首页

> 学术发表知识库

首页 学术发表知识库 问题

论文数控加工零件同轴度检测探讨

发布时间:

论文数控加工零件同轴度检测探讨

用杠杆百分表 先找第一个孔中心 再找第二个

一、所用仪器同轴度比较难测,我们用同轴度校准仪来测量。二、测量方法同轴度检测是我们在测量工作中经常遇到的问题,用三坐标进行同轴度的检测不仅直观且又方便,其测量结果精度高,并且重复性好。辽宁某汽车集团零部件公司主要生产汽车零部件,有很多产品需要进行严格的同轴度检查,特别是出口产品的检查更加严密,如EATON差速器壳、AAM拨叉、主减速器壳等。因此能否准确地测量出此类零件的同轴度对以后的装配有着一定的影响。1、用三坐标测量同轴度的方法对于基准圆柱与被测圆柱(较短)距离较远时不能用测量软件直接求得,通常用公共轴线法、直线度法、求距法求得。2.1公共轴线法在被测元素和基准元素上测量多个横截面的圆,再将这些圆的圆心构造一条3D直线,作为公共轴线,每个圆的直径可以不一致,然后分别计算基准圆柱和被测圆柱对公共轴线的同轴度,取其最大值作为该零件的同轴度。这条公共轴线近似于一个模拟心轴,因此这种方法接近零件的实际装配过程。2.2直线度法在被测元素和基准元素上测量多个横截面的圆,然后选择这几个圆构造一条3D直线,同轴度近似为直线度的两倍。被收集的圆在测量时最好测量其整圆,如果是在一个扇形上测量,则测量软件计算出来的偏差可能很大。2.3求距法同轴度为被测元素和基准元素轴线间最大距离的两倍。即用关系计算出被测元素和基准元素的最大距离后,将其乘以2即可。求距法在计算最大距离时要将其投影到一个平面上来计算,因此这个平面与用作基准的轴的垂直度要好。这种情况比较适合测量同心度。2、打表测量法用两个相同的刃口状V形块支承基准部位,然后用打表法测量被测部位。2.1测量器具准备百分表、表座、表架、刃口状V形块、平板、被测件、全棉布数块、防锈油等。2.2测量步骤1)将准备好的刃口状V形块放置在平板上,并调整水平。2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V形块上,基准轴线由V形块模拟。3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax与最小读数Mmin的差值之半,作为该截面的同轴度误差。5)转动被测零件,按上述方法测量四个不同截面(截面A、B、C、D),取各截面测得的最大读数Mimax与最小读数Mimin差值之半中的最大值(绝对值)作为该零件的同轴度误差。6)完成检测报告,整理实验器具。2.3数据处理1)先计算出单个测量截面上的同轴度误差值,即Δ=Mmax-Mmin2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。2.4检测报告按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并检验零件的行为误差是否合格。3、利用数据采集仪连接百分表法测量仪器:偏摆仪、百分表、数据采集仪。测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。利用数据采集仪连接百分表测量同轴度法的优势:1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差;2)无需人工去处理数据,数据采集仪会自动计算出同轴度误差值。3)测量结果报警,一旦测量结果不在同轴度公差带时,数据采集仪就会自动报警。三、影响同轴度的因素在国标中同轴度公差带的定义是指直径公差为值t,且与基准轴线同轴的圆柱面内的区域。它有以下三种控制要素:①轴线与轴线;②轴线与公共轴线;③圆心与圆心。因此影响同轴度的主要因素有被测元素与基准元素的圆心位置和轴线方向,特别是轴线方向。如在基准圆柱上测量两个截面圆,用其连线作基准轴。在被测圆柱上也测量两个截面圆,构造一条直线,然后计算同轴度。假设基准上两个截面的距离为10mm,基准第一截面与被测圆柱的第一截面的距离为100mm,如果基准的第二截面圆的圆心位置与第一截面圆圆心有5μm的测量误差,那么基准轴线延伸到被测圆柱第一截面时已偏离50μm,此时,即使被测圆柱与基准完全同轴,其结果也会有100μm的误差(同轴度公差值为直径,50μm是半径)。

同轴度测量方法:

1、打表法

用两个相同的刃口状 V 形块支承基准部位 ,然后用打表法测量被测部位 。

2、利用数据采集仪连接百分表测量法

数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差。

最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。

扩展资料

同轴度测量的一定是回转体零件, 比如一个底座上的螺栓孔和沉头孔, 由于底座不是回转零件, 所以其上的螺栓孔和沉头孔不能应用同轴度。

在实际测量中,同轴度的测量受到多方面的影响:

1、操作者的自身素质和对图纸工艺要求的理解不同;

2、测量机的探测误差,探头本身的误差;

3、工件的加工状态,表面粗糙度;检测方法的选择,工件的安放、探针的组合;

4、外部环境等,例如检测间的温度、湿度等都会给测量带来一定的误差。

所以在实际应用中应多从以上几个因素考虑。

参考资料来源:百度百科-同轴度测量

数控轴类零件加工毕业论文

前言由于各种机械的用途和性能不同,其零件的材料、结构和技术要求也各不相同。所以,各种零件的加工工艺是不同的,即使是同类型的零件,由于生产条件和批量大小的不同,其工艺也不同,因此,必须制定合理的工艺规程。在数控加工中,加工工艺路线表示刀具刀位点相对于工件运动的轨迹,也称进给路线。它不仅包括加工内容也反映加工顺序,是编程工作的主要依据。 摘要数控技术及数控机床在当今机械制造业中的重要地位和巨大效益,显示了其在国家基础工业现代化中的战略性作用,并已成为传统机械制造工业提升改造和实现自动化、柔性化、集成化生产的重要手段和标志。数控技术及数控机床的广泛应用,给机械制造业的产业结构、产品种类和档次以及生产方式带来了革命性的变化。数控机床是现代加工车间最重要的装备。它的发展是信息技术(1T)与制造技术(MT)结合发展的结果。现代的CAD/CAM、制造技术,都是建立在数控技术之上的。掌握现代数控技术知识是现代数控技术专业学生必不可少的。 本次毕业设计内容介绍了数控加工的特点、加工工艺分析以及数控编程的一般步骤。并通过一定的实例详细的介绍了数控加工工艺的分析方法。 关键词: 数控技术 加工工艺 编程 NC and NC machine tool technology in today's machine manufacturing industry in an important position and great benefits that its national infrastructure in the industrial modernization of the strategic role and has become a traditional machinery manufacturing industries to transform and enhance automation, flexible, Integrated production and an important means of signs. NC technology and the widespread application of NC machine tools, machinery manufacturing to the industrial structure, product variety and quality and production methods brought about a revolutionary change. NC machine tool processing workshop is the most important modern equipment. It is the development of information technology (1 T) and manufacturing technology (MT) with the result of the development. Modern CAD / CAM, FMS, CIMS, agile manufacturing and intelligent manufacturing technology, are built on the technology in the NC. NC master modern technology of modern machinery and electronic knowledge is essential to professional students. The design of the content on the characteristics of the NC, processing and analysis of the general steps NC programming. And, through a detailed example of the NC on the process of analysis. Key words: NC programming technology processing technology1毛坯的选择一、轴类零件的毛坯和材料 (一)轴类零件的毛坯 轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式。对于外圆直径相差不大的轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。 根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。 (二)轴类零件的材料 轴类零件应根据不同的工作条件和使用要求选用不同的材料并采用不同的热处理规范(如调质、正火、淬火等),以获得一定的强度、韧性和耐磨性。 45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。 40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,不仅能获得很高的表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性。 2零件图工艺分析在设计零件的加工工艺规程时,首先要对加工对象进行深入分析。对于数控车削加工应考虑以下几方面:1.构成零件轮廓的几何条件在车削加工中手工编程时,要计算每个节点坐标;在自动编程时,要对构成零件轮廓所有几何元素进行定义。因此在分析零件图时应注意:(1) 零件图上是否漏掉某尺寸,使其几何条件不充分,影响到零件轮廓的构成;(2) 零件图上的图线位置是否模糊或尺寸标注不清,使编程无法下手;(3) 零件图上给定的几何条件是否不合理,造成数学处理困难。(4) 零件图上尺寸标注方法应适应数控车床加工的特点,应以同一基准标注尺寸或直接给出坐标尺寸。2.尺寸精度要求分析零件图样尺寸精度的要求,以判断能否利用车削工艺达到,并确定控制尺寸精度的工艺方法。在该项分析过程中,还可以同时进行一些尺寸的换算,如增量尺寸与绝对尺寸及尺寸链计算等。在利用数控车床车削零件时,常常对零件要求的尺寸取最大和最小极限尺寸的平均值作为编程的尺寸依据。3.形状和位置精度的要求零件图样上给定的形状和位置公差是保证零件精度的重要依据。加工时,要按照其要求确定零件的定位基准和测量基准,还可以根据数控车床的特殊需要进行一些技术性处理,以便有效的控制零件的形状和位置精度。4.表面粗糙度要求表面粗糙度是保证零件表面微观精度的重要要求,也是合理选择数控车床、刀具及确定切削用量的依据。5.材料与热处理要求零件图样上给定的材料与热处理要求,是选择刀具、数控车床型号、确定切削用量的依据。2.1零件加工工艺分析1加工工艺路线的确定原则 加工工艺路线合理与否,关系到零件的加工质量与生产效率。在确定加工工艺路线时,应综合考虑在保证加工精度的前提下,应最大限度地缩短加工工艺路线。所以数控加工工艺路线应遵循以下原则: (1)保证产品质量,应将保证零件的加工精度和表面粗糙度要求放在首位。 (2)提高劳动生产率和降低生产成本。在保证零件加工质量的前提下,应力求加工路线最短,并尽量减少空行程时间,提高加工效率。 (3)在满足零件加工质量、生产效率等条件下,尽量简化数学处理的数值计算工作量,以简化编程工作。此外,确定加工工艺路线中,还要综合考虑零件的形状与刚度、加工余量、机床与刀具的刚度等,确定一次进给还是多次进给,以及设计刀具的切人点与切出点、切入方向与切出方向。在铣削加工中,是采用顺铣还是逆铣等。2加工工艺的选择要点 在数控加工编程中,应强化工艺规程,选择合理的加工路线,优化程序编制。在制定加工工艺路线中应关注以下事项: (1)在确定加工路线时,为缩短行程,应考虑尽量缩短刀具的空行程。通常通过合理选择起刀点,合理安排回空路线都能使空行程缩短,提高生产效率。 (2)在安排加工工艺路线时,同时也要兼顾工序集中的原则。零件在一次装夹中,尽可能使用同一把刀具完成较多的加工表面,以减少换刀次数,简化加工路线,缩短辅助时间。有条件者可采用复合刀具,当一把刀具完成加工的所有部位后,尽可能为下道工序作些预加工,如使用小钻头预钻定位孔或划位置痕.或者进行粗加工,然后再换刀进行精加工。 (3)要选择工件在加工后变形小的加工路线。如对于横截面积小的细长零件或薄板零件应采用分数次走刀至最终尺寸或应用对称去除余量法安排加工

引言 数控(英文名字:Numerical Control 简称:NC)技术是指用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制的技术。数控一般是采用通用或专用计算机实现数字程序控制,因此数控也称为计算机数控 (Computerized Numerical Control ),简称CNC,国外一般都称为CNC,很少再用NC这个概念了。数控车床,车削中心,是一种高精度、高效率的自动化机床。配备多工位刀塔或动力刀塔,机床就具有广泛的加工工艺性能,可加工直线圆柱、斜线圆柱、圆弧和各种螺纹、槽、蜗杆等复杂的工件。具有直线插补、圆弧插补各种补偿功能,并在复杂零件的批量生产中发挥了良好的经济效果。 数控技术是一门集计算机技术、自动化控制技术、测量技术、现代机械制造技术、微电子技术、信息处理技术等多学科交叉的综合技术,是近年来应用领域中发展十分迅速的一项综合性的高新技术。它是为适应高精度、高速度、复杂零件的加工而出现的,是实现自动化、数字化、柔性化、信息化、集成化、网络化的基础,是现代机床装备的灵魂和核心,有着广泛的应用领域和广阔的应用前景。 数控技术是先进制造技术的基础,它是综合应用了计算机、自动控制、电气传动、自动检测、精密机械制造和管理信息等技术而发展起来的高新科技。作为数控加工的主体设备,数控机床是典型的机电一体化产品。数控机床代表一个民族制造工业现代化的水平,随着现代化科学技术的迅速发展,制造技术和自动化水平的高低已成为衡量一个国家或地区经济发展水平的重要标志。 数控机床程序编制过程主要包括:分析零件图纸、工艺处理、数学处理、编写零件程序、程序校验夹具的种类很多,按使用机床类型分类,可分为车床夹具、铣床夹具、钻床夹具、镗床夹具、加工中心夹具和其他夹具等。按驱动夹具工作的动力源分类,可分为手动夹具、气动夹具、液压夹具、电动夹具、磁力夹具和自夹紧夹具等。 数控车削加工是将编好的加工程序输入数控装置,数控装置再将输入的信息进行运算处理后转换成驱动伺服机构的指令信号,最后由伺服机构控制机床的各种动作,自动地加工出零件。由此可看出,用数控机床加工零件,程序编制是一项重要的工作,它对有效利用数控机床起主要作用。数控加工的程序编制也称数控编程,数控编程时,必须对零件进行分析,将加工零件的全部工艺过程、工艺参数等以规定的代码、程序格式写出。由此可以看出,数控编程是集工艺与程序中,且其实践性很强。本论文就某轴类零件的数控加工进行论述:从毛坯图、零件图开始,分析其加工工艺,确定加工路线,再到数控程序编制,期间对零件加工程序的解释可以更清晰的展示程序段的意义。

引言从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了革命性的变化。数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。数控机床是一种高度机电一体化的产品,适用于加工多品种小批量零件、结构较复杂、精度要求较高的零件、需要频繁改型的零件、价格昂贵不允许报废的关键零件、要求精密复制的零件、需要缩短生产周期的急需零件以及要求100%检验的零件。数控机床的特点及其应用范围使其成为国民经济和国防建设发展的重要装备。

轴类零件数控加工毕业论文

第一部分:数控机床应用调查一、 品正数控深孔钻床外型及简介 品正数控深孔钻床外型如图1-1 图1-1品正数控深孔钻床简介:深孔钻 : 自1982年生产以来, 一直占据生产的重要位置。 现市场对模具生产交期需求迫切, 深孔加工机快捷,便利, 不需要铰孔, 一步到位, 成了不可或缺的工具。更兼投资回收成本快速, 是抢占市场的利器。 二、深孔钻在设计上的优点合运水道,热流道,顶针孔,油泵深孔,轧辊孔等深孔加工。 敝司深孔钻在设计上有以下的优点 :1. 工作台, 底座机身, 立柱, 升降台, 全部 FC30铸铁成型, 加工时达至最佳的吸震效果。 2. 床身工作台底座一体成型, 结构一致, 筋骨强壮, 没有立柱与工作台分开的设计。3. 滑轨, 工作台导轨, 采用V型导轨, 保证准确的导向性, 无方轨之侧间隙。滑动时无蛇行现象, 亦能维持滑动之顺畅。在强压下承载座与滑动座更紧密结合。两者接触而能平均受力。长时间运动能维持稳定之动静态精度, 而能达到增长机件寿命及提高加工品质。 4. 滑轨经热处理研磨, 更能保证耐用与刚性。 5. 采用良好的油压泵设计, 控制流量与压力, 确保使用寿命。 6. 另外更采用CNC 换刀系统装置, 只用轻轻按下控制键, 气动锁刀系统。 更换刀具方便。 7. 纸带与磁铁过滤装置, 能将钢材加工中铁屑与切削油废弃的微量元素过滤, 循环再用。三、品正深孔钻规格表深孔钻规格表 型号 MGD-813 MGD-1015 MGD-1520 MGD-1525 Table (单位 mm) 工作台尺寸 400x1500 600x2000 800x2300 800x2800 作业面积 1300x600x800(z1)x400(z2) 1500x600x1000 2000x1000x1500 2500x1000x1500 T型槽 18mmx63mmx5 22x34x5 22x34x7 22x34x7 主轴 主轴进给行程 800 主轴进给速度 (mm/min) 20-5000mm主轴直径 Φ120 主轴端至台面距离 70 mm 电动机 主轴(kw) 7.5kw磁力分离器(W) 25W 纸带过滤器 25W 铁削排除机 (W) 0.375 油压泵 10HPx6P润滑油泵 150Wx2加工能力 加工深度 800 1000 1250 1500 钻孔能力 Φ3-25mm(32)油压系统 切削油桶 (L) 1800LT高压泵压力 (kg/cm2 ) 0-120 高压泵吐出量 (L/min) 5-70最大载重 (kg) 7000 机械净重 (kg) App.9000 App.10500 App.14500 App.16500占地面积 App.3125x2046 App.5000x5000 App.5500x5500 App.6000x6000第二部分:数控加工工艺分析要求:能够根据图纸的几何特征和技术要求,运用数控加工工艺知识,选择加工方法、装夹定位方式、合理地选择加工所用的刀具及几何参数,划分加工工序和工步,安排加工路线,确定切削参数。在此基础上,能够完成中等复杂零件数控加工工艺文件的编制(至少两个零件的工艺分析)。一、加工平面凸轮零件上的槽与孔,外部轮廓已加工完,零件材料为HT200。 图2.11、零件图工艺分析 凸轮槽形内、外轮廓由直线和圆弧组成,几何元素之间关系描述清楚完整,凸轮槽侧面与 、 两个内孔表面粗糙度要求较高,为Ra1.6。凸轮槽内外轮廓面和 孔与底面有垂直度要求。零件材料为HT200,切削加工性能较好。 根据上述分析,凸轮槽内、外轮廓及 、 两个孔的加工应分粗、精加工两个阶段进行,以保证表面粗糙度要求。同时以底面A定位,提高装夹刚度以满足垂直度要求。2、确定装夹方案 根据零件的结构特点,加工 、 两个孔时,以底面A定位(必要时可设工艺孔),采用螺旋压板机构夹紧。加工凸轮槽内外轮廓时,采用“一面两孔”方式定位,既以底面A和 、 两个孔为定位基准。3、确定加工顺序及走刀路线 加工顺序的拟定按照基面先行、先粗后精的原则确定。因此应先加工用做定位基准的 、 两个孔,然后再加工凸轮槽内外轮廓表面。为保证加工精度,粗、精加工分开,其中 、 两个孔的加工采用钻孔—粗铰—精铰方案。走刀路线包括平面进给和深度进给两部分。平面进给时,外凸轮廓从切线方向切入,内凹轮廓从过渡圆弧切入。为使凸轮槽表面具有较好的表面质量,采用顺铣方式铣削。深度进给有两种方法:一种是在XOY平面(或YOX平面)来回铣削逐渐进刀到既定深度;另一种方法是先打一个工艺孔,然后从工艺孔进刀到既定深度。4、刀具选择 根据零件特点选用8把刀具,如下表:序号 刀具号 刀具 加工表面 备注 规格名称 数量 刀长/mm 1 T01 ¢5中心钻 1 钻¢5mm中心孔 2 T02 ¢19.6钻头 1 45 ¢20孔粗加工 3 T03 ¢11.6钻头 1 30 ¢12孔粗加工 4 T04 ¢20铰刀 1 45 ¢20孔精加工 5 T05 ¢12铰刀 1 30 ¢12孔精加工 6 T06 90°倒角铣刀 1 ¢20孔倒角1.5×45° 7 T07 ¢6高速钢立铣刀 1 20 粗加工凸轮槽内外轮廓 底圆角R0.58 T08 ¢6硬质合金立铣刀 1 20 精加工凸轮槽内外轮廓 5、切削用量选择 凸轮槽内、外轮廓精加工时留0.1㎜铣削余量,精铰 、 两个孔时留0.1㎜铰削余量。主轴转数是1000r/min。二、轴类零件的加工工艺分析与实例 一渗碳主轴(如图2-2),每批40件,材料20Cr,除内外螺纹外S0.9~C59。渗碳件工艺比较复杂,必须对粗加工工艺绘制工艺草图(如图)。主轴加工工艺过程工 序 工种 工步 工序内容及要求 机床设备(略) 夹具 刀具 量具1 车 按工艺草图车全部至尺寸工艺要求:(1)一端钻中心孔φ2。(2)1:5锥度及莫氏3#内锥涂色检验,接触面>60%。(3)各需磨削的外圆对中心孔径向跳动不得大于0.1 CA6140 莫氏3号铰刀 莫氏3号塞规1:5环规 检查 2 淬 热处理S0.9-C59 3 车 去碳。一端夹牢,一端搭中心架 <1> 车端面,保证φ36右端面台阶到轴端长度为40 <2> 修钻中心孔φ5B型 <3> 调头 车端面,取总长340至尺寸,继续钻深至85,60°倒角 检查 4 车 一夹一顶 CA6140 <1> 车M30×1.5–6g左螺纹大径及ф30JS5处至Φ30 <2> 车φ25至φ25 、长43 <3> 车φ35至φ35 <4> 车砂轮越程槽 5 车 调头,一夹一顶 <1> 车M30×1.5–6g螺纹大径及φ30JS5处至φ30 <2> 车φ40至φ40 <3> 车砂轮越程槽 6 铣 铣19 二平面至尺寸 7 热 热处理HRC59 8 研 研磨二端中心孔 9 外磨 二顶尖,(另一端用锥堵) M1430A <1> 粗磨φ40外圆,留0.1~0.15余量 <2> 粗磨φ30js外圆至φ30t (二处)台阶磨出即可 <3> 粗磨1:5锥度,留磨余量 10 内磨 用V型夹具(ф30js5二外圆处定位) M1432A 磨莫氏3#内锥(重配莫氏3#锥堵)精磨余量0.2~0.25 11 热 低温时效处理(烘),消除内应力 12 车 一端夹住,一端搭中心架 <1> 钻φ10.5孔,用导向套定位,螺纹不攻 Z–2027 <2> 调头,钻孔φ5攻M6–6H内螺纹 <3> 锪孔口60°中心孔 <4> 调头套钻套钻孔ф10.5×25(螺纹不改) <5> 锪60°中心孔,表面精糙度0.8 60°锪钻 检查 13 钳 <1> 锥孔内塞入攻丝套 <2> 攻M12–6H内螺纹至尺寸 14 研 研中心孔Ra0.8 15 外磨 工件装夹于二顶尖间 <1> 精磨φ40及φ35φ25外圆至尺寸 <2> 磨M30×1.5 M30×1.5左螺纹大径至30 <3> 半精磨ф30js5二处至ф30 <4> 精磨1:5锥度至尺寸,用涂色法检查按触面大于85% 1:5环规16 磨 工件装夹二顶尖间,磨螺纹 <1> 磨M30×1.5–6g左螺纹至尺寸 M33×1.5左环规 <2> 磨M30×1.5–6g螺纹至尺寸 M33×1.5环规17 研 精研中心孔Ra0.4 18 外磨 精磨、工件装夹于二顶尖间 M1432A 精磨2-φ30 至尺寸,注意形位公差 19 内磨 工件装在V型夹具中,以1–ф30外圆为基准,精磨莫氏3号内锥孔(卸堵,以2–ф30js5外圆定位),涂色检查接触面大于80%,注意技术要求“1”“2” MG1432A 检查 20 普 清洗涂防锈油,入库工件垂直吊挂 该轴类零件加工过程中几点说明:1.采用了二中心孔为定位基准,符合前述的基准重合及基准统一原则。2.该零件先以外圆作为粗基准,车端面和钻中心孔,再以二中心孔为定位基准粗车外圆,又以粗车外圆为定位基准加工锥孔,此即为互为基准原则,使加工有一次比一次精度更高的定位基准面。3号莫氏圆锥精度要求很高。因此,需用V型夹具以2-ф30js5外圆为定位基准达到形位公差要求。车内锥时,一端用卡爪夹住,一端搭中心架,亦是以外圆作为精基准。3.半精加工、精加工外圆时,采用了锥堵,以锥堵中心孔作为精加工该轴外圆面的定位基准。 对锥堵要求: ① 锥堵具有较高精度,保证锥堵的锥面与其顶尖孔有较高同轴度。② 锥堵安装后不宜更换,以减少重复安装引起的安装误差。③ 锥堵外径靠近轴端处须制有外螺纹,以方便取卸锥堵。4.主轴用20Cr低碳合金钢渗碳淬硬,对工件不需要淬硬部分发(M30×1.5-6g左、M30×1.5-6g、M12-6H、M6-6H)表面留2.5-3mm去碳层。5.螺纹因淬火后,在车床上无法加工,如先车好螺纹后再淬火,会使螺纹产生变形。因此,螺纹一般不允许淬硬,所以在工件中的螺纹部分的直径和长度上必需留去碳层。对于内螺纹,在孔口也应留出3mm去碳层。6.为保证中心孔精度,工件中心孔也不允许淬硬,为此,毛坯总长放长6mm。7.为保证工件外圆的磨削精度,热处理后须安排研磨中心孔的工序,并要求达到较细的表面粗糙度。外圆磨削时,影响工件的圆度主要是由于二顶尖孔的同轴度,及顶尖孔的圆度误差。8.为消除磨削应力,粗磨后安排低温时效工序(烘)。9.要获高精度外圆,磨削时应分粗磨、半精磨、精磨工序。精磨安排在高精度磨床上加工。第三部分:编制数控加工程序要求:能够根据图纸的技术要求和数控机床规定的指令格式与编程方法,正确地编制中等复杂典型零件的加工程序,或应用CAD/CAM自动编程软件编制较复杂零件的加工程序。(至少两个零件)。一、 编制轴类零件(1)数控加工程序如图3.1所示的零件。毛坯为 42㎜的棒料,从右端至左端轴向走刀切削;粗加工每次进给深度1.5㎜,进给量为0.15㎜/r;精加工余量X向0.5㎜,Z向0.1㎜,切断刀刃宽4㎜。工件程序原点如图 图3.1所示。 该零件结构较为简单,属典型轴类零件,轴向尺寸80㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。1. 选择刀具编号并确定换刀点根据加工要求选用3包刀具:1号为外圆左边偏粗车刀,2号为外圆左偏精车刀,3号刀为外圆切断刀,换刀点与对刀点重合2.确定加工路线1)粗车外圆。从右至左切削外轮廓,采用粗车循环。2)精车外圆。左端倒角→ 20㎜外圆→倒角→ 30㎜外圆→倒角→ 40㎜外圆。(3)切断3选择切削用量选择切削用量参数见表3.1.表3.1 选择切削用量参数转数指令 进给速度(mm/r) 刀具粗车外圆 M43 0.15 1号精车外圆 M44 0.1 2号切断 M43 0.1 2号编写程序O0001M03T0101 M43 F0.15G00 X43.Z0.G01X0.G00X42.Z0.G71 U2.R0.3G71 P1 Q2 U0.25 W0.1 F0.15 N1 G01 X18.X20.Z-1.Z-20.X28.X30.Z-21.Z-50.X38.X40.Z-51.Z-82.N2 X44.G00Z0M00M03 M44 T0202G70 P1 Q2 G00Z5.M00M03 M43 T0303G00 Z-44.G01X0.X44.G00Z5.M30 二、 编制轴类零件(2)数控加工程序加工如图3-2所示零件,材料45钢,坯料 60×122。1、刀具:T1——硬质合金93°右偏刀;T2——宽3mm硬质合金割刀,D1——左刀尖。加工工序 材料 刀具车外圆 硬质合金 T1切槽 硬质合金 T2该零件结构较为简单,属典型轴类零件,轴向尺寸120㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。2、 选择刀具编号并确定换刀点根据加工要求选用2包刀具:1号为外圆左边偏粗车刀,2号刀为外圆切断刀和切槽刀,换刀点与对刀点重合 3、程序编写程序指令 说明N10 G56 S300 M3 M7 T1; 选择刀具,设定工艺数据N20 G96 S50 LIMS=3000 F0.3; 设定粗车恒线速度N30 G0 X65 Z0; 快速引刀接近工件,准备车端面N40 G1 X-2; 车端面N50 G0 X65 Z10; 退刀N60 CNAME=“LK2”; 轮廓调用N70 R105=1 R106=0.2 R108=4 R109=0 R110=2 R111=0.3 R112=0.15; 毛坯循环参数设定N80 LCYC95; 调用LCYC95循环轮廓粗加工N90 G96 S80 LIMS=3000 F0.15; 设定精车恒线速度N100 R105=5; 调整循环参数N110 LCYC95; 调用LCYC95循环轮廓精加工N120 G0 X100 Z150; 快速退刀,准备换割刀N125 G97; 取消恒线速度N130 T2 F.1 S250; 换T2割刀D1有效,调整工艺数据N140 G0 X42 Z-33; 快速引刀至槽Z向左侧N150 LCEXP2 P8; 调用子程序8次割8槽N160 G0 X100 Z150 M9; 快速退刀,关冷却N170 M2; 程序结束LK2 N10 G1 X0 Z0; N20 G3 X20 Z-10 CR=10; N30 G1 Z-20; N40 G2 X30 Z-25 CR=5; N50 G1 X39.98 CHF=2.818; N60 Z-100; N70 X60 Z-105; N80 M17; LCEXP2 N10 G91 G1 X-14; N20 G4 S2; N30 G1 X14; N40 G0 Z-8; N50 G90 M17; 第四部分:绘制CAD零件图

巧了,我的毕业课题也是轴类的,复合轴刚刚做好毕业设计可以给你参考一下这上面只能发一点,文件大呢。想要的话加我qq250762561 免费提供我的论文给你参考下面给你看看复合轴数控车工艺分析及程序编制目 录前言………………………………………………………………1第一章 绪论………………………………………………………………21.1本文的研究背景及意义………………………………………………… 21.2数控编程技术的历史…………………………………………………… 2数控编程中的加工工艺分析及设计……………………………42.1数控加工工艺…………………………………………………………… 42.1.1分析零件图…………………………………………………………… 42.1.2数控加工工艺概念与工艺过程………………………………………… 52.1.3数控车床加工工艺主要内容…………………………………………… 72.2加工方法选择及加工方案确定…………………………………………… 72.2.1数控机床的合理选用………………………………………………… 72.2.2加工方法的选择……………………………………………………… 82.2.3加工方案设计的原则………………………………………………… 82.3数控加工工艺路线的设计……………………………………………… 82.3.1数控车削加工零件的工序顺序…………………………………………92.3.2按零件装夹定位方式划分工序…………………………………………92.3.3数控车削工序的格工步顺序………………………………………… 102.3.4数控加工工序与普通加工工序的衔接…………………………………112.4走刀路线的设计…………………………………………………………112.5确定零件夹紧的方法和夹具的选择…………………………………… 122.5.1工件定位和夹紧方案的确定………………………………………… 12 2.5.2夹具的选择………………………………………………………… 122.6刀具的选择…………………………………………………………… 132.7切屑用量的确定……………………………………………………… 142.7.1吃刀量的选择……………………………………………………… 142.7.2每齿进给量的选择………………………………………………… 152.7.3主轴转速的确定…………………………………………………… 152.8数控加工工艺文件………………………………………………………16第三章 数控加工工序分析…………………………………………… 143.1分析零件图…………………………………………………………… 143.2数控加工顺序………………………………………………………… 143.3加工用量的选择与确定…………………………………………………14第四章 加工程序编写及主要操作步骤……………………………… 184.1 GSK980TD简介………………………………………………………… 184.2程序编写的基本步骤和内容…………………………………………… 184.3编写加工程序单…………………………………………………………19结论……………………………………………………………………… 20致谢……………………………………………………………………… 21参考文献………………………………………………………………… 22附录……………………………………………………………………… 23摘 要 :能通过运用机械制造工艺学课程中的基本理论以及在生产实习中学到实践知识,正确的解决一个零件在加工过程中的定位.夹紧以及工艺路线安排.工艺尺寸确定等问题,保证零件的加工质量 学会使用图表资料以及手册,掌握与本本设计有关的各种资料的名称,出处,能够做到熟练运用。因此,它在我们的大学生活中占有重要的地位。就我个人而言,我希望能通过这次课程设计对自己未来从事的工作进行一次适应性训练,从中锻炼自己分析问题,解决问题的能力,为今后参加工作打下一个良好的基础。由于能力有限,设计当中可能会有不足之处,恳请各位老师给予批评指正。关键词:夹具 走刀路线 加工用量Abstract:Can through the utilization machine manufacture technology curriculum in elementary theory as well as in the productive practice middle school to the practice knowledge, a correct solution components in processing process localization. Clamp as well as craft route arrangement. Questions and so on craft size determination, guarantee components processing quality The academic society uses the graph data as well as the handbook, grasps designs the related each kind of material with the notebook the name, the source, can achieve the skilled utilization. Therefore, it holds the important status in ours university life. To my own opinion, I hoped that can the work which will be engaged to own future carry on an adaptability training through this curriculum project, will exercise itself to analyze the question, will solve the question ability, will start the work for the present to build a good foundation. Because ability is limited, middle the design will possibly have the deficiency, will request earnestly fellow teachers to give the criticism to point out mistakes.Key Words:Fixture Moving Path Processing amount前言 这次毕业设计,我的设计题目是:数控复合轴加工工艺规程设计。由于设计的需要,我仔细研究了零件图,但在设计过程中,因自己经验不足,遇到了很多实际问题,使我体会到了在现场实习调研仅证明可不可以实干,而不能代表能不能干好。所以我积极与设计指导老师、操作指导老师沟通,在各位老师的全力帮助、指导下问题得到了全面解决,同时受到各位老师优良工作品质的影响,培养出了我缓中求稳、虚心求教、实事求是、一丝不苟的工作作风,并树 立了明确的生产观、经济观和全局观,为今后从事工作打下了良好的基础。通过毕业设计,我真正认识到理论和实践相结合的重要性,并培养了我综合运用所学理论知识和实际操作知识去理性的分析问题和解决实际工作中的一般技术工程问题的能力,使我建立了正确的设计思想,掌握了工艺设计的一般程序、规范和方法,并进一步巩固、深化地吸收和运用了所学的基本理论知识和基本操作技能。还有,它提高了我设计计算、绘图、编写技术文件、编写数控程序、数控机床操作、实际加工零件和正确使用技术资料、标准、手册等工具书的独立工作能力,更培养了我勇于创新的精神及严谨的学风及工作作风。由于本人能力有限,缺少设计经验,设计中漏误在所难免,敬请各位老师指正批评,以使我对自己的不足得到及时的发现并修改,也使我在今后的工作中避免再次出现。在这里,向在这次毕业设计中给予过我鼓励、指导及帮助的每位老师表示我虔诚和衷心的感谢!绪论1.1本文的研究背景及意义:数控加工技术概况: 数字控制简称数控,是近代发展起来的一种自动控制技术,是用数字化信号对机械设备的运动及加工过程进行控制的一种方法,它所控制的一般是位置、角度、速度等机械量,也可以控制温度、压力、流量等物理量。 数控加工具有自动化程度高、加工复杂形状零件的能力、生产准备周期短、加工精度高、质量稳定、生产效率高等优点。 数控机床的加工原理可简要概述为:在数控机床上加工零件时,要是想根据零件的加工图样的要求确定零件的工艺过程、工艺参数和刀具参数,再按规定编写零件数控加工程序,然后通过手动数据输入方式或计算机通信等方式将数控加工程序送到数控系统,在数控系统控制软件的支持下,经过分析处理与计算后发出相应的指令,通过伺服系统使机床按预定的轨迹运动,从而控制机床进行零件的自动加工。 数控加工原理及加工过程: 零件图→阅读零件图→工艺分析→制定工艺→数控编程→程序传输→数控机床 数控编程的内容包括:分析零件图,确定工艺过程;数学处理;编写程序单;制作程序戒指并输入程序信息;程序校验。 1.2数控编程技术的历史目前,世界先进制造技术不断兴起,超高速切削、超精密加工等技术的应用,柔性制造系统的迅速发展和计算机集成系统的不断成熟,对数控加工技术提出了更高的要求。当今数控机床正在朝着以下几个方向发展: 1.高速度、高精度化。速度和精度是数控机床的两个重要指标,它直接关系到加工效率和产品质量。目前,数控系统采用位数、频率更高的处理器,以提高系统的基本运算速度。同时,采用超大规模的集成电路和多微处理器结构,以提高系统的数据处理能力,即提高插补运算的速度和精度,并采用直线电动机直接驱动机床工作台的直线伺服进给方式,其高速度和动态响应特性相当优越。采用前馈控制技术,使追踪滞后误差大大减小,从而改善拐角切削的加工精度。 为适应超高速加工的要求,数控机床采用主轴电动机与机床主轴合二为一的结构形式,实现了变频电动机与机床主轴一体化,主轴电机的轴承采用磁浮轴承、液体动静压轴承或陶瓷滚动轴承等形式。目前,陶瓷刀具和金刚石涂层刀具已开始得到应用。 2.多功能化。配有自动换刀机构(刀库容量可达100把以上)的各类加工中心,能在同一台机床上同时实现铣削、镗削、钻削、车削、铰孔、扩孔、攻螺纹等多种工序加工,现代数控机床还采用了多主轴、多面体切削,即同时对一个零件的不同部位进行不同方式的切削加工。数控系统由于采用了多cpu结构和分级中断控制方式,即可在一台机床上同时进行零件加工和程序编制,实现所谓的“前台加工,后台编辑”。为了适应柔性制造系统和计算机集成系统的要求,数控系统具有远距离串行接口,甚至可以联网,实现数控机床之间的数据通信,也可以直接对多台数控机床进行控制。 3.智能化。现代数控机床将引进自适应控制技术,根据切削条件的变化,自动调节工作参数,使加工过程中能保持最佳工作状态,从而得到较高的加工精度和较小的表面粗糙度,同时也能提高刀具的使用寿命和设备的生产效率。具有自诊断、自修复功能,在整个工作状态中,系统随时对cnc系统本身以及与其相连的各种设备进行自诊断、检查。一旦出现故障时,立即采用停机等措施,并进行故障报警,提示发生故障的部位、原因等。还可以自动使故障模块脱机,而接通备用模块,以确保无人化工作环境的要求。为实现更高的故障诊断要求,其发展趋势是采用人工智能专家诊断系统。 4.数控编程自动化。随着计算机应用技术的发展,目前cad/cam图形交互式自动编程已得到较多的应用,是数控技术发展的新趋势。它是利用cad绘制的零件加工图样,再经计算机内的刀具轨迹数据进行计算和后置处理,从而自动生成nc零件加工程序,以实现cad与cam的集成。随着cims技术的发展,当前又出现了cad/capp/cam集成的全自动编程方式,它与cad/cam系统编程的最大区别是其编程所需的加工工艺参数不必由人工参与,直接从系统内的capp数据库获得。 5.可靠性最大化。数控机床的可靠性一直是用户最关心的主要指标。数控系统将采用更高集成度的电路芯片,利用大规模或超大规模的专用及混合式集成电路,以减少元器件的数量,来提高可靠性。通过硬件功能软件化,以适应各种控制功能的要求,同时采用硬件结构机床本体的模块化、标准化和通用化及系列化,使得既提高硬件生产批量,又便于组织生产和质量把关。还通过自动运行启动诊断、在线诊断、离线诊断等多种诊断程序,实现对系统内硬件、软件和各种外部设备进行故障诊断和报警。利用报警提示,及时排除故障;利用容错技术,对重要部件采用“冗余”设计,以实现故障自恢复;利用各种测试、监控技术,当生产超程、刀损、干扰、断电等各种意外时,自动进行相应的保护。 6.控制系统小型化。数控系统小型化便于将机、电装置结合为一体。目前主要采用超大规模集成元件、多层印刷电路板,采用三维安装方法,使电子元器件得以高密度安装,较大规模缩小系统的占有空间。而利用新型的彩色液晶薄型显示器替代传统的阴极射线管,将使数控操作系统进一步小型化。这样可以方便地将它安装在机床设备上,更便于对数控机床的操作使用。第二章数控编程中的加工工艺分析及设2.1数控加工工艺2.1.1分析零件图1. 零件的完整性和正确性的分析 本次我们要分析的轴类零件是一根复合轴,复合轴为典型的轴类零件,生产规模为小批量加工,零件的轨迹比较复杂,必须保证曲面轴零件的尺寸精度。可以看出这根轴是由M30的螺纹;φ25长为5mm的槽,及1:10的锥度组合而成的外圆结构,在轴的右端还有深30的φ25的内孔。从整体的机构来看轴的轮廓是完整的,而且从尺寸的标准到表面粗糙度的标准都比较完整,而且整体看起来这根轴没有什么结构上的缺陷,精度的要求和粗糙度的要求也比较合理,符合轴和孔之间的配合。 总体看起来轴之间的结构是正确的,每一段螺纹后都加工了退刀槽,圆弧的大小也合适,没有超过车刀的要求;还有就是内孔的大小也比较合理,不过大也不过小。如果是内孔的直径过大那么左端的锥度的外圆柱段的壁厚就显得比较小,这时我们在数控车上加工起来就比较的困难,还要考虑更多的问题来保证轴的精度,因而我们的夹紧也就成了一个大的问题,但是在这里没有出现,也就说明作为典型的轴类零件的加工在数控车上加工的正确性,而且这根轴的表面粗糙度的要求也不高,通过精车基本上都能达到,也体现出了数控技术的精度高的特点。2.零件材料的分析 工程材料,特别是钢铁,是现代工业、农业、国防及科学技术等部门使用最广泛的材料。工程材料之所以能获得如此广泛的应用,不仅由于它的来源广泛,而且还由于它具有优良的性能。钢铁材料,又称黑色金属材料,它是可以用于制造机械构件和工具的铁基合金。可分为刚和铸铁两大类,其主要区别在于含碳量的不同。钢的含碳量低于2.11%,铸铁的含碳量则在2.11%以上。 钢的韧性、塑性较好,强度较高。常以热锻、轧制等方法成形。强度要求较高、形状较复杂的零件可用铸钢。 由于钢的强度、硬度、塑性、等综合力学性能较好,因此一般用于制作承受拉、压、弯曲、剪切、扭转等载荷的构件,如钢筋、齿轮轴。3.零件精度的分析 零件的加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。符合程度越高则加工精度就越高。实际加工不可能做得与理想零件完全一致,总会有大小不同的偏差,零件加工后的实际几何参数对理想几何参数的偏离程度,称为加工误差。 由于在加工过程中有很多因素影响加工精度,所以同一种加工方法在不同的工作条件下所能达到的精度是不同的。任何一种加工方法,只要精心操作,细心调整,并选用合适的切削参数进行加工,都能使加工精度得到较大的提高,但这样会降低生产率,增加加工成本。由机床、夹具、刀具和工件组成的机械加工工艺系统(简称工艺系统)会有各种各样的误差产生,这些误差在各种不同的具体工作条件下都会以各种不同的方式(或扩大、或缩小)反映为工件的加工误差。 工艺系统的原始误差主要有工艺系统的几何误差、定位误差、工艺系统的受力变形引起的加工误差、工艺系统的受热变形引起的加工误差、工件内应力重新分布引起的变形以及原理误差、调整误差、测量误差等。这些都会影响到零件的加工精度。图1-2-1是各种加工方法得到的加工精度 图1-3-1 如图1-3-2就是我们本次要加工的轴:在这次的数控车削加工中,零件重要的径向加工部位有:φ40圆柱段,φ521圆柱孔,φ50 0圆柱孔,φ35圆柱沟槽。零件其他径向加工部位相对容易加工。零件的轴向加工部位:零件左端φ40圆柱段的轴向长度为25,.零件右端φ25圆柱孔的轴向长度为300mm,由上述尺寸可以确定零件的轴向尺寸应该以零件左端面为基准,这样才能保证零件的加工精度要求,零件其轴向加工部位要求较低。 图1-3-24、表面粗糙度的分析 表面粗糙度反映的是零件加工表面的微观几何形状误差,及、即指加工表面所具有的较小间距和微小峰谷不平度。它不同于宏观几何形状,也不同于表面波度。主要由加工过程中刀具和零件表面的摩擦、切削分离时表面金属层塑性变形及工艺系统变频振动等原因而形成。 表面粗糙度是衡量零件表面质量的重要指标。表面粗糙度越小,表面就越光滑;表面粗糙度越大,表面就越粗糙。 表面粗糙度大小, 对机械零件的使用性能有很大的影响。主要表现在对零件的耐磨性、配合性质的稳定性、抗腐蚀性、密封性、疲劳强度、外观质量等方面的影响。我国执行的表面粗糙度国家标准有三个: GB/T3505—2000 《表面粗糙度 术语 表面及参数》 GB/T1031—1995 《表面粗糙度 参数及其数值》 GB/T131—1993 《机械制图 表面粗糙度符号、代号及其注法》 附图(机械制造基础81页) 在这里我参考的是国标GB/T131—1993,由图1-3-2可以知道这根复合轴表面粗糙度的要求不是很高,M30的螺纹的表面粗糙值为Ra2.5;φ36+0.1 -0.1的槽表面、φ500 -0.025长度为5mm的左端面、以及φ52+0.04 -0.01、φ25+0.1 0的内孔表面的表面粗糙度值为Ra3.2;这些的粗糙度的要求都不是很高,可以通过精加工和半精加工得到,R10 ,R20长度为15mm的圆弧段表面、及左端的圆锥的表面粗糙度Ra1.6。Ra.16的精度可以通过精车之后再通过磨削可以得到。其他未注的粗糙度为Ra6.3也是通过半精车可以达到。 2.1.2数控加工工艺概念与工艺过程1.数控加工工艺概念 是采用数控机床加工零件时所运用各种方法和技术手段的总和,应用于整个数控加工工艺过程。数控加工工艺是伴随着数控机床的产生、发展而逐步完善起来的一种应用技术,它是人们大量数控加工实践的经验总结。2.数控加工工艺过程 是利用切削工具在数控机床上直接改变加工对象的形状、尺寸、表面位置、表面状态等,使其成为成品或半成品的过程。 2.1.3数控车床加工工艺的主要内容4 机械加工工艺卡 产品型号 零件图号 4 共1页 产品名称 零件名称 复合轴 第1页 车间 工序号 工序名称 材料牌号 5 车 45 毛坯种类 毛坯外形尺寸 每毛坯可制件数 每台件数 45号钢 1 1 设备名称 设备型号GSK980TD 设备编号 同时加工数 数控车床 GSK980TD 1工步号 工步内容 工艺设备 主轴转速/(r/min) 切削速度/(m/min) 进给量/(mm/r) 背吃刀量/mm 进给次数1 调头、精车零件左端外圆成型 800r/min F=100 2 32 车削M30的螺纹,加工后零件达到图纸的 要求。 800r/min F=100 3 车B=5mm的槽 400r/min F=40 4 倒角 600r/min 设计日期 审核日期 会签日期 标记 处数 更改文件号 签字 汤伟建 日期 2010.3..27 3010.3.27 2010.3.27 2010.3.27 在生产实际中,大部分的零件的数控加工,往往仍然需要以混合工艺的形式来进行工艺编制。本次加工零件的工艺内容如下:1.零件左、右端打B型中心孔B2.5.目的是为数控车削加工工序提供可靠的装夹工艺基准 。2. 用三爪自动定心卡盘装夹零件,采用一夹一顶进行装夹定位,数控粗车加工零件右端外形以及倒角1×45°,加工后的零件各部尺寸留下精加工的余量。3. 零件调头后用三爪自动定心卡盘装夹零件,采用一夹不顶进行装夹定位,先用φ8、φ25的钻头手动加工φ25的孔,然后数控粗车加工零件左端内、外形以及倒角1×45°,加工后的零件各部分尺寸留下精加工的余量。4. 精车、零件右端B型中心孔,为精车加工提供可靠的定位基准。5. 用三爪自动定心卡盘装夹零件,数控精车加工零件内形以及倒角1×45°与内孔空刀槽,加工后的零件各部尺寸达到图纸技术的要求。6. 用双顶尖一鸡心夹装夹零件,数控精车加工零件左端外形以及倒角1×45°与空刀槽,加工后的零件各部尺寸。7. 零件调头后用一夹一顶的方式夹紧定位好零件,数控精车加工零件右端外形,并进行B=5mm的切槽加工,加工后零件各部尺寸达到图纸的要求。2.2加工方法选择及加工方案确定2.2.1数控机床的合理选用 本次加工的零件较为简单,因为在学校期间实习过,所以选择广数GSK980TD数控车床。操作简单易掌握!2.2.2加工方法的选择 一种加工方法能够保证的加工精度有一个相当大的范围,但如果要求它保证的加工精度过高,需要采取的一些特殊的工艺措施,将使加工成本随之增大。同样理由,作为一种加工方法,有加工经济表面粗糙度的概念。每一种加工方法都有一个加工精度的范围,例如在普通车床上加工外圆,所能获得尺寸的加工经济精度为:IT8~IT9级,加工经济表面粗糙度为:Ra>1.25~2.5μm。普通外圆磨床磨削外圆,尺寸的加工经济精度为:IT5~IT6 级,加工经济表面粗糙度Ra>0.16~0.32μm.各种的加工方法到达的加工经济精度和加工经济表面粗糙度都可以查阅各种金属切削加工工艺手册。 机械零件都是一些简单的几何表面如外圆、孔、平面等组合而成的,因此的零件的工艺路线的就是这些表面加工路线的恰当的组合。表3-2-1、表3-2-2是外圆柱、孔的典型加工路线。 可以通过对我们这次加工的轴的分析和上表的参考,来选择我们我们零件的加工路线。由前面对轴精度和表面粗糙度的分析,知道这根轴的精度和表面粗糙度的要求都不是很高,最高的表面粗糙度值也是Ra1.6,如果是我们所使用的数控车精度比较高的话,精车也就可以达到了。 ⑴外圆加工方法:粗车—半精车—精车。它能达到的公差等级为IT7~IT8,表面粗糙度也能达到Ra0.8~1.6μm。完全复合零件的加工要求。 ⑵内孔的加工方法:钻—粗车—半精车,它能达到的公差等级是IT10~IT8,粗糙度 Ra1.6 ~6.3μm,而我们此次加工的零件的内孔的表面粗糙度的值Ra 3.2,内圆的公差最小的也有0.05mm,所以这样的的加工方法也能到达我们的要求。 ⑶端面的加工方法:粗车。端面一边是用来做基准的,因此在端面没有作具体的要求的时候我们一般只是采用粗车的方法来加工。在这里我们只采用粗车的原因主要是,我们通过粗车端面作为我们打B型中心孔的基准,然后再以B型的中心孔作为精基准来加工其他的表面。2.2.3加工方案设计的原则 本次零件加工的原则是,以达到图纸规定的要求为基础,一步步来 确保零件尺寸和图纸规定的相符。2.3数控加工工艺路线的设计 2.3.1数控车削加工零件的工序顺序 在轴的数控加工中,分为粗车加工和精车加工二次切削进行,起工序如下:粗车加工Ⅰ:使用外圆车刀车削加工零件右端各部外圆与所在端面。工件各部位均留精车余量。粗车加工Ⅱ:零件调头重新安装装夹定位后,先用φ8、φ25的钻头手动加工φ24的孔,再使用外圆车刀、内孔精镗刀。车削加工端各部内型型面与所在端面达到要求零件左端各部内、外圆型面与所在的端面,零件各部均留精车余量。精车加工Ⅰ:使用内孔镗刀精车加工零件右。精车加工Ⅱ:使用外圆精车车刀、切槽车刀,精车加工左端各部外圆型面与所在端面达到要求。零件调头重新安装装夹定位后,使用外圆精车车刀、切槽刀、螺纹刀车削加工零件右端各部外圆型面与所在端面达到精车的要求。 2.3.2按零件装夹定位方式划分工序 三抓卡盘夹住左端,先粗加工右端外圆,然后精加工右端外圆及螺纹 三抓卡盘夹住右端,先粗加工左端外形面,然后换精加工,达到图纸要求。 换镗刀,镗孔右端内形。2.3.3数控车削工序的各工步顺序数控加工工序卡1 机械加工工序卡 产品型号 零件图号 1 共1页 产品名称 零件名称 复合轴 第1页 车间 工序号 工序名称 材料牌号 1 车、钻 毛坯种类 毛坯外形尺寸 每毛坯可制件数 每台件数 45号钢 Φ60×150 1 1 设备名称 设备型号 GSK980TD 设备编号 同时加工数 数控车床 GSK980TD 1工步号 工步内容 工艺设备 主轴转速/(r/min) 切削速度/(m/min) 进给量/(mm/r) 背吃刀量/mm 进给次数1 车右端面 T1 600 120 1 2 左、右两端钻B形中心孔 φ2.5钻头 600 120 设计日期 审核日期 会签日期 标记 处数 更改文件号 签字 日期 10.3.27 2 机械加工工序卡 产品型号 零件图号 2 共1页 产品名称 零件名称 复合轴 第1页 车间 工序号 工序名称 材料牌号 2 车 45 毛坯种类 毛坯外形尺寸 每毛坯可制件数 每台件数 45号钢 Φ60×150 1 1 设备名称 设备型号 设备编号 同时加工数 数控车床 GSK980TD 1工步号 工步内容 工艺设备 主轴转速/(r/min) 切削速度/(m/min

类零件的加工典型轴类零件如图1所示,零件材料为45钢,无热处理和硬度要求,试对该零件进行数控车削工艺分析。图1 典型轴类零件(1)零件图工艺分析该零件表面由圆柱、圆锥、顺圆弧、逆圆弧及螺纹等表面组成。其中多个直径尺寸有较严的尺寸精度和表面粗糙度等要求;球面Sφ50㎜的尺寸公差还兼有控制该球面形状(线轮廓)误差的作用。尺寸标注完整,轮廓描述清楚。零件材料为45钢,无热处理和硬度要求。通过上述分析,可采用以下几点工艺措施。①对图样上给定的几个精度要求较高的尺寸,因其公差数值较小,故编程时不必取平均值,而全部取其基本尺寸即可。②在轮廓曲线上,有三处为圆弧,其中两处为既过象限又改变进给方向的轮廓曲线,因此在加工时应进行机械间隙补偿,以保证轮廓曲线的准确性。③为便于装夹,坯件左端应预先车出夹持部分(双点画线部分),右端面也应先粗车出并钻好中心孔。毛坯选φ60㎜棒料。(2)选择设备 根据被加工零件的外形和材料等条件,选用TND360数控车床。(3)确定零件的定位基准和装夹方式 ①定位基准 确定坯料轴线和左端大端面(设计基准)为定位基准。②装夹方法 左端采用三爪自定心卡盘定心夹紧,右端采用活动顶尖支承的装夹方式。(4)确定加工顺序及进给路线 加工顺序按由粗到精、由近到远(由右到左)的原则确定。即先从右到左进行粗车(留0.25㎜精车余量),然后从右到左进行精车,最后车削螺纹。TND360数控车床具有粗车循环和车螺纹循环功能,只要正确使用编程指令,机床数控系统就会自动确定其进给路线,因此,该零件的粗车循环和车螺纹循环不需要人为确定其进给路线(但精车的进给路线需要人为确定)。该零件从右到左沿零件表面轮廓精车进给,如图2所示。图2 精车轮廓进给路线(5)刀具选择 ①选用φ5㎜中心钻钻削中心孔。②粗车及平端面选用900硬质合金右偏刀,为防止副后刀面与工件轮廓干涉(可用作图法检验),副偏角不宜太小,选κ=350。③精车选用900硬质合金右偏刀,车螺纹选用硬质合金600外螺纹车刀,刀尖圆弧半径应小于轮廓最小圆角半径,取rε=0.15~0.2㎜。将所选定的刀具参数填入数控加工刀具卡片中(见表1),以便编程和操作管理。表1 数控加工刀具卡片 产品名称或代号 零件名称典型轴零件图号 序号刀具号刀具规格名称数量加工表面备注1T01φ5中心钻1钻φ5 mm中心孔 2T02硬质合金900外圆车刀1车端面及粗车轮廓右偏刀2T03硬质合金900外圆车刀1精车轮廓右偏刀3T04硬质合金600外螺纹车刀1车螺纹 编制 审核 批准 共 页第 页 (6)切削用量选择 ①背吃刀量的选择 轮廓粗车循环时选ap=3 ㎜,精车ap=0.25㎜;螺纹粗车时选ap= 0.4 ㎜,逐刀减少,精车ap=0.1㎜。②主轴转速的选择 车直线和圆弧时,选粗车切削速度vc=90m/min、精车切削速度vc=120m/min,然后利用公式vc=πdn/1000计算主轴转速n(粗车直径D=60 ㎜,精车工件直径取平均值):粗车500r/min、精车1200 r/min。车螺纹时,参照式(5-1)计算主轴转速n =320 r/min.③进给速度的选择 选择粗车、精车每转进给量,再根据加工的实际情况确定粗车每转进给量为0.4㎜/r,精车每转进给量为0.15㎜/r,最后根据公式vf = nf计算粗车、精车进给速度分别为200 ㎜ /min和180 ㎜/min。综合前面分析的各项内容,并将其填入表2所示的数控加工工艺卡片。此表是编制加工程序的主要依据和操作人员配合数控程序进行数控加工的指导性文件。主要内容包括:工步顺序、工步内容、各工步所用的刀具及切削用量等。表2 典型轴类零件数控加工工艺卡片 单位名称 产品名称或代号零件名称零件图号 典型轴 工序号程序编号夹具名称使用设备车间001 三爪卡盘和活动顶尖TND360数控车床 工步号工步内容刀具号刀具规格/ mm主轴转速/r.m-1 进给速度/mm.m-1背吃刀量/ mm备注1平端面T0225 25500 手动2钻中心孔T01φ5950 手动3粗车轮廓T (7)零件粗精加工程序(FAUNC─TD系统)N0010 G50 X150.0 Z200.0;N0020 G00 X60.0 Z1.0 S320 T0202 M08 M03;N0030 G71 P0040 Q0050 U1.0 W0.5 D4.0 ;N0040 G00 X24.0 S320;G00 X24.0 S320;G01 X29.85 W─2.925 F0.15;W─16.15;X26.0. W─1.925;W─5;X36.0 W─10.0;W─10.0;G02 X30.0 Z─9.0 I12.0 K─9.0;G02 X40.0 Z─69.0 I20.0 K─15.0;G03 X40.0 Z─99.0 I─20.0 K─15.0;G02 X34.0 Z─108.0 I12.0 K─9.0;G01 W─5.0;X56.0 W─41.0;N0050 W─11.0;N0055 G00 X150.0 Z200.0 M05 T0200 M09;N0056 T0303 M08 M03;N0060 G70 P0040 Q0050;N0070 G00 X150.0 Z200.0 M05 T0300 M09;N0080 T0404 S320 M03 M08;N0090 G00 X36.0 Z3.0;N0100 G92 X29.05 Z─22.0 F3.0;N0110 X29.05;N0120 X28.75;N0130 X28.45;N0140 X28.25;N0150 X28.05;N0155 X28.05;N0160 G00 X36.0 Z4.5;N0170 G92 X29.45 Z─22.0 F3.0;N0180 X29.05;N0190 X28.75;N0200 X28.45;N0210 X28.25;N0210 X28.05;N0220 X28.05;N0230 G00 X150.0 Z200.0 T0400 M05 M09;N0240 M30;

数控轴类零件加工工艺毕业论文

第一部分:数控机床应用调查一、 品正数控深孔钻床外型及简介 品正数控深孔钻床外型如图1-1 图1-1品正数控深孔钻床简介:深孔钻 : 自1982年生产以来, 一直占据生产的重要位置。 现市场对模具生产交期需求迫切, 深孔加工机快捷,便利, 不需要铰孔, 一步到位, 成了不可或缺的工具。更兼投资回收成本快速, 是抢占市场的利器。 二、深孔钻在设计上的优点合运水道,热流道,顶针孔,油泵深孔,轧辊孔等深孔加工。 敝司深孔钻在设计上有以下的优点 :1. 工作台, 底座机身, 立柱, 升降台, 全部 FC30铸铁成型, 加工时达至最佳的吸震效果。 2. 床身工作台底座一体成型, 结构一致, 筋骨强壮, 没有立柱与工作台分开的设计。3. 滑轨, 工作台导轨, 采用V型导轨, 保证准确的导向性, 无方轨之侧间隙。滑动时无蛇行现象, 亦能维持滑动之顺畅。在强压下承载座与滑动座更紧密结合。两者接触而能平均受力。长时间运动能维持稳定之动静态精度, 而能达到增长机件寿命及提高加工品质。 4. 滑轨经热处理研磨, 更能保证耐用与刚性。 5. 采用良好的油压泵设计, 控制流量与压力, 确保使用寿命。 6. 另外更采用CNC 换刀系统装置, 只用轻轻按下控制键, 气动锁刀系统。 更换刀具方便。 7. 纸带与磁铁过滤装置, 能将钢材加工中铁屑与切削油废弃的微量元素过滤, 循环再用。三、品正深孔钻规格表深孔钻规格表 型号 MGD-813 MGD-1015 MGD-1520 MGD-1525 Table (单位 mm) 工作台尺寸 400x1500 600x2000 800x2300 800x2800 作业面积 1300x600x800(z1)x400(z2) 1500x600x1000 2000x1000x1500 2500x1000x1500 T型槽 18mmx63mmx5 22x34x5 22x34x7 22x34x7 主轴 主轴进给行程 800 主轴进给速度 (mm/min) 20-5000mm主轴直径 Φ120 主轴端至台面距离 70 mm 电动机 主轴(kw) 7.5kw磁力分离器(W) 25W 纸带过滤器 25W 铁削排除机 (W) 0.375 油压泵 10HPx6P润滑油泵 150Wx2加工能力 加工深度 800 1000 1250 1500 钻孔能力 Φ3-25mm(32)油压系统 切削油桶 (L) 1800LT高压泵压力 (kg/cm2 ) 0-120 高压泵吐出量 (L/min) 5-70最大载重 (kg) 7000 机械净重 (kg) App.9000 App.10500 App.14500 App.16500占地面积 App.3125x2046 App.5000x5000 App.5500x5500 App.6000x6000第二部分:数控加工工艺分析要求:能够根据图纸的几何特征和技术要求,运用数控加工工艺知识,选择加工方法、装夹定位方式、合理地选择加工所用的刀具及几何参数,划分加工工序和工步,安排加工路线,确定切削参数。在此基础上,能够完成中等复杂零件数控加工工艺文件的编制(至少两个零件的工艺分析)。一、加工平面凸轮零件上的槽与孔,外部轮廓已加工完,零件材料为HT200。 图2.11、零件图工艺分析 凸轮槽形内、外轮廓由直线和圆弧组成,几何元素之间关系描述清楚完整,凸轮槽侧面与 、 两个内孔表面粗糙度要求较高,为Ra1.6。凸轮槽内外轮廓面和 孔与底面有垂直度要求。零件材料为HT200,切削加工性能较好。 根据上述分析,凸轮槽内、外轮廓及 、 两个孔的加工应分粗、精加工两个阶段进行,以保证表面粗糙度要求。同时以底面A定位,提高装夹刚度以满足垂直度要求。2、确定装夹方案 根据零件的结构特点,加工 、 两个孔时,以底面A定位(必要时可设工艺孔),采用螺旋压板机构夹紧。加工凸轮槽内外轮廓时,采用“一面两孔”方式定位,既以底面A和 、 两个孔为定位基准。3、确定加工顺序及走刀路线 加工顺序的拟定按照基面先行、先粗后精的原则确定。因此应先加工用做定位基准的 、 两个孔,然后再加工凸轮槽内外轮廓表面。为保证加工精度,粗、精加工分开,其中 、 两个孔的加工采用钻孔—粗铰—精铰方案。走刀路线包括平面进给和深度进给两部分。平面进给时,外凸轮廓从切线方向切入,内凹轮廓从过渡圆弧切入。为使凸轮槽表面具有较好的表面质量,采用顺铣方式铣削。深度进给有两种方法:一种是在XOY平面(或YOX平面)来回铣削逐渐进刀到既定深度;另一种方法是先打一个工艺孔,然后从工艺孔进刀到既定深度。4、刀具选择 根据零件特点选用8把刀具,如下表:序号 刀具号 刀具 加工表面 备注 规格名称 数量 刀长/mm 1 T01 ¢5中心钻 1 钻¢5mm中心孔 2 T02 ¢19.6钻头 1 45 ¢20孔粗加工 3 T03 ¢11.6钻头 1 30 ¢12孔粗加工 4 T04 ¢20铰刀 1 45 ¢20孔精加工 5 T05 ¢12铰刀 1 30 ¢12孔精加工 6 T06 90°倒角铣刀 1 ¢20孔倒角1.5×45° 7 T07 ¢6高速钢立铣刀 1 20 粗加工凸轮槽内外轮廓 底圆角R0.58 T08 ¢6硬质合金立铣刀 1 20 精加工凸轮槽内外轮廓 5、切削用量选择 凸轮槽内、外轮廓精加工时留0.1㎜铣削余量,精铰 、 两个孔时留0.1㎜铰削余量。主轴转数是1000r/min。二、轴类零件的加工工艺分析与实例 一渗碳主轴(如图2-2),每批40件,材料20Cr,除内外螺纹外S0.9~C59。渗碳件工艺比较复杂,必须对粗加工工艺绘制工艺草图(如图)。主轴加工工艺过程工 序 工种 工步 工序内容及要求 机床设备(略) 夹具 刀具 量具1 车 按工艺草图车全部至尺寸工艺要求:(1)一端钻中心孔φ2。(2)1:5锥度及莫氏3#内锥涂色检验,接触面>60%。(3)各需磨削的外圆对中心孔径向跳动不得大于0.1 CA6140 莫氏3号铰刀 莫氏3号塞规1:5环规 检查 2 淬 热处理S0.9-C59 3 车 去碳。一端夹牢,一端搭中心架 <1> 车端面,保证φ36右端面台阶到轴端长度为40 <2> 修钻中心孔φ5B型 <3> 调头 车端面,取总长340至尺寸,继续钻深至85,60°倒角 检查 4 车 一夹一顶 CA6140 <1> 车M30×1.5–6g左螺纹大径及ф30JS5处至Φ30 <2> 车φ25至φ25 、长43 <3> 车φ35至φ35 <4> 车砂轮越程槽 5 车 调头,一夹一顶 <1> 车M30×1.5–6g螺纹大径及φ30JS5处至φ30 <2> 车φ40至φ40 <3> 车砂轮越程槽 6 铣 铣19 二平面至尺寸 7 热 热处理HRC59 8 研 研磨二端中心孔 9 外磨 二顶尖,(另一端用锥堵) M1430A <1> 粗磨φ40外圆,留0.1~0.15余量 <2> 粗磨φ30js外圆至φ30t (二处)台阶磨出即可 <3> 粗磨1:5锥度,留磨余量 10 内磨 用V型夹具(ф30js5二外圆处定位) M1432A 磨莫氏3#内锥(重配莫氏3#锥堵)精磨余量0.2~0.25 11 热 低温时效处理(烘),消除内应力 12 车 一端夹住,一端搭中心架 <1> 钻φ10.5孔,用导向套定位,螺纹不攻 Z–2027 <2> 调头,钻孔φ5攻M6–6H内螺纹 <3> 锪孔口60°中心孔 <4> 调头套钻套钻孔ф10.5×25(螺纹不改) <5> 锪60°中心孔,表面精糙度0.8 60°锪钻 检查 13 钳 <1> 锥孔内塞入攻丝套 <2> 攻M12–6H内螺纹至尺寸 14 研 研中心孔Ra0.8 15 外磨 工件装夹于二顶尖间 <1> 精磨φ40及φ35φ25外圆至尺寸 <2> 磨M30×1.5 M30×1.5左螺纹大径至30 <3> 半精磨ф30js5二处至ф30 <4> 精磨1:5锥度至尺寸,用涂色法检查按触面大于85% 1:5环规16 磨 工件装夹二顶尖间,磨螺纹 <1> 磨M30×1.5–6g左螺纹至尺寸 M33×1.5左环规 <2> 磨M30×1.5–6g螺纹至尺寸 M33×1.5环规17 研 精研中心孔Ra0.4 18 外磨 精磨、工件装夹于二顶尖间 M1432A 精磨2-φ30 至尺寸,注意形位公差 19 内磨 工件装在V型夹具中,以1–ф30外圆为基准,精磨莫氏3号内锥孔(卸堵,以2–ф30js5外圆定位),涂色检查接触面大于80%,注意技术要求“1”“2” MG1432A 检查 20 普 清洗涂防锈油,入库工件垂直吊挂 该轴类零件加工过程中几点说明:1.采用了二中心孔为定位基准,符合前述的基准重合及基准统一原则。2.该零件先以外圆作为粗基准,车端面和钻中心孔,再以二中心孔为定位基准粗车外圆,又以粗车外圆为定位基准加工锥孔,此即为互为基准原则,使加工有一次比一次精度更高的定位基准面。3号莫氏圆锥精度要求很高。因此,需用V型夹具以2-ф30js5外圆为定位基准达到形位公差要求。车内锥时,一端用卡爪夹住,一端搭中心架,亦是以外圆作为精基准。3.半精加工、精加工外圆时,采用了锥堵,以锥堵中心孔作为精加工该轴外圆面的定位基准。 对锥堵要求: ① 锥堵具有较高精度,保证锥堵的锥面与其顶尖孔有较高同轴度。② 锥堵安装后不宜更换,以减少重复安装引起的安装误差。③ 锥堵外径靠近轴端处须制有外螺纹,以方便取卸锥堵。4.主轴用20Cr低碳合金钢渗碳淬硬,对工件不需要淬硬部分发(M30×1.5-6g左、M30×1.5-6g、M12-6H、M6-6H)表面留2.5-3mm去碳层。5.螺纹因淬火后,在车床上无法加工,如先车好螺纹后再淬火,会使螺纹产生变形。因此,螺纹一般不允许淬硬,所以在工件中的螺纹部分的直径和长度上必需留去碳层。对于内螺纹,在孔口也应留出3mm去碳层。6.为保证中心孔精度,工件中心孔也不允许淬硬,为此,毛坯总长放长6mm。7.为保证工件外圆的磨削精度,热处理后须安排研磨中心孔的工序,并要求达到较细的表面粗糙度。外圆磨削时,影响工件的圆度主要是由于二顶尖孔的同轴度,及顶尖孔的圆度误差。8.为消除磨削应力,粗磨后安排低温时效工序(烘)。9.要获高精度外圆,磨削时应分粗磨、半精磨、精磨工序。精磨安排在高精度磨床上加工。第三部分:编制数控加工程序要求:能够根据图纸的技术要求和数控机床规定的指令格式与编程方法,正确地编制中等复杂典型零件的加工程序,或应用CAD/CAM自动编程软件编制较复杂零件的加工程序。(至少两个零件)。一、 编制轴类零件(1)数控加工程序如图3.1所示的零件。毛坯为 42㎜的棒料,从右端至左端轴向走刀切削;粗加工每次进给深度1.5㎜,进给量为0.15㎜/r;精加工余量X向0.5㎜,Z向0.1㎜,切断刀刃宽4㎜。工件程序原点如图 图3.1所示。 该零件结构较为简单,属典型轴类零件,轴向尺寸80㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。1. 选择刀具编号并确定换刀点根据加工要求选用3包刀具:1号为外圆左边偏粗车刀,2号为外圆左偏精车刀,3号刀为外圆切断刀,换刀点与对刀点重合2.确定加工路线1)粗车外圆。从右至左切削外轮廓,采用粗车循环。2)精车外圆。左端倒角→ 20㎜外圆→倒角→ 30㎜外圆→倒角→ 40㎜外圆。(3)切断3选择切削用量选择切削用量参数见表3.1.表3.1 选择切削用量参数转数指令 进给速度(mm/r) 刀具粗车外圆 M43 0.15 1号精车外圆 M44 0.1 2号切断 M43 0.1 2号编写程序O0001M03T0101 M43 F0.15G00 X43.Z0.G01X0.G00X42.Z0.G71 U2.R0.3G71 P1 Q2 U0.25 W0.1 F0.15 N1 G01 X18.X20.Z-1.Z-20.X28.X30.Z-21.Z-50.X38.X40.Z-51.Z-82.N2 X44.G00Z0M00M03 M44 T0202G70 P1 Q2 G00Z5.M00M03 M43 T0303G00 Z-44.G01X0.X44.G00Z5.M30 二、 编制轴类零件(2)数控加工程序加工如图3-2所示零件,材料45钢,坯料 60×122。1、刀具:T1——硬质合金93°右偏刀;T2——宽3mm硬质合金割刀,D1——左刀尖。加工工序 材料 刀具车外圆 硬质合金 T1切槽 硬质合金 T2该零件结构较为简单,属典型轴类零件,轴向尺寸120㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。2、 选择刀具编号并确定换刀点根据加工要求选用2包刀具:1号为外圆左边偏粗车刀,2号刀为外圆切断刀和切槽刀,换刀点与对刀点重合 3、程序编写程序指令 说明N10 G56 S300 M3 M7 T1; 选择刀具,设定工艺数据N20 G96 S50 LIMS=3000 F0.3; 设定粗车恒线速度N30 G0 X65 Z0; 快速引刀接近工件,准备车端面N40 G1 X-2; 车端面N50 G0 X65 Z10; 退刀N60 CNAME=“LK2”; 轮廓调用N70 R105=1 R106=0.2 R108=4 R109=0 R110=2 R111=0.3 R112=0.15; 毛坯循环参数设定N80 LCYC95; 调用LCYC95循环轮廓粗加工N90 G96 S80 LIMS=3000 F0.15; 设定精车恒线速度N100 R105=5; 调整循环参数N110 LCYC95; 调用LCYC95循环轮廓精加工N120 G0 X100 Z150; 快速退刀,准备换割刀N125 G97; 取消恒线速度N130 T2 F.1 S250; 换T2割刀D1有效,调整工艺数据N140 G0 X42 Z-33; 快速引刀至槽Z向左侧N150 LCEXP2 P8; 调用子程序8次割8槽N160 G0 X100 Z150 M9; 快速退刀,关冷却N170 M2; 程序结束LK2 N10 G1 X0 Z0; N20 G3 X20 Z-10 CR=10; N30 G1 Z-20; N40 G2 X30 Z-25 CR=5; N50 G1 X39.98 CHF=2.818; N60 Z-100; N70 X60 Z-105; N80 M17; LCEXP2 N10 G91 G1 X-14; N20 G4 S2; N30 G1 X14; N40 G0 Z-8; N50 G90 M17; 第四部分:绘制CAD零件图

1)零件图工艺分析 该零件表面由圆柱、圆锥、顺圆弧、逆圆弧及螺纹等表面组成。其中多个直径尺寸有较严的尺寸精度和表面粗糙度等要求;球面Sφ50㎜的尺寸公差还兼有控制该球面形状(线轮廓)误差的作用。尺寸标注完整,轮廓描述清楚。零件材料为45钢,无热处理和硬度要求。 通过上述分析,可采用以下几点工艺措施。 ①对图样上给定的几个精度要求较高的尺寸,因其公差数值较小,故编程时不必取平均值,而全部取其基本尺寸即可。 ②在轮廓曲线上,有三处为圆弧,其中两处为既过象限又改变进给方向的轮廓曲线,因此在加工时应进行机械间隙补偿,以保证轮廓曲线的准确性。 ③为便于装夹,坯件左端应预先车出夹持部分(双点画线部分),右端面也应先粗车出并钻好中心孔。毛坯选φ60㎜棒料。 (2)选择设备 根据被加工零件的外形和材料等条件,选用TND360数控车床。 (3)确定零件的定位基准和装夹方式 ①定位基准 确定坯料轴线和左端大端面(设计基准)为定位基准。 ②装夹方法 左端采用三爪自定心卡盘定心夹紧,右端采用活动顶尖支承的装夹方式。 (4)确定加工顺序及进给路线 加工顺序按由粗到精、由近到远(由右到左)的原则确定。即先从右到左进行粗车(留0.25㎜精车余量),然后从右到左进行精车,最后车削螺纹。 TND360数控车床具有粗车循环和车螺纹循环功能,只要正确使用编程指令,机床数控系统就会自动确定其进给路线,因此,该零件的粗车循环和车螺纹循环不需要人为确定其进给路线(但精车的进给路线需要人为确定)。该零件从右到左沿零件表面轮廓精车进给,如图2所示。 图2 精车轮廓进给路线 (5)刀具选择 ①选用φ5㎜中心钻钻削中心孔。 ②粗车及平端面选用900硬质合金右偏刀,为防止副后刀面与工件轮廓干涉(可用作图法检验),副偏角不宜太小,选κ=35 0。 ③精车选用900硬质合金右偏刀,车螺纹选用硬质合金600外螺纹车刀,刀尖圆弧半径应小于轮廓最小圆角半径,取rε=0.15~0.2㎜。 将所选定的刀具参数填入数控加工刀具卡片中(见表1),以便编程和操作管理。 表1 数控加工刀具卡片 产品名称或代号 ××× 零件名称 典型轴 零件图号 ××× 序号 刀具号 刀具规格名称 数量 加工表面 备注 1 T01 φ5中心钻 1 钻φ5 mm中心孔 2 T02 硬质合金90 0 外圆车刀 1 车端面及粗车轮廓 右偏刀 2 T03 硬质合金90 0 外圆车刀 1 精车轮廓 右偏刀 3 T04 硬质合金60 0 外螺纹车刀 1 车螺纹 编制 ××× 审核 ××× 批准 ××× 共页 第页 (6)切削用量选择 ①背吃刀量的选择 轮廓粗车循环时选a p =3 ㎜,精车a p =0.25㎜;螺纹粗车时选a p = 0.4 ㎜,逐刀减少,精车a p =0.1㎜。 ②主轴转速的选择 车直线和圆弧时,选粗车切削速度v c =90m/min、精车切削速度v c =120m/min,然后利用公式v c =πdn/1000计算主轴转速n(粗车直径D=60 ㎜,精车工件直径取平均值):粗车500r/min、精车1200 r/min。车螺纹时,参照式(5-1)计算主轴转速n =320 r/min. ③进给速度的选择 选择粗车、精车每转进给量,再根据加工的实际情况确定粗车每转进给量为0.4㎜/r,精车每转进给量为0.15㎜/r,最后根据公式v f = nf计算粗车、精车进给速度分别为200 ㎜ /min和180 ㎜/min。 综合前面分析的各项内容,并将其填入表2所示的数控加工工艺卡片。此表是编制加工程序的主要依据和操作人员配合数控程序进行数控加工的指导性文件。主要内容包括:工步顺序、工步内容、各工步所用的刀具及切削用量等。 表2 典型轴类零件数控加工工艺卡片 单位名称 ××× 产品名称或代号 零件名称 零件图号 ××× 典型轴 ××× 工序号 程序编号 夹具名称 使用设备 车间 001 ××× 三爪卡盘和活动顶尖 TND360数控车床 数控中心 工步号 工步内容 刀具号 刀具规格 / mm 主轴转速 /r.min -1 进给速度 /mm. min -1 背吃刀量 / mm 备注 1 平端面 T02 25×25 500 手动 2 钻中心孔 T01 φ5 950 手动 3 粗车轮廓 T02 25×25 500 200

数控加工轴类零件工艺毕业论文

我可以帮你,QQ748600950

1)零件图工艺分析 该零件表面由圆柱、圆锥、顺圆弧、逆圆弧及螺纹等表面组成。其中多个直径尺寸有较严的尺寸精度和表面粗糙度等要求;球面Sφ50㎜的尺寸公差还兼有控制该球面形状(线轮廓)误差的作用。尺寸标注完整,轮廓描述清楚。零件材料为45钢,无热处理和硬度要求。 通过上述分析,可采用以下几点工艺措施。 ①对图样上给定的几个精度要求较高的尺寸,因其公差数值较小,故编程时不必取平均值,而全部取其基本尺寸即可。 ②在轮廓曲线上,有三处为圆弧,其中两处为既过象限又改变进给方向的轮廓曲线,因此在加工时应进行机械间隙补偿,以保证轮廓曲线的准确性。 ③为便于装夹,坯件左端应预先车出夹持部分(双点画线部分),右端面也应先粗车出并钻好中心孔。毛坯选φ60㎜棒料。 (2)选择设备 根据被加工零件的外形和材料等条件,选用TND360数控车床。 (3)确定零件的定位基准和装夹方式 ①定位基准 确定坯料轴线和左端大端面(设计基准)为定位基准。 ②装夹方法 左端采用三爪自定心卡盘定心夹紧,右端采用活动顶尖支承的装夹方式。 (4)确定加工顺序及进给路线 加工顺序按由粗到精、由近到远(由右到左)的原则确定。即先从右到左进行粗车(留0.25㎜精车余量),然后从右到左进行精车,最后车削螺纹。 TND360数控车床具有粗车循环和车螺纹循环功能,只要正确使用编程指令,机床数控系统就会自动确定其进给路线,因此,该零件的粗车循环和车螺纹循环不需要人为确定其进给路线(但精车的进给路线需要人为确定)。该零件从右到左沿零件表面轮廓精车进给,如图2所示。 图2 精车轮廓进给路线 (5)刀具选择 ①选用φ5㎜中心钻钻削中心孔。 ②粗车及平端面选用900硬质合金右偏刀,为防止副后刀面与工件轮廓干涉(可用作图法检验),副偏角不宜太小,选κ=35 0。 ③精车选用900硬质合金右偏刀,车螺纹选用硬质合金600外螺纹车刀,刀尖圆弧半径应小于轮廓最小圆角半径,取rε=0.15~0.2㎜。 将所选定的刀具参数填入数控加工刀具卡片中(见表1),以便编程和操作管理。 表1 数控加工刀具卡片 产品名称或代号 ××× 零件名称 典型轴 零件图号 ××× 序号 刀具号 刀具规格名称 数量 加工表面 备注 1 T01 φ5中心钻 1 钻φ5 mm中心孔 2 T02 硬质合金90 0 外圆车刀 1 车端面及粗车轮廓 右偏刀 2 T03 硬质合金90 0 外圆车刀 1 精车轮廓 右偏刀 3 T04 硬质合金60 0 外螺纹车刀 1 车螺纹 编制 ××× 审核 ××× 批准 ××× 共页 第页 (6)切削用量选择 ①背吃刀量的选择 轮廓粗车循环时选a p =3 ㎜,精车a p =0.25㎜;螺纹粗车时选a p = 0.4 ㎜,逐刀减少,精车a p =0.1㎜。 ②主轴转速的选择 车直线和圆弧时,选粗车切削速度v c =90m/min、精车切削速度v c =120m/min,然后利用公式v c =πdn/1000计算主轴转速n(粗车直径D=60 ㎜,精车工件直径取平均值):粗车500r/min、精车1200 r/min。车螺纹时,参照式(5-1)计算主轴转速n =320 r/min. ③进给速度的选择 选择粗车、精车每转进给量,再根据加工的实际情况确定粗车每转进给量为0.4㎜/r,精车每转进给量为0.15㎜/r,最后根据公式v f = nf计算粗车、精车进给速度分别为200 ㎜ /min和180 ㎜/min。 综合前面分析的各项内容,并将其填入表2所示的数控加工工艺卡片。此表是编制加工程序的主要依据和操作人员配合数控程序进行数控加工的指导性文件。主要内容包括:工步顺序、工步内容、各工步所用的刀具及切削用量等。 表2 典型轴类零件数控加工工艺卡片 单位名称 ××× 产品名称或代号 零件名称 零件图号 ××× 典型轴 ××× 工序号 程序编号 夹具名称 使用设备 车间 001 ××× 三爪卡盘和活动顶尖 TND360数控车床 数控中心 工步号 工步内容 刀具号 刀具规格 / mm 主轴转速 /r.min -1 进给速度 /mm. min -1 背吃刀量 / mm 备注 1 平端面 T02 25×25 500 手动 2 钻中心孔 T01 φ5 950 手动 3 粗车轮廓 T02 25×25 500 200

我的百度空间

典型零件加工工艺拟订及自动编程(Mastercam) 字数:14571,页数:37 论文编号:JX071 前言 数控机床是综合应用计算机、自动控制、自动检测及精密机械等高新技术的产物。它的出现以及所带来的巨大效益引起世界各国科技界和工业界的普遍重视。随着数控机床已是衡量一个国家机械制造业技术改造的必由之路,是未来工厂自动化的基础。需要大批量能熟练掌握数控机床编程、操作、维修的人员和工程技术人员。但是我们装备制造业仍存在“六有六缺”的隐忧,即“有规模、缺实力,有数量、缺巨人,有速度、缺效益,有体系、缺原创,有单机、缺成套,有出口、缺档次。目前,振兴我国机械装备制造业的条件已经具备,时机也很有利。我们要以高度的使命感和责任感,采取更加有效的措施,克服发展中存在的问题,把我国从一个制造业大国建设成一个制造业强国,成为世界级制造业基地之一。 我选择这个题目是因为此零件既包括了数控车床的又含有数控铣床的加工。用到了铣端面、铣凸台、钻通孔、扩孔、绞孔、攻螺纹。对我们学过的知识大致都进行了个概括总结。这份毕业设计主要分为5个方面:1.抄画零件图2.工艺分析3.切削用量选择4.工艺文件5.计算编程。零件图通过在AUTOCAD上用平面的形式表现出来,更加清楚零件结构形状。然后具体分析零件图由那些形状组成。数控加工工艺分析,通过对零件的工艺分析,可以深入全面地了解零件,及时地对零件结构和技术要求等作必要的修改,进而确定该零件是否适合在数控机床上加工,适合在哪台数控机床上加工,此零件我选择在加工中心上进行是因为加工中心具有自动换刀装置,在一次安装中,可以完成零件上平面的铣削,孔系的钻削、镗削、铰削、铣削及攻螺纹等多工位的加工。加工的部位可以在一个平面上,也可以在不同的平面上因此,既有平面又有孔系的零件是加工中心首选的加工对象,接着分析某台机床上应完成零件那些工序或那些工序的加工等。需要选择定位基准;零件的定位基准一方面要能保证零件经多次装夹后其加工表面之间相互位置的正确性,另一方面要满足加工中心工序集中的特点即一次安装尽可能完成零件上较多表面的加工。定位基准最好是表面已有的面或孔。再确定所有加工表面的加工方法和加工方案;选择刀具和切削用量。然后拟订加工方案确定所有工步的加工顺序,把相邻工步划为一个工序,即进行工序划分;先面后孔的加工顺序,因为平面尺寸轮廓较大,用平面定位比较稳定,而且孔的深度尺寸又是以平面为基准的,故应先加工平面后加工孔。最后再将需要的其他工序如普通加工工序插入,并衔接于数控加工工序序列之中,就得到了要求零件的数控加工工艺路线。切削用量经过查表和计算求得,然后在填入工艺文件里面。最后就是编程编程分手工编程和自动编程。这里采用MASTERCAM软件自动编程。整个设计就算是完成了。最后,让我们在数控机床上加工出该零件达到要求。 数控技术的广泛应用给传统的制造业的生产方式,产品结构带来了深刻的变化。也给传统的机械,机电专业的人才带来新的机遇和挑战。通过本次毕业设计让我们毕业生更好的熟悉数控机床,确定加工工艺,学会分析零件,掌握数控编程。为即将走上工作岗位打下良好的基础 目录 1.抄画零件图 1 2.零件的工艺分析与加工方案拟定 1 2.1零件工艺分析 1 2.2定位基准选择 1 2.3选择机床 1 2.4选择加工方法 1 2.5工件的夹紧和定位 2 3.切削用量的确定 2 3.1毛坯的外轮廓尺寸 3 3.2工序一切削用量的选择 3 3.3工序二切削用量的选择 5 4.零件的工艺卡 12 4.1工序二的工件安装与零点设定卡 12 4.3工序二的工序卡 12 4.4工序二的刀具卡 13 5.1 Master CAM软件介绍 14 5.2 Master CAM实体模拟加工 14 总结28 参考文献 29机械类毕业设计资料网( )

相关百科

热门百科

首页
发表服务