工程,组织仿生工程,生物膜仿生工程和人工智能等10个前沿领域,加强仿生研究和产业孕育。

问题一:毕业论文结论怎么写 结论首先应该是从你论文的研究论题内容来写的 你论文的研究要研讨几个问题及对策 还有就是如何去解决出现的问郸等等 那么结论也就很容易了 大体要经过分析以后从论文的几个方面去得出正确的结论来的过程 用书面表达出来加以格式的要求 就是论文的结论了 希望对你有所帮助吧 呵呵 问题二:论文结论怎么写如何写 结论就是结合前言、背景和论文里的论点做的一个总结,还可以根据论文中的现状分析和现有对策分析 、发展趋势分析,展望一下未来 你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!! 学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 第一,你在写论文的时候先确定你的论点,也就是你这篇论文是关于什么,是要论证什么东西,一般来说,也只有你对这个比较熟悉有一定的基础才能进行研究。 第二,在确定好论文方向后你可以查阅相关的书籍,一般包括一手和二手资料,一手就是关于你论证对象的资料,二手就是另外一些学者对于该对象的研究成果,比如你要研究鲁迅的话,第一手资料就是鲁迅的作品,第二首资料就是其他人关于鲁迅作品研究的成果。这些成果你都可以引用,但是在引用的时候必须注明出处,也就是你用了谁的观点,包括作者、作品名、出版社第几年第几版、第几页,这些写在论文的结尾处,以注释说明。 第三,摘要,摘要就是你论文研究的论点是什么,大概内容是什么,你有什么新看法。摘要一般不多,规范论文的摘要字数在200到500字之间,一般300字左右。 第四,关键字,关键字是抽取你论文的最主要的字眼,但是这字眼能明白看出你论文的大意的。比如你研究鲁迅的《阿Q正传》的,关键字可以有:鲁迅,阿Q正传,国民性,精神胜利法,革命。一般关键字为3到5个。 第五,正文,主要就是关于你的论点展开论述了。一般的论文的都在5000字以上,如果你是一个学生,小论文的话字数一般3000到5000字,而且标准也不高。当然,毕业论文除外。 第六,注释,注释就是关于你的参考作品,标明出处,也可以对于某些观点再做论述,但是一般字数不要太多。 第七,如果你有指导教师的话,在此表示感谢,有则可,没有不强求。 如果你写的是很重要的论文的话,一般还有英文摘要,错别字概率一般在万分之一,如果不是很严格的论文也不会有这些要求。最关键的就是正文了,一般你要有自己新颖的观点,但是不能哗众取宠,牵强附会,还要有结构层次,不能杂乱无章,也就是由浅到深。论文是实证性的,最好不要加入你的主观价值判断,就是最好不要有“应该”两个字,你不能告诉别人应该怎么做。 问题三:怎么写论文结论 结论或讨论中提出建议、研究设想、仪器设备改进意见、尚待解决的问题等。不福简单重复、罗列实验结果,要认真阐明本人在结业工作中创造性的成果和新见解,在本领域中的地位和作用,新见解的意义。对存在的问题和不足应做出客观的叙述。 问题四:毕业论文的结论怎么写啊,要求多少字啊? 毕业论文的结论一般是总结前面的东西,再提出以后的发展前景,存在的问题,如何改善。 问题五:毕业论文结论怎么写 结论与建议的撰写要领是:结论是分析讨论基础上,对结果的简要概述(千万要注意不要过多地重复结果,否则就是结果了,而不是结论),是文章的价值所属。结论应该是在结果的基础上根据分析、讨论所做的一种理论上的概括,以一句话概括为宜。他的直接作用是得到新的知识、新的理论,或者是纠正旧的知识、理论。要求: (1)语言要高度精炼,措词严谨,文字鲜明、具体。 (2)突出成果核心主体。 (3)分点不宜多,语句不宜长,一般在3个左右。 建议同样要鲜明、精确,不能含糊、若无、千万不能杜撰 问题六:调研性论文的结果和结论怎么写? 高中研究性学习调查报告的写法和内容: (一)题目 1、题目的内容 类型、定位、作用 2、写作要求 标题要准确 标题要新颖 题式可多样 标题要简洁 (二)署 名 1、署名的方式 集体署名 个人署名 2、署名的规则 贡献大小:提出研究设想、承担研究工作、解决关键问题。 (三)内容提要关键词 1、内容摘要:中心内容、结构及主要论点和评述;要求重点突出,内容精练,观点明确、一般不用第一人称,以200---300字为宜。学术论文也不宜超过1000字,有关刊物要有中英文摘要。 2、关键词:必须是规范科学的名词术语,一般每篇文章有3~5个关键词(主题词)。属于支柱性概念。 (四)前言 1、内容:问题的由来;文献综述:课题的界定(概念术语的解释)及问题的陈述;课题研究的理论意义和实践意义。 2、写作要求:课题阐述要清楚准确,中心突出;客观公正、科学准确评价他人的研究成果;简明扼要介绍课题研究的动机和意义。 (五)正文 1、内容:它必须对研究的内容和方法进行全面的阐述和论证,对研究过程中所获取的资料进行全面系统的整理和分析,通过图表、统计结果及文献资料,或以纵向的发展过程,或横向类别分析提出论点、分析论据,进行论证。 研究论文又分:1、研究的对象和方法 2、研究的内容和假设 3、研究的步骤及过程 4、研究结果的分析与讨论:研究论文的重点部分。A. 结果的定性定量分析,B.研究结果的讨论 。 结果分析与讨论材料缺乏的原因 研究设计缺乏一种系统观,讨论问题思路狭隘 操作过程不够到位,操作措施不够落实,就产生不了深刻的感受和体验 文献资料检索不够,对他人的研究研究缺乏了解,对自己结果的讨论就缺乏客观性、支持的力度 反映结果的项目指标难以确定 测量的方法与手段较难选择 数据的处理与分析要求不断提高 结果分析与讨论对研究者理论素养和洞察力要求较高 对下一步的研究提不出发展的方向。 2、写作要求: 总体要求:科学性和创造性;公正性和准确性;学术性和通俗性。 具体要求有:1、掌握材料要充分。2、分析整理要科学。3、图表使用要恰当。4、观点材料要统一。5、语言使用要规范。正确区分学术概念和生活概念,口头语言和书面语言。6、引用论点要慎重。与已一致,佐证;他人观点中某些好思想,提练综合;带有片面性的真理,开拓思维、慎重判断;相反的权威观点,找准错误所在。(引古不引今,引洋不引中,引刊不引报,引专著不引文集)7、内部逻辑要严密。8、标题序号要规范。9、讨论部分要简练。 (六)结论 1、内容:整篇论文的概括和小结。成果概括(结论必须指出解决了哪些问题、还有哪些没有解决?);今后研究的展望;对教育教学实践的建议等 2、要求:总结全文,深化主题,揭示规律,指明方向。 (七)注释和参考文献 1、内容:书籍、刊物、报纸、网络 2、要求:完整注明出处 (八)附录:问卷、量表、研究材料、统计数据、方案、计划等 问题七:硕士论文结论部分应该怎么写 英盛观察认为论文的结论部分,应反映论文中通过实验、观察研究并经过理论分析后得到的学术见解。结论应是该论文的最终的、总体的结论。换句话说,结论应是整篇论文的结局,而不是某一局部问题或某一分支问题的结论,也不是正文中各段的小结的简单重复。结论应当体现作者更深层的认识,且是从全篇论文的全部材料出发,经过推理、判断、归纳等逻辑分析过程而得到的新的学术总观念、总见解。 结论应该准确、完整、明确、精练。该部分的写作内容一般应包括以下几个方面:①本文研究结果说明了什么问题;②对前人有关的看法作了哪些修正、补充、发展、证实或否定。③本文研究的不足之处或遗留未予解决的问题,以及对解决这些问题的可能的关键点和方向。 结论部分的写作要求是:措词严谨,逻辑严密,文字具体,常象法律条文一样,按顺序1、2、3……列成条文,用语暂钉截铁,且只能作一种解释,不能模棱两可、含糊其词。文字上也不应夸大,对尚不能完全肯定的内容注意留有余地 问题八:毕业论文的结束语怎么写 毕业论文的结尾,是围绕本论所作的结束语。其基本的要点就是总括全文,加深题意。这一部分要对绪论中提出的、本论中分析或论证的问题加以综合概括,从而引出或强调得出的结论;或对论题研究未来发展趋势进行展望;或对有关论题进行简要说明。结论切记草草收兵,虎头蛇尾,或画蛇添足,拖泥带水。 在毕业论文末尾要列出的参考文献是指在论文中使用过的,包括专著、论文及其他资料。如果是非正式出版物则不必列出。所列的参考文献应按论文参考或引证的先后顺序排列,不能以文献的重要程度或作者知名度为排列的顺序标准。列出参考文献的目的在于:一是表示言之有据;二是对他人研究成果的真正尊重;四是方便他人查找、使用。 问题九:毕业论文的摘要,结论怎么写。急用。 摘要是以提供文献内容梗概为目的,不加评论和补充解释。包括研究目的、方法、结果和结论。 结论是在理论分析和试验结果的基础上,通过严密的逻辑推理而得出的富有创造性、指导性、经验性的结果或讨论。

仿真技术的应用与研究毕业论文

我可以做机械方面的设计 ,并且提供相关的帮助。

虚拟仿真技术已广泛应用于高职计算机网络课程的教学中。本文简介了虚拟仿真技术及其应用于计算机网络基础课程的优势,阐述了其在高职计算机网络基础课程的课堂教学和实验教学中的应用。

一、虚拟仿真技术的概述

虚拟仿真技术是将虚拟现实技术和系统仿真技术有机结合的一种新的实验研究技术,人类、战略性技术。借助该技术可认识和改造世界,因而它有望成为继数学推理、科学实验之后又一虚拟仿真技术以多媒体技术、虚拟现实技术、网络通信技术等信息技术为基础,构建一个与现实世界的物体和环境相同或相似的虚拟环境,如模拟器、仿真软件、数学模型、仿真实验等。其中虚拟仿真实验在我国高职院校的教学中广泛应用,已逐渐成为一种新的教学模式。

1.国内外虚拟仿真技术在教学中的应用

目前,国外虚拟仿真软件主要包括多功能电路模拟实验平台PSPICE、模拟和数字电路的.Tina Pro、用于电路描述和仿真的语言与仿真软件Circuit Maker、仿真单片机Proteus、Cisco路由器和自定义网络拓扑结构及连接的Boson NetSim。在我国,北京邮电大学的电子信息虚拟仿真实验教学中心有“开放式虚拟仿真实验教学管理平台”、Packet Trace软件、北京航天大学的分布式虚拟环境、GMDSS模拟训练实验室、导航雷达模拟训练中心等。

2.虚拟仿真技术应用于计算机基础课程的优势

通过实例操作演示非常抽象的概念,将抽象的网络概念具体化、形象化,为学生提供逼真生动的学习环境,加强老师与学生的互动,实现教与学双向互动,提高学生的学习热情和主动性。通过仿真实例的展示,为学生创造更多的实践机会,不仅可以激发学生的求知欲望,帮助学生充分吸收和掌握教学内容,更能激发他们的创造动机和创造性思维。

二、虚拟仿真技术在高职院校计算机网络基础课程的应用

1.虚拟仿真技术的应用,优化了网络课程实验教学环境

目前,很多高职院校计算机硬件设备与软件更新滞后,教师无法正常地开展实验教学,只能通过视频和文字等辅助资料来补充实际实验的不足。虚拟化技术可以有效解决上述问题,通过虚拟多种不同的计算机环境,学生可在一台计算机上完成服务器与终端机之间的切换,并能使用不同的操作系统与应用程序来开展网络实验。虚拟技术实现了改善高职计算机网络课程的实验教学中教学环境、提高教育教学实效的目标。

2.虚拟仿真技术的应用,更新了实验教学手段

高职教师们利用虚拟仿真技术实现了“一机多用”,有利于顺利开展计算机网络基础课程这一实践性较强的课程,学生可以通过精确地操作某些系统或者软件,了解其运行特征和过程,并以此进一步加深对理论知识的理解,近距离观察和分析实验现象。

3.虚拟仿真技术的应用,缓解了实训设备不足的难题

目前,在高职教育计算机网络课程的实训设备严重短缺,而虚拟仿真技术让虚拟实验室成为现实,尽管不能从根本上替代实际上的物理设备,但是学生可在虚拟机上做所有的操作实验,将理论与实践相结合,使学习更直观,教学更真实,既保证了教学质量,又促进了学生实践能力的培养。因此,虚拟仿真技术的应用,不仅解决了实验实训设备短缺的难题,又能更好地为高职教育培养更多的实用性人才助力。

三、结束语

综上所述,现阶段的高职院校计算机网络基础课程的教学中仍存在着一些问题,将虚拟仿真技术与真实实验相结合,可有效解决学校设备和场所短缺等问题,使学生通过虚拟仿真实验教学掌握网络技术,提高学生的实践能力和创新能力,提高学生的综合运用计算机网络知识解决分析实际问题的能力,为社会培养出高水平高素质的复合型网络工程专业人才。

相关百科

热门百科

首页
发表服务