摘要随着科学技术的迅速发展,数学建模这个词会越来越多的出现在现代人的生产、工作和社会活动中。众所周知,建立数学模型是沟通摆在面前的实际问题与数学工具之间的一座必不可少的桥梁。本文就是运用了数学建模的有关知识解决了部分生活与生产问题。例如,本文中的第一类是解决自来水供应问题,第二类是数学专业学生选课问题,第三类是饮料厂的生产与检修计划问题,这些都是根据数学建模的知识解决的问题。不仅使问题得到了解决,还进一步优化了数学模型,使数学建模问题变得可实用性!关键词: 数学建模 Lingo软件 模型正文 第一类:自来水供应问题:齐齐哈尔市梅里斯区华丰大街周围共4个居民区:园丁一号,政府六号,华丰一号,英雄一号。这四个居民区的自来水供应分别由A、B、C三个自来水公司供应,四个居民区每天需要得到保证的基本生活用水量分别为30,70,10,10千吨,但由于水源紧张,三个自来水公司每天最多只能分别提供50,60,50千吨自来水。由于管道输送等问题,自来水公司从水库向各个居民区送水所需付出的饮水管理费不同(见表1),其他管理费用都是450元/千吨。根据公司规定,各居民区用户按照统一标准900元/千吨收费。此外,四个居民区都向公司申请了额外用水,分别为每天50,70,20,40千吨。该公司应如何分配用水,才能获利最多?饮水管理费(元/千吨) 园丁一号 政府六号 华丰一号 英雄一号A 160 130 220 170B 140 130 190 150C 190 200 230 /(注意:C自来水公司与丁之间没有输水管道)模型建立:决策变量为A、B、C三个自来水公司(i=1,2,3)分别向园丁一号,政府六号,华丰一号,英雄一号四个居民区(j=1,2,3,4)的供水量。设水库i向j区的日供水量为x(ij),由题知x34=0.MinZ=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件:x11+x12+x13+x14=50; x21+x22+x23+x24=60; x31+x32+x33=50; x11+x21+x31<=80; x1+x21+x31>=30; x12+x22+x32<=140; x12+x22+x32>=70; x13+x23+x33<=30; x13+x23+x33>=10; x14+x24<=50;x14+x24>=10; x(ij)>=0; 用lingo软件求解:Min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;x11+x12+x13+x14=50; x21+x22+x23+x24=60;x31+x32+x33=50; x11+x21+x31<=80; x11+x21+x31>=30; x12+x22+x32<=140;x12+x22+x32>=70;x13+x23+x33<=30; x13+x23+x33>=10;x14+x24<=50;x14+x24>=10;x34=0;x11>=0;x12>=0;x13>=0;x14>=0;x21>=0;x22>=0;x23>=0;x24>=0;x31>=0;x32>=0;x33>=0;运行结果:Global optimal solution found at iteration: 14 Objective value: 24400.00Variable Value Reduced Cost X11 0.000000 30.00000 X12 50.00000 0.000000 X13 0.000000 50.00000 X14 0.000000 20.00000 X21 0.000000 10.00000 X22 50.00000 0.000000 X23 0.000000 20.00000 X24 10.00000 0.000000 X31 40.00000 0.000000 X32 0.000000 10.00000 X33 10.00000 0.000000 X34 0.000000 0.000000 Row Slack or Surplus Dual Price 1 24400.00 -1.000000 2 0.000000 -130.0000 3 0.000000 -130.0000 4 0.000000 -190.0000 5 40.00000 0.000000 6 10.00000 0.000000 7 40.00000 0.000000 8 30.00000 0.000000 9 20.00000 0.000000 10 0.000000 -40.00000 11 40.00000 0.000000 12 0.000000 -20.00000 13 0.000000 0.000000 14 0.000000 0.000000 15 50.00000 0.000000 16 0.000000 0.000000 17 0.000000 0.000000 18 0.000000 0.000000 19 50.00000 0.000000 20 0.000000 0.000000 21 10.00000 0.000000 22 40.00000 0.000000 23 0.000000 0.000000 24 10.00000 0.000000灵敏度分析:Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X11 160.0000 0.0 0.0 X12 130.0000 0.0 0.0 X13 220.0000 0.0 0.0 X14 170.0000 0.0 0.0 X21 140.0000 0.0 0.0 X22 130.0000 0.0 0.0 X23 190.0000 0.0 0.0 X24 150.0000 0.0 0.0 X31 190.0000 0.0 0.0 X32 200.0000 0.0 0.0 X33 230.0000 0.0 0.0 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 50.00000 0.0 0.0 3 60.00000 0.0 0.0 4 50.00000 0.0 0.0 5 80.00000 0.0 0.0 6 30.00000 0.0 0.0 7 140.0000 0.0 0.0 8 70.00000 0.0 0.0 9 30.00000 0.0 0.0 10 10.00000 0.0 0.0 11 50.00000 0.0 0.0 12 10.00000 0.0 0.0 14 0.0 0.0 0.0 15 0.0 0.0 0.0 16 0.0 0.1084396E+17 0.1084396E+17 17 0.0 0.1084396E+17 0.1084396E+17 18 0.0 0.0 0.0 19 0.0 0.0 0.0 20 0.0 0.0 0.0 21 0.0 0.0 0.0 22 0.0 0.0 0.0 23 0.0 0.0 0.0 24 0.0 0.0 0.0 第二类:数学专业学生选课问题 学校规定,数学专业的学生毕业时必须至少学习过两门数学课、一门计算机课、一门运筹学课。这些课程的编号、名称、所属类别要求如下表:课程编号 课程名称 所属类别 先修课要求1 微积分 数学 2 数学结构 数学;计算机 计算机编程3 解析几何 数学 4 计算机模拟 计算机;运筹学 计算机编程5 计算机编程 计算机 6 数学实验 运筹学;计算机 微积分;线性代数模型的建立与求解:用xi=1表示选课表中的六门课程(xi=0表示不选,i=1,2…,6)。问题的目标为选课的课程数最少,即:min=x1+x2+x3+x4+x5+x6;约束条件为:x1+x2+x3>=2;x2+x4+x5+x6>=1;x4+x6>=1;x4+x2-2*x5<=0;x6-x1<=0;@bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5); @bin(x6);运行结果:Global optimal solution found at iteration: 0 Objective value: 3.000000Variable Value Reduced Cost X1 1.000000 1.000000 X2 0.000000 1.000000 X3 1.000000 1.000000 X4 0.000000 1.000000 X5 0.000000 1.000000 X6 1.000000 1.000000 Row Slack or Surplus Dual Price 1 3.000000 -1.000000 2 0.000000 0.000000 3 0.000000 0.000000 4 0.000000 0.000000 5 0.000000 0.000000 6 0.000000 0.000000第三类:饮料厂的生产与检修计划 某饮料厂生产一种饮料用以满足市场需要。该厂销售科根据市场预测,已经确定了未来四周该饮料的需求量。计划科根据本厂实际情况给出了未来四周的生产能力和生产成本,如下图。每周当饮料满足需求后有剩余时,要支出存贮费,为每周每千箱饮料0.2千元。如果工厂必须在未来四周的某一周中安排一次设备检修,检修将占用当周15千箱的生产能力,但会使检修以后每周的生产能力提高5千箱,则检修应该放在哪一周,在满足每周市场需求的条件下,使四周的总费用(生产成本与存贮费)最小?周次 需求量(千箱) 生产能力(千箱) 成本(千元/千箱)1 15 30 5.02 25 40 5.13 35 45 5.44 25 20 5.5合计 100 135 模型建立:未来四周饮料的生产量分别记作x1,x2,x3,x4;记第1,2,3周末的库存量分别为y1,y2,y3;用wt=1表示检修安排在第t周(t=1,2,3,4)。输入形式:min=5.0*x1+5.1*x2+5.4*x3+5.5*x4+0.2*(y1+y2+y3);x1-y1=15;x2+y1-y2=25;x3+y2-y3=35;x4+y3=25;x1+15*w1<=30;x2+15*w2-5*w1<=40;x3+15*w3-5*w2-5*w1<=45;x4+15*w4-5*(w1+w2+w3)<=20;w1+w2+w3+w4=1;x1>=0;x2>=0;x3>=0;x4>=0;y1>=0;y2>=0;y3>=0;@bin(w1);@bin(w2);@bin(w3);@bin(w4);运行结果:Global optimal solution found at iteration: 0 Objective value: 527.0000Variable Value Reduced Cost X1 15.00000 0.000000 X2 45.00000 0.000000 X3 15.00000 0.000000 X4 25.00000 0.000000 Y1 0.000000 0.000000 Y2 20.00000 0.000000 Y3 0.000000 0.1000000 W1 1.000000 -0.5000000 W2 0.000000 1.500000 W3 0.000000 0.000000 W4 0.000000 0.000000 Row Slack or Surplus Dual Price 1 527.0000 -1.000000 2 0.000000 -5.000000 3 0.000000 -5.200000 4 0.000000 -5.400000 5 0.000000 -5.500000 6 0.000000 0.000000 7 0.000000 0.1000000 8 35.00000 0.000000 9 0.000000 0.000000 10 0.000000 0.000000 11 15.00000 0.000000 12 45.00000 0.000000 13 15.00000 0.000000 14 25.00000 0.000000 15 0.000000 0.000000 16 20.00000 0.000000 17 0.000000 0.000000参考文献【1】 杨启帆,边馥萍。数学建模。浙江大学出版社,1990【2】 谭永基,数学模型,复旦大学出版社,1997【3】 姜启源,数学模型(第二版)。高等教育出版社,1993【4】 姜启源,数学模型(第三版)。高等教育出版社2003
数学是各门科学在高度发展中所达到的最高形式的一门科学,各门自然学科都频繁的求助于它。下文是我为大家搜集整理的关于2017年研究生数学建模优秀论文的内容,欢迎大家阅读参考!
谈谈优化高中数学课堂教学
学生在课堂上获取知识,优质课堂是三维目标的落实。当前,在高中数学课堂教学过程中,改变了照本宣科的教学模式,但是,由于抽象的数学知识给学生学习带来了诸多困难,并且相对文科科目来说比较枯燥,使得学生产出畏难心理。因此,数学教师一定要优化课堂教学,通过多种手段激发学生的学习兴趣,科学正确地传授给学生以知识和能力,让学生建立起学习数学的信心,提高数学课堂教学的有效性。
一、优化高中数学课堂教学的重要性
1、提升高中数学课堂教学效率
在应试教育的影响下,高中数学课堂上教师是主角,一般都是由老师先讲解例题,然后留出时间让学生做练习,教师对学生的评价的主要依据就是学生的考试成绩。其实,教师和学生都有这样的感觉:在高中数学课堂上,不管是教师的教还是学生的学都比较辛苦,感觉自己的付出和收获相差甚远。在实际教学中,还有不少老师依然采用时间战术和题海战术,课堂教学摆脱不了知识的灌输,造成很多学生依赖于教师的指导。有些学生在高考时成绩突出,但是他们步入大学后,当数学教师不再直接告诉他们结论时,就会无所适从、不知所措。
即使课堂上有师生互动,由于教师的启发性不够,或者自身知识水平有限等导致学生合作学习形式化。另外,有的教师不能与时俱进,不去汲取先进的教学理念,在教学中缺少行之有效的教学方法,导致课堂气氛沉闷,学生缺乏内在的数学学习兴趣。还有的教师缺乏课堂调控能力和管理能力,把课堂上宝贵的时间用在维持课堂秩序上,直接影响课堂教学效率的提高。而优化高中数学课堂教学,有效填补了传统教学模式的缺陷,提高学生学习的积极性,更符合新课改对高中数学教学的要求。
2、优化高中数学课堂教学是新课改发展的必然趋势
优化高中数学课堂教学是新课改的要求,也是构建高效课堂的保障。高中数学课堂教学并不是一个独立的个体,有着丰富的内涵。在新课改背景下,需要改革的内容多种多样,除了创新教学内容和教学目标以外,最主要是就是改革课堂教学模式。只有优化改革高中数学课堂教学,才能真正实现教学效率的提升。
二、优化高中数学课堂教学的有效途径
1、创设生活化情境,提高学生的学习兴趣
新课改下的高中数学课堂,要求学生能从数学的角度去发现生活中的数学问题,并能用数学知识去分析和解决实际问题。在高中数学教学中,教师要引导学生从生活中捕捉数学问题,立足于学生实际,贴近学生的生活实际,设计学生感兴趣的生活素材,使抽象的数学问题变得生动、活泼,让学生感受到数学和生活的息息相关,生活中处处有数学。所以,教师要充分了解学生实际,联系学生所熟悉或者感兴趣的社会实际问题,创设多种教学情境,从而激发学生的学习热情。兴趣是最好的老师,兴趣能促进学生主动进行活动。兴趣是构成学习动机的主要成分。因此,教师应激发学生对学习的探究欲望。高中数学知识比较抽象、深奥,教师必须用多种教学手段让学生具有新鲜感,比如设计巧妙的导入,以激发学生的学习兴趣。
2、实施情感教育。在课堂教学中,通过情感教育能起到事半功倍的教学效果。教学是教和学的统一,因此,高效课堂不但体现了教师教的有效性,更体现了学生学的有效性。在教学过程中,构建民主、愉快的师生关系非常重要。教师应加强和学生的互动,通过观察、沟通、课堂反馈及时了解学生对知识的掌握情况,及时和学生沟通,对学生的表现作出具体的评价,使学生体验到尊重和友爱的教育情感,对待后进生更要给予关心和帮助,为他们提供锻炼的机会,让他们体验到成功的喜悦,使他们意识到只要努力,就有希望,同时培养他们的自信心,消除他们的畏难情绪,让他们逐步喜欢上数学学习。只有这样,才能实现教和学的完美结合,才能确保教学效率的提高。
3.合作探究,培养学生自主学习能力
随着素质教育的深入发展,高中数学教学注重学生自主学习能力的培养,以提高学生的学习能力。数学课堂教学不能只局限于课堂,要对课堂教学进行延伸和拓展,核心是坚持学生的主体地位,这也是优化课堂教学的重要方式。因此,数学教学要运用灵活多变的教学措施,不断研究和创新教学方式,增长学生的见识。比如采用合作探究的学习方法,让学生小组合作、课外调查、课前搜集等,转变学生学习数学的观念,给学生自由、广阔的学习空间,让学生以课堂主人的身份参与学习,改变学生被动接受知识模式,提高学生数学学习的兴趣,使数学课堂富有生机和活力。通过合作探究,促进生生、师生之间的交流,培养学生合作精神,提高学生自主学习数学的主动性,学生在探究的过程中,加深对所学生知识的理解,让他们学会了怎样学习,锻炼了实践能力和探究能力,培养了自觉应用的意识。有效提高课堂教学效果。
4.充分发挥多媒体教学手段,提高教学效率
课堂教学是一门学问,也是一门艺术,学问的大小与艺术的高低和教学效果有直接的关系。因此在课堂教学中,一方面要汲取传统教学模式的精华,一方面我们要探索各具特色的教学方式。在以往的数学教学中,不管是数学概念、数学公式、数学定理等主要靠教师的讲解,因此,数学课堂给学生的感觉就是枯燥乏味,没有一点新意,很难激发学生的学习兴趣。而随着科技的发展,现代教学手段进入我们的课堂,实现教学过程的图文并茂、生动形象,使枯燥而抽象的数学知识变得直观而活泼,学生理解起来更加容易。同时,多媒体的运用刺激学生多种感官,获得的知识灵活、扎实,真正促进学生知识与能力的发展。
5.不断反思,优化课堂教学过程
课堂教学的过程是不断探索和完善的过程,因此,教师要注重课堂反思,运用多种教学手段,及时发现课堂教学中的不足之处,并根据实际情况制定相应的措施。教师和学生都要不断反思和创新,进一步完善教和学的过程,使其更具理想,从而提高课堂教学的有效性。同时,课后反思能提高教师的专业素养,形成自己的教学风格,更好地和学生相配合,灵活调整教学方法,推陈出新,探寻更多的有效教学手段。 例如,教师在指导学生学习集合的时候,有的教师就按照传统教学模式开门见山地讲解定义,导致学生无所适从,学习效果很不理想。此时,教师应对课堂教学进行反思,找出问题所在。教师应从学生的学情入手,抓着问题关键所在。学生难于理解集合概念,主要是因为教师不能从学生实际出发。因此,教师要引导学生充分预习,并标出不懂的地方,在课堂教学中,有目的地接受教师的讲解,形成知识结构体系,有效提高课堂教学效率。
6.设置具有创新思维的题型
新课改下的数学课堂应注重学生创新能力的培养,因此教师要鼓励学生大胆质疑,勇于向教师和教材挑战。他们往往对教材和教师讲述的一切不去怀疑和思考,因此,思维能力得不到锻炼。另外,教师提出的问题多数都是陈述性问题,针对知识点进行题海战术,不注重问题和练习的开放性。数学学习对学生创新能力的培养有着得天独厚的作用,因此,题型的设置能启发学生的创新思维,通过学生自主思考,积极探索,寻求新的处理方法,从而优化数学思维品质。
在数学教学过程中,除了讲解和演示例题,应引导学生探究 “变异”的结果,拓宽学生的思路,培养学生的发散性思维。在课本习题的基础上,要不断创新题型,使学生找到新题型和原题之间的联系,达到一把钥匙开多把锁的效果。通过加强训练,开发学生的创造力,培养学生解决问题能力,促进学生思维的发展。学生在回答问题以后,教师可以延迟对学生评价,创设一种畅所欲言的氛围,为学生提供广阔的发展空间,提出更多的创造性设想,提高学生的创造性思维能力。
总之,随着高中数学新课程改革的不断深入,数学教师要讲究教学策略,强化课堂教学管理,在实践中不但探索和创新,发挥数学课堂教学的智慧性,处理好教和学的关系,注重学习方法的指导,运用多样化的教学方法,精选范例,突出重点,巩固知识,拓宽思路,促使学生全面发展,达到课堂教学的最优化,进而推动高中数学教育事业的可持续发展。
<<<下页带来更多的2017年研究生数学建模优秀论文
没有,1.按模型分类的美赛论文2.按模型整理的研究生赛论文3.华为杯研究生数学建模历年题目和论文4.美赛历年题目和论文、国赛历年题目和论文、国赛真题讲解ppt、国赛答辩ppt5.收集的美赛OFM奖代码6.Mathorcup数学建模挑战赛历年题目和论文7.mathorcup大数据挑战赛题目和论文8.华中杯数学建模历年题目和论文9.电工杯数学建模挑战赛历年题目和论文10.亚太杯APMCM数学建模挑战赛历年题目和论文11.深圳杯数学建模历年题目和论文12.五一数学建模竞赛历年题目和论文13.中青杯数学建模竞赛历年题目和论文14.华数杯题目和论文15.数维杯数学建模竞赛历年题目和论文16.东三省数学建模竞赛历年题目和论文17.华东杯数学建模题目和论文18.认证杯数学建模竞赛历年题目和论文19.其他地区、学校小比赛
一、数学建模论文格式要求
论文题目(三号黑体,居中)
一级标题(四号黑体,居中)
论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出2.5厘米的页边距。
首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。
第四页开始论文正文正文应包括以下八个部分:
1 问题提出:叙述问题内容及意义;
2 基本假设:写出问题的合理假设;
3 建立模型:详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想;
4 模型求解:求解、算法的主要步骤;
5 结果分析与检验:(含误差分析);
6 模型评价:优缺点及改进意见;
7参考文献:限公开发表文献,指明出处;
参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号]作者,书名,出版地:出版社,出版年
参考文献中期刊杂志论文的表述方式为:
[编号]作者,论文名,杂志名,卷期号:出版年
参考文献中网上资源的`表述方式为:
[编号]作者,资源标题,网址,访问时间(年月日)
8 附录:计算框图,原程序及打印结果。
二、全国数学建模竞赛论文格式规范.
1 论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
2 论文第一页为承诺书,具体内容和格式见本规范第二页。
3 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
4 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
5 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
6 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
7 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
8 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
9 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
10 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。
11 本规范的解释权属于全国大学生数学建模竞赛组委会。
论文用白色A4纸打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
论文第一页为承诺书,具体内容和格式见本规范第二页。
论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
论文题目、摘要和关键词写在论文第三页上(无需译成英文),并从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。注意:摘要应该是一份简明扼要的详细摘要,请认真书写(但篇幅不能超过一页)。
从第四页开始是论文正文(不要目录)数学建模论文格式标准数学建模论文格式标准。论文不能有页眉或任何可能显示答题人身份和所在学校等的信息。
论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。
引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
注意:
1.摘要在整篇论文评阅中占有重要权重,请认真书写摘要(注意篇幅)。摘要中把论文的主要内容及特点充分表达出来。论文主要部分要阐述题目,假设,分析,建模,解模和结果的全过程,对模型的检验及模型的优缺点和发展前景也要有所表述
2. 引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出数学建模论文格式标准论文。正文引用处用方括号
标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
市区:594分 靖江:661分 泰兴:646分 姜堰:651分 兴化:530分
建模论文(或实验报告)的格式要求: ①写作顺序:标题、作者所在省份、城市、学校名称、班级、作者姓名、指导教师姓名、摘要及关键词、正文、参考文献。②参考文献的书写格式严格按以下顺序:序号、作者姓名、书名(或文章名)、出版社(或期刊名)、出版时间或发表年、卷、期号。③实验报告中须包含实验的目的、构想、步骤、结论,并提供证明实验结果的数据及照片等。④字体:各类标题(包括“参考文献”标题)用粗宋体;作者姓名、指导教师姓名、摘要、关键词、图表名、参考文献内容用楷体;正文、图表、页眉、页脚中的文字用宋体;英文用Times New Roman字体。⑤字号:论文题目用三号字体,居中;正文用四号字体;页眉、页脚用小五号字体;其他用五号字体;图、表名居中。⑥正文打印页码,下面居中。⑦打印纸张规格:A4 210mm×297 mm。⑧必须同时提交打印稿和电子版。标题(三号粗宋体)××省××市××学校××班级 作者姓名 指导教师姓名(五号楷体)摘要及关键词(五号楷体)正文(四号宋体)参考文献(五号楷体) (4)说明:参评论文的作者必须是作品的合法拥有者,具有著作权,并承担相应法律责任,组委会对获奖作品具有无偿展示权、宣传权、使用权
楼主你好,原来我已经回答过这一个问题了,现在将我原来的回答copy过来,希望能对你有所帮助:首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。下面是论文的主体:1. 问题重述 主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。2. 模型假设 对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。3. 符号说明 将你要建立的模型中的一些参量用符号代替表示。4. 模型建立 这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法5. 问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答) 利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。6. 模型改进 解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。7. 参考文献 最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。 如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。
论文(答卷)用白色A4纸,上下左右各留出2.5厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单倍行距。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。
数学是各门科学在高度发展中所达到的最高形式的一门科学,各门自然学科都频繁的求助于它。下文是我为大家搜集整理的关于2017年研究生数学建模优秀论文的内容,欢迎大家阅读参考!
谈谈优化高中数学课堂教学
学生在课堂上获取知识,优质课堂是三维目标的落实。当前,在高中数学课堂教学过程中,改变了照本宣科的教学模式,但是,由于抽象的数学知识给学生学习带来了诸多困难,并且相对文科科目来说比较枯燥,使得学生产出畏难心理。因此,数学教师一定要优化课堂教学,通过多种手段激发学生的学习兴趣,科学正确地传授给学生以知识和能力,让学生建立起学习数学的信心,提高数学课堂教学的有效性。
一、优化高中数学课堂教学的重要性
1、提升高中数学课堂教学效率
在应试教育的影响下,高中数学课堂上教师是主角,一般都是由老师先讲解例题,然后留出时间让学生做练习,教师对学生的评价的主要依据就是学生的考试成绩。其实,教师和学生都有这样的感觉:在高中数学课堂上,不管是教师的教还是学生的学都比较辛苦,感觉自己的付出和收获相差甚远。在实际教学中,还有不少老师依然采用时间战术和题海战术,课堂教学摆脱不了知识的灌输,造成很多学生依赖于教师的指导。有些学生在高考时成绩突出,但是他们步入大学后,当数学教师不再直接告诉他们结论时,就会无所适从、不知所措。
即使课堂上有师生互动,由于教师的启发性不够,或者自身知识水平有限等导致学生合作学习形式化。另外,有的教师不能与时俱进,不去汲取先进的教学理念,在教学中缺少行之有效的教学方法,导致课堂气氛沉闷,学生缺乏内在的数学学习兴趣。还有的教师缺乏课堂调控能力和管理能力,把课堂上宝贵的时间用在维持课堂秩序上,直接影响课堂教学效率的提高。而优化高中数学课堂教学,有效填补了传统教学模式的缺陷,提高学生学习的积极性,更符合新课改对高中数学教学的要求。
2、优化高中数学课堂教学是新课改发展的必然趋势
优化高中数学课堂教学是新课改的要求,也是构建高效课堂的保障。高中数学课堂教学并不是一个独立的个体,有着丰富的内涵。在新课改背景下,需要改革的内容多种多样,除了创新教学内容和教学目标以外,最主要是就是改革课堂教学模式。只有优化改革高中数学课堂教学,才能真正实现教学效率的提升。
二、优化高中数学课堂教学的有效途径
1、创设生活化情境,提高学生的学习兴趣
新课改下的高中数学课堂,要求学生能从数学的角度去发现生活中的数学问题,并能用数学知识去分析和解决实际问题。在高中数学教学中,教师要引导学生从生活中捕捉数学问题,立足于学生实际,贴近学生的生活实际,设计学生感兴趣的生活素材,使抽象的数学问题变得生动、活泼,让学生感受到数学和生活的息息相关,生活中处处有数学。所以,教师要充分了解学生实际,联系学生所熟悉或者感兴趣的社会实际问题,创设多种教学情境,从而激发学生的学习热情。兴趣是最好的老师,兴趣能促进学生主动进行活动。兴趣是构成学习动机的主要成分。因此,教师应激发学生对学习的探究欲望。高中数学知识比较抽象、深奥,教师必须用多种教学手段让学生具有新鲜感,比如设计巧妙的导入,以激发学生的学习兴趣。
2、实施情感教育。在课堂教学中,通过情感教育能起到事半功倍的教学效果。教学是教和学的统一,因此,高效课堂不但体现了教师教的有效性,更体现了学生学的有效性。在教学过程中,构建民主、愉快的师生关系非常重要。教师应加强和学生的互动,通过观察、沟通、课堂反馈及时了解学生对知识的掌握情况,及时和学生沟通,对学生的表现作出具体的评价,使学生体验到尊重和友爱的教育情感,对待后进生更要给予关心和帮助,为他们提供锻炼的机会,让他们体验到成功的喜悦,使他们意识到只要努力,就有希望,同时培养他们的自信心,消除他们的畏难情绪,让他们逐步喜欢上数学学习。只有这样,才能实现教和学的完美结合,才能确保教学效率的提高。
3.合作探究,培养学生自主学习能力
随着素质教育的深入发展,高中数学教学注重学生自主学习能力的培养,以提高学生的学习能力。数学课堂教学不能只局限于课堂,要对课堂教学进行延伸和拓展,核心是坚持学生的主体地位,这也是优化课堂教学的重要方式。因此,数学教学要运用灵活多变的教学措施,不断研究和创新教学方式,增长学生的见识。比如采用合作探究的学习方法,让学生小组合作、课外调查、课前搜集等,转变学生学习数学的观念,给学生自由、广阔的学习空间,让学生以课堂主人的身份参与学习,改变学生被动接受知识模式,提高学生数学学习的兴趣,使数学课堂富有生机和活力。通过合作探究,促进生生、师生之间的交流,培养学生合作精神,提高学生自主学习数学的主动性,学生在探究的过程中,加深对所学生知识的理解,让他们学会了怎样学习,锻炼了实践能力和探究能力,培养了自觉应用的意识。有效提高课堂教学效果。
4.充分发挥多媒体教学手段,提高教学效率
课堂教学是一门学问,也是一门艺术,学问的大小与艺术的高低和教学效果有直接的关系。因此在课堂教学中,一方面要汲取传统教学模式的精华,一方面我们要探索各具特色的教学方式。在以往的数学教学中,不管是数学概念、数学公式、数学定理等主要靠教师的讲解,因此,数学课堂给学生的感觉就是枯燥乏味,没有一点新意,很难激发学生的学习兴趣。而随着科技的发展,现代教学手段进入我们的课堂,实现教学过程的图文并茂、生动形象,使枯燥而抽象的数学知识变得直观而活泼,学生理解起来更加容易。同时,多媒体的运用刺激学生多种感官,获得的知识灵活、扎实,真正促进学生知识与能力的发展。
5.不断反思,优化课堂教学过程
课堂教学的过程是不断探索和完善的过程,因此,教师要注重课堂反思,运用多种教学手段,及时发现课堂教学中的不足之处,并根据实际情况制定相应的措施。教师和学生都要不断反思和创新,进一步完善教和学的过程,使其更具理想,从而提高课堂教学的有效性。同时,课后反思能提高教师的专业素养,形成自己的教学风格,更好地和学生相配合,灵活调整教学方法,推陈出新,探寻更多的有效教学手段。 例如,教师在指导学生学习集合的时候,有的教师就按照传统教学模式开门见山地讲解定义,导致学生无所适从,学习效果很不理想。此时,教师应对课堂教学进行反思,找出问题所在。教师应从学生的学情入手,抓着问题关键所在。学生难于理解集合概念,主要是因为教师不能从学生实际出发。因此,教师要引导学生充分预习,并标出不懂的地方,在课堂教学中,有目的地接受教师的讲解,形成知识结构体系,有效提高课堂教学效率。
6.设置具有创新思维的题型
新课改下的数学课堂应注重学生创新能力的培养,因此教师要鼓励学生大胆质疑,勇于向教师和教材挑战。他们往往对教材和教师讲述的一切不去怀疑和思考,因此,思维能力得不到锻炼。另外,教师提出的问题多数都是陈述性问题,针对知识点进行题海战术,不注重问题和练习的开放性。数学学习对学生创新能力的培养有着得天独厚的作用,因此,题型的设置能启发学生的创新思维,通过学生自主思考,积极探索,寻求新的处理方法,从而优化数学思维品质。
在数学教学过程中,除了讲解和演示例题,应引导学生探究 “变异”的结果,拓宽学生的思路,培养学生的发散性思维。在课本习题的基础上,要不断创新题型,使学生找到新题型和原题之间的联系,达到一把钥匙开多把锁的效果。通过加强训练,开发学生的创造力,培养学生解决问题能力,促进学生思维的发展。学生在回答问题以后,教师可以延迟对学生评价,创设一种畅所欲言的氛围,为学生提供广阔的发展空间,提出更多的创造性设想,提高学生的创造性思维能力。
总之,随着高中数学新课程改革的不断深入,数学教师要讲究教学策略,强化课堂教学管理,在实践中不但探索和创新,发挥数学课堂教学的智慧性,处理好教和学的关系,注重学习方法的指导,运用多样化的教学方法,精选范例,突出重点,巩固知识,拓宽思路,促使学生全面发展,达到课堂教学的最优化,进而推动高中数学教育事业的可持续发展。
<<<下页带来更多的2017年研究生数学建模优秀论文
数学建模的论文一般可以分为以下几个部分:
1. 引言
在引言中,需要简单介绍研究的背景、目的和意义,可以阐述研究问题的重要性和现实应用,引出论文的研究内容。
2. 问题描述
在问题描述中,需要准确明确研究的问题,并对问题进行详细的描述。需要注意的是,问题描述需要清晰明了,表述精准,可以用图表等方式辅助描述,以便读者更好地理解问题。
3. 模型建立
在模型建立中,需要提出适合于解决研究问题的模型,并对模型进行详细的介绍和推导。需要注意的是,模型建立需要符合实际情况,并且需要考虑到模型的可行性和实际操作性。
4. 模型求解
在模型求解中,需要对建立的模型进行求解,并对求解结果进行分析和讨论。需要注意的是,模型求解需要使用合适的数学方法和工具,并且需要对求解过程进行详细的记录和说明。
5. 结果分析
在结果分析中,需要对求解结果进行详细的分析和讨论,包括结果的准确性、合理性和实际意义等方面。需要注意的是,结果分析需要与研究问题密切相关,并且需要结合实际情况进行分析。
6. 结论和展望
在结论和展望中,需要对研究结果进行总结,并对未来研究方向进行展望。需要注意的是,结论和展望需要简明扼要,表述清晰,具有实际意义和指导意义。
7. 参考文献
在参考文献中,需要列出论文中引用的所有文献,包括已发表的文献和未发表的文献。需要注意的是,参考文献需要符合学术规范,并且需要详细记录文献的相关信息。
奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1:6.83% A2:5.09% A3:5.63% A4:6.19% A5:6.72% A6:11.73% A7:5.04% A8:4.49% A9:3.95% A10:3.40%B1:2.81% B2:2.26% B3:4.55% B4:3.95% B5:4.49% B6:7.27% C1:1.69% C2:2.60% C3:5.39% C4:5.84%在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1
2021年“高教社杯”全国大学生数学建模竞赛ABC题的分析:
A题疫苗生产问题思路。
第一问确定答案,其他题思路新冠肺炎肆虐全球,给世界带来了深重的灾难。各国为控制疫情纷纷研发新冠疫苗。假定疫苗生产需要经过CJ1工位、CJ2工位、CJ3工位以及 CJ4工位等4个工艺流程。
每个工艺流程一次性均能处理100剂疫苗,这100剂疫苗装进一个加工箱一起送进工位的设备进行处理。而且,只有按照CJ1-CJ2-CJ3-CJ4的顺序在4个工位都进行了加工以后,才算完成生产。
为防止疫苗包装出现混乱,某疫苗生产公司生产部门规定,每个工位不能同时生产不同类型的疫苗,疫苗生产不允许插队。
即进入第一个工位安排的每类疫苗的生产顺序一旦确定就要一直保持不变,而且前一种类型的疫苗离开某个工位后,后一种类型的疫苗才能进入这个工位。
B题消防救援问题赛题思路。
赛题描述
随着我国经济的高速发展,城市空间环境复杂性急剧上升,各种事故灾害频发,安全风险不断增大,消防救援队承担的任务也呈现多样化、复杂化的趋势。对于每一起出警事件,消防救援队都会对其进行详细的记录。
问题1:
将每天分为三个时间段(0:00-8:00为时段Ⅰ,8:00-16:00为时段Ⅱ,16:00-24:00为时段Ⅲ),每个时间段安排不少于5人值班。
假设消防队每天有30人可安排值班,请根据附件数据,建立数学模型确定消防队在每年2月、5月、8月、11月中第一天的三个时间段各应安排多少人值班。
问题2:
以该地2016年1月1日至2019年12月31日的数据为基础,以月份为单位,建立消防救援出警次数的预测模型。
以2020年1月1日至2020年12月31日的数据作为模型的验证数据集,评价模型的准确性和稳定性,并对2021年各月份的消防救援出警次数进行预测。
问题3:
依据7种类别事件的发生时间,建立各类事件发生次数与月份关系的多种数学模型,以拟合度最优为评价标准,确定每类事件发生次数的最优模型。
问题4:
请建立数学模型,分析该地区2016-2020年各类事件密度在空间上的相关性,并且给出不同区域相关性最强的事件类别(事件密度指每周每平方公里内的事件发生次数)。
问题5:
请建立数学模型,分析该地各类事件密度与人口密度之间的关系(人口密度指每平方公里内的人口数量)。
问题6:
目前该地有两个消防站,分别位于区域J和区域N,综合考虑各种因素,建立数学模型,确定如果新建1个消防站,应该建在哪个区域?
如果在2021-2029年每隔3年新建1个消防站,则应依次建在哪些区域?
思路:
基本和国赛的消防救援题差不多,还简单一点,属于路径优化问题。
C题数据驱动的异常检测与预警问题赛题思路。
题目描述
推动生产企业高质量发展,最根本的底线是保证安全、防范风险,而生产过程中产生的数据能够实时反映潜在的风险。
某生产企业某日00:00:00-22:59:59由生产区域的仪器设备记录的时间序列数据(已经进行数据脱敏),本题未给出数据的具体名称,这些数据可能是温度、浓度、压力等与安全密切相关的数据。
建立数学模型,完成以下问题:
问题1:
给出的数据都可能存在波动,且所有波动都在安全值范围内。有些波动可能是正常性波动,例如随着外界温度或者产量变化的波动,或者可能是传感器误报。
这些波动具有规律性、独立性、偶发性等特点,并不能产生安全风险,我们视为非风险性异常,不需要人为干预;有些波动具有持续性、联动性等特点。
这些异常性波动的出现是生产过程中的不稳定因素造成的,预示着可能存在安全隐患,我们视为风险性异常,需要人为干预、分析和评定风险等级。
请建立数学模型,给出判定非风险性异常数据和风险性异常数据的方法。
问题2:
结合问题1的结果,建立数学模型,给出风险性异常数据异常程度的量化评价方法,要求使用百分制(0-100分)对每个时刻数据异常程度进行评价(分值越高表示异常程度越高)。
应用所建立的模型和附件1的数据,找到数据中异常分值最高的5个时刻及这5个时刻对应的异常传感器编号,每个时刻只填写5个异常程度最高的传感器编号,异常传感器不足5个则无需填满。
如果得分为0,可以不用填写异常传感器编号,并给出数学模型对所得结果进行评价。
思路:
经典的异常分析问题,异常数据一般可以用机器学习的方法做,常用的聚类。
kmeans、dbscan、决策树、孤立深林、LSTM,以上模型都可以套用进来。
数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。 3. 写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题 1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语) 1)问题重述。 2)问题分析。 3)模型假设。 4)符号说明。 5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。 6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。) 7)进一步讨论(结果表示、分析与检验,误差分析,模型检验) 8)模型评价(特点,优缺点,改进方法,推广。) 9)参考文献。 10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。) 3. 要重视的问题 1)摘要。 包括: a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 ▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。 2)问题重述。 3)问题分析。 因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。 5)模型假设。 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。 6) 模型的建立。 a. 基本模型: ⅰ)首先要有数学模型:数学公式、方案等; ⅱ)基本模型,要求完整,正确,简明; b. 简化模型: ⅰ)要明确说明简化思想,依据等; ⅱ)简化后模型,尽可能完整给出; c. 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 ⅰ)能用初等方法解决的、就不用高级方法; ⅱ)能用简单方法解决的,就不用复杂方法; ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: ▲ 建模中,模型本身,简化的好方法、好策略等; ▲ 模型求解中; ▲ 结果表示、分析、检验,模型检验; ▲ 推广部分。 e.在问题分析推导过程中,需要注意的问题: ⅰ)分析:中肯、确切; ⅱ)术语:专业、内行; ⅲ)原理、依据:正确、明确; ⅳ)表述:简明,关键步骤要列出; ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 7)模型求解。 a. 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 b. 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称。 c. 计算过程,中间结果可要可不要的,不要列出。 d. 设法算出合理的数值结果。 8) 结果分析、检验;模型检验及模型修正;结果表示。 a. 最终数值结果的正确性或合理性是第一位的; b. 对数值结果或模拟结果进行必要的检验; 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 c. 题目中要求回答的问题,数值结果,结论,须一一列出; d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; e. 结果表示:要集中,一目了然,直观,便于比较分析。 ▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲ 求解方案,用图示更好。 9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 10)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 11)参考文献 12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题; 问题以怎样的方式回答――结果以怎样的形式表示; 每个问题要列出哪些关键数据――建模要计算哪些关键数据; 每个量,列出一组还是多组数――要计算一组还是多组数。 四、答卷要求的原理 1. 准确――科学性; 2. 条理――逻辑性; 3. 简洁――数学美; 4. 创新――研究、应用目标之一,人才培养需要; 5. 实用――建模、实际问题要求。 五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模 用数学方法解决问题,要有数学模型; 问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 3. 创新意识 建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。
下载一片获奖论文,之后的所有基本就都解决了吧!!
二、论文格式规范
(一) “论文首页”编写
竞赛论文首页为“编号页”,只包含队号、队员姓名、学校名信息,第二页起为摘要页和正文页。参赛队有关信息不得出现于首页以外的任何一页,包括摘要页,否则视为违规。
(二) “论文摘要页”编写
竞赛使用“统一摘要面”。为了保证评审质量,提请参赛研究生注意摘要一定要将论文创新点、主要想法、做法、结果、分析结论表达清楚,如果一页纸不够,摘要可以写成两页。
(三) “论文文本”要求————“全国研究生数学建模竞赛论文格式规范”
l 每个参赛队可以从A、B、C、D、E题中任选一题完成论文。(赛题类型以比赛下载为准)
l 论文用白色A4版面;上下左右各留出至少2.5厘米的页边距;从左侧装订。
l 论文题目和摘要写在论文封面上,封面页的下一页开始论文正文。
l 论文从编号页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1 ”开始连续编号。
l 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
l 论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。程序执行文件,和源程序一起附在电子版论文中以备检查。
l 请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),请认真书写(注意篇幅一般不超过两页,且无需译成英文)。全国评阅时对摘要和论文都会审阅。
l 引用别人的成果或其他公开的资料(包括网上甚至在“博客”上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。
全国研究生数学建模竞赛评审委员会
楼主你好,数学建模论文一般分为以下几个部分:首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。下面是论文的主体:1. 问题重述主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。2. 模型假设对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。3. 符号说明将你要建立的模型中的一些参量用符号代替表示。4. 模型建立这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法5. 问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。6. 模型改进解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。7. 参考文献最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。如果楼主需要看论文样式的话,推荐一个网站:这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。最后祝楼主好运。
018年全国研究生数学建模竞赛题目
2018年全国研究生数学建模竞赛题目:链接:
A题:跳台跳水体型校正系数的建模分析
论文1 论文2 论文3 论文4 论文5 论文6
B题: 光传送网建模与价值评估
论文1 论文2 论文3 论文4 论文5 论文6 论文7
C题: 对恐怖袭击事件记录数据的量化分析
论文1 论文2 论文3 论文4 论文5 论文6 论文7
D题: 基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用
论文1 论文2 论文3 论文4 论文5 论文6 论文7 论文8
E题: 多无人机对组网雷达的协同干扰
论文1 论文2 论文3 论文4 论文5
F题: 增设卫星厅的登机口分配问题
论文1 论文2 论文3 论文4 论文5 论文6
奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1:6.83% A2:5.09% A3:5.63% A4:6.19% A5:6.72% A6:11.73% A7:5.04% A8:4.49% A9:3.95% A10:3.40%B1:2.81% B2:2.26% B3:4.55% B4:3.95% B5:4.49% B6:7.27% C1:1.69% C2:2.60% C3:5.39% C4:5.84%在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1