首页

> 学术发表知识库

首页 学术发表知识库 问题

氧化铁论文范文

发布时间:

氧化铁论文范文

厨房中的化学精彩纷呈,走进厨房,我们熟悉的化学便映入眼帘. 一 无机物 1、菜刀生锈:厨房中常见的现象便是新买的菜刀光滑明亮,几日后便开始生锈了,时间长了便不再光亮亮的了.这是因为铁在潮湿的环境中和空气中的氧气共同反映生成氧化铁.其实铁锈是一层疏松的氧化膜,一点也不能阻止内部的金属反应,因此时间长了,铁锈会继续增加,所以我们应该做好菜刀的保护工作,使用完毕后,及时擦拭干净,及时除锈.氧化铁是一种红棕色的粉末,俗名铁红,常用做涂漆和涂料.赤铁矿的主要成分便是氧化铁.它是一种炼铁原料.氧化铁不溶于水,也不与水反应.但是氧化铁可以与酸反应生成铁盐,其和盐酸反应的化学方程式为:一份子氧化铁与六分子盐酸反应生成两分子氯化铁和三分子水.(离子方程式:一摩尔氧化铁和六摩尔氢离子反应生成两摩尔铁离子和三摩尔水);此外,加热氢氧化铁也可生成氧化铁粉末(两分子氢氧化铁加热生成一份子氧化铁和三分子水) 2、致密的氧化膜氧化铝:铝是地壳中含量最多的金属元素,但人们发现并制得单质铝却比较晚,这是因为铝的化学性质比较活泼.从铝的化合物中提炼单质铝比较困难,铝的许多化合物在人类的生产和生活中有重要作用.其中氧化铝难溶于水,熔点很高也很坚固,因此覆盖在铝制品表面极薄的一层氧化膜就能很好的保护内层金属.氧化铝是冶炼金属铝的重要原料,也是一种较好的耐火材料 活泼的铝在空气中和氧气反应生成氧化铝,其化学方程式为四分子铝和三分子氧气反应生成两分子氧化铝,氧化铝致密可保护内层金属不被继续氧化.其实,既是打磨过的铝箔,在空气中也会生成新的氧化膜.构成薄膜的氧化铝熔点为2050℃,因此在实验室中常用来制造耐火坩埚,耐火管等耐高温的实验仪器.氧化铝虽然难溶于水,但能溶于酸和强碱溶液中,它溶于碱时生成的物质为偏铝酸钠和水,因此氧化铝是一种两性氧化物。

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

1.1原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

1.2PANIF的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

1.4PANIF/rGO复合材料制备

按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

1.5仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

2.1形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

2.2FTIR分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

2.4电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

2.1 研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

2.2 试验与研究

2.2.1 铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含58.66%A12O3和41.34%FeO。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为4.39g/cm3,莫氏硬度为7.5。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

2.2.2 原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

2.2.3 铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

2.3 产品的性能

2.3.1 结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

2.3.2 强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

2.3.3 具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

2.4 产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

一氧化氮氧化研究论文

、整体和局部组织发生缺血、缺氧时一氧化氮的变化有关这类研究的报道较多,但结论互相矛盾。戴爱国等(1996)利用猪肺脏进行的缺氧实验证明:缺氧对猪肺动脉内皮细胞 NOS的活性和基因表达有明显的抑制作用,其内皮细胞的NO合成减少。冉培鑫等(1997)证明大鼠缺氧时肺组织内NOSmRNA的表达降低。高春锦等(1998)给大鼠造成ACOP(全身缺氧)时动物动脉血内NO减少。薛连壁等(l999)的大鼠ACOP实验也得到同样结果。但也有相反结果的报道Horryl和Stephon R最近报道大鼠ACOP时血浆 NO增高。有学者报道缺氧时早期机体内源性NO释放增高。我们认为Horryl等与高春锦的大鼠ACOP实验的结果并不矛盾Horryl等的实验很可能是大鼠ACOP后立刻抽血测定NO,此时大鼠中毒极早,VEC受缺血、缺氧的刺激,但还没有发生功能和结构的明显损害,故VEC在缺氧刺激下NOS活性代偿性增强,NO产生增多。高春锦的实验是在大鼠ACOP后约2-3h后才抽血检测NO,此时大鼠的VEC的功能和结构已经遭到明显的损害,以致NOS活性降低,同时大量VEC损伤脱落,故而NO减少。薛连壁等的大鼠ACOP实验证明大鼠中毒即刻(中毒后2-3h)测定之动脉血内NO(从8.62±0.99mmol/L降至5.32±1.09mmol/L)、CEC(从3.74±0.12增至4.21±0.13)的变化。说明此时大鼠VEC发生大量脱落,NO合成明显减弱。 脑缺血-再罐流损伤的机制非常复杂,有多种因素参与,钙超载、兴奋性氨基酸毒性作用、氧自由基毒性作用等日益为人们所接受。近年来,随着对一氧化氮(NO)研究的深入,NO在脑缺血-再灌流损伤中的作用也成为当代医学研究的一大热点。本文对NO在脑缺血-再灌流中的生物合成、变化规律及毒性作用机制研究进展作一综述。 1 NO的生物合成及特点 1980年Furchgott和Zawadzki首次提出由内皮细胞产生的内皮源性舒张因子(EDRF)对包括脑血液循环在内的多种血管都有明显的舒张作用。现已证明E-DRF就是NO。NO是一种无负荷、自由基性质的气体,带有不成对的电子,容易弥散通过细胞膜。NO的生物合成是通过一条鸟氨酸循环的分支来完成的,即L-精氨酸(非D-精氨酸)通过一氧化氮合酶(NOS)的作用生成瓜氨酸并释放出NO,该反应过程需要分子氧、黄素腺嘌呤二核苷酸(FAD)、黄素单核苷酸(FMN)、生物喋呤、钙调蛋白(CaM)和还原型辅酶Ⅱ(NADPH)的参与。 NO兼有信使物质和神经递质的功能,在各系统中均有广泛的生物学特性,它既能舒张血管,抗血小板和白细胞粘附、聚集,又具有细胞毒性作用,还能充当一种新型信息分子,发挥递质功能[1]。在脑缺血-再灌流过程中,不同类型的NOS产生的NO对缺血脑组织产生复杂的影响, 目前较公认的为内皮型NOS产生的NO有神经保护作用,而神经元型和诱导型NOS产生的NO则有神经毒性作用。Lipton等提出NO在生理及病理条件下的作用可能与其本身的氧化还原状态有关。氧化型离子(NO+)能引起N-甲基-D天冬氨酸(NMDA)受体疏基亚硝基化,通过阻断NMDA受体发挥神经保护作用,而NO还原型离子(NO-)则能与超氧阴离子(02-)反应生成过氧化亚硝酸阴离子而起细胞毒作用。 2 NOS的分布及其特点 催化NO生物合成的酶称为NOS,NOS广泛存在于各种类型的细胞中,它的活体形式是个二聚体,需要FAD、FMN、血红素及四氢叶酸等作为辅助因子。1998年Garthwait首次证实脑组织中存在NOS。各个组织细胞中酶的活性、特性和产生的基因都可不同,但其氨基酸顺序约有50%是相同的。现己确定的NOS亚型有3种,根据原型酶的细胞或组织来源不同分别称为脑神经元型NOS(nNOS)、内皮细胞型NOS(eNOS)和白细胞/巨噬细胞型NOS(iNOS)。他们的编码基因分别定位于12、17和7号染色体上[2]。这3种亚型的NOS总的来讲从功能上可分为两大类即原生型NOS(cNOS,包括nNOS和eNOS)和诱导型NOS(iNOS)。 原生型NOS(eNOS)分布于血管内皮细胞、神经组织和血小板中,该酶为可溶性酶,它的合成受Ca2+和CaM的调节,任何引起Ca2+进入细胞的因素均能导致eNOS活性增加。当胞浆内Ca2+浓度达到0.4~1μmol/L时该酶活性最大。它被激活时,NO释放的时间短,其中eNOS产生的NO更接近血管平滑肌,它可以激活血管平滑肌细胞中的可溶性鸟苷酸环化酶,使胞内cAMP浓度升高,从而起到扩张血管、抑制血小板和白细胞粘附、聚集的作用,发挥生理功能。而nNOS则是神经元和小胶质细胞在缺血急性期,NMDA受体激活Ca2+大量内流时产生的,具有神经毒性作用。 诱导型NOS(iNOS)主要分布于巨噬细胞、炎性中性粒细胞、血管平滑肌细胞、内皮细胞、小胶质细胞和星型细胞等。它是非钙依赖性酶,在基态下不合成NO,只有在缺血、缺氧和某些细胞因子如肿瘤坏死因子(TNF)等的激活下经4~8h方可诱导iNOS mRNA的表达,产生释放大量的NO[3]。与cNOS不同的是,iNOS是由DNA转录调节的,一旦此酶合成就不断地产生NO,直至底物耗尽[4]。iNOS的mRNA3’端缺乏AUUUA富含区,mRNA的降解速率与AUUUA富含区关系密切,所以iNOS的mRNA半衰期特别长,一旦诱导合成即可持续长时间翻译,合成iNOS[5],这种过量产生的NO可对缺血组织造成损害,而对于产生NO的细胞则无明显影响,这可能是由于这些细胞中维持NOS活性的Ca2+对其鸟苷酸环化酶具有抑制作用或者这些细胞中含有大量的超氧化物歧化酶(SOD)可以对抗NO的损伤的结果。 3 脑缺血-再灌流时NO的变化规律 脑缺血发生后,NO迅速短暂升高,5~35min达高峰,60min内下降至原有水平。此时的NO升高主要由神经元的nNOS和血管内皮细胞的eNOS所介导,若缺血继续,NO逐渐下降,当再灌流时NO又逐步升高,至再灌流24h达高峰[6],再灌流7d的NO水平仍高于缺血前水平,这可能是再灌流后早期NOS所需氧和底物供应得到改善以及NO的产生释放增加所致,而再灌流后期(12h后)iNOS被诱导表达也可产生大量的NO。如长时间缺血超过6h,iNOS在脑缺血后的炎症细胞部位表达,使NO再次升高。缺血的方式不同,iNOS的表达时间也不相同。Iadecola实验室采用逆转录-聚合酶链式反应(RT-PCR)技术发现iNOS mRNA在持久性大脑中动脉阻断(MCAO)后12h开始表达,2d达高峰:而短暂性MCAO后则不同,它的iNOS mRNA在MCAO后12h即达高峰,4d左右降至正常。 nNOS和iNOS产生的NO均可引起神经组织损伤,但由于nNOS半衰期短,产生的NO量少,对神经系统的毒性作用相对较小,临床意义不大。且在缺血超早期,内皮细胞产生的NO量超过神经元产生的有毒性NO,通过增加侧支循环,阻止血小板聚集和白细胞对微血管的堵塞,改善微循环,抵消了毒性作用。随着缺血时间的延长,在缺血后期及再灌流期,损伤区内发生明显的炎症反应和白细胞侵入,并伴有iNOS mRNA的高度表达。由于iNOS与CaM结合紧密,即使在低Ca2+的条件下也能保持其活性,产生大量的NO,这一期产生的NO具有更大的神经毒性,引起迟发性脑损伤,具有更重要的意义。实验证明iNOS基因敲除的大鼠在MCA02d后其梗塞体积明显小于对照组[7],而以此期间使用iNOS抑制剂氨基胍可以明显减少缺血压神经元的损伤[8]。 4 NO在脑缺血-再灌流损伤中的神经毒性作用机制 脑的活动主要依靠葡萄糖的有氧氧化提供能量,它是一个对缺氧最敏感的器官,一旦脑缺血达到一定程度,再灌流不仅不能使缺血区代谢和机能得以恢复反而加重脑水肿及扩大脑梗死面积,再灌流的结果实际是缺血的延续。已有多方面的证据表明在脑缺血期及再灌流期中,由nNOS和iNOS产生的大量NO对神经细胞具有毒性作用,其作用的机制可能为: 4.1 NO通过超氧自由基起细胞毒性作用 在生理情况下,NO与02-反应速度比SOD清除O2-的速度快3倍,但由于体内NO浓度(10~1OOnmol/L)比体内SOD的浓度大约低100倍,此时产生的NO很难与SOD竞争O2-,而主要作为信使传导分子行使其功能。在脑缺血-再灌流时,由nNOS和iNOS产生的脑内NO浓度显著升高以至于达到能与SOD竞争超氧化物的水平。NO迅速与O2-反应生成硝基过氧化物(0N00-),后者质子化后进一步生成过氧亚硝酸(ONOOH),并在酸性环境中分解为OH-和N02。过去认为,OH-是NO引起脑损伤的最重要的氧自由基,现在则认为ONOO-的直接氧化作用的毒性远远大于OH-,它不仅是一种很强的氧化剂,更重要的是它对反应有很高的选择性,如过氧化亚硝基能够直接氧化脂质、DNA及蛋白的疏基、锌/硫中心、铁/硫中心等,上述反应的速度大约是过氧化亚硝酸分解产生OH-速率的1000倍。这些产物均可造成严重的细胞损伤。 4.2 NO介导谷氨酸(Glu)的毒性作用 脑缺血-再灌流时Glu过度释放,通过激活Glu受体的NMDA受体亚型,促使Ca2+大量内流,诱导nNOS表达引起NO合成大量增加。iNOS的诱导表达也受Ca2+的影响,此即为NMDA-Ca2+-NO通路。 4.3 NO作用于含铁蛋白产生毒性作用 NO极易与铁(Fe)结合形成Fe-NO,使含Fe(酶失活。如NO作用于含血红素基团的酶,激活ADP-核糖转移酶,使ADP核糖化,引起蛋白质结构和功能的改变:NO作用于含Fe-S蛋白类的复合物,如线粒体中的泛醌氧化还原酶、琥珀酸氧化还原酶、顺乌头酸氧化还原酶等,使它们失活,从而抑制线粒体呼吸并导致迅速的能量耗竭。 4.4 NO导致DNA的损伤作用[9] NO通过脱氨基作用导致DNA损伤,并抑制核糖核苷酸还原酶,此酶为DNA合成的限速酶。NO和其产物N000-、OH-还可以引起DNA氧化,破坏DNA的结构,进一步损伤DNA。 4.5 NO引起多巴胺(DA)大量释放产生神经毒性 脑缺血时,纹状体释放的大量谷氨酸作用于多巴胺能神经元末梢上的NMDA受体,然后激活NOS,生成的NO激活鸟苷酸环化酶升高cGMP水平,最终导致大量的DA释放,后者可能参与神经细胞的损伤。Spatz[10]等证明抑制NOS可以明显降低DA的释放,减少脑损伤。4.6近年来研究显示,由iNOS诱导产生的大量NO还可以加强缺血后脑组织中环氧化物酶Ⅱ(COX-2)的活性,使缺血期积累的大量花生四烯酸在COX-2作用下生成前列腺素、白三烯和大量的反应活性氧(02-),从而增加其毒性。对大鼠局灶性脑缺血的研究发现,缺血后24h缺血区周围iNOS阳性的中性粒细胞与COX-2阳性的神经元相混杂,平均距离近16±1μm,这正在NO扩散能力之内,使用iNOS基因敲除的大鼠,MCAO48h后,缺血侧半球前列腺素、白三烯的水平较对照组减少40%~50%[11]。 5 NO与缺血半暗带(IP) 1981年Abtrup等将围绕局灶脑缺血中心区的类似于“全日食”的这部分周围区域(IP)定义为:围绕着梗塞中心的缺血性脑组织,其电活动己终止尚保持正常的离子平衡和结构完整;如再适当增加局部脑血流,至少在急性阶段突触传递能完全恢复,亦即IP内缺血脑组织的功能是可能恢复的。从此IP成为局灶性脑缺血中心坏死区以外脑组织可逆性损害区的代名词,也是治疗缺血性脑血管病时竭力抢救的区域。局灶性脑缺血是由严重缺血的中心区和处于低灌流状态的IP组成。随着缺血时间的推移,缺血中心区和IP处于动态变化过程。在有利条件下,IP可转化为正常灌流区(时限性可逆),在不利情况下转化为梗塞区(不可逆转),并在缺血中心区向临近组织扩散,并最终成为永久性梗塞灶的一部分[12]。IP持续的时间与很多因素有关,迄今绝大多数学者认为,在脑缺血后6~8h梗塞中心区损害即非常明显,而半暗带的细胞能存活数小时(急性IP)至数日(慢性IP),在MCAO后3d,仍有可逆性神经损害[13~14]。 IP损伤的机制有多种,即微血管损伤、组织水肿、多形核白细胞(PMN)聚集浸润和星形胶质细胞反应增生是促使半暗带损害的机制之一。大鼠MCAO模型中,梗塞中心区在外侧纹状体及其外侧皮质,而岛叶、尾状核内侧部及顶叶皮层被证明为半暗区,此区域于短暂MCAO后24h内即有明显的血脑屏障破坏[15]、组织水肿、白细胞浸润和胶质细胞反应性增生,被缺血/缺氧激活的白细胞、星形胶质细胞和小胶质细胞可以产生多种细胞因子如IL-1、IL-6、IL-8、TNF-2、IFN-γ等,诱导iNOSmRNA表达产生过量的NO,影响梗塞周边半暗带神经元的存活。 在脑缺血后期及再灌流期,血管源性中性粒细胞透过血脑屏障,与脑内的巨噬细胞、小胶质细胞一起激活iNOS,合成大量NO,参与半暗带的神经损伤[16]。Stephen Ashwal等[17]利用大鼠实验发现iNOS活性在脑缺血中心区>半暗区>非缺血区,形成了NO由缺血中心区向正常区递减的梯度。促使半暗区神经元发生进行性损伤,使半暗区不断地加入梗死区,扩大梗塞面积。同时由于再灌流期氧的供应,黄嘌呤脱氢酶转化为黄嘌呤氧化酶产生大量的02-,NO与O2-反应生成ONOO-加重半暗区的损伤。由于iNOS于缺血后12h方开始升高,2d达高峰,此时缺血中心区坏死已十分明显,而半暗区尚有大量存活的可逆性损伤的神经元,这种过量的NO必将主要影响半暗区受损神经元的存活,大鼠实验表明iN05抑制剂可以阻断NO的强烈损伤作用,减轻血脑屏障的破坏、脑组织和血管内皮的损伤,使缺血半暗带得到保护,从而减少梗塞面积。 6结语 NO在脑缺血-再灌流中的作用十分复杂,不同的时间、不同NOS产生的NO对脑组织作用不同,eNOS产生的NO主要起神经保护作用,而nNOS、iNOS产生的、NO则有神经毒性作用,特别是iNOS,因其作用时间长,产生NO量大,可以诱发一系列病理反应,主要损伤半暗区,更具有实际意义。目前对NO与脑缺血的研究还在进行中,这一领域的进展将为探讨脑缺血损伤机制;寻找高效、高选择性nNOS和iNOS抑制剂,使得NO在脑缺血-再灌流损伤中既保持其舒张脑血管,增加缺血区血流量和抗血小板及白细胞粘聚的保护作用,又避免其对脑组织的损伤作用;以及为脑血管病的治疗提供新思路。

理论上来说,氮气是和氧气、水反应生成硝酸的。首先,在放电条件下,氮气才可以和氧气化合生成一氧化氮:N2+O2=放电=2NO ①然后,一氧化氮与氧气迅速化合,生成二氧化氮:2NO+O2=2NO2 ②最后,二氧化氮与水反应生成硝酸:3NO2+H2O=2HNO3+NO ③说明一下,第②、③步反应如果在氧气充足的情况下可以这么反应:4NO+3O2+2H2O==4HNO3 假如说你要写一个大得化学方程式的话可以这么写2N2+5O2+2H2O=放电=4HNO3 (不过不建议这么总括)硝酸是一种具有强氧化性、腐蚀性的强酸,属于一元无机强酸,是六大无机强酸之一,也是一种重要的化工原料,化学式为HNO3,其水溶液俗称硝镪水或氨氮水。在工业上可用于制化肥、农药、炸药、染料、盐类等;在有机化学中,浓硝酸与浓硫酸的混合液是重要的硝化试剂。所属的危险符号是O(Oxidizing agent 氧化剂)与C(Corrosive 腐蚀品)硝酸的酸酐是五氧化二氮(N2O5)。自然界中的硝酸主要由雷雨天生成的一氧化氮或微生物生命活动放出二氧化氮形成。人类活动也产生氮氧化物,全世界人为污染源每年排出的氮氧化物大约为5300万吨,这些氮氧化物也会形成硝酸。硝酸性质不稳定,因而无法在自然界长期存在,但硝酸的形成是氮循环的一环。自然界生成1.一氧化氮的生成:N2 + O2=闪电=2NO2.二氧化氮的生成:2NO+ O2=2NO23.生成的二氧化氮溶于水中生成硝酸:3NO2+ H2O=2HNO3+ NO4.有些海鞘(Ciona intestinalis)也能分泌硝酸御敌[

论文研究这个?

具体研究领域:现主要进行“一氧化氮(NO)与具有明确生物活性的天然产物相偶联的杂合衍生物的设计、合成及生物活性研究”。近年来,发表相关科研论文13篇,其中以第一作者在本学科国际高水平杂志上发表论文两篇,分别为:J. Med. Chem. 2008,51,4834~4838. 及Bioorg. Med. Chem. Lett. 2007, 17(11): 2979~2982. 影响因子 (IF) 分别约为4.9及2.6。申请发明专利3项,获授权发明专利2项。课题资助:1. 国家自然科学基金:新型NO/五环三萜杂合物的分子构建及生物活性评价(主持,面上项目,32万)2. 江苏省自然科学基金:基于NO的抗肝癌三萜衍生物分子设计及活性相关性(主持,面上项目,8万)3. 天津市自然科学基金:新型肝靶向性三萜衍生物的合成及生物活性研究(排名第二,重点项目,20万)。所获成果:1. 获授权发明专利两项:1)张奕华,陈莉,田季德,郭青龙. 齐墩果酸偶联衍生物及其药物用途[P].获奖:论文“一氧化氮供体型齐墩果酸衍生物的设计、合成及生物活性研究” (第一作者) 1)获中国药学会学术年会(昆明)优秀论文三等奖 (2004,7);2)获第7届全国青年药学工作者最新科研成果交流会(杭州)优秀论文二等奖(2004,12)。研究生培养:独立指导硕士研究生10人,已毕业2人,分别就业于北京和天津市;目前在读硕士生8人。代表性论文及成果王中原,汤佳,陈莉*. 水飞蓟宾衍生物的研究进展. 药学进展 2009,8:360~364.仇文,陈莉*, 孔祥文, 孔令义. 呋咱氮氧化物与阿魏酸偶联化合物的合成及生物活性研究. 化学试剂 2008, 4:336-339.姜一平 冯锋 谢宁 陈莉 朱明晓. 毛冬青的化学成分. 药学与临床研究 2008,3:163~165.陈莉,张奕华,毕小玲, 罗叶青. 齐墩果酸酯的合成研究(II). 中南药学 2006, 12:416~418.陈秀英, 季晖, 张奕华, 陈莉. 一氧化氮供体型齐墩果酸衍生物ZCII2对早期实验性肝纤维化的保护作用. 中国临床药理学与治疗学, 2005, 11:1261~1265.陈莉. 一氧化氮供体型齐墩果酸衍生物的设计、合成及生物活性研究. 第7届全国青年药学工作者最新科研成果交流会(杭州) 2004,12.蒋丽媛,陈莉,张奕华. (2-乙酰氧基)苯甲酸(3-硝氧甲基)苯酯的合成工艺改进. 中国药物化学杂志 2004, 3:178~179.陈莉. 一氧化氮供体型齐墩果酸衍生物的设计、合成及生物活性研究. 中国药学会学术年会(昆明) 2004,7.陈莉, 孔祥文, 张奕华. 齐墩果酸酯的合成研究 (一). 中草药 2003, 34 (12) :1080~1081.陈莉, 蒋丽媛, 张奕华. NCX-1000的新合成方法. 药学进展 2003, 27 (6) :358~360.

铁氧体毕业论文

你去原创论文网看看,可能能帮助你。里面有免费论文的,很实用的。我都是在里面拷贝的毕业论文,改改就可以了。

施汝为,物理学家,我国近代磁学的奠基人之一,中国科学院院士、1954-1983年任中国科学院应用物理所所长、中国科学技术大学物理系创始人,美国耶鲁大学物理学博士。1901年11月19日出生于江苏省崇明县(今属上海市)农村。幼时在崇明县协兴镇三新小学开始启蒙学习,后转到一家私塾学习,以后又转到崇明县北义乡小学。1914—1917年在崇明县乙种农业学校学习(相当于高级小学和初级中学)。1917年考入江苏省立第一工业学校,这是一所职业中学性质的学校。报考者中多抱有“工业救国”的思想和享受公费资助的愿望。1919年,他转学到江苏省海门县私立海门中学念书。1920年暑假,施汝为考入南京高等师范学校,先学习机械工程,后转入数理化科,于1925年毕业于国立东南大学(国立东南大学1928年更名为国立中央大学,1949年更名为国立南京大学 )物理系。1924—1925年期间受教于叶企孙。1925年叶企孙转到清华大学任教,施汝为即受叶企孙之聘到清华大学任助教,并在叶企孙指导下从事磁学研究,开始了国内最早的物质磁性研究工作,发表了他的第一篇磁学研究论文《氯化铬及其六水合物的顺磁磁化率的测定》。这是在中国国内发表的第一篇近代磁学研究论文。 近代中国磁学人才的培养和磁学事业的发展,在很大程度上是同施汝为的亲身参与、积极支持和大力倡导分不开的。中华人民共和国第一批磁学研究和教学骨干的培养以及许多重要的磁学学术活动,施汝为都倾注了全部的精力。1952—1953年全国进行高等教育改革,学习苏联,在高等学校各系设置专业,讲授专业课程。当时一些高等学校如北京大学、南京大学、山东大学和吉林大学等都拟在物理专业下设置磁学专门组。但是当时全国从事磁学工作的人很少,高级人才更缺,只有中国科学院应用物理研究所设有国内唯一的磁学研究组。因此,这些筹办磁学专门组的大学都派青年教师到应用物理研究所磁学组进修。当时领导磁学研究组的施汝为热情地接待了他们,为他们制定了进修计划,安排了业务领导人,还为培养他们和组内的青年科研人员组织了定期的磁学报告讨论会,开设了磁学专业课。他亲自参加讲课和作专题报告,更鼓励年轻人作报告和积极参加讨论,把这作为培养人才的措施之一。经过培训的教师回校后都成为磁学专业教学和科研的骨干。那时,所内人员一边翻译一边讲授的《现代磁学》及后来在所内和全国讲习班讲授的《铁氧体物理学》都在他亲自参加或鼓励支持下正式出版。这是中华人民共和国第一部磁学译著和第一部铁氧体专著。1953年,施汝为已经50多岁,还以很高的热情参加了全所科研人员的一个月“俄文突击学习”,并以翻译《现代磁学》和用它作为讲课参考教材巩固俄文的学习。不论在学习、翻译和讲课中,他都积极认真,以勤奋弥补记忆力的不足。1956—1959年,他还同磁学研究组(室)的人员到北京大学为磁学专门组的高年级学生讲授《铁磁学》课。1958年中国科学院创办了中国科学技术大学,在“全院办校,所系结合”的办学指导方针下,他兼任物理系主任,对专业设置、教师来源、实验室建设、所里研究人员去学校讲课和高年级学生到所里作毕业论文等,都作了缜密的考虑和仔细的安排,为中国科学技术大学开办不久就在教学、科学研究和学生成绩等方面居于国内前列奠定了基础。他十分重视青年科学人才的培养,对刚参加磁学研究工作的青年,在带领他们做过几次实验后,就放手让他们在科学实验中经受锻炼,并严格认真地检查他们的实验数据,仔细审阅和修改他们的实验报告和论文,连用错的标点符号也代为改正。他还积极推荐优秀的青年科研人员到国外留学进修。他除了创办磁学研究室的学术报告讨论会外,还极力倡导和推动全国性的磁学学术活动,如1963年和1964年的第一、二届全国磁学和磁性材料会议及1964年的磁学讨论会都是在他和几位磁学前辈的倡议下召开的。他不但热情主持了第一届全国磁学和磁性材料会议,而且还尽力使这个会议成为团结全国磁学界,广泛交流研究、应用和生产经验的经常性学术会议,对发展中国的磁学事业起了重要的作用。1963年左右,中国科学院准备在四川绵阳建立磁学研究所,施汝为亲自率领一些中青年学术骨干去绵阳选定所址,又亲自指导制定建所和筹备实验室的方案,开始基建和订购国内外仪器设备等工作。但不久因“文化大革命”使中国科学院各项工作陷于瘫痪,筹建磁学研究所的工作改由国防科学技术委员会领导。国防科委决定将第四机械工业部第11研究所的磁性材料及器件研究室迁到绵阳,接收这个正在建设中的磁学研究所,成为以应用磁学的研究开发为主的研究所,即后来的西南应用磁学研究所。

任何制造技术,例如热压恰好 计量材料。对于钇铁石榴石,规格从 设备的需求,并观察平均处理 值现在云集20Oe,这意味着非常低 孔隙度和第二阶段的材料的水平,约 占0.2%(图9)。 一种卡温/锆相应的数字,以K1/Ms 在接近0和1的170-200 _C居里温度, 将接近3大江,取决于4pMs(图8)。 这将难以实现在实际生产 因为相对复杂的化学 这类材料,所以他们可能不是最好的 选择低IMD的,即使较低共振线宽 是一个插入损耗的优势。 6。尖晶石和六角铁氧体 在1-2 GHz的尖晶石铁氧体不使用交界处 因为他们的高低于共振女士或线性器件, 创造低场的损失,或以上的共振 因为他们的高线宽。镍锌尖晶石然而, 作为吸收从100兆赫到10千兆赫的 广泛吸收峰,与域名相关的共振 以及从低频率渗透率下降, 通常被人们称为低场的损失。这些 吸收性能可用于RF和高 速度千兆速率数字应用。他们使用 电感仅限于几百兆赫,因为他们的 渗透的办法只有团结1 GHz以上,称为 作为该杖鱼限制。

50分太少了 这么大段内容,而且你注明本段文字的出处比较容易翻译。 如出版社,作者楼上十九级还出来丢人拿google翻译来充数

关于氧化性论文范文资料

氧化性是指物质得电子的能力。处于高价态的物质和活泼非金属单质(如:氟、氯、氧等)一般具有氧化性,而处于低价态的物质一般具有还原性。

还原性是指在化学反应中原子、分子或离子失去电子的能力。物质含有的粒子失电子能力越强,物质本身的还原性就越强;反之越弱,而其还原性就越弱。

扩展资料:

一、氧化性物质

氧化性物质,是指本身未必燃烧,但可释放出氧,可能引起或促使其他物质燃烧的一种化学性质比较活泼的物质。常指在无机化合物中含有高价态原子结构的物质和含有双氧结构的物质。其本身一般不会燃烧。

但如果遇到酸或受潮湿、强热,或与其他还原性物质、易燃物质接触,即能进行氧化分解反应,放出热量和氧气,引起可燃物质的燃烧,有时还能形成爆炸性混合物。《国际海运危险货物规则》将氧化性物质列为第5.1类危险货物。

二、判断方法

1、氧化剂(氧化性)+还原剂(还原性)→还原产物+氧化产物

氧化性:氧化剂>氧化产物

还原性:还原剂>还原产物

这条规则对于任何环境下的任何ΔG<0的反应(即在该环境下可自发进行的反应)都成立,没有任何例外的情况。

氧化剂--得电子--化合价降低--被还原--发生还原反应--还原产物

还原剂--失电子--化合价升高--被氧化--发生氧化反应--氧化产物

2、不可根据同一个反应中的氧化剂,还原剂判断

自发进行的反应中氧化剂的氧化性可以弱于甚至是远弱于还原剂(中学认为氧化剂氧化性一定强于还原剂,然而这种认知实际上完全错误,氧化剂氧化性与还原剂的氧化性无任何关系)

参考资料来源:百度百科-氧化性

参考资料来源:百度百科-还原性

氧化性是指物质得电子的能力。处于高价态的物质一般具有氧化性。如部分非金属单质:O2,Cl2或部分金属阳离子:Fe3+,MnO4-(Mn7+)等等。处于低价态的物质一般具有还原性。如部分金属单质:Cu,Ag或部分非金属阴离子:Br-,I-等等。氧化性,还原性强弱的判断方法 (一)根据化学方程式判断 (1)氧化剂(氧化性)+还原剂(还原性)===还原产物+氧化产物 氧化剂----还原产物 得电子,化合价降低,被还原,发生还原反应 还原剂---氧化产物 失电子,化合价升高,被氧化,发生氧化反应 氧化性:氧化剂>氧化产物 还原性:还原剂>还原产物 (2)可根据同一个反应中的氧化剂,还原剂判断 氧化性:氧化剂>还原剂 还原性:还原剂>氧化剂 (二)根据物质活动性顺序比较 (1)对于金属还原剂来说,金属单质的还原性强弱一般与金属活动性顺序相一致,即越位于后面的金属,越不容易失电子,还原性越弱。 还原性:K>Ca>Na>Mg>Al>Mn>Zn>Cr>Fe>Ni>Sn>Pb>(H)>Cu>Ag>Pt>Au (2)金属阳离子氧化性的顺序 K+MnO2>O2 (四)根据氧化产物的价态高低来判断 当含有变价元素的还原剂在相似的条件下作用于不同的氧化剂时,可根据氧化产物价态的高低来判断氧化剂氧化性强弱。如: 2Fe+3Cl2==(点燃)2FeCl3 Fe+S==(加热)FeS 氧化性:Cl2>S (五)根据元素周期表判断 (1)同主族元素(从上到下) 非金属原子(或单质)氧化性逐渐减弱,对应阴离子还原性逐渐增强。 金属原子还原性逐渐增强,对应阳离子氧化性逐渐减弱 (2)同周期主族元素(从左到右) 单质还原性逐渐减弱,氧化性逐渐增强 阳离子氧化性逐渐增强,阴离子还原性逐渐减弱。 (六)根据元素最高价氧化物的水化物酸碱性强弱比较 酸性越强,对应元素氧化性越强 碱性越强,对应元素还原性越强 (七)根据原电池的电极反应判断 两种不同的金属构成的原电池的两极。负极金属是电子流出的极,正极金属是电子流入的极。 其还原性:负极金属>正极金属 (八)根据物质的浓度大小判断 具有氧化性(或还原性)的物质浓度越大,其氧化性(或还原性)越强,反之则越弱。 (九)根据元素化合价价态高低判断 一般来说,变价元素位于最高价态时只有氧化性,处于最低价态时只有还原性,处于中间价态时,既有氧化性又有还原性。一般处于最高价态时,氧化性最强,随着化合价降低,氧化性减弱还原性增强。 硼氢化钠还原性相似的产品:Na,H2,CO,C等

就是原子得到电子能力的强弱.

化合价升高即氧化,氧化性就是使其它物质化合价升高的性质。氧气,无色气体,有氧化性。

氧化锆论文答辩

山东财经大学高教自学考试毕业论文撰写要求高等教育自学考试毕业文的撰写,是本科专业课程设计中考核的重要环节,是考生必须完成的总结性作业。撰写毕业论文,既是对考生学习本专业基础知识和专业知识总结,也是对自考生运用所学理论进行科学研究的训练,是对考生综合运用所学专业理论知识和专业技能,独立分析和解决实际问题的能力的全面检验。由于高教自学考试本身的特点,自考生没有普通高校全日制学生那样经过严格系统的专业理论学习,因此要写出一篇质量较高的毕业论文并非易事。自考生撰写毕业论文,虽然有专门的老师指导,但指导老师一般只从专业内容角度进行帮助与指导,很难顾及研究方法、写作技巧、论文规范等写作中的具体问题。故而在此就毕业论文的写作步骤及方法、要求和注意事项作一个原则性介绍,供大家参考。1.选题选题是指确立论文题目,确定研究的目标和主攻方向一定要和所学本专业相关。考生在选题时应该注意以下四点:(1)理论联系实际,注重现实意义。首先要注意选题的实用价值,也就是我们选的题目,应是与社会生活密切相关、为人们所关心的问题,特别是社会经济发展过程中亟待解决的问题。这类问题反映着一定历史时期和阶段社会生活的重点和热点,是与广大人民群众的利益息息相关的。我们运用自己所学的理论知识对其进行研究,提出自己的见解,探讨解决问题的方法,这是很有意义的。其次要注意选题的理论价值。我们强调选题的实用价值,并不等于急功近利的实用主义,也绝非提倡选题必须有直接的效益作用。(2)难易适中,大小适度。要选好毕业论文的题目,把握“适中”的原则是很重要的。首先,题目的难易要适中。选题既要有“知难而进”的勇气和信心,又要做到“量力而行”。如果难度过大,超过了自己所能承担的范围,一旦盲目动笔,很可能陷入中途写不下去的被动境地,到头来迫使自己另起炉灶、更换题目,这样不仅造成了时间、精力的浪费,而且也容易使自己失去写作的自信心。当然如果论文题目选得过于容易,这样也不能反映出自己真实的水平。其次,题目的大小要适度。一般来说宜小不宜大,宜窄不宜宽。题目太大把握不住,考虑难以深入细致,容易泛泛而论。当然题目大点好还是小点好,每个人情况不同,难以一概而论。有的考生理论素养好,情况了解多,写作水平较高,也可以写大一点的题目。但一般来说,题目还是小一点、具体一点为好。小题目容易驾驭,只要写得丰满深入,同样很有价值。(3)知己知被,量力而行。所谓“知己”,就是要充分估计到自己的知识储备情况和分析问题的能力,同时还要充分考虑自己的特长和兴趣。所谓“知彼”,就是要要了解本专业本领域中已有的科研成果,了解别人已经解决了什么问题,还存在什么问题;是否有争论,争论的焦点是什么;那些方面的研究比较薄弱,那些方面的研究尚待开拓等等。只有知己知彼,才能避免重复和雷同。(4)勤于思索,刻意求新。毕业论文质量高低、价值大小,很大程度上取决于文章是否有新意。所谓新意,即论文中表现自己的新看法、新见解、新观点。有了较新颖的观点(即在某一方面或某一点上能给人以启迪),文章就有了灵魂,有了存在的价值。文章的新意可以从以下几个方面着眼:第一,从观点、题目到材料直至论证方法全是新的。这类论文写好了,价值较高,社会影响也大,但写作难度大。第二,以新的材料论证旧的课题,从而提出新的或部分新的观点、新的看法。第三,以新的角度或新的研究方法重做已有的课题,从而得出全部或部分新观点。第四,对已有的观点、材料、研究方法提出质疑,虽然没有提出自己新的看法,但能够启发人们重新思考问题。以上四个方面并不是对“新意”的全部概括,但只要能做到其中一点,就可以认为文章的选题有新意。2.拟定论文提纲根据论文题目,通过图书馆、情报机构、互联网等各种渠道,广泛搜集资料,还可以进行实地调查、开会、访谈、等方法来获取资料。有了充分的材料,还要进行整理和分析比较,去粗取精,去伪存真。对资料进行推敲、筛选,留下最能反映问题本质、最具有说服力的材料,提炼和形成自己的观点也就是论点,明确拟定论文提纲。形成论点时应注意:(1)论点要鲜明,不能含糊其词,同时论点又要辩证,不能走极端;(2)论点要科学正确,不与常理和事实相背离;(3)论点要准确,不要夸大其词,防止偏颇。拟定论文提纲可以是简单提纲,也可以是详细提纲。简单提纲只是概括地提示论文的要点,详细提纲则是把论文的主要论点和展开部分较详细的列出来,这样写作时就能更顺利完成。提纲可以采用标题式、提要式和图表式三种,一般标题式较为常用,用简洁的标题形式把论文各部分的内容要点概括出来,同时这些标题可直接作为论文中各部分的小标题。3.撰写正文正文是论文的核心部分,占据论文的主要篇幅,是提出问题和解决问题的过程。是作者理论水平和创造能力的集中体现,它决定着论文水平的高低和质量。论文的正文一般包括三大部分:绪论、本论和结论。绪论是论文的开头部分。主要讲清研究的动机、写作的理由、目的和意义、提出问题、概述内容、明确中心论点等。一般要求语言简洁扼要,开门见山,引人注目。也可以简要交代确定选题的过程和有关背景材料,目的是为了使读者更好地了解全文的旨要。本论是论文的主体,要求以充分有力的材料阐述观点,条理要清晰,逻辑要严密,要求内容扎实、丰厚。本论是表达作者的见解和研究成果的中心部分,要展开论题,对论点进行分析论证。考生在这一部分必须根据论题的性质正面论证,或反面批驳不同的看法,或解决别人未解决的问题,或论述新思想新发现等。论证是极其重要的,它决定着论文的成败。写好本论,应该注意以下几点:(1)论点必须明确新颖、深刻严肃;(2)论点必须有材料的支撑;(3)论证逻辑要严密。结论是全文的总结,是整篇论文中分析、论证问题的综合性概括,是论文的精华所在。其内容主要是研究结果说明了什么问题、得出了什么规律、解决了什么理论或实际问题、有何创新、还存在哪些不足及质疑等等。还可以对自己或他人在这一领域的研究进一步提出展望,以及对有关人士致谢等内容。结论要求完整、明确,不能含糊其词、模棱两可;不能与本论相矛盾,应与绪论呼应;对成果的评价要恰如其分,不能自鸣得意或借故贬低他人;语言应简洁、干净利落。4.论文修改与定稿正文初稿写好以后,考生应该多修改几遍,对整篇论文逐行逐句逐段反复推敲,检查每一个具体论点、论据、论证是否恰当有力,表达是否合乎逻辑,务求不留疑点。检查并修改初稿时应注意以下几点:(1)论点与论题的一贯性;(2)观点与材料的统一性;(3)论文的结构层次与逻辑思维的密切性;(4)论文语言表达的准确性;(5)标点符号使用的正确性;(6)采用的数据、年代、人物名及地名是否准确。然后和指导老师联系,须指导老师同意后方可定稿参加答辩。5.论文基本格式毕业应采用汉语撰写;一般由7部分组成,依次为:(1)封面,(2)中文摘要和关键词,(3)英文摘要和关键词,(4)目录,(5)正文,(6)参考文献,(7)发表论文和参加科研情况说明。各部分具体要求如下:(1)封面(采用山东省教育招生考试院统一规定的封面)(2)中文摘要和关键词中文摘要应将学位论文的内容要点简短明了地表达出来,约300~500字左右(限一页),字体为宋体小四号。内容应包括工作目的、研究方法、成果和结论。要突出本论文的创新点,语言力求精炼。为了便于文献检索,应在本页下方另起一行注明论文的关键词(3-5个)。(3)英文摘要和关键词 内容应与中文摘要相同。字体为TimesNew Roman小四号。(4)目录 标题应简明扼要并标明页号。(5)正文 毕业论文一般要求不少于8000字,内容一般包括:国内外研究现状、理论分析与讨论、研究成果、结论及展望。(6)参考文献只列出作者直接阅读过、在正文中被引用过的文献资料。参考文献一律放在论文结束后,不得放在各章之后。(7)发表论文和参加科研情况说明指在学期间发表论文和参加科研情况。6.打印格式(1)纸型、页边距及行距毕业论文一律用国际标准A4纸(297mm×210mm,70g)打印,论文的上边距:25mm;下边距:25mm;左边距:25mm;右边距:25mm。一、二、三级标题行距为单倍行距,段前、段后间距各设为0.5行(即前、后各空0.5行),正文为1.5倍行距。(2)论文字体、字号及标点符号的要求一级标题 黑体四号 二级标题 黑体四号 三级标题 黑体小四号 正文及参考文献 宋体小四号文中的标点符号应正确使用,忌误用、混用,中英文标点符号应区分开图、表、公式、页码(从目录开始按阿拉伯数字连续编排)用宋体6号,居中书写。(3)标题和层次标题采用三级标题,格式如下:1.××××1.1 ××××1.1.1××××(4)图、表、公式图:a.要精选、简明,切忌与表及文字表述重复。 b. 图中的术语、符号、单位等应同文字表述一致。 c. 图序及图名居中置于图的下方。表:a.表中参数应标明量和单位的符号。 b. 表序及表名置于表的上方。公式:编号用括号括起写在右边行末,其间不加虚线。 图、表、公式等与正文之间要有一行的间距;文中的图、表、附注、公式一律采用阿拉伯数字分章节(或连续)编号。如:图2-5,表3-2,公式(5-1)等。若图或表中有附注,采用英文小写字母顺序编号。 (5)参考文献根据《中国高校自然科学学报编排规范》的要求书写参考文献,并按顺序编码制,即按中文引用的顺序将参考文献附于文末。作者只写到第三位,余者写“等”。 几种主要参考文献著录表的格式为:连续出版物:作者,文题,刊名,年,卷号(期号):起~止页码专(译)著:作者,书名(译者),出版地:出版者,出版年,起~止页码论 文 集:作者,文题,编者,文集名,出版地:出版者,出版年,起~止页码学位论文:作者,文题,博士(或硕士学位论文),授予单位,授予年专 利:申请者,专利名,国名,专利文献种类,专利号,授权日期技术标准:发布单位,技术标准代号,技术标准名称,出版地:出版者,出版日期举例如下:[1]王传昌,高分子化工的研究对象,天津大学学报,1997,53(3):1~7[2]李明,物理学,北京:科学出版社,1977.58~62[3]DupontB.Bone marrow transplantation in sever combined immunodeficiency with anunrelated MLC compatible donor.In:White H J,Smith R,eds.Proceedings of theThird Annual Meeting of the International Society for ExperimentalHematology.Houston InternationalSociety for Experimental Hematology,1997.44~46[4]王健,建筑物防火系统可靠性分析:[硕士学位论文],天津;天津大学,1997[5]姚光起,一种氧化锆材料的制备方法,中国专利,891056088,1980-07-03[6]中华人民共和国国家技术监督局,GB3100-3102,中华人民共和国国家标准,北京:中国标准出版社,1994-11-01(6)量和单位要严格执行GB3100—3102:93有关量和单位的规定(具体要求请参阅《常用量和单位》计量出版社,1996);单位名称的书写,可以采用国际通用符号,也可以用中文名称,但全文应统一,不要两种混用。7.毕业论文的成绩评定(1)毕业论文的成绩按百分制计分,75分以上为良好以上,低于60分为不及格。(2)本科毕业论文由指导教师写出评语及是否同意参加答辩的意见,最后成绩由毕业论文答辩小组和指导教师确定最终成绩。(3)学生所写论文能够运用所学专业基本理论和基本知识解决实际问题,或在学术上有自己的独到见解,观点明确,结构严谨,语言通顺,格式规范,可评定为优秀或良好;论文能够理论联系实际,分析问题有一定深度,结构较合理,观点较明确,语言能顺,格式规范,或评定为中等或及格;论文理论联系实际不够,观点无新意,内容东拼西凑或有抄袭现象,基本没有自己的独到见解,或文不对题,结构安排也不甚合理,文字不通顺,格式不规范,可评定为不及格。8.毕业论文答辩(1)本科毕业生只有其论文经指导教师初评合格并同意进行答辩后,方可参加答辩;否则不予以安排答辩。(2)毕业论文答辩委员会具体负责毕业论文答辩事宜。(3)毕业论文答辩不合格者及已被要求参加答辩而未能参加答辩者,需重新进行答辩。

60秒; 4)安全点火时间(T2):10秒;二段火开启时间(T3):15秒,;火焰失败反应时间:< 2秒;防护等级:IP40。  1.3、控制系统设计方案 由于锅炉燃烧对象是一个具有多变量、强耦合、强干扰、大滞后的复杂过程系统,常规的PID控制很难相互兼顾使三个控制目标达到相对稳定,因此需要考虑更加复杂的、先进的、智能化的控制方案才能实现。根据上述自动化目标,本毕业设计选用可编程序控制器(PLC)和力控ForceControl V6.0实现蒸汽压力控制和燃料与空气的比值控制。  1.3.1、系统硬件配置 锅炉燃烧过程中,用常规仪表进行控制,存滞后、间歇调节、烟气中氧含量超过给定值、低负荷和烟气温度过低等问题。采用PLC对锅炉进行控制时,它运算速度快、精度高、准确可靠,可适应复杂、难于处理控制系统。,可以解决以上由常规仪表控制难以解决问题。所选择PLC系统要求具有较强兼容性,可用最小投资使系统建成及运转;其次,当设计自动化系统要有所改变时,不需要重新编程,对输入、输出系统不需要再重新接线,不须重新培训人员,就可使PLC系统升级;最后,系统性能较高。 系统要求,选取西门子PLCS7-200 CPU226 作为控制核心,同时还扩展了2个EM231模拟量输入模块和1个CP243-1以太网模块。CPU226IO点数是2416,这样完全可以满足系统要求。同时,选用了EM231模块,它是AD转换模块,具有4个模拟量输入,12位AD,其采样速度25μs,温度传感器、压力传感器、流量传感器以及含氧检测传感器输出信号调理和放大处理后,成为0~5V标准信号,EM231模块自动完成AD转换。 S7-200PPI接口物理特性为RS-485,可PPI、MPI和自由通讯口方式下工作。为实现PLC与上位机通讯提供了多种选择。 为实现人机对话功能,如系统状态以及变量图形显示、参数修改等,还扩展了一块Eview500系列触摸显示屏,操作控制简单、方便,可用于设置系统参数,显示锅炉温度等。还有一个以太网模块CP243-1,其作用是可以让S7-200直接连入以太网,以太网进行远距离交换数据,他S7-200进行数据传输,通信基于TCPIP,安装方便、简单。  1.3.2系统软件配置 1)PLC可编程控制器 控制程序采用STEP7-MicroWin软件以梯形图方式编写,S7-200PLC给出了一条PID指令,这样省去了复杂PID算法编程过程,大大方便了用户使用。使用PID指令有以下要点和经验: (1)比例系数和积分时间常数确定。应经验值和反复调试确定。 (2)调节量、给定量、输出量等参数标准归一化转换。 (3)按正确顺序填写PID回路参数表(LOOP TABLE),分配好各参数址。 2)三维力控PCAuto组态软件 力控PCAuto软件是对现场生产数据进行采集和过程控制的专用软件,最大的特点是能以灵活多样的"组态方式"进行系统集成,它提供了良好的用户开发界面和间接的工程实践方法,用户只要将其预设置的各种软件模块进行简单的组态,便可以非常容易地实现和完成监控层的各项功能。 PCAuto软件具有功能强大的图形开发环境Draw,采用面向对象的图形技术,创建动画式的人机界面系统及高可靠性快速的图形界面运行系统View,用来运行Draw创建图形窗口先进的分布式实时数据库DB是整个应用系统的核心模块,负责整个力控应用系统的实时数据处理,历史数据存储,统计数据处理,报警信息处理,数据服务请求处理及完成与过程的双向通信。  2、软件设计  2.1、锅炉燃烧系统的控制目标 锅炉燃烧系统主要有三大控制目标: 1) 控制主蒸汽的压力恒定,以便满足“负荷流量”所需的压力。例如:负荷流量为35吨/小时的供热锅炉,需要把压力控制在3.3兆帕左右。 2) 控制炉膛内氧的含量。一要保证有足够的氧供燃料充分燃烧,不使烟气中有过量的CO,避免浪费燃料和造成环境污染;二是要满足经济燃烧的要求,保证氧量不能过多,以避免尾气带走过多热量形成浪费。例如:一般燃气锅炉需要将含氧量控制在3%~6%之间比较好。 3) 控制炉膛负压在一定范围,保证安全生产。例如:炉膛负压一般要求在-20 ~ -40帕之间比较合适,保证炉膛不往外喷火。  2.2、锅炉燃烧系统的控制手段 根据上述控制目标,锅炉燃烧系统需要相应的控制手段: 1)主蒸汽压力的控制:主要通过调节输入的燃料量和送风量的多少来实现。当“负荷流量”增加时,压力会下降,为了保证流量的供应,必须提高压力使其返回到额定值,因此调节手段主要是增加燃料输入量和送风量;当“负荷流量”下降时,压力会上升,为 了保证流量供应,须降低压力使其返回额定值,这时的调节手段主要是减少燃料输入量和送风量;当“负荷流量”恒定时,保持压力为额定值不变。 2) 炉膛内含氧量的控制:主要通过调节空气(即送风量)和燃料的输入成一定的比例来实现。一般情况下,燃料增加时,燃料耗氧量要增加,为了保证含氧量不致于过低,调节手段是必须相应地增加一定比例的空气量(送风量);燃料减少时,燃料耗氧量会减少,为了保证含氧量不致于过高,这时的调节手段应该是成比例地减少一定的空气量(送风量)。 3) 炉膛负压的控制:主要通过调节引风机的引风量来实现。当燃料和送风需要增加时,炉膛负压势必会向正压的方向减小,为了保证负压,调节手段应该是先增加引风量;当燃料和送风需要减少时,炉膛负压势必会向负的方向增大,这时的调节手段应该是先减少引风量。  2.3、锅炉燃烧系统的控制方案 锅炉燃烧自动控制系统基本任务是使燃料燃烧所提供热量适应外界对锅炉输出蒸汽负荷要求,同时还要保证锅炉安全经济运行。一台锅炉燃料量、送风量和引风量三者控制任务是不可分开,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能可靠工作。对给定出水温度情况,则需要调节鼓风量与给煤量比例,使锅炉运行最佳燃烧状态。同时应使炉膛内存一定负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员安全和环境卫生。  2.3.1、控制系统总体框架设计 燃烧过程自动控制系统方案,与锅炉设备类型、运行方式及控制要求有关,对不同情况与要求,控制系统设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员操作习惯,又要最大限度实施燃烧优化控制。 控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获数据,再拟合成可用DCS折线功能块实现曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。  2.3.2、燃料量控制系统 当外界对锅炉蒸汽负荷要求变化时,必须相应改变锅炉燃烧燃料量。燃料量控制是锅炉控制中最基本也是最主要一个系统。给煤量多少既影响主汽压力,也影响送、引风量控制,还影响到汽包中蒸汽蒸发量及汽温等参数,燃料量控制对锅炉运行有重大影响。 设置燃料量控制子系统目之一就是利用它来消除燃料侧内部自发扰动,改善系统调节品质。另外,大型机组容量大,各部分之间联系密切,相互影响不可忽略。特别是燃料品种变化、投入燃料供给装置台数不同等因素都会给控制系统带来影响。燃料量控制子系统设置也为解决这些问题提供了手段。  2.3.3、送风量控制系统 实现经济燃烧,当燃料量改变时,必须相应改变送风量,使送风量与燃料量相适应。燃烧过程经济与否可以剩余空气系数是否合适来衡量,过剩空气系数通常用烟气含氧量来间接表示。实现经济燃烧最基本方法是使风量与燃料量成一定比例。 送风量控制子系统任务就是使锅炉送风量与燃料量相协调,可以达到锅炉最高热效率,保证机组经济性,但锅炉热效率不能直接测量,故通常一些间接方法来达到目。以实测燃料量B作为送风量调节器给定值,使送风量V和燃料量B成一定比例。 稳态时,系统可保证燃料量和送风量间满足 选择使送风量略大于B完全燃烧所需要理论空气量。这个系统优点是实现简单,可以消除来自负荷侧和燃料侧各种扰动。  2.3.4、引风量控制系统 保持炉膛压力要求范围内,引风量必须与送风量相适应。炉膛压力高低也关系着锅炉安全和经济运行。炉膛压力过低会使大量冷风漏入炉膛,将会增大引风机负荷和排烟损失,炉膛压力太低会引起内爆;反之炉膛压力高且高出大气压力时候,会使火焰和烟气冒出,影响环境卫生,可能影响设备和人生安全。引风量控制子系统任务是保证一定炉膛负压力,且炉膛负压必须控制允许范围内,一般-20Pa左右。 控制炉膛负压手段是调节引风机引风量,其主要外部扰动是送风量。作为调节对象,炉膛烟道惯性很小,内扰和外扰下,都近似一个比例环节。一般采用单回路调节系统并加以前馈方法进行控制。 炉膛负压实际上决定于送风量和引风量平衡,故利用送风量作为前馈信号,以改善系统调节性能。另外,调节对象相当于一个比例环节,被调量反应过于灵敏,防止小幅度偏差引起引风机挡板频繁动作,可设置调节器比例带自动修正环节,使小偏差时增大调节器比例带。负压S测量信号,也需进行低通滤波,以抑制测量值剧烈波动。  3、毕业设计的目的与要求 1)熟悉工艺流程及组态软件的构架和软件功能; 2)熟悉PLC控制器的使用,根据工艺控制功能要求设计控制系统,内容包括:操作界面、工艺流程图、数据显示、PLC选型以及PLC控制程序等。  4、毕业设计进度安排 1)2011年1月3日至2月3日熟悉组态软件。 2)2011年2月4日至2月21日完成系统总体方案设计及开题报告。 3)2011年2月22日至3月19日编制控制程序及系统模拟调试。 4)2011年3月20日至4月30日完成毕业设计论文,整理设计文件和实验记录。 5)2011年5月1日至5月6日送评阅教师审查及修改论文。 6)2011年6月1日至6月10日完善论文、准备及参加毕业设计答辩。  5、参考文献 [1] <<监控组态软件及其应用>>马国华清华大学出版社2001.8; [2] <>周美兰,周封,王岳宇科海出版社2003.5; [3] <<监控组态软件及其应用技术>>曾庆波哈尔滨工业大学出版社2005.2; [4] 力控PCAuto联机帮助文件等; [5] <<三菱PLC基础与系统设计>>刘艳梅,陈震,李一波,渠莉娜机械工业出版社 2009.8; [6] <<可编程序控制器原理及应用>>赵晓玲大连海事学院出版社2005.2; [7] <<锅炉手册>>林宗虎、张永照机械工业出版社1989.2; [8] <<锅炉燃烧技术及设备>>庞丽君哈尔滨工业大学出版社1987; [9] 《锅炉原理》(第二版)陈学俊,陈听宽机械工业出版社1991; [10]C200HX/C200HG/C200HE Programmable Controllers Revised October 1997 [11]Reading course for college English Science and Technology,Wang Yong,2000。

我 ,们,做的。

相关百科

热门百科

首页
发表服务