桥梁工程论文 我国公路桥梁的发展趋势 前言 改革开放以来,我国公路建设事业迅猛发展,尤其是高速公路建设,从无到有,现已建成8700km。作为公路建设重要组成部分的桥梁建设也得到相应发展,跨越大江(河)、海峡(湾)的长大桥梁建设也相继修建,一般公路和高等级公路上的中、小桥、立交桥,形式多样,工程质量不断提高,为公路运输提供了安全、舒适的服务。 随着经济的发展、综合国力增强,我国的建筑材料、设备、建筑技术都有了较快发展。特别是电子计算技术的广泛应用,为广大工程技术人员提供了方便、快捷的计算分析手段。更重要的是我国的经济政策为公路事业发展提供多元化的筹资渠道,保证了建设资金来源。 我国广大桥梁工作者,充分认识到这一可贵、难得的机遇,竭尽全力,发挥自己的聪明才智,为我国公路桥梁建设事业,积极工作,多做贡献。 结合常用的桥型谈谈对公路桥梁发展趋势的看法,不当之处,请同行指正。 一、板式桥 板式桥是公路桥梁中量大、面广的常用桥型,它构造简单、受力明确,可以采用钢筋混凝土和预应力混凝土结构;可做成实心和空心,就地现浇为适应各种形状的弯、坡、斜桥,因此,一般公路、高等级公路和城市道路桥梁中,广泛采用。尤其是建筑高度受到限制和平原区高速公路上的中、小跨径桥梁,特别受到欢迎,从而可以减低路堤填土高度,少占耕地和节省土方工程量。 实心板一般用于跨径13m以下的板桥。因为板高较矮,挖空量很小,空心折模不便,可做成钢筋混凝土实心板,立模现浇或预制拼装均可。 空心板用于等于或大于13m跨径,一般采用先张或后张预应力混凝土结构。先张法用钢绞线和冷拔钢丝;后张法可用单根钢绞线、多根钢绞线群锚或扁锚,立模现浇或预制拼装。成孔采用胶囊、折装式模板或一次性成孔材料如预制薄壁混凝土管或其他材料。 钢筋混凝土和预应力混凝土板桥,其发展趋势为:采用高标号混凝土,为了保证使用性能尽可能采用预应力混凝土结构;预应力方式和锚具多样化;预应力钢材一般采用钢绞线。板桥跨径可做到25m,目前有建成35~40m跨径的桥梁。在我看来跨径太大,用材料不省,板高矮、刚度小,预应力度偏大,上拱高,预应力度偏小,可能出现下挠;若采用预制安装,横向连接不强,使用时容易出现桥面纵向开裂等问题。由于吊装能力增大,预制空心板幅宽有加大趋势,1.5m左右板宽是合适的。 预制装配式板应特别注意加强板的横向连接,保证板的整体性,如接缝处采用“剪力键”。为了保证横向剪力传递,至少在跨中处要施加横向预应力。 建议中、小跨径板桥,应由交通行业主管部门组织编制标准图,这样对推动公路桥梁建设,提高质量,加快设计速度都会带来明显的好处。 二、梁式桥 梁式桥种类很多,也是公路桥梁中最常用的桥型,其跨越能力可从20m直到300m之间。 公路桥梁常用的梁式桥形式有: 按结构体系分为:简支梁、悬臂梁、连续梁、T型刚构、连续刚构等。 按截面型式分为:T型梁、箱型梁(或槽型梁)、衍架梁等。 梁式桥跨径大小是技术水平的重要指标,一定程度上反映一个国家的工业、交通、桥梁设计和施工各方面的成就。 现从以下几种常用的结构形式介绍梁式桥在公路桥梁上的使用和发展趋势。 文秘杂烩网
下面是中达咨询给大家带来关于公路旧桥加固与管理方法的相关内容,以供参考。前言公路旧桥具有荷载等级低、使用年限长的特点。从技术资料分析,大多数桥梁是三不知:①不知基底地质;②不知基础深度;③不知隐蔽部分的尺寸。从桥梁技术状况分析,由于河床屡遭洪水冲刷,河床底部加深,桥梁墩台基础外露、冲空,产生不均匀沉降,导致桥台、拱圈产生附加应力而出现开裂,有的甚至出现开合现象;有的桥梁由于桥台较高,受行车及台后土压力的作用,桥台出现开裂、凸肚等病害;桥面混凝土铺装层由于使用时间长加之重车作用,导致开裂、剥落等病害。按桥梁技术状况来评定大多属三类桥梁.随着国民经济的发展和重点工程的建设,目前公路桥梁所承受的负荷有3个特点:①交通量不断增大;②重型车辆增加及超载现象严重;③超限运输的出现和增加。按现在桥梁和运输状况,桥梁的承载能力和通过的车辆荷载是公路与运输的矛盾之一。旧桥加固,提高旧桥的承载能力,确保交通运输的安全是目前和今后面临的任务。本文按桥梁的组成部分介绍桥梁的加固方法。1、塞缝灌浆塞缝灌浆是把按一定比例配制的水泥(砂)浆、环氧树脂(砂)浆,通过喷浆机按一定压力灌入结构物缝隙内,起到填塞裂缝、避免钢筋锈蚀并提高结构整体强度的作用。裂缝在桥梁病害中较为普遍,产生裂缝的原因很多,也很复杂。结构物一旦出现裂缝,其受力截面发生应力重分布,也就意味着受力有效截面变小,结构应力增大,承载能力降低。塞缝灌浆是用胶结材料把结构的裂缝填满,使力的作用、传递尽可能恢复到原状态。塞缝灌浆一般用于处理桥梁上、下部结构裂缝,灌浆分为水泥浆、水泥砂浆、环氧树脂浆、环氧树脂、砂浆等,具体采用哪一种,应视实际情况而定。通常水泥(砂)浆用于石砌墩、台和拱圈裂缝,由裂缝的大小来决定灌浆中是否掺砂,采用水泥(砂)浆造价低、效果好。环氧树脂浆一般用于钢筋混凝土结构物,因为钢筋混凝土构件产生的裂缝较小,易灌满,粘结性好;环氧树脂砂浆多用于桥面裂缝。塞缝灌浆的通常做法是:先用1:1水泥砂浆勾缝,勾缝时须预留直径约6—8mm的灌浆孔,孔距视裂缝宽度而定,缝宽处孔距为0.6一1.0m,缝小处孔距为0.4—0.6m。待勾缝砂浆达到一定强度后即可灌浆。钢筋混凝土梁的裂缝较小,用环氧树脂勾缝,凡大于o.2mm的裂缝都要留孔灌浆,孔距一般为o.25一o.30m,灌浆方法与灌水泥浆大致相同。在公路旧桥加固中,塞缝灌浆是综合处治的方法之一,用得比较普遍,通过试载及使用观察,效果较好。2、上部结构改建在调查研究旧桥的基础上,经过技术、经济比较,采用充分利用原桥进行拼宽,利用桥台将拱式结构改为板式结构的加固方法,使其满足超限运输要求。2.1拼宽原桥对验算不能满足超限运输要求的旧桥,经技术经济比较后,按实际通过的超限运输荷载设计拼宽桥梁,以确保超限运输安全。2.2、利用原桥台改拱式结构为板式结构对于小跨径石拱桥,由于拱圈厚度不能满足超限运输要求或因地基较差发生不均匀沉降,致使拱圈开裂,降低承载能力,可采用此办法。3、旧桥下部结构加固桥台特别是高度较大的桥台,受行车荷载和土压力作用,常见病害有桥台开裂、凸肚,翼墙外崩、开裂、错位等。对于跨径较小,水流不大的石拱桥,我们采用在桥跨内加钢筋混凝土框架进行加固。4、旧桥基础加固桥梁基础特别是天然地基上的浅基础,由于埋置深度较浅,易受河水冲刷而淘空。受河水改道冲刷桥梁引道,导致桥台基础冲空,引道被毁。桥梁地基局部软弱,致使桥台发生不均匀沉降,引起桥台开裂等。针对以上病害,我们采取对河床用浆砌片石进行铺砌,上游河床设置丁坝,打木桩扩大桥台基础等方法进行加固。对于跨径较小的桥梁,由于河水改道,洪水直接冲刷桥台基础,导致基础冲空甚至掉脚,可采取在桥跨范围内满铺15号片石混凝土的方法进行加固,铺砌厚度为30cm,铺砌两端设置截水墙,截水墙的深度为1m,宽度为0.6m。采用该法共加固桥涵8座。对于桥梁上游河床变迁、水流改道,洪水直接冲刷桥台基础和桥台引道,导致桥台基础冲空、引道被毁的桥梁,采取在桥梁上游适当位置设置丁坝等调治构造物,将河水导入主河道。5、桥面铺装层的加固桥面铺装层开裂或剥离等病害,对于钢筋混凝土梁板桥容易使钢筋锈蚀,减弱桥梁的横向整体性;对于石拱桥,由于桥面雨水下渗,加大了拱上填料的含水量,使拱圈出现渗水现象等;同时由于桥面铺装层的破损,引起桥面平整度差,车辆通行时,使桥梁产生震动,对桥梁产生不利影响,同时又加重了桥面铺装层的病害。根据桥梁的具体情况,采用不同的加固方法,对于使用年限长、破损严重的采用拆除、修复的加固方案。而对于病害较轻,使用年限短,且混凝土强度仍符合设计要求的则先处治病害,在不降低设计荷载标准的前提下可采用加铺沥青碎石层的方案。6、公路旧桥的管理加强公路旧桥的管理,并进行维修和加固,使其处于正常的工作状态,充分发挥旧桥的作用,是公路管理部门的一项主要任务。对于旧桥的超限运输管理工作具有工期短、要求高、工程量较小、前期工作量大等特点,公路超限运输一般是为国家或省的重点建设工程服务,我们的经验是:(1)对于经常过大件的路段,桥梁进行重点检查和管理,收集原始档案材料,掌握其动态;(2)在施工中注意抓重点、制约工程;(3)重视加固工程中原始资料的收集和整理工作,为今后的加固工程积累经验;(4)充分调动基层单位的积极性,正确处理责、权、利的关系。笔者认为公路旧桥的维修加固同样属于桥梁工程,不能重建轻养,旧桥的加固比新建还难,因为旧桥的维修加固,没有现成的规范,更没有可供使用的标准图,桥梁的病害又错综复杂,病害原因难以确定,因此,应充分重视公路旧桥的管理工作,加大资金投入,使其保持良好的工作状态,确保公路运输的安全。目前制约旧桥加固工作的主要因素是资金问题,在养路资金紧缺的情况下,投入到旧桥加固上的资金更加有限,为此建议采用以下办法逐步解决:(1)公路局应加大对大中型桥梁加固资金的投入,并将属于危桥的小桥纳入这个范围,集中资金重点解决危桥的加固;(2)对于桥梁的小修保养,应纳入公路小修保养议标中,特别是实行养路工程费制后,可将各段管养的桥梁编入小修保养工程量清单内,对站(所)不能承担的项目可安排段工程队施工,总段加强检查和考核。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
摘要:桥梁是交通运输的重要枢纽,但随着时间的推移,在自然环境和各种荷载的作用下会产生病害,笔者通过对多座公路桥梁的现场勘查,发现公路桥梁常见病害,并从分析桥梁病害的成因入手,剖析了桥梁常规检测与综合加固技术的构思,并相应地提出了桥梁病害维修与加固的防治方法,为其他旧桥病害的防治提供了有效的借鉴意义。 关键词:桥梁 病害 防治方法 随着经济的发展,物流业也在如雨后春笋般快速发展,桥梁作为交通运输业的枢纽,直接影响着交通的流量和荷载,这给交通运输业也带来了很大的负担,特别是在交通运输量日益增加的大环境下,行车密度、运输设备的高速发展和车轮负载的不断增长,对于星罗棋布的公路桥梁来说,超负荷使用已成为常态,进而成为交通运输线上的“瓶颈”,同时也带来了严重的安全隐患。 1.公路桥梁病害的主要表现 1.1桥梁的桥面部分。桥梁的桥头出现跳车现象,桥面护栏、人行道和伸缩缝都有毁坏是普遍问题,而桥面路基出现的问题多是由于养护不当所导致。 1.2桥梁的上部。桥梁的主梁受力状况良好,但有较少部分的梁体发现有裂缝现象,混凝土的保护层也有开裂或脱落现象。对于梁式桥多存在支座老化、倾倒、锈蚀等问题;拱类桥多因桥面沉陷而引起拱圈裂,其他的的石拱桥则出现侧向外倾等现象;双曲拱桥的主拱圈则由于钢筋加上拱肋间的横向联系较弱,易在波顶产生裂缝现象。桁架拱桥则由于荷载增加,出现拱圈拱腹部位钢筋保护层开裂、脱落现象。 1.3桥梁的下部。桥梁的实体式墩台出现竖向裂缝或倾斜;柱式或框架式的墩台出现立柱产生裂缝,或立柱钢筋出现锈蚀现象,这种病害减弱了立柱的有效受力面积,也便利墩台的承载能力有所减弱。 2.桥梁的常规检测 2.1对混凝土强度的检测。混凝土强度的检测通常采用无损检测法和挖取试样法两种方法。无损检测法又包括机械、物理和综合法三种,在实际工作中,单一的方法往往具有局限性,为了提高测试的准确度,在实际施工中经常采用两种或两种以上的方法综合评定,这样也扩大了应用的范围。超声波探测仪与回弹仪的使用最为普及,它们的测定强度误差可以缩小到l1以内。当无损检测法达不到要求时,可采用挖取试样法来测定混凝土的实际强度,这种测试方法具有既能做密度试验又能做强度试验的优点,其缺点是破损了结构、费工 、试验条件要求也较高。 2.2对桥梁承载力的检测。桥梁承载力的检测方法一般有荷载试验法与分析计算法。 荷载试验法是最简捷的一种方法,它是结通过桥梁现场荷载的方法进行试验及测试,来直接检验判断桥梁的实际承载能力。荷载试验法又有静载和动载试验两种。在桥梁病害较大的情况下,这时桥梁的承载能力较低,试验时可使加载量先低一些,然后逐步加大荷载量;在进行超载试验时,要经过认真检测后方可进行,采取逐步加大荷载量的方法,但要量力而行。 分析计算法就是对被检测的桥梁结构资料进行统计与分析计算,得出桥梁的安全承载能力大小。分析计算法又分经验系数折算和理论计算两种做法。前者以桥梁设计的荷载等级为基数,并参考桥梁的使用期限、损坏程度、桥面交通状况等综合因素折算桥梁的安全承载力。后者是利用结构计算理论,估测出桥梁结构的最大承受值,然后再利用实际检测的荷载量进行相对比,从而计算出桥梁的安全承载力。 2.3对桥梁裂缝的检测。桥梁的裂缝检测,要结合桥梁设计方案与施工资料进行全面了解、调查分析,并根据桥梁裂缝的现状,分析造成病害的原因,来制定修补方案。对桥梁裂缝的检测内容包括桥梁裂缝发生的部位和不断发生的变化进行观测。在对裂缝进行观测时,要详细记录气温的变化,气温下降时,表面收缩较快,内层冷却慢,而气温增高时情况则相反。只要裂缝的宽度和数量超过规定的范围极限时,就必须进行修补或加固,否则就会出现安全隐患。 3.公路桥梁病害防治方法 对公路桥梁的维修与加固,从经济上讲,可以节省大量的资金,能用最小的投入换来较大的回报,也能收到较好的社会效益。做好正常的维修与加固,不仅可以避免因拆除旧桥和重建新桥而增加大量的工程费用,而且还会在不中断交通的情况下解决桥梁的病害问题,同进还能延长公路桥梁的使用寿命,是一种可行且十分经济的好做法。公路桥梁的养护和改造,它能在更大程度上消除交通隐患,避免一些恶性交通事故的发生。旧桥的日常养护和加固改造能利于桥梁的可持续发展,既能满足人们的正常外出行驶的需求,也能使经济、社会资源和环境保护有机地统一起来。 3.1桥梁的桥面部分。桥梁的桥面部分是关键之处,因为绝大部分的桥梁病害多集中在桥面铺装的维修,应制作厚度为35的防水钢筋混凝土面板,不宜在原桥面上直接加铺;对于伸缩缝的维修,要采用无缝伸缩缝技术,更换先进的TST 材料;对于桥梁上面的防护栏,可采用安全持久的混凝土防撞护栏。 3.2桥梁的实体墩台。针对桥梁的实体式墩台出现竖向裂缝或倾斜的现象,在对桥梁定期检查的同时,并根据发现的病害情况,应及时予以处理。对于墩台裂缝的修补或加固,其主要目的是恢复结构的整体性,保持桥体的刚度和强度,保持其耐久性。对于这种竖向裂缝或倾斜的病害状况主要有填缝、表面抹灰、表面粘贴或喷浆等方法来对墩台进行修补或加固。 3.3梁桥的维修与加固。桥梁的病害主要集中在桥梁底部,其底部的混凝土保护层出现脱落现象,加固时把钢筋上的锈迹要清理干净,同时要把碎混凝土清理干净,做好这两项工作后就要用砂浆抹平,在施工中要尽量做到平整、美观、结实耐用,真正起到维修或加固的作用。 3.4拱形桥的维修与加固。不论是双曲拱桥还是桁架拱桥,主拱圈的维修与加固是其重点,对它们的维修与加固,先对破碎保护层和裸露钢筋表面进行彻底清理,接着用膨胀水泥混凝土对主拱圈进行加固。在对拱类桥的维修与加固的施工过程中,可采用在桥跨内加钢筋混凝土框架进行加固,但是要特别注意其对称性施工,以保证施工安全。 参考文献: [1]钟惠萍,李传习,张克波.《长永路胜利桥裂缝诊断与处治》.《中南公路工程》.2001年02期 [2]吴后选,严定坤.《体外横向预应力在药湖大桥上部构造加固中的应用研究》.《公路交通科技(应用技术版)》.2008年02期
1、引言随着我国交通事业的蓬勃发展,城市桥梁建筑成功缓解了交通拥挤问题,带动了社会经济的快速发展。但随着桥梁服务年限的增加,出现的问题也日益增多。近年来出现的桥梁坍塌事故,严重危害了社会秩序,阻碍了交通事业的发展速度。本文针对上述危害,从桥梁检测和养护、加固角度,对新桥的检测和旧桥的安全维护进行了详细的探讨,介绍了混凝土桥梁的检测、加固、维修方法及加固后的检测手段,提出对桥梁的合理的改造措施,以期最大限度的减少危害带来的损失。2、桥梁检测内容和方法桥梁检测是通过对桥梁的技术状况及缺陷和损伤的性质、部位、严重程度及发展趋势,搞清出现缺陷和损伤的主要原因,以便能分析和评价既存缺陷和损伤对桥梁质量和使用承载能力的影响,并为桥梁维修和加固设计提供可靠的技术数据和依据。桥梁检测是维护其安全的先决条件,包括定期检查、常性检查和特殊检查。通过三项检测及时解决混凝土桥梁出现的问题。一般来讲,桥梁检测主要有三大部分:首先,桥梁的表观检查,包括对桥梁整体与局部构造几何尺寸的测量、结构病害的检查与测量等。针对不同类型的桥梁,表观检查的项目和要求有不同的侧重点。从定量的角度来反映桥梁结构状况,这是表观检测要达到的标准。同时,在规范规程的约束下,对桥梁技术等级进行实际的评定,严格遵守规范手册。表观检测需要了解桥梁的相关内容包括桥梁的原结构设计、施工工艺及过程以及桥梁的结构维护养护历史等等。其次,桥梁结构材料的损害检测。此项检测是内部检测,包括完整性和强度检测两部分内容。由于结构内部存在的损害是肉眼难以看到的,因此在该项检测中,涉及到相应检测技术和检测仪器的使用。此项检测同时是桥梁检测的发展方向,属于热点研究领域。通过借助测试仪器设备及相关技术,充分了解桥梁结构内部的损害程度,及时控制和加固具有非常重要的作用。桥面板检测仪器有双频带红外线自动温度成像系统和探达成像系统,激光雷达和无线电脉冲转发器用于整桥测量,新型超声波与磁分析仪用于桥梁裂缝的检测。第三,桥梁承载力的检测。桥梁承载力的检测方法包括分析计算法、荷载实验法以及实物调查比较法。理论计算与实际工程具有一定的差别,其结果不能直接作为评判结果。必须通过经验系数折算评定出桥梁的安全承载能力,再运用相似模拟等静载实验或者动载实验对桥梁结构物的工作状态进行测试,最后通过相关的桥梁检测实际结构对比分析,结合由实际交通情况来检验桥梁承载力。荷载试验分为静力荷载试验和动力荷载试验。静力荷载试验指的是将静荷载作用于桥梁上的指定位置,能方便的测试出结构的静应变、静位移和裂缝等等,所以推断桥梁结构在荷载作用下的工作状态和使用能力的试验。一般进行的分析评定的工作主要包括对桥梁结构工作状况的评定、桥梁结构的强度及稳定性、地基和基础、桥梁结构的刚度要求、裂缝等等。混凝土桥梁动力荷载试验是指采用动荷载,以测出桥梁结构的动力特性,如振动变形,从而判断出混凝土桥梁结构在动力荷载下受冲击和振动影响的试验。另外还有一种是桥梁的健康度检测。形象化的概念提出,便于理解桥梁的安全程度。健康度检测主要包括参数采集、处理和健康评定三部分。按照一定的评判标准,运用现代传感与通信技术,实时采集桥梁的各种参数,通过特定分析系统对参数进行识别、加工和评价。3、桥梁的安全维护措施检测是为桥梁维护、加固提供准确可靠的现场第一手资料。检测结果准确性、可靠性取决于检测人员本身的专业技术水平和重视程度,同时还有赖于检测设备和工具。检测人员必须具备扎实的桥梁专业知识和一定的实践经验,检测知识并不是人人一学就会的,临时拼凑对桥梁专业毫无了解的人员肯定是不能做好检测工作的。管理部门存在招聘临时工来进行检测的现象,对这方面的认识不足必定会带来检测数据准确性、可靠性方面的影响。桥梁检测的内容相当专业和繁冗。例如,对桥梁进行检测,需要到了解桥梁的实际情况,对桥梁整体做检测,还要对桥梁的各个部件做检测。动力检测和分析涉及力学、随机振动等知识比较复杂,不单纯的限于数据的读取和存储。桥梁检测结果分析以及相应的治理措施都比较复杂,影响因素过多,这需要成套的技术来支持。有些为了实用和可能而对问题进行了必要的简化,忽略了一些难以计及的因素,这就需要实际的工程经验来支撑,使得桥梁实际与理论结果相辅相成,而并不是高度的一致性。这就需要更大精力搜集原始的技术资料,更多地考虑桥梁的实际工作条件和状况。根据桥梁检测出来的数据结果,对桥梁的安全性进行评估、鉴定。评估内容包括以下内容:首先是桥梁所处的环境以及目前的状态,获得混凝土桥梁的养护维修情况和受灾害经历等;其次,工作人员要了解所检测桥梁的设计情况,熟悉桥梁的建筑和结构施工图,检测桥梁结构混凝土材料的性能。建立桥梁结构计算模型,计算结构是否满足承载力以及变形要求,并且通过静动载试验检测在混凝土桥梁荷载的作用下的工作性能。桥梁检测也有赖于检测设备的精度。桥梁检测人员可借助大量的工具、仪器以便更准确、有效和可靠地完成检测工作。上述提到表观检测只限于肉眼识别和测量。对于隐蔽部位、关键受力部位损害程度需要相应的仪器来检测。仪器的正确使用还是涉及到检测人员的专业性,仪器自身的误差可以在数据结果中折减,而数据的正确读取取决于检测人员的专业水平,必须加强检测人员的专业技术水平培养,拥有一支高素质的专业化人才队伍,既要有丰富的桥梁实际施工经验,还要有扎实的专业知识。当所检测的混凝土桥梁结构无法满足需要的承载能力和通行能力要求时,就需要相关工程技术人员对混凝土桥梁进行维修和加固。常用桥梁加固技术方案包括四个方面:①加同临界杆件;②减轻恒载;③加固混混凝土桥梁的主要承重结构构件;④改善原混凝粉土桥梁结构的受力体系。以上四种安全控制技术通用于提高混凝土桥梁整体承载能力和通行能力的要求。一些常用可行的桥梁的技术改造包括:①结构补强,须满足桥梁结构承载力的要求;②桥面加宽,来满足桥梁通行能力的要求;③结构受力性能改善,以满足混凝土桥梁使用要求。4、结束语桥梁检测工作是一项复杂的维护工作,其特点是涉及面广、专业技术要求高、操作实施难度大、科技含量高。桥梁检测和安全控制要有合格的经验丰富的检测技术人员和分析决策人员。在扎实的理论基础上,充分结合桥梁工程实践才能对桥梁作出正确的检测和评估,设计出切实可行的维护方法,保证桥梁的安全运行,延长桥梁的安全服务年限。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
在工程项目建设中桥梁施工是个重要环节,桥梁建设发展的关键在施工技术水平。下面是由我整理的桥梁工程技术论文范文,谢谢你的阅读。
桥梁工程施工技术
摘要:在工程项目建设中桥梁施工是个重要环节,桥梁建设发展的关键在施工技术水平。科学技术在不断的进步,施工机具、设备和建筑材料都在发展,桥梁施工技术也得到了不断地改进、提高。为桥梁施工技术水平的不断提高,本文浅谈了桥梁施工方法及桥梁的几项施工技术。
关键词: 桥梁 施工 技术
中图分类号:TU74文献标识码: A
前言
在我国古代桥梁的兴盛年代,其间在桥梁型式、结构构造方面有着很多创新,可谓“精心构思,丰富多姿”。宋代之后,建桥数量大增,桥梁的跨越能力、造型和功能又有所提高,在桥梁施工方面充分表现了我国古代工匠的智慧和艺术水平,成为我国桥梁建造史上的宝贵财富。解放初期,我国的公路、城建部门在恢复、改造和新建公路与城市道路上改建和新建了数量可观的桥梁,使通车里程比解放前有了成倍的增长。随着科学技术的进步,施工机具、设备和建筑材料的发展,桥梁施工技术得到了不断地改进、提高。
一、现浇连续梁
1、支架法就地现浇连续梁一般要求
支架法就地现浇连续梁的支架施工,安装前必须进行支架刚度、强度及稳定性等计算,确定立杆间距及横杆间距,并对杆件进行逐根质量检查。基础处理是现浇梁支架体系的关键部位,桥梁全长范围内地基承载力必须满足连续梁施工的全部荷载,并须保持支架不产生变形,不得发生沉降现象,否则,进行加固处理。若地基所处路段为软土路基地段,地基承载力较低,地基采用三七灰土换填、压实处理,换填厚度根据计算荷载确定,以提高地基承载力。处理后的地基,经地基承载力检验合格后,方可进行支架搭设施工。支架底设置底托。
2、施工控制
施工控制的目的是确保结构的安全和稳定,使成桥后桥面系线形达到设计要求,并且使结构的内力分布与设计理想的状态基本吻合。在确保结构稳定的前提下,采用变形与应力双控,以变形控制为主,兼顾应力的发展情况。全桥都要进行变形、施工挠度与标高控制。
控制方法:以整体承载能力和抗倾覆稳定为主;加强纵横斜拉剪刀撑布置,增加外侧斜支撑或者斜拉筋,提高抗倾覆稳定性;高宽比特别悬殊的(大于5的)独立支架,应优先选用大型型钢支架。立杆接头错开布置,每个水平面接头不得大于总立杆数的50%。立杆接头扣件索紧牢固,或者加楔塞紧;加强纵横斜拉剪刀撑布置,约束立杆变形;水平杆接头扣件索紧牢固,或者加楔捆绑牢固,确保有效;水平拉结杆步距不得大于计算值;加强纵横斜拉剪刀撑布置,约束立杆变形。针对性保证措施:
(1)地基碾压整平,达到承载力要求。
(2)支架基础高于周围地面20cm~30cm,周围设置截水沟,防止雨水流进,施工中严防水侵泡。
(3)对碾压碎石基础而言,应设置纵横交叉枕梁(方木或者型钢),提高整体受力效果;格外加强高低差方向斜拉剪刀撑;顺桥向高低差形式的,应将支架与墩台身间采用较强的刚性连接;横桥向高低差形式的,设法在支架高边一侧增加斜支撑和矮边增加斜拉筋;通过预压检测和检验计算成果,为施工调差提供准确参数,荷载集中部位横梁严格检查验收。
3、待浇混凝土的梁段搭设新的暖棚, 与已浇注混凝土梁段的暖棚之间, 挂保温帘分隔保温管道压浆:
(1)已施工的现浇梁段的暖棚、外模、底模不拆除,也不前移,用于已浇梁段的预应力管道的保温。待浇混凝土的梁段搭设新的暖棚,与已浇注混凝土梁段的暖棚之间,挂保温帘分隔保温。采取覆盖和包裹保温措施后。
(2)预应力孔道内的浆液,其强度达到25MPa前,保持其温度位于0℃以上。
(3)压浆前,孔道及两端必需密封,用高压水或高压风将管段内吹沈干尽,管道内不得存水。然后进行压浆。
(4)预应力孔道注浆的保护主要是泌水问题,浆体要求不泌水,适当早强,减少受冻的可能性、微管的膨胀性。浆体搅拌时,不能用热水与水泥直接搅拌,水泥应保温,不露天存放。为了使浆体不泌水,适当早强采取以下方式:
a采用1000r/min的高速搅拌装置,降低水灰比至0.3以下;
b增加保水性材料(如粉煤灰、硅灰)减少泌水;
c添加高效减水剂降低水灰比;
d应用毛细水泌水试验,检验浆体的泌水性能。
二、悬臂式现浇
1、悬臂式现浇一般要求
托架采取自支撑体系构件设计。墩身施工时按要求在墩身相应位置预先埋设托架钢桁件。结构需要经过严格的受力计算。托架预压:
(1)托架使用前对托架进行预压,以检测托架的强度及稳定性,同时测量托架的非弹性变形值和弹性变形值。
(2)预压的荷载大小按照托架承载的混凝土重量,然后再考虑施工荷载和施工的安全系数来计算。
(3)卸载的顺序按照压载的反顺序进行并且作好观测记录,对预压期间获得的数据进行分析,找出非弹性变形值和弹性变形值,归纳出回归方程作为调整立模变高的依据。挂篮设计:包括主桁架、底模平台、模板系统、锚固系统、走行系统设计满足施工荷载、稳定性、安全性、可操作性。
2、悬浇梁施工技术措施
技术措施:
(1)挂篮的安装运行及使用均为高空作业,要采取全面的安全保证措施;现场技术人员必须检查挂篮的位置、前后吊带、吊架及后锚杆等关键受力部位的情况,发现问题及时解决。
(2)检查预留孔位置的准确性及孔洞是否垂直;浇筑混凝土前后吊带用千斤顶顶紧,且受力均匀,以防承重后与已浇筑梁段产生错台。
(3)施工中加强观测标高,轴线及挠度等,整理出挠度曲线。
3、悬臂梁施工注意事项
悬臂段施工必须把安全工作放在头等位置。在施工中,除做好防护平台,安全网等措施外,特别要对施工人员进行交底,提高安全意识,避免可能出现的各种落物等危险因素。
三、加强桥梁施工质量管理
1、应重视结构的耐久性问题
桥梁在建造和使用过程中,一定会受到环境、有害化学物质的侵蚀,并要承受车辆、风、地震、疲劳、超载、人为因素等外来作用,同时桥梁所采用材料的自身性能也会不断退化,从而导致结构各部分不同程度的损伤和劣化,既影响了使用又增大了经济损失。
2、加强混凝土质量管理
首先,施工单位要严格按照国家建材标准采购材料,并由始至终地保证水泥材料的质量稳定、不变质,对于大体积混凝土,要采用水热化低的水泥;其次,在施工过程中,施工工人必须按照强度等级、抗渗等级配比混凝土,还有充分控制好混凝土入模时的温度,进行分层浇筑以及设计合理的养护措施,通过在混凝土表面覆盖草席、草帘等确保降低温度应力,避免混凝土出现温度裂缝;再次,在浇筑混凝土时一定要振捣充分,尤其是腹板内预应力管道比较集中的地方更要做到不欠振、不漏振,确保混凝土浇筑密实。
3、加强桥梁结构质量管理
首先,施工单位要仔细精确地做好测量工作,放线定位工作要做到准确无误,不能出现丝毫偏差。在桥墩、桥台施工完成后,要将桥梁的平面位置完全确定下来;其次,由于桥梁结构形式很多,施工工序和技术较复杂,要求的施工工艺较精确,因此,施工单位必须严格按照设计图纸进行施工,从混凝土的振捣、养生、到预应力的张拉等都要严格管理和控制,以确保桥梁结构的承载能力;再次,还要着重注意桥梁外观的美观平滑,不能出现由于施工手段的缺陷或混凝土振捣不均而引起的外观质量欠缺。
结束语
总之,在桥梁建设中,我们应该根据实际情况来选择适宜的施工方法和技术。现代桥梁建设的施工技术发展突飞猛进,不断地涌现出了先进的技术、设备和高科技材料。当然在建设的过程中我们会遇到各种新问题,这就需要我们不断探求新方法、新技术。
参考文献
[1] 徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.
[2] 向木生,张世,张开银.大跨度预应力混凝土桥梁施工控制技术[J].中国公路学报,2002,10.
[3] 郝志刚.探讨桥梁施工技术与管理[J]. 科技信息. 2012(08)
[4] 柏冰,王灿彬.浅谈桥梁工程的施工技术与安全管理[J]. 科技创新导报. 2012(11)
点击下页还有更多>>>桥梁工程技术论文范文
道路 桥梁浅论梁【bridge】指的是为道路跨越天然或人工障碍物而修建的建筑物。桥梁一般讲由五大部件和五小部件组成,五大部件是指桥梁承受汽车或其他车辆运输荷载的桥跨上部结构与下部结构,是桥梁结构安全的保证.包括(1)桥跨结构(或称桥孔结构.上部结构)、(2)支座系统、(3)桥墩、(4)桥台、(5)墩台基础.五小部件是指直接与桥梁服务功能有关的部件,过去称为桥面构造.包括(1)桥面铺装、(2)防排水系统、(3)栏杆、(4)伸缩缝、(5)灯光照明.桥梁的分类:按用途分为公路桥、公铁两用桥、人行桥、机耕桥、过水桥等。按跨径大小和多跨总长分为小桥、中桥、大桥、特大桥。按结构分为梁式桥,拱桥,钢架桥,缆索承重桥(斜拉桥和悬索桥)四中基本体系,此外还有组合体系桥按行车道位置分为上承式桥、中承式桥、下承式桥按使用年限可分为永久性桥、半永久性桥、临时桥按材料类型分为木桥、圬工桥、钢筋砼桥、预应力桥、钢桥桥梁分类 多孔跨径总长L(米) 单孔跨径L0(米)特大桥 L≥500 L0≥100大桥 L≥100 L0≥40中桥 30 桥梁与隧道工程论文参考文献 参考义献 这是论文中很重要、也是存在问题较多的一部分。那么,桥梁与隧道工程论文参考文献有哪些呢?下面我为大家收集一些优秀的范例,大家不妨多加参考! 桥梁与隧道工程论文参考文献一 [1] Measor E.O.,New, D.R The design and construction of the Royal Festival Hall, South Bank[J] Journal Instn Civ. Engrs, 1951,36241-318. [2]曹艳梅,夏禾,王鲲鹏.紧邻既有铁路桥基础施工对行车影响的预评估.铁道学报.2013.35(3):95-101. [3]饶明贵,既有线旁钻孔灌注桩施工方法[J].铁道工程学报.2003,(1):145-149. [4]罗鹏,邻近既有线路桥梁挖孔桩基础施工安全性分析[J].施工技术与测技术.2008,28 249-252. [5]吴庆润,邻近既有铁路的.大直径超深钻孔桩施工关键技术[J].地基基础.2012,34 (3):176-179. [6]朱建才,许明来,朱剑锋,徐日庆,周群建,钻孔桩施工对既有桥桥墩安全性影响试验研究[J].工程勘察.2012,(3): 27-32. [7] Gunn M J,Yan,R W M. Stress transfer and deformation.mechanisms around a di^)hragm wallpanel [J]. Proc.ASCE,Journal of Geotechnical and Geoenvironmental &igineering, 1998,124(7):638-648. [8] F.C.Schroeder, D.M.Potts, T.LAddenbrooke. The Influence Of Pile Group Loading On ExistingTunnels [J], Geotechniqe, 2004,54(6)351 -362. [9]陈隆,叶涛,群桩施工全过程模拟,工业建筑,2010. (40): 1011-1017. [10]李智彦,丁振明,钻孔灌注桩施工对邻近桥桩基影响的数值模拟.公路交通科技.2013.(4):70-76. [11]高晓燕,钻孔灌注桩施工对既有并行高铁线桥梁的影响.山西建筑.2015,(3):163-164. [12] Ming-Fang, Chang, P.E., Hong Zhu. Construction effect on toad transfer along bored piles [J].Journal of Geotechnical and Geoenvironmental Engineering, 2004,130(4):426-437. [13] Burland, LB. Shaft friction of piles in clay-a simple fundamental approach! J]. GroundEngineering. 1973, 6(3): 30-42. [14] Skempton, A.W. Cast in-situ bored piles in London Clay [J] . Geotechnique, 1959,9(4):153-173. 桥梁与隧道工程论文参考文献二 [15] Meyerhof,GG,Murdock, L.J. An investigation of the bearing capacity of some bored and drivenpiles in London Clay [J].Geotechnique, 1953,3(7)267-282. [16] Clayton, C. R. I,Milititsky, J. Installation effects and the performance of bored piles in stiffClay[J]. Ground Engineering, 1983,16(2): 17-22. [17] Clear.C.A. Ffcrrison.T.A, Concrete pressures on formwork. CIRIA association. Report 108,1985. [18] Lings,M.L., Ng, CW.W^Nash, DJ.T. The lateral pressure of wet concrete in diaphragm wallpanels cast und^ bentonite [C]. Proc.Instn Civ. Engrs Geotech. Engng, 1994,107:163-172. [19] Symons, I.F, Carder, D. R. Stress changes in stiff clay caused by the installation of embeddedretaining walls [M]. Retaining structures. Thomas Telford, London, UK, 1993,227-236. [20] DeBeer E E & WaOays M. Forces induced in piles by unsymmetrical surcharges on the soilaround the pfles[A]. Proc 5thECSM FE[C].Madrid :1972,325-332. [21] Leussink, K And Wenz, K.P., 1969,Storage Yard Foundatio on Soft Coheesive Soils.Proceedings, Seventh international Conference on Sofl Mechanics,\bL9,1972,149-155. [22] tfcyman L,Boersm a F. Bending moments in piles due to lateral earth pressure[A].Proc 5ThICSMFE[C], Paris:1961:425-429. [23] Wenz K P. Large scale tests for determination of lateral loads on piles in soft cohesive soils[A].Proc 8thICSMFE[C]. Moscow:19732-5. [24]梁发云,于峰.土体水平位移对邻近既有桩基承载性状影响分析.岩土力学,2010,32:449—454. [25]杨敏,朱碧堂,陈福全.堆载引起某厂房坍塌事故的初步分析[J].岩土工程学报,2002^24(4): 446-450. [26]张陈蓉,黄茂松,李早.被动群桩的分析方法与验证[C].中国土木工程学会第十届土力学及岩土工程学术会议论文集.重庆:重庆大学出版社,2007. [27] Matsui hong W P& I to T. Earth pressure on piles in a row due to lateral soil movements [ J]. Soiland Foundations. 1982,22( 2):71-81. [28] Poulos H G, Chen L T& Hull T S. Model tests on single piles subjected to lateral soilmovement[ J]. Soil and Foundations. 1995,35(4) :85-92. 这是我以前写的 没交过 不会重复: 桥梁工程的发展基础——材料和技术的发展摘要:工程材料和工程技术的迅猛发展往往推动着桥梁工程的快速发展。关键词:工程材料工程技术 推动 桥梁工程 发展 随着科学技术的进步和工程实践的发展,土木工程这个学科也已发展成为内涵广泛、门类众多、结构复杂的综合体系。例如,就土木工程所建造的工程设施所具有的使用功能而言,有的供生息居住之用,以至作为“入土为安”的坟墓;有的作为生产活动的场所;有的用于陆海空交通运输;有的用于水利事业;有的作为信息传输的工具;有的作为能源传输的手段等等。这就要求土木工程综合运用各种物质条件,以满足多种多样的需求。土木工程已发展出许多分支,如房屋工程、铁路工程、道路工程、飞机场工程、桥梁工程、隧道及地下工程、特种工程结构、给水和排水工程、城市供热供燃气工程、港口工程、水利工程等学科。。这学期我们学习了《土木工程概论》,学到了很多有关自己专业相关的知识。我个人对桥梁工程比较感兴趣: 桥梁工程学的发展主要取决于交通运输对它的需要。古代桥梁以通行人、畜为主,载重不大,桥面纵坡可以较陡,甚至可以铺设台阶。在有重载马车之后,载重量逐步加大,桥面纵坡也必须使之平缓。这时的桥梁材料仍以木、石为主,铸铁和锻铁很少使用。 从桥梁的原始雏形——堤梁(及在浅滩溪涧中筑起一个个石堤,堤间流水,人从石堤上跨越)、独木桥、浮桥(架设在船只上的桥)和石拱到现在超千米跨度的悬索桥,桥梁工程在几千年的时间里发展可谓翻天覆地。然而桥梁工程能拥有这翻天覆地的发展取决于工程材料和工程技术迅猛发展的有力推动。在原始社会里,懵然无知的古人类还只是追求有一个起身的洞穴和能填饱肚子的食物,还不会想到桥。然而随着社会的发展,人类文明的进步,交通的不断发展,人们开始创造了桥。然而那时工程材料的使用仅限于天然的木和石块,且工程技术非常落后,所以人们只能建造简单的桥——堤梁、独木桥和简单的石拱。世界上现存最古老的石桥在希腊的伯罗奔尼撒半岛,是一座用石块干垒的单孔石拱桥,距今3500年左右建成。我国古代桥梁工程技术的发展在当时处于世界领先地位。公元590——608年建造在河北省赵县(叫)河上留存至今的隋代敞肩式单孔圆弧弓形石拱桥,即赵州桥。该桥全长50.82m,桥面宽约10m,采用28条并列的石条砌成拱券形成。拱券矢高7.23m。拱上设有4个小拱,既能减轻桥身自重,又便于排洪,且更显美观。该桥无论在材料使用、结构受力、艺术造型和经济上都达到极高成就,是世界上最早的敞肩式拱桥,早于欧洲同类桥约1000年。近代土木工程的时间跨度为从17世纪中叶至20世纪中叶的300年间。这个时期内土木工程的主要特征有:——有力学和结构理论作为指导;——砖、瓦、木、石等结构建筑材料得到日益广泛的使用;混凝土、钢材、钢筋混凝土及早期的预应力混凝土得到发展;——施工技术进步很大,建造规模日益扩大,建造速度大大加快。在这个时期内,以下几件大事对桥梁工程的影响巨大: (1)意大利学者伽利略在1638年出版的著作《关于两门新科学的谈话和数学证明》中论述了建筑材料的力学性质和梁的强度,首次用公式表达了梁的设计理论。 (2)英国科学家牛顿在1687年总结了力学三大定律它们是土木工程设计理论的基础。 (3)瑞士数学家欧拉1744年出版《曲线的变分法》建立了柱的压屈理论,得到计算柱的临界受压力的公式,为分析土木工程结构物的稳定问题奠定了基础。 (4)1824年英国人阿斯普.丁取得了波特兰水泥的专利权,1850年开始生产。这是形成混凝土的主要材料,使得混凝土在土木工程中得到广泛应用。后来,在20世纪初,有人发表了水灰比等学说,才初步奠定了混凝土强度的理论基础。 (5)1859年发明了贝塞麦转炉炼钢法,似的钢材得以大量生产,并愈来愈多地应用于土木工程。 (6)1867年法国人莫尼埃用铁丝加固混凝土制成花盆,并把这种方法应用到工程中,建造了一座蓄水池,这是应用钢筋混凝土的开端。1875年他主持建造了第一座长16m的钢筋混凝土桥。 (8)1779年英国用铸铁建成跨度为30.5m的拱桥;1826年英国用锻铁建成跨度为177m的悬索桥;1883年美国建成世界上第一座大跨钢悬索桥——布鲁克林桥;1890年英国又建成两孔主跨达521m的悬臂式刚架桥,这样,现代桥梁3种基本形式(梁桥、拱桥、悬索桥)相继出现。 自从有了铁路以后,桥梁所承受的载重逐倍增加,线路的坡度和曲线标准要求又高,且需要建成铁路网以增大经济效益,因此,为要跨越更大更深的江河、峡谷,迫使桥梁向大跨度发展。石材、木材、铸铁、锻铁等桥梁材料,显然不合要求,而钢材的大量生产正好满足这一要求。 在技术方面,只是凭经验修桥,曾使19世纪80~90年代的许多铁路桥发生重大事故;从这时起,正在发展中的结构力学理论得到了重视,而在它的静力分析理论完全确立并广泛普及之后,桥梁因强度不足而造成的事故显然大为减少。 二十世纪以来,公路交通有很大发展。在内陆,需要在更多的河流、峡谷之上建桥。在城市中,以及在各种交通线路相交处,需要建造立交桥。在沿海,既需在大船通航的河口、海湾、海峡修建特大跨度桥梁,又需在某些海岛与大陆之间修建长桥。 由于更多新技术新材料的出现,现代桥梁工程的发展尤其迅速,世界各国相继建造出超千米的桥梁。世界上跨径最大的预应力混凝土斜拉桥——西班牙的卢纳巴里奥斯桥,跨径达440m,采用了双面辐射形密索布置. 世界第一的悬索桥——日本明石海峡桥,横跨日本内海,使日本神户与淡路岛紧紧相连.这座大桥全长3190M,中央跨度1990m于1998年竣工.它可以承受里氏8.5级地震.目前中国在建的一批公路桥梁,无论是桥梁的数量还是工程规模、技术难度、科技含量,都代表着当今世界的先进水平,创造了中国建桥史之最。据悉,这些桥梁主要有:阳逻长江大桥,主跨1280米的悬索桥;南京长江三桥,主跨648米的斜拉桥;润扬长江公路大桥,跨江连岛的主跨1490米悬索桥和406米斜拉桥组合;深圳湾跨海大桥,主跨180米独塔单索面斜拉桥;苏通长江公路大桥,主跨1088米的斜拉桥,居世界第一;杭州湾跨海大桥,按双向六车道高速公路标准建设,全长36公里,是世上在建最长的公路跨海大桥。一个国家同时在建这么多世界级桥梁,在世界上不多见。 桥梁需要大量修建,而人力、物力、财力有限;于是,不断提高技术水平,引用新材料、新工艺、新桥式,对结构行为进行更精确的数值分析,采用更精确的结构试验进行验证,以使桥梁建设的经济效益不断提高,已成为时代的要求。 桥梁工程学主要研究桥渡设计,包括选择桥址,决定桥梁孔径,考虑通航和线路要求以确定桥面高程,考虑基底不受冲刷或冻胀以确定基础埋置深度,设计导流建筑物等;桥式方案设计;桥梁结构设计;桥梁施工;桥梁检定;桥梁试验;桥梁养护等方面。 在建桥材料方面,以高强、轻质、低成本为选择的主要依据,近期仍以发展传统的钢材和混凝土为主,提高其强度和耐久性。对于建筑钢材的脆断机理、初始几何缺陷等,以及混凝土材料的非弹性问题(收缩徐变以及疲劳等),将继续作充分的研究,使能正确控制结构的受力和变形。至于碳纤维塑料等在桥梁上的广泛应用,还必须在降低成本以后才有可能。 在桥梁勘察设计方面,随着交通事业的迅速发展,大跨度或复杂的桥型将不断涌现。高速公路的发展,对桥梁设计亦将提出新的要求。在桥式方案设计中,将有可能利用结构优化设计理论,借助电子计算机选出最佳方案。 在结构设计计算中,采用空间理论来分析桥梁整体受力已成为可能;以概率统计理论为基础的极限状态设计理论,将进一步反映在桥涵设计规范中,使桥梁设计的安全度得到科学合理的保证。桥梁美学作为时代、民族的文化在某些方面的反映,将愈来愈受到人们的重视:桥梁的面貌将蔚为大观。 在桥梁施工方面,对施工组织将充分利用电子计算机进行经济有效的管理。在施工技术中,将不断引用新技术和高效率、高功能的机具设备,借以提高质量、缩短工期、降低造价。如采用激光测量控制结构的精确定位;引用自升式水上平台克服深水基础的困难;利用遥控设备在沉井、沉箱中挖基,以减少劳动强度并避免人身危险;利用高质量的焊接技术,借能推广工地焊接等,此外,装配式桥梁也将有所发展,以使结构和构件标准化,生产工业化。 在桥梁养护维修方面,要求对既有桥梁建立完善的技术档案管理制度。在桥梁维修检查中,引用新型精密的测量仪表,如用声测法对结构材料的缺陷以及弹性模量进行测定;用手携式金相摄影仪检查钢材的晶体结构俾能及早进行加固防患于末然,以便延长桥梁的使用寿命。 桥梁工程始终是在生产发展与各类科学技术进步的综合影响下,遵循适用、安全、经济与美观的原则,不断的向前发展。人们除了要求桥的功能完善,还讲求桥的外形美观、有艺术性 ,桥梁地建造将更加复杂化,更加艺术化,桥梁的未来将更加多元化,是现代桥梁更现代,还是旧式桥梁的复兴,值得期待! 中国桥梁的历史可以上溯到6000年前的氏族公社时代,到了1000多年前的隋、唐、宋三代,古代桥梁发展到了巅峰时期。公元35年东汉光武帝时,在今宜昌和宜都之间,出现了架 设在长江上的第一座浮桥。 在秦汉时期,我国已广泛修建石粱桥。世界上现在是保 存着的最长、工程最艰巨的石粱桥,就是我国于1053一1059年 在福建泉州建造的万安桥,也称洛阳桥,此桥长达800米,共47 孔,位于“波涛汹涌,水深不可址”的海口江面上。此桥以 磐石铺遍桥位底,是近代筏形基础的开端,并且独具匠心地用养殖海生牡蛎的方法胶固桥基使成整体,此也是世界上 绝无仅有的造桥方法,近千年前就能在这种艰难复杂的水文 条件下建成如此的长桥,实是中华桥梁史上一次勇敢的突破。 我国古代石拱桥的杰出代表是举世闻名的河北省赵 县的赵州桥(又称安济桥),该桥在隋大业初年(公元605年左 右)为李春所创建,是一座空腹式的圆弧形石拱桥,净跨37m, 宽9m,拱失高度7.23m,在拱圈两肩各设有二个跨度不等的腹 拱,这样既能减轻桥身自重,节省材料,又便于排洪、增加美 观,赵州桥的设计构思和工艺的精巧,不仅在我国古桥是首屈一指,据世界桥梁的考证,像这样的敞肩拱桥,欧洲到19世纪中叶才出现,比我国晚了一千二百多年,赵州桥的雕 刻艺术,包括栏板、望柱和锁口石等,其上狮象龙兽形态逼 真,琢工的精致秀丽,不愧为文物宝库中的艺术珍品,我国 石拱桥的建造技术在明朝时曾流传到日本等国,促进了与世 界各国人民的文化交流并增进了友谊。 1240年建造的福建潭州虎渡桥,也是最令人惊奇的一 座粱式大桥,此桥总长约335m,某些石粱长达23.7m,沿宽度 用三根石粱组成,每根宽1.7m,高1.9m,重达200多吨,该桥一直 保存至今”历史记载,这些巨大石梁桥是利用潮水涨落浮运建 设的,足见我国古代加工和安装桥梁的技术何等高超。 广东潮安县横跨韩江的湘子桥(又名广济桥)此桥始 建于公元1169年,全桥长517.95m,总共20墩19孔,上部结构有 石拱、木梁、石梁等多种型式,还有用18条活船组成的长达 97.30m的开合式浮桥,设置浮桥的目的,一方面适应大型商 船和上游木排的通过,并且也避免了过多的桥墩阻塞河道, 以致加剧桥基冲刷而造成水害,这座世界上最早的开合式 桥,柱石桥之长、石墩之大、桥梁之多以及施工条件之困难 工程历时之久,都是古代建桥史上所罕见的。。 1957年,第一座长江大桥——武汉长江大桥的胜利建 成,结束了我国万里长江无桥的状况,从此“一桥飞架南北,天堑变通途”,桥的正桥为三联3X128m的连续钢桁粱,双 线铁路上层公路桥面宽18m,两侧各设2.25m人行道,包括引 桥在内全桥总长1670.4物,大型钢梁的制造和架设、深水管柱基础的施工等,对发展我国现代桥染技术开创了新路。 1969年胜利建成了举世瞩目的南京长江大桥,这是我国自行设计、制造、施工,并使用国产高强钢材的现代大型桥梁,正桥除北岸第一孔为128m简支钢桁粱外,其余为9 孔3联,每联为3x l60m的连续钢桁粱。上层是公路桥面,下层 为双线铁路,包括引桥在内,铁路部分全长6772m,公路部 分为4589m,桥址处水深流急,河床地,质极为复杂桥墩基础 的施工非常困难。南京长江大桥的建成显示出我国的建桥事 业已达到了世界先进水平,也是我国桥梁史又一个重要标 志。 在最近的1000年中,中国的桥梁技术全面落后于世界的脚步,中国第一座现代化桥梁的出现距今仅100多年历史,而且是由外国人建造的。从钱塘江大桥算起,中国人自己设计现代桥梁的历史还不足70年;从南京长江大桥算起,中国人自行设计建造大型桥梁的历史仅34年。 而九十年代以来,中国桥梁的成就才使我们重新无愧于祖先地站到了世界前列,这是中国桥梁建设的伟大复兴时代。改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。 1990年四川省在宜宾市建成的小南门桥,跨径达到240米,已是当时世界上中承式拱桥中跨径最大的一座。2001年11月7日,小南门大桥因吊杆锈蚀造成部分桥面跨塌,在修复过程中,技术人员对全桥进行了检测,大桥整体结构依然完好。小南门大桥所付出的代价是创新的代价,没有创新我们就不可能一睹1400年前的赵州桥。 1991年,四川省苍溪县建成了中国第一座钢管混凝土拱桥——旺苍大桥,跨径115米。在此之后的几年中,各地虽然兴建了不少钢管混凝土拱桥,但跨径始终在200米以下徘徊,直到1998年,广西壮族自治区建成了三岸邕江大桥,一举将此类桥梁的跨径提高到270米;1999年又建成了跨径220米的六景大桥。此后,在湖北、浙江和贵州等省,跨径在250米左右的钢管混凝土公路、铁路拱桥开始增多。 1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 1997年重庆万县长江大桥建成。大桥位于万州区(原万县市)黄牛孔处,是上海至成都高速公路跨越峡江天险的特大型拱桥。大桥一跨飞渡长江,全长 856.12米,主拱圈为钢管混凝土劲性骨架箱型混凝土结构,主跨420米,桥面宽24米,为双向四车道,是1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 华夏第一桥——江阴长江公路大桥,是我国“八五”规划的“两纵两横”国道主干线中沿海主骨架的跨江工程,是目前 中国第一、世界第四大跨径钢悬索桥。大桥由桥塔、主缆、锚旋和钢箱梁等主要部件组成。大桥全长3071 米,主跨1385米;桥面宽33.8米,双向六车道,设计车速100公里/小时;通航净空为50米,可通行五万 吨级巴拿马型散货轮。江阴长江公路大桥的两根主索,各长2400多米,直径近1米,每根重1.4万 多吨,主索用127根直径5.3毫米的钢丝搅成索,再由169股钢索组成主索。主桥每边有85个吊杆,每个吊杆2根,用以连结主索和桥面。 两岸索塔标高为196.236米,相当于65层搂高。北塔基长43.5米,宽73.5米,下有123根近90米长的基础桩。北锚的混凝土陈井平面长69米,宽51米(面积相当于一片足球场大)。沉入地面58米,被称为世界第一大沉井。江阴长江大桥于1994年11月22日正式开工,1999年10月1日胜利通车,名列“中国第一,世界第四”。 改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。 1.罗福午.土木工程概论.武汉理工大学出版社 2.杨静.建筑材料.中国水利水电出版社.2004,2 3.盛洪飞编著.桥 4 罗英:中国石桥 人民交通出版社 1959 5 茅以升:《中国古桥技术史》 北京出版社 1986 6 唐寰澄:《中国古代桥梁》 北京文物出版社 1957 高压旋喷桩在道路软基处理中的应用摘 要:在津沽改线下穿通道的U15-U18段及搭板处,因按照原计划用于加强软土地基承载力的深层水泥搅拌桩机具过高,容易使机具与其上的高压线发生电击事故而在施工中无法得到实施,所以此段变更为高压旋喷桩。本文结合工程实例,分别从工作机理、施工流程、和质量检验三个方面对高压旋喷桩做了阐述。关键词:软土地基处理,高压旋喷桩,质量控制1、工程简介津沽该线下穿通道工程全长440米,宽为30.5米,其中U型槽的JK3+493.302¬— JK3+573.302的范围内,道路中心线两侧上方有110KV高压线干扰,所以此段由原来的深层水泥搅拌桩变更为高压旋喷桩。此段旋喷桩设计桩长10—15 米,设计桩径600mm,梅花形布置,桩距1.5米,总根数为668根,总米数为8095.4米,从2009年11月8日始到2009年11月19日止,历时12天,工后检验效果理想。2、高压旋喷桩概述2.1.概念:高压旋喷桩是高压喷射注浆法处理地基中的一种,是利用钻孔设备,把安装在注浆管底部侧面的特殊喷嘴,置入土层预定深度后,用高压泥浆泵等装置,以20Mpa左右的压力把预先制备好的水泥、水玻璃等材料作为主固化剂的浆液从喷嘴中喷射出去冲击破坏土体,同时借助注浆管的旋转和提升运动,使浆液把从土体上崩落下来的土搅拌混合,经一定时间的凝固,便在土中形成圆柱状的具有一定强度和抗渗能力的固结体,从而使地基承载力得到加强的一种工程方法。2.2. 加固机理:高压喷射注浆是利用工程钻机把带有喷嘴的注浆管钻进至土层的预定位置,以高压设备使浆液成为20Mpa左右的高压流从喷嘴里喷射出来,冲击破坏土体,当能量大、速度快和呈脉动状的喷射流的动压超过土体结构强度时,土料便从土体剥落下来,高压流切割搅碎的土层,呈颗粒状分散,一部分被浆液和水带出钻孔,另一部分则与浆液搅拌混合,随着浆液的凝固,组成具有一定强度和抗渗能力的固结体,当喷射流以360°旋转、自下而上喷射提升时,固结体的截面形状为圆形即称为旋喷。在钻机的钻杆最前端设置一个高压液体喷射装置,当钻机把该高压喷射装置送到土层预定深度时,通过高压泵向钻杆中心孔连续输送高压水泥浆液,高压水泥浆液即通过喷射装置中的喷嘴小孔喷入钻杆周围的砂层、土层及砂土层,与此同时钻机带动钻杆缓慢旋转并提升使喷嘴缓慢螺旋上升,从而使高压水泥浆不断切割搅拌土层,形成水泥、砂、土及速凝剂的混合搅拌浆体,通过固化剂和软土间所产生的一系列物理化学反应,生成水化物,然后水化物胶结形成凝胶体,将土颗粒凝结在一起形成具有整体性、水稳定性和较高强度的结构整体,从而提高其复合地基承载力及改变地基土物理化学性能,达到提高地基承载力、减少地基沉降、阻止水体流动、增强地基稳定性的目的。旋喷桩主要用于加固地基,提高地基的抗剪强度,改善地基土的变性性能,使其在上部结构荷载作用下,不至破坏或产生过大的变形。3、施工流程旋喷注浆施工流程可大致分为:施工准备,试桩、技术参数确定→测量放样,桩机就位,钻孔,水泥浆制备,旋喷和复搅,提管冲洗,移动设备→桩基工后检测;3.1、 施工准备:钻机进场之前首先进行场地布置,清除施工区域的杂物,平整场地施工段落要平整密实,做好排水工作,确保在较干净的环境中进行施工,其次,准备好施工用电和施工用水;施工用电使用沿线设置的变压器并配备发电机在施工现场,架设电缆接线到施工作业区。3.2、试桩、技术参数确定:每个工点施工前必须先打不少于3根的工艺试验桩,以检验机具性能及施工工艺中的各项技术参数,其中包括最佳的灰浆稠度、工作压力、钻进和提升速度等,还应根据被加固土的性质及单桩承载力要求,确定水泥掺入量。通过试验桩确定本工程高压旋喷桩施工技术参数为:水灰比为1:1;钻进、工作压力20~25Mpa;提升速度≤0.25m/min;桩顶1米范围提升速度≤0.2m/min;转速应控制在20~25r/min,水泥掺入量范围在180~220Kg/m之间。3.3、测量放样:测量人员根据施工图纸提供的坐标、平面布置图,在施工段落进行布桩,桩位用小木桩红色头醒目标注,桩间距误差不大于50mm,布桩完成自检合格后报监理工程师验收,验收合格后进行下一步工序。3.4、钻机就位:搅拌机具运至现场后进行安装调试,待转速、压力及计量设备正常后就位。钻机就位时先使钻头对准桩位标志中心,然后进行钻杆的双向调平,之后,再次调整对中,最后再精确调平。垂直度误差不超过1%,对中误差小于5cm。3.5、钻孔:每台钻机在开钻前,技术人员对钻杆总长度进行尺量,根据桩长、设计桩顶标高、原地面标高计算下钻节数,并在最后一节钻杆上标定出下钻结束位置。钻孔的目的是为了把注浆管置入到预定深度,钻孔方法采用单管法旋转钻机。在钻杆下钻时采用小于10Mpa的水泥浆压力,一方面防止堵喷嘴,另一方面对土体进行第一次喷射,使土体成为混合液,减小喷浆时土体的阻力,以利于浆液充分搅拌,钻到设计的深度。成孔后,应校检孔位、孔深及垂直度,是否符合设计要求。3.6、灰浆的制作:选用优质42.5#普硅水泥,根据搅拌桶的大小、水灰比、泥浆比重来标定最大水位线,按水灰比1:1添加水泥,并经充分搅拌,测定泥浆比重是否达到试配时比重1.47,如达不到继续添加水泥直至达到试配水泥浆比重为止。搅拌时间少于4分钟的不得使用,超过初凝时间的浆液也不得使用;灰浆经过两道过滤网的过滤,以防喷嘴发生堵塞;抽入储浆桶内的灰浆要不停地搅拌。3.7、旋喷和复搅:将注浆管下到预定深度后,调整回流阀门,使旋喷罐内的压强达到规定值,水泥浆到达喷嘴后,检验喷射方向、摆动角度,一切合格后,调整工作台和油泵阀门,使旋转速度控制在20—25 r /min和提升速度达到20-25cm /min的范围时开始提杆、旋喷,由下往上成桩,在桩头以下1米范围复喷提钻时采用最慢的1档提钻上升,并复喷一次,增加桩体的密实度,因为桩顶以下1米范围将承受较大的荷载,加强此处桩体的质量对发挥桩体的承载力起关键作用。当喷浆结束后,要对注浆孔进行二次回灌,防止旋喷桩体因水泥浆固结出现顶部凹陷而达不到设计桩顶标高。在施工过程中,旋转速度、提升速度、旋喷压力、水泥用量参数的变化将直接影响桩的均匀程度和桩径,水灰比参数的变化将会影响桩身的强度,因此必须时刻注意检查浆液初凝时间、水泥浆流量及压力、提升速度、旋摆角度、喷射方法等参数是否符合设计要求,并随时作好记录,如遇故障应及时排除。3.8、提管冲洗:喷射作业完成后,将注浆泵的吸浆管移到水箱内,在地面上喷射,以便把泥浆泵、注浆管内的浆液全部排除,防止残存水泥浆将管路堵塞。3.9移动设备:移动钻机至下一孔位,为确保桩与桩之间能很好咬合,宜采用打一跳一法,且间隔时间应大于36小时。4、质量检验 高压旋喷桩完成28d后方能进行质量检验。4.1、触探及抽芯检验成桩7d内采用轻型触探进行N10检测,检测频率为工程桩数的2%。抽芯检验的总桩数不得少于工程桩数的3‰,单位工程桩数小于1000根时,至少做3根。桩芯无侧限抗压强度(28d)应满足如下要求:桩顶~2/3桩长范围:≥1.6MPa;2/3桩长~桩尖范围:≥1.4MPa。4.2、高压旋喷桩单桩承载力要求高压旋喷桩单桩承载力表桩长(m) 单桩承载力(KN)10 30711 33712 36713 39714 42715 442质量检验标准序号 控制参数 控制标准值 备 注1 桩机安装垂直度偏差 <1% 查施工记录2 桩位偏差 ±50 mm 查施工记录3 注浆压力 ≥20Mpa 查施工记录4 水灰比 1:1 查施工记录5 水泥用量 ≥180kg/m 查施工记录6 桩径 ≥600mm 开挖抽查2%7 桩长 不小于设计值 查施工记录8 旋转速度 20~25r/min9 喷提升速度 10~25 cm/min10 桩身强度 不小于设计值 抽芯检查5、注意事项5.1、施工时应先施工内排桩,后施工外排桩5.2、水泥浆液应连续供应。如发生断浆现象,须复打,复打重叠长度必须大于1.0m。5.3、浆液拌和应均匀,不得有结块;浆液不得离析或停滞时间过长,超过2小时应停止使用。5.4、构造物基底水泥搅拌桩桩顶高程应根据构造物底高程进行计算确定,同时应考虑凿除50㎝桩头的影响。5.5、旋喷废浆应予以充分利用,施工过长中可在相邻桩之间开挖一定深度的浆液存贮沟(沟宽0.6~0.8米,深0.8~1.0米),待浆液凝固后形成具有一定强度的桩间横系梁,以增强各桩间共同作用,提高地基承载力。施工中控制冒浆量小于注浆量的20%,超过20%或完全不冒浆应查明原因,采取措施。5.6、成桩28d后,可开始基槽开挖,凿除50㎝软桩头,桩头凿除后桩长不得小于设计桩长。5.7、提钻喷浆的速度控制,控制好旋喷速度,保证不大于25cm/min且稳定,灌浆管分段搭接的长度不得小于10cm。底部时应适当加大压力保证底部桩头大于设计,顶部时应重复提钻喷浆一次保证桩头的完整。5.8、提升旋喷过程中确保压力达到设计要求,不小于20Mpa,使足够的水泥浆压入土体,钻杆旋转速度再规定范围内,20~25r/min,确保桩体的均匀性和整体性及强度。6、结语实践表明,采用高压旋喷桩技术进行软土地基加固的效果是显著的,它具有加固体强度高、加固质量均匀、施工操作简便、占地高度小等特点,可用于处理加固淤泥质土、粉土、粘土等软土地基,适用于场地狭窄、不宜进驻大型机械设备等场合,可有效地减少地基总沉降量和不均匀沉降,地基处理效果明显。参考文献:[1] 叶书麟. 地基处理工程实例应用手册[M].北京:中国建筑工业出版社,1983,3[2] 程云朋. 高压旋喷桩在地基加固中的应用探讨[J]. 山西建筑,2007[3] 李 兵. 高压旋喷桩施工技术[J]. 甘肃科技,2005 桥梁工程学的发展主要取决于交通运输对它的需要。古代桥梁以通行人、畜为主,载重不大,桥面纵坡可以较陡,甚至可以铺设台阶。在有重载马车之后,载重量逐步加大,桥面纵坡也必须使之平缓。这时的桥梁材料仍以木、石为主,铸铁和锻铁很少使用。 从桥梁的原始雏形——堤梁(及在浅滩溪涧中筑起一个个石堤,堤间流水,人从石堤上跨越)、独木桥、浮桥(架设在船只上的桥)和石拱到现在超千米跨度的悬索桥,桥梁工程在几千年的时间里发展可谓翻天覆地。然而桥梁工程能拥有这翻天覆地的发展取决于工程材料和工程技术迅猛发展的有力推动。在原始社会里,懵然无知的古人类还只是追求有一个起身的洞穴和能填饱肚子的食物,还不会想到桥。然而随着社会的发展,人类文明的进步,交通的不断发展,人们开始创造了桥。然而那时工程材料的使用仅限于天然的木和石块,且工程技术非常落后,所以人们只能建造简单的桥——堤梁、独木桥和简单的石拱。世界上现存最古老的石桥在希腊的伯罗奔尼撒半岛,是一座用石块干垒的单孔石拱桥,距今3500年左右建成。我国古代桥梁工程技术的发展在当时处于世界领先地位。公元590——608年建造在河北省赵县(叫)河上留存至今的隋代敞肩式单孔圆弧弓形石拱桥,即赵州桥。该桥全长50.82m,桥面宽约10m,采用28条并列的石条砌成拱券形成。拱券矢高7.23m。拱上设有4个小拱,既能减轻桥身自重,又便于排洪,且更显美观。该桥无论在材料使用、结构受力、艺术造型和经济上都达到极高成就,是世界上最早的敞肩式拱桥,早于欧洲同类桥约1000年。近代土木工程的时间跨度为从17世纪中叶至20世纪中叶的300年间。这个时期内土木工程的主要特征有:——有力学和结构理论作为指导;——砖、瓦、木、石等结构建筑材料得到日益广泛的使用;混凝土、钢材、钢筋混凝土及早期的预应力混凝土得到发展;——施工技术进步很大,建造规模日益扩大,建造速度大大加快。在这个时期内,以下几件大事对桥梁工程的影响巨大: (1)意大利学者伽利略在1638年出版的著作《关于两门新科学的谈话和数学证明》中论述了建筑材料的力学性质和梁的强度,首次用公式表达了梁的设计理论。 (2)英国科学家牛顿在1687年总结了力学三大定律它们是土木工程设计理论的基础。 (3)瑞士数学家欧拉1744年出版《曲线的变分法》建立了柱的压屈理论,得到计算柱的临界受压力的公式,为分析土木工程结构物的稳定问题奠定了基础。 (4)1824年英国人阿斯普.丁取得了波特兰水泥的专利权,1850年开始生产。这是形成混凝土的主要材料,使得混凝土在土木工程中得到广泛应用。后来,在20世纪初,有人发表了水灰比等学说,才初步奠定了混凝土强度的理论基础。 (5)1859年发明了贝塞麦转炉炼钢法,似的钢材得以大量生产,并愈来愈多地应用于土木工程。 (6)1867年法国人莫尼埃用铁丝加固混凝土制成花盆,并把这种方法应用到工程中,建造了一座蓄水池,这是应用钢筋混凝土的开端。1875年他主持建造了第一座长16m的钢筋混凝土桥。 (8)1779年英国用铸铁建成跨度为30.5m的拱桥;1826年英国用锻铁建成跨度为177m的悬索桥;1883年美国建成世界上第一座大跨钢悬索桥——布鲁克林桥;1890年英国又建成两孔主跨达521m的悬臂式刚架桥,这样,现代桥梁3种基本形式(梁桥、拱桥、悬索桥)相继出现。 自从有了铁路以后,桥梁所承受的载重逐倍增加,线路的坡度和曲线标准要求又高,且需要建成铁路网以增大经济效益,因此,为要跨越更大更深的江河、峡谷,迫使桥梁向大跨度发展。石材、木材、铸铁、锻铁等桥梁材料,显然不合要求,而钢材的大量生产正好满足这一要求。 在技术方面,只是凭经验修桥,曾使19世纪80~90年代的许多铁路桥发生重大事故;从这时起,正在发展中的结构力学理论得到了重视,而在它的静力分析理论完全确立并广泛普及之后,桥梁因强度不足而造成的事故显然大为减少。 二十世纪以来,公路交通有很大发展。在内陆,需要在更多的河流、峡谷之上建桥。在城市中,以及在各种交通线路相交处,需要建造立交桥。在沿海,既需在大船通航的河口、海湾、海峡修建特大跨度桥梁,又需在某些海岛与大陆之间修建长桥。 由于更多新技术新材料的出现,现代桥梁工程的发展尤其迅速,世界各国相继建造出超千米的桥梁。世界上跨径最大的预应力混凝土斜拉桥——西班牙的卢纳巴里奥斯桥,跨径达440m,采用了双面辐射形密索布置. 世界第一的悬索桥——日本明石海峡桥,横跨日本内海,使日本神户与淡路岛紧紧相连.这座大桥全长3190M,中央跨度1990m于1998年竣工.它可以承受里氏8.5级地震.目前中国在建的一批公路桥梁,无论是桥梁的数量还是工程规模、技术难度、科技含量,都代表着当今世界的先进水平,创造了中国建桥史之最。据悉,这些桥梁主要有:阳逻长江大桥,主跨1280米的悬索桥;南京长江三桥,主跨648米的斜拉桥;润扬长江公路大桥,跨江连岛的主跨1490米悬索桥和406米斜拉桥组合;深圳湾跨海大桥,主跨180米独塔单索面斜拉桥;苏通长江公路大桥,主跨1088米的斜拉桥,居世界第一;杭州湾跨海大桥,按双向六车道高速公路标准建设,全长36公里,是世上在建最长的公路跨海大桥。一个国家同时在建这么多世界级桥梁,在世界上不多见。 桥梁需要大量修建,而人力、物力、财力有限;于是,不断提高技术水平,引用新材料、新工艺、新桥式,对结构行为进行更精确的数值分析,采用更精确的结构试验进行验证,以使桥梁建设的经济效益不断提高,已成为时代的要求。 桥梁工程学主要研究桥渡设计,包括选择桥址,决定桥梁孔径,考虑通航和线路要求以确定桥面高程,考虑基底不受冲刷或冻胀以确定基础埋置深度,设计导流建筑物等;桥式方案设计;桥梁结构设计;桥梁施工;桥梁检定;桥梁试验;桥梁养护等方面。 在建桥材料方面,以高强、轻质、低成本为选择的主要依据,近期仍以发展传统的钢材和混凝土为主,提高其强度和耐久性。对于建筑钢材的脆断机理、初始几何缺陷等,以及混凝土材料的非弹性问题(收缩徐变以及疲劳等),将继续作充分的研究,使能正确控制结构的受力和变形。至于碳纤维塑料等在桥梁上的广泛应用,还必须在降低成本以后才有可能。 在桥梁勘察设计方面,随着交通事业的迅速发展,大跨度或复杂的桥型将不断涌现。高速公路的发展,对桥梁设计亦将提出新的要求。在桥式方案设计中,将有可能利用结构优化设计理论,借助电子计算机选出最佳方案。 在结构设计计算中,采用空间理论来分析桥梁整体受力已成为可能;以概率统计理论为基础的极限状态设计理论,将进一步反映在桥涵设计规范中,使桥梁设计的安全度得到科学合理的保证。桥梁美学作为时代、民族的文化在某些方面的反映,将愈来愈受到人们的重视:桥梁的面貌将蔚为大观。 在桥梁施工方面,对施工组织将充分利用电子计算机进行经济有效的管理。在施工技术中,将不断引用新技术和高效率、高功能的机具设备,借以提高质量、缩短工期、降低造价。如采用激光测量控制结构的精确定位;引用自升式水上平台克服深水基础的困难;利用遥控设备在沉井、沉箱中挖基,以减少劳动强度并避免人身危险;利用高质量的焊接技术,借能推广工地焊接等,此外,装配式桥梁也将有所发展,以使结构和构件标准化,生产工业化。 在桥梁养护维修方面,要求对既有桥梁建立完善的技术档案管理制度。在桥梁维修检查中,引用新型精密的测量仪表,如用声测法对结构材料的缺陷以及弹性模量进行测定;用手携式金相摄影仪检查钢材的晶体结构俾能及早进行加固防患于末然,以便延长桥梁的使用寿命。 桥梁工程始终是在生产发展与各类科学技术进步的综合影响下,遵循适用、安全、经济与美观的原则,不断的向前发展。人们除了要求桥的功能完善,还讲求桥的外形美观、有艺术性 ,桥梁地建造将更加复杂化,更加艺术化,桥梁的未来将更加多元化,是现代桥梁更现代,还是旧式桥梁的复兴,值得期待! 中国桥梁的历史可以上溯到6000年前的氏族公社时代,到了1000多年前的隋、唐、宋三代,古代桥梁发展到了巅峰时期。公元35年东汉光武帝时,在今宜昌和宜都之间,出现了架 设在长江上的第一座浮桥。 在秦汉时期,我国已广泛修建石粱桥。世界上现在是保 存着的最长、工程最艰巨的石粱桥,就是我国于1053一1059年 在福建泉州建造的万安桥,也称洛阳桥,此桥长达800米,共47 孔,位于“波涛汹涌,水深不可址”的海口江面上。此桥以 磐石铺遍桥位底,是近代筏形基础的开端,并且独具匠心地用养殖海生牡蛎的方法胶固桥基使成整体,此也是世界上 绝无仅有的造桥方法,近千年前就能在这种艰难复杂的水文 条件下建成如此的长桥,实是中华桥梁史上一次勇敢的突破。 我国古代石拱桥的杰出代表是举世闻名的河北省赵 县的赵州桥(又称安济桥),该桥在隋大业初年(公元605年左 右)为李春所创建,是一座空腹式的圆弧形石拱桥,净跨37m, 宽9m,拱失高度7.23m,在拱圈两肩各设有二个跨度不等的腹 拱,这样既能减轻桥身自重,节省材料,又便于排洪、增加美 观,赵州桥的设计构思和工艺的精巧,不仅在我国古桥是首屈一指,据世界桥梁的考证,像这样的敞肩拱桥,欧洲到19世纪中叶才出现,比我国晚了一千二百多年,赵州桥的雕 刻艺术,包括栏板、望柱和锁口石等,其上狮象龙兽形态逼 真,琢工的精致秀丽,不愧为文物宝库中的艺术珍品,我国 石拱桥的建造技术在明朝时曾流传到日本等国,促进了与世 界各国人民的文化交流并增进了友谊。 1240年建造的福建潭州虎渡桥,也是最令人惊奇的一 座粱式大桥,此桥总长约335m,某些石粱长达23.7m,沿宽度 用三根石粱组成,每根宽1.7m,高1.9m,重达200多吨,该桥一直 保存至今”历史记载,这些巨大石梁桥是利用潮水涨落浮运建 设的,足见我国古代加工和安装桥梁的技术何等高超。 广东潮安县横跨韩江的湘子桥(又名广济桥)此桥始 建于公元1169年,全桥长517.95m,总共20墩19孔,上部结构有 石拱、木梁、石梁等多种型式,还有用18条活船组成的长达 97.30m的开合式浮桥,设置浮桥的目的,一方面适应大型商 船和上游木排的通过,并且也避免了过多的桥墩阻塞河道, 以致加剧桥基冲刷而造成水害,这座世界上最早的开合式 桥,柱石桥之长、石墩之大、桥梁之多以及施工条件之困难 工程历时之久,都是古代建桥史上所罕见的。。 1957年,第一座长江大桥——武汉长江大桥的胜利建 成,结束了我国万里长江无桥的状况,从此“一桥飞架南北,天堑变通途”,桥的正桥为三联3X128m的连续钢桁粱,双 线铁路上层公路桥面宽18m,两侧各设2.25m人行道,包括引 桥在内全桥总长1670.4物,大型钢梁的制造和架设、深水管柱基础的施工等,对发展我国现代桥染技术开创了新路。 1969年胜利建成了举世瞩目的南京长江大桥,这是我国自行设计、制造、施工,并使用国产高强钢材的现代大型桥梁,正桥除北岸第一孔为128m简支钢桁粱外,其余为9 孔3联,每联为3x l60m的连续钢桁粱。上层是公路桥面,下层 为双线铁路,包括引桥在内,铁路部分全长6772m,公路部 分为4589m,桥址处水深流急,河床地,质极为复杂桥墩基础 的施工非常困难。南京长江大桥的建成显示出我国的建桥事 业已达到了世界先进水平,也是我国桥梁史又一个重要标 志。 在最近的1000年中,中国的桥梁技术全面落后于世界的脚步,中国第一座现代化桥梁的出现距今仅100多年历史,而且是由外国人建造的。从钱塘江大桥算起,中国人自己设计现代桥梁的历史还不足70年;从南京长江大桥算起,中国人自行设计建造大型桥梁的历史仅34年。而九十年代以来,中国桥梁的成就才使我们重新无愧于祖先地站到了世界前列,这是中国桥梁建设的伟大复兴时代。改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。 1990年四川省在宜宾市建成的小南门桥,跨径达到240米,已是当时世界上中承式拱桥中跨径最大的一座。2001年11月7日,小南门大桥因吊杆锈蚀造成部分桥面跨塌,在修复过程中,技术人员对全桥进行了检测,大桥整体结构依然完好。小南门大桥所付出的代价是创新的代价,没有创新我们就不可能一睹1400年前的赵州桥。 1991年,四川省苍溪县建成了中国第一座钢管混凝土拱桥——旺苍大桥,跨径115米。在此之后的几年中,各地虽然兴建了不少钢管混凝土拱桥,但跨径始终在200米以下徘徊,直到1998年,广西壮族自治区建成了三岸邕江大桥,一举将此类桥梁的跨径提高到270米;1999年又建成了跨径220米的六景大桥。此后,在湖北、浙江和贵州等省,跨径在250米左右的钢管混凝土公路、铁路拱桥开始增多。 1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 1997年重庆万县长江大桥建成。大桥位于万州区(原万县市)黄牛孔处,是上海至成都高速公路跨越峡江天险的特大型拱桥。大桥一跨飞渡长江,全长 856.12米,主拱圈为钢管混凝土劲性骨架箱型混凝土结构,主跨420米,桥面宽24米,为双向四车道,是1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 华夏第一桥——江阴长江公路大桥,是我国“八五”规划的“两纵两横”国道主干线中沿海主骨架的跨江工程,是目前 中国第一、世界第四大跨径钢悬索桥。大桥由桥塔、主缆、锚旋和钢箱梁等主要部件组成。大桥全长3071 米,主跨1385米;桥面宽33.8米,双向六车道,设计车速100公里/小时;通航净空为50米,可通行五万 吨级巴拿马型散货轮。江阴长江公路大桥的两根主索,各长2400多米,直径近1米,每根重1.4万 多吨,主索用127根直径5.3毫米的钢丝搅成索,再由169股钢索组成主索。主桥每边有85个吊杆,每个吊杆2根,用以连结主索和桥面。 两岸索塔标高为196.236米,相当于65层搂高。北塔基长43.5米,宽73.5米,下有123根近90米长的基础桩。北锚的混凝土陈井平面长69米,宽51米(面积相当于一片足球场大)。沉入地面58米,被称为世界第一大沉井。江阴长江大桥于1994年11月22日正式开工,1999年10月1日胜利通车,名列“中国第一,世界第四”。 改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。 在工程项目建设中桥梁施工是个重要环节,桥梁建设发展的关键在施工技术水平。下面是由我整理的桥梁工程技术论文范文,谢谢你的阅读。 桥梁工程施工技术 摘要:在工程项目建设中桥梁施工是个重要环节,桥梁建设发展的关键在施工技术水平。科学技术在不断的进步,施工机具、设备和建筑材料都在发展,桥梁施工技术也得到了不断地改进、提高。为桥梁施工技术水平的不断提高,本文浅谈了桥梁施工方法及桥梁的几项施工技术。 关键词: 桥梁 施工 技术 中图分类号:TU74文献标识码: A 前言 在我国古代桥梁的兴盛年代,其间在桥梁型式、结构构造方面有着很多创新,可谓“精心构思,丰富多姿”。宋代之后,建桥数量大增,桥梁的跨越能力、造型和功能又有所提高,在桥梁施工方面充分表现了我国古代工匠的智慧和艺术水平,成为我国桥梁建造史上的宝贵财富。解放初期,我国的公路、城建部门在恢复、改造和新建公路与城市道路上改建和新建了数量可观的桥梁,使通车里程比解放前有了成倍的增长。随着科学技术的进步,施工机具、设备和建筑材料的发展,桥梁施工技术得到了不断地改进、提高。 一、现浇连续梁 1、支架法就地现浇连续梁一般要求 支架法就地现浇连续梁的支架施工,安装前必须进行支架刚度、强度及稳定性等计算,确定立杆间距及横杆间距,并对杆件进行逐根质量检查。基础处理是现浇梁支架体系的关键部位,桥梁全长范围内地基承载力必须满足连续梁施工的全部荷载,并须保持支架不产生变形,不得发生沉降现象,否则,进行加固处理。若地基所处路段为软土路基地段,地基承载力较低,地基采用三七灰土换填、压实处理,换填厚度根据计算荷载确定,以提高地基承载力。处理后的地基,经地基承载力检验合格后,方可进行支架搭设施工。支架底设置底托。 2、施工控制 施工控制的目的是确保结构的安全和稳定,使成桥后桥面系线形达到设计要求,并且使结构的内力分布与设计理想的状态基本吻合。在确保结构稳定的前提下,采用变形与应力双控,以变形控制为主,兼顾应力的发展情况。全桥都要进行变形、施工挠度与标高控制。 控制方法:以整体承载能力和抗倾覆稳定为主;加强纵横斜拉剪刀撑布置,增加外侧斜支撑或者斜拉筋,提高抗倾覆稳定性;高宽比特别悬殊的(大于5的)独立支架,应优先选用大型型钢支架。立杆接头错开布置,每个水平面接头不得大于总立杆数的50%。立杆接头扣件索紧牢固,或者加楔塞紧;加强纵横斜拉剪刀撑布置,约束立杆变形;水平杆接头扣件索紧牢固,或者加楔捆绑牢固,确保有效;水平拉结杆步距不得大于计算值;加强纵横斜拉剪刀撑布置,约束立杆变形。针对性保证措施: (1)地基碾压整平,达到承载力要求。 (2)支架基础高于周围地面20cm~30cm,周围设置截水沟,防止雨水流进,施工中严防水侵泡。 (3)对碾压碎石基础而言,应设置纵横交叉枕梁(方木或者型钢),提高整体受力效果;格外加强高低差方向斜拉剪刀撑;顺桥向高低差形式的,应将支架与墩台身间采用较强的刚性连接;横桥向高低差形式的,设法在支架高边一侧增加斜支撑和矮边增加斜拉筋;通过预压检测和检验计算成果,为施工调差提供准确参数,荷载集中部位横梁严格检查验收。 3、待浇混凝土的梁段搭设新的暖棚, 与已浇注混凝土梁段的暖棚之间, 挂保温帘分隔保温管道压浆: (1)已施工的现浇梁段的暖棚、外模、底模不拆除,也不前移,用于已浇梁段的预应力管道的保温。待浇混凝土的梁段搭设新的暖棚,与已浇注混凝土梁段的暖棚之间,挂保温帘分隔保温。采取覆盖和包裹保温措施后。 (2)预应力孔道内的浆液,其强度达到25MPa前,保持其温度位于0℃以上。 (3)压浆前,孔道及两端必需密封,用高压水或高压风将管段内吹沈干尽,管道内不得存水。然后进行压浆。 (4)预应力孔道注浆的保护主要是泌水问题,浆体要求不泌水,适当早强,减少受冻的可能性、微管的膨胀性。浆体搅拌时,不能用热水与水泥直接搅拌,水泥应保温,不露天存放。为了使浆体不泌水,适当早强采取以下方式: a采用1000r/min的高速搅拌装置,降低水灰比至0.3以下; b增加保水性材料(如粉煤灰、硅灰)减少泌水; c添加高效减水剂降低水灰比; d应用毛细水泌水试验,检验浆体的泌水性能。 二、悬臂式现浇 1、悬臂式现浇一般要求 托架采取自支撑体系构件设计。墩身施工时按要求在墩身相应位置预先埋设托架钢桁件。结构需要经过严格的受力计算。托架预压: (1)托架使用前对托架进行预压,以检测托架的强度及稳定性,同时测量托架的非弹性变形值和弹性变形值。 (2)预压的荷载大小按照托架承载的混凝土重量,然后再考虑施工荷载和施工的安全系数来计算。 (3)卸载的顺序按照压载的反顺序进行并且作好观测记录,对预压期间获得的数据进行分析,找出非弹性变形值和弹性变形值,归纳出回归方程作为调整立模变高的依据。挂篮设计:包括主桁架、底模平台、模板系统、锚固系统、走行系统设计满足施工荷载、稳定性、安全性、可操作性。 2、悬浇梁施工技术措施 技术措施: (1)挂篮的安装运行及使用均为高空作业,要采取全面的安全保证措施;现场技术人员必须检查挂篮的位置、前后吊带、吊架及后锚杆等关键受力部位的情况,发现问题及时解决。 (2)检查预留孔位置的准确性及孔洞是否垂直;浇筑混凝土前后吊带用千斤顶顶紧,且受力均匀,以防承重后与已浇筑梁段产生错台。 (3)施工中加强观测标高,轴线及挠度等,整理出挠度曲线。 3、悬臂梁施工注意事项 悬臂段施工必须把安全工作放在头等位置。在施工中,除做好防护平台,安全网等措施外,特别要对施工人员进行交底,提高安全意识,避免可能出现的各种落物等危险因素。 三、加强桥梁施工质量管理 1、应重视结构的耐久性问题 桥梁在建造和使用过程中,一定会受到环境、有害化学物质的侵蚀,并要承受车辆、风、地震、疲劳、超载、人为因素等外来作用,同时桥梁所采用材料的自身性能也会不断退化,从而导致结构各部分不同程度的损伤和劣化,既影响了使用又增大了经济损失。 2、加强混凝土质量管理 首先,施工单位要严格按照国家建材标准采购材料,并由始至终地保证水泥材料的质量稳定、不变质,对于大体积混凝土,要采用水热化低的水泥;其次,在施工过程中,施工工人必须按照强度等级、抗渗等级配比混凝土,还有充分控制好混凝土入模时的温度,进行分层浇筑以及设计合理的养护措施,通过在混凝土表面覆盖草席、草帘等确保降低温度应力,避免混凝土出现温度裂缝;再次,在浇筑混凝土时一定要振捣充分,尤其是腹板内预应力管道比较集中的地方更要做到不欠振、不漏振,确保混凝土浇筑密实。 3、加强桥梁结构质量管理 首先,施工单位要仔细精确地做好测量工作,放线定位工作要做到准确无误,不能出现丝毫偏差。在桥墩、桥台施工完成后,要将桥梁的平面位置完全确定下来;其次,由于桥梁结构形式很多,施工工序和技术较复杂,要求的施工工艺较精确,因此,施工单位必须严格按照设计图纸进行施工,从混凝土的振捣、养生、到预应力的张拉等都要严格管理和控制,以确保桥梁结构的承载能力;再次,还要着重注意桥梁外观的美观平滑,不能出现由于施工手段的缺陷或混凝土振捣不均而引起的外观质量欠缺。 结束语 总之,在桥梁建设中,我们应该根据实际情况来选择适宜的施工方法和技术。现代桥梁建设的施工技术发展突飞猛进,不断地涌现出了先进的技术、设备和高科技材料。当然在建设的过程中我们会遇到各种新问题,这就需要我们不断探求新方法、新技术。 参考文献 [1] 徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000. [2] 向木生,张世,张开银.大跨度预应力混凝土桥梁施工控制技术[J].中国公路学报,2002,10. [3] 郝志刚.探讨桥梁施工技术与管理[J]. 科技信息. 2012(08) [4] 柏冰,王灿彬.浅谈桥梁工程的施工技术与安全管理[J]. 科技创新导报. 2012(11) 点击下页还有更多>>>桥梁工程技术论文范文 只要是桥梁工程类的学术论文就行 确的工程测量对于工程建设来讲是不可忽视的部分,而受到内外因素的作用,工程测量会出现精度不足,这会制约工程测量的发展,并直接对工程建设造成影响。下面是我为大家整理的工程测量研究 毕业 论文 范文 ,供大家参考。 《 水利工程测量中全站仪误差分析 》 摘要:我国的经济发展在经历了高速阶段以后现在更是越加的发展平稳,这对于国内的一些基础建设提出了更加高的要求。所以对于我国的水利工程建设也是近些年以来重要的建设项目之一。所以其水利工程的质量也得到了较为广泛的重识,在这其中对于水利工程测量中全站仪的误差分析与精度控制也有了更加严格的要求,所以我们在下文中着重的对水利工程测量中全站仪的误差分析与精度控制进行具体的研究。 关键词:水利工程测量全站仪 1前言 全站仪在水利工程的测量中被广泛的使用,我们对水利工程的测量必须保证其精度,在这种情况下我们必须使用全站仪对其进行测量,这使得测量工作更加的便利,所以做好全站仪的误差分析与精度的控制工作就显得更加的重要,我们通过全站仪的测量来降低测量时的精度产生误差,使用改进的 方法 ,使得测量的结果准确性可以有效的得到保证。所以在下文中我们对水利工程中所使用的全站仪的测量误差与精度进行分析。 2全站仪在水利工程测量中的应用 我们在对水利工程进行测量的时候,全站仪在其中的应用比较广泛,由于其使用仪器种类多类型繁杂,如经纬仪与水准仪就是其中之一。但是就现在的综合情况分析,并且结合其仪器间的精确度与实用性而言,全站仪较其他几种仪器具有较为明显的精度优势。全站仪的便携性较好,而且其准确性与全面性较优,水利工程中对于测量的要求较高,而全站仪可以对其测量精度的要求进行满足,对于水利工程测量中所使用的一些基础的测量资料,全站仪都可以通过测量获得,而且其精度控制较高。特别是在水利工程前期的设计阶段,还有水利工程中期的施工阶段,后期的养护阶段与应用的管理时都需要对全站仪进行使用,还有一些需要提供高等级的平面布控网的大型的水利工程项目,也需要对全站仪进行使用。 3误差分析 3.1分析全站仪的轴系误差 全站仪进行测量时所产生误差的原因在于:首先对于全站仪的镜头在我们进行测量使用之前并没有对其进行安装与校正,其望远镜内的十字丝产生了中心的偏移,这种情况的发生直接导致了全站仪的视准轴与水平轴不垂直;视准轴还会受到温度大气折光的影响,以上都是产生误差的原因。并且因其定位时发生的错误,由于有错误的定位存在于竖轴的横向误差补偿、横轴的误差补偿、视准轴的误差补偿中,造成轴系误差。 3.2分析全站仪度盘误差 度盘误差产生的原因在于其垂直角,其因受到垂直角的影响,使得其垂直角越大那么其所产生的误差就越大。我们在对其进行观测的时候,我们观测的方向如果在盘的左边,那么视准轴就会位于标准视准轴的右侧或是左侧,这时度盘所产生的误差会因其测量值的大小而产生实际的变化。如果我们将其望远境进行转变圈的处理,那么观测方向当位于其右边时,那么视准轴就会位于其标准视轴的左侧或是其右侧,那以视准轴所产生的落差就与其两边的测量结果是相反的。以上两种情况下所产生的误差,其度盘的数值是相同的,但是其所标的符号是相反的,其数值也相同,这时我们就可以对其度盘两则的测量数值进行取平均值的处理。我们在保证其扫描盘进行转运的过程中,其照准部的方向是相同的,这样可以对其因转动所引起的水平方向中的度盘误差产生。如果其方向是垂直的,我们就通过对其进行光电扫描度盘与垂直轴的方向进行调整来进行,使得其半测回角中的误差减少或是其误差消失,这时其度盘所产生的误差减少。全站仪的常见的测距误差主要是加、乘数误差与其周期误差。 3.3分析全站仪测距误差 全站仪的使用原理就是利用仪器发出的载波,通过测定出载波在测线两端点间往返传播的时间来测量距离进行确定。我们在确定测距的时候,由于精度会受到人自身视觉原因的影响,其全站仪的瞄准功能难以得到有效的使用。所以会造成一定的系统误差的产生,这就使得人的判断与其测量而出的结果产生了一定的差距与精度的不同。由于全站仪在使用时多是以相位式进行,所以测量时的误差与其测量所产生的距离会产生一定的比例关系。这时误差的产生会有诸多原因造成,如大气的折光、温度、湿度、气压等都会对全站仪的测量产生一定的误差,造成较大的影响。 4精度控制及注意事项 4.1控制全站仪的轴系误差精度 水利工程中的测量数据因其会由全站仪的轴系误差的影响而产生变化,使得整个测量的结果产生一定的误差,所以我们对于全站仪所产生的误差必须加以控制。对全站仪的轴系误差的减小我们可以通过不同的观测方式进行,例如用半测回角度代替全测回角度,通过对全站仪的测角精度进行考虑其变化。全站仪在出厂时,其精度会有一定的标准,所以我们在测量使用时会对其观测的角度进行改变,这就造成了垂直轴方向与其水平轴方向产生一定的误差,或者造成扇形段弧形的轴系误差。 4.2控制全站仪的度盘误差 水利工程的实际情况与其高程测量相结合,我们通过使用三角高程的测量方法对其全站仪的误差进行精度的控制,然后通过其三角高程对其所产生的误差进行计算,以其在地球所产生的曲率进行计算的基础,得其结果,然后根据工程中所产生的实例进行计算,然后根据其测量工作的实际。这样可以使得其进行外界作业时工作效率得到提升。 4.3控制全站仪的测距误差 这种技术是专门针对观测环境和人眼的观测能力,分辨率所造成的限制,这可以使得精度的误差的精度可以得到有效的提高。如果我们想在将全站仪的测距误差变小,那么我们就可以对其进行多次测量,然后取其平均值将其进行结果的确定。 4.4使用全站仪的注意事项 使用全站仪时要注意使全站仪尽量靠近两个测量点的中轴线,这是由于全站仪的安放位置会影响到高程测量的精度以及全站仪的轴系误差。由于全站仪的角度会对全站仪的度盘误差产生直接的影响,因此要对观测目标的垂直角大小的精确性予以保障。要将合适的测距位置选择出来,进行测距仪器的安放,将全站仪的测距误差降到最低。使用全站仪注意事项:(1)若长距离运输仪器,在使用前必须进行仪器检查及校正,可以直接按照全站仪使用 说明书 中的校正方法进行安装校正,再进行使用;(2)我们在使用全站仪进行三角高程控制测量时尽量架设在两个测量点等距离中间进行,这样可以抵消部分由于轴系误差产生的影响,以保证观测目标精度减小误差;(3)在使用全站仪测量时,自由架站位置选择尽量远离变电站、高压线、及信号塔等有电磁波发射的附近,特别是在埋标选点的时候也应该尽量避开这些地方,以免电磁干扰仪器载波使得测量距离产生误差较大;(4)使用全站仪进行高等控制测量时尽量选择天气条件良好,通视状况优良的天气进行,并且选择好观测时间,避开高温及两点温差较大等情况,通过干湿温度气压计进行测量并记录结果,以便数据处理的时候进行改正使用;(5)一般使用全站仪时,尽量避免仪器暴晒引起仪器平整度不好,应给仪器打伞,并带上遮阳罩,使用过程中要经常查看仪器是否平整,进行微调,如有必要从新进行定向设站,以保证其精度。 5结束语 根据我们对上面的研究我们得知,水利工程是我国基础建设中最为重要的基础,我们在水利工程测量过程中如何更好的提升其精度水平,与水利工程的使用具有重要的意义,所以我们必须在测量中严格的控制其技术,对其进行水利工程测量中全站仪的误差分析与精度控制方式进行选择,必须认真切实的对水利工程测量质量进行提升,才能有效的保障水利工程测量的质量。 参考文献 [1]刘勇,韦汉华.水利工程测量中全站仪的误差分析与精度控制[J].企业技术开发,2013(19):55-56. [2]冯强国.水利工程测量中全站仪的误差分析与精度控制[J].北京农业,2015(24):133-134. [3]潘永明.论水利工程测量中全站仪的误差分析与精度控制[J].广东科技,2014(Z1):89-90. [4]胡跃进.全站仪的误差分析及精度控制在水利工程测量中的研究[J].价值工程,2015(02):57-58. 《 建筑工程测量问题及对策 》 测量的过程众所周知,不言而喻,它不是一个阶段性的工作而是贯穿于整个建筑工程的始终。为了确保建筑的施工达到预定设计的目标,通常在实践中,我们会对具体的施工进行检测。这种检测既是一种检查也是一种核对。当建设项目完成以后还仍需进行测绘,以便为之后的建设和维护提供数据。测量工作可以说连接建筑工程图纸和实际施工的桥梁同时它也是非常重要的前期准备工作,对于之后建筑工程的品质有着非常重要的影响。也许有一种错误认识认为已经投入使用的项目就不用检测了,因为整个建筑工程都已经完成了。其实即使投产,也应该适时检测,这种检测更像是一种监测行为,这保证建筑过程的安全可靠,这是非常重要的。由此我们就可以知道测量工作贯穿于整个建筑工作当中。测量的有效性和效率都从很大程度上对测量的结果以及整个建筑工程的质量有非常重要的影响,因而,我们要提高认识,认识到测量的重要性,规划好测量工作。当前在测量工作中也出现了很多问题,只有将这些问题都解决了才能够保证测量的有效性。 1建筑工程测量中存在的问题 1.1从业人员专业素养不高且人员缺乏 现在测量工作存在问题首当其冲的就是当前的从业人员素养不高,并且测量人员比较少。这从根本上造成了测量工作的一些问题。实践中有很多的建筑工程都出于成本及其其他方面的考虑,任用一些其他岗位的没有丝毫 经验 的来进行测量。由于这些人员本身不专业并且没有经过专业的培训,那么测量结果可想而知。另外,当前测量人员非常紧缺,专业性人才更是少之又少。这也在一定程度上增加了测量准确的难度。 1.2测量设备陈旧且数量不足 现在很多的建筑公司没有具备相应的测量设备,大部分通过临时租赁来应付了事。而有的企业测量设备没有及时更新,非常的陈旧,这都对测量的准确性造成了隐患。如果不具备相应设备的企业设备有一些不足,那么就得寻找更加精密的设备,这影响了测量的进度。而设备陈旧的企业呢,由于没有及时的与时俱进,测量的速度和精确性都很值得商榷。因而我们应该从设备上解决这一问题,以免造成更多不必要的影响。 1.3测量仪器操作与保养不当 测量工作的特点决定了其设备的是高精密仪器并且操作人都必须进行专业的培训,如果在测量的过程中操作人员不具备操作知识操作失误,哪怕只是一点小小的失误,测量出的结果也会大相径庭。有的精密仪器在使用完后要进行规范的保养和存放,否则会影响测量效果。但是在现实生活中,往往忽略了这一点,操作人员并未对仪器设备进行保养导致精密度受到影响。当然在使用过程中也必须注重保养事宜,确保测量数据的精确。 1.4测量的质量控制被忽视 现阶段,大部分的工程竣工验收时都并未着重的对测量质量进行检测,从某种程度上来说忽略了这一点。这导致了建设企业对于建筑工程测量的质量控制也不太重视,从而当前的测量标准都经不起检验,大部分都没有达到测量标准和要求,严重的阻碍了建筑工程测量工作的进步。 2建筑工程测量问题的解决方法 2.1强化对建筑施工测量工作的认识 测量工作可以说是一种客观性的工作,但是我们也不可否认,它也带有主观性。测量的方法和测量工具的选择这都是主观意识起了很大的作用。但是当前人们落后的主观思想阻碍了测量工作的进行。因而为了确保测量工作的顺利进行了,首先必须在思想上力求科学,正确的认识。我们要让相关工作者摒弃错误的思想观念,让人们意识到测量工作的重要性和重要的价值。只有这样,他们才会从根本上转变其思想,扭转当前测量的窘境。 2.2加大测量仪器的资金投入及加强对仪器的保养 现阶段,技术在我们生活中带来了翻天覆地的变化,同时它也给测量工作带来了福音。技术的提高,对测量工作的精确度的提高起到了重要的作用。但是就像前文所述,很多公司处于成本的考虑设备仪器陈旧,因而公司应紧跟时代潮流,加大对测量设备仪器的投入。以适应仪器设备快速发展以及建筑工程测量准确性的要求。当然增加仪器投入的同时也应该加强对现有仪器的保养。例如在我们日常测量工作中为避免重测现象的发生就应该定期的对仪器进行校正。这看似比较麻烦,但是保证了测量的准确,并且避免了返工的行为,从某种程度上来说节省人力、物力、财力。取出仪器的时候我们应该坚持轻拿轻放的原则。仪器取出来我们安装的时候也应该注意,如果是安装在三脚架上面的仪器为避免摔坏应该拧紧螺丝。使用仪器应坚持平稳的原则,禁止对仪器进行粗暴对待,尤其是带有阻尼功能的仪器。 2.3加强相关人员的培养与培训 随着现代化建设的步伐的加快,建筑工程的增多,对于测量专业人员的素养和数量需求也日益扩张。另外,随着测量技术的发展,各种新的设备和技术不断引进,这对我们测量人员的素养的要求更高,因而当前我们应加强对相关人员的培养和培训。这种培养和培训从企业方面来说应该提高企业对测量工作的认识,并且认识到培训的重要性。当然对于测量人员也应该提高自学的认识进行心得交流,增强自身的职业素养。对于整个社会来说应该加强对测量人员培训的投入,只有国家支持,企业和个人的响应,才能形成一个测量专业素养全面提高的局面。 3结语 我国建筑行业的快速发展,对建筑工程质量的要求毋庸置疑,这就需要我们不断的与时俱进,不断的改进当前的测量方式和测量技术因为测量工作对建筑的质量的影响是非常重大的。因此,我们应认识问题,然后分析问题,解决问题。通过这个解决问题的思路才能够寻求到科学的解决办法,推进整个测量工作的发展。 《 公路桥梁工程测量技术探析 》 武汉鹦鹉洲长江大桥位于武汉长江大桥上游2.3公里,为武汉市的第八座长江大桥,全长9.18公里,其中正桥全长3.42公里,桥面宽38米。正桥布置双向8车道,设计行车速度为60公里/小时。武汉鹦鹉洲长江大桥为我国首座三塔四跨地锚式悬索桥,施工过程具有强烈的几何非线性,对风速、温度和制造误差等都非常敏感,应于猫道、主缆和加劲梁的施工前分别进行全桥贯通测量;同时,为控制主缆和索股线性,还必须监测跨径和索塔的变化。所以,为保证桥梁的高程与跨距一致,测量基准统一,桥梁工程对测量测绘技术要求很高,传统的测量测绘技术已不能满足要求,而现代化测量测绘技术的应用很好地弥补了不足,为武汉鹦鹉洲长江大桥的建设与实现提供了技术支持。 1规划设计阶段测量、测绘技术的应用 1.1利用VRS系统绘制高精度的地形图 利用VRS系统,也就是虚幻参考站系统,只要完成采集碎部点的属性和坐标,就可绘出地形图。这样,一台GNSS接收机便可完成几台GNSS接收机的工作,不仅降低了测量成本,还提高了工作效率。而且,与常规的测图方法相比,VRS系统的可靠性、定位精度也得到了很大的提升。 1.2桥梁勘测设计一体化系统的建立和运用 桥梁勘测设计一体化系统是在现代信息技术的条件下对桥梁勘测设计工作的一种创新:利用GPS技术获得无人机对公路桥梁航拍的航带内控制点三维坐标的空间信息,借助数字摄影测量系统完成地形图的绘制;用遥感技术收集桥梁沿线的水文地质等各种信息,并将之绘制到遥感图上,便可以快速地得到勘测结果,并且耗费低,节约了勘测成本;在CIS(地理信息系统)中传入遥感信息、地形等野外采集信息,桥梁工程的前期规划、方案设计、施工等工作便可得以进行,而诸如立项、评估、决策以及桥梁的工程勘测设计等一系列工作也有了有力的信息保障。 2施工阶段测量、测绘技术的应用 2.1施工控制网的测量 桥梁平面控制网通常分两级布设,桥的轴线主要被首级控制网控制。根据公路桥梁所处的地形条件以及桥梁所跨越的河宽,首级GPS平面控制网的布设按照一级GPS控制网的技术指标进行。公路桥梁的首级控制网一般用GPS静态相对定位测量,再经过相应的处理获得平面定位成果,具有精度高,工效高,成本低等优点。由于在公路桥梁的勘察阶段,设计单位的控制点达不到施工过程中对施工放样的点的密度要求,加上不可避免的一些点位损坏等因素,需加密控制测量网。利用VRS动态测量可以在桥梁工程加密控制测量网中获得测点的三维坐标,这一方法已被中小型公路桥梁广泛应用在对施工平面控制网的测量中,并取得了良好的成效。 2.2桥台、桥墩的施工测量 准确地测设公路桥梁桥台、桥墩的中心位置及它的纵横轴线是桥梁施工阶段最重要的工作之一,可采用直接丈量法,电磁波测距法或交会法。除测设纵横轴线,还要进行桥梁桥台、桥墩的定位,桥台、桥墩中心位置线的放样,大梁架设位置的放样,支座垫石的放样等工作。 2.3架设的施工测量 主缆架设前要进行全桥贯通测量,以确定高程和各跨径都符合设计要求。全站仪坐标法可用来直接测量平面,全站仪三角高程法可用来测量高程,并配合水准仪钢尺复核。而近年新兴的机器人(锁定)功能被越来越到的用来控制公路桥梁架设的安装,并取得了良好的成效。 2.4施工测量中的新兴技术 随着测量、测绘技术的发展与进步,一些更先进,更便捷的技术手段被运用于公路桥梁的施工测量中。VRS系统可对点线面及坡度线进行高效的精度放样,同时与全站仪相配合,更好的发挥各自的优势。超站仪可以在需要处通过PTK技术建立控制,而且用超站仪测量和放样可以减少全站仪的安置,不仅提高了效率,还提高了精度。由于超站仪可适用于各种类型的作业,省时,省力,又高效,这种技术已经被广泛应用于施工测量的整个领域。 3运营阶段测量、测绘技术的应用 3.1VRS系统在公路桥梁结构检测中的应用 质量监督部门为了加强对桥梁的质量管理,在公路桥梁施工过程中需要对桥梁的轴线、高程、柱位、支座偏位等进行检测,在传统方法中,监督部门常用全站仪等仪器进行测量,这种方式受控制点的因素影响很大。而随着GPS技术和网络信息化的发展,VRS技术已被广泛应用于桥梁施工的测量中。现在的VRS系统可在一个施工标段内设立一个固定的点,以此点作基准点,此标段内的所有公路桥梁结构都可通过移动站进行检测,从而大大提高了整体检测的精度。 3.2桥梁工程的变形监测 由于桥梁工程的特殊性,在它的变形监测方面需要研究开发桥梁动态和静态的变形监测,对测量测绘的自动化技术及 措施 要求更高。VRS系统于传统的水准测量相比,不仅速度更快,周期更短,精度也更加均匀。VRS系统与数字水准测量结合使用,便可减少公路桥梁变形监测费用的三分之一,缩减时间的三分之一。而测量机器人在固定的测站上安装全自动化的站仪,与自动检测软件相配合,便可全自动地在计算机的控制下实施工作,不仅可采集、处理与输出变形点的三维数据,还可进行远程的在线监控管理,使公路桥梁工程的检测实现了自动化、智能化、网络化的完全自动化的最新最高境界。此外,三维激光扫描技术利用激光测距原理来获取所需目标数据,可以将被扫描对象的形态特征和整体结构准确地描述出来,并生成三维数据模型,定性、定量地分析公路桥梁,对桥梁运营管理中的变形作用进行更好地检测。 4结束语 测量测绘工作贯穿整个公路桥梁的工程,在桥梁建设中担当了非常重要的角色。随着测量与测绘技术的发展,以及新技术在公路桥梁工程中的运用,桥梁工程的作业方法和测量手段已经发生了革命性的变革。PTK系统、VRS系统以及全自动机器人功能等这些现代化的测量测绘技术将会成为未来公路桥梁工程测量发展的主流方向,它们为公路桥梁工程建设的现代化发展提供了强有力的技术支持,并且促使传统的公路桥梁工程测量迈向数字化,自动化,网络化和社会化,进入测量测绘信息化的新时代。 有关工程测量研究毕业论文范文推荐: 1. 工程管理专业毕业论文范文 2. 2016年工程造价毕业论文范文 3. 建筑工程毕业论文范文 4. 建筑工程毕业论文范文 5. 建筑工程管理毕业论文范文大全 6. 关于工程管理毕业论文范文 7. 工程硕士毕业论文范文 桥梁工程学的发展主要取决于交通运输对它的需要。古代桥梁以通行人、畜为主,载重不大,桥面纵坡可以较陡,甚至可以铺设台阶。在有重载马车之后,载重量逐步加大,桥面纵坡也必须使之平缓。这时的桥梁材料仍以木、石为主,铸铁和锻铁很少使用。 从桥梁的原始雏形——堤梁(及在浅滩溪涧中筑起一个个石堤,堤间流水,人从石堤上跨越)、独木桥、浮桥(架设在船只上的桥)和石拱到现在超千米跨度的悬索桥,桥梁工程在几千年的时间里发展可谓翻天覆地。然而桥梁工程能拥有这翻天覆地的发展取决于工程材料和工程技术迅猛发展的有力推动。在原始社会里,懵然无知的古人类还只是追求有一个起身的洞穴和能填饱肚子的食物,还不会想到桥。然而随着社会的发展,人类文明的进步,交通的不断发展,人们开始创造了桥。然而那时工程材料的使用仅限于天然的木和石块,且工程技术非常落后,所以人们只能建造简单的桥——堤梁、独木桥和简单的石拱。世界上现存最古老的石桥在希腊的伯罗奔尼撒半岛,是一座用石块干垒的单孔石拱桥,距今3500年左右建成。我国古代桥梁工程技术的发展在当时处于世界领先地位。公元590——608年建造在河北省赵县(叫)河上留存至今的隋代敞肩式单孔圆弧弓形石拱桥,即赵州桥。该桥全长50.82m,桥面宽约10m,采用28条并列的石条砌成拱券形成。拱券矢高7.23m。拱上设有4个小拱,既能减轻桥身自重,又便于排洪,且更显美观。该桥无论在材料使用、结构受力、艺术造型和经济上都达到极高成就,是世界上最早的敞肩式拱桥,早于欧洲同类桥约1000年。近代土木工程的时间跨度为从17世纪中叶至20世纪中叶的300年间。这个时期内土木工程的主要特征有:——有力学和结构理论作为指导;——砖、瓦、木、石等结构建筑材料得到日益广泛的使用;混凝土、钢材、钢筋混凝土及早期的预应力混凝土得到发展;——施工技术进步很大,建造规模日益扩大,建造速度大大加快。在这个时期内,以下几件大事对桥梁工程的影响巨大: (1)意大利学者伽利略在1638年出版的著作《关于两门新科学的谈话和数学证明》中论述了建筑材料的力学性质和梁的强度,首次用公式表达了梁的设计理论。 (2)英国科学家牛顿在1687年总结了力学三大定律它们是土木工程设计理论的基础。 (3)瑞士数学家欧拉1744年出版《曲线的变分法》建立了柱的压屈理论,得到计算柱的临界受压力的公式,为分析土木工程结构物的稳定问题奠定了基础。 (4)1824年英国人阿斯普.丁取得了波特兰水泥的专利权,1850年开始生产。这是形成混凝土的主要材料,使得混凝土在土木工程中得到广泛应用。后来,在20世纪初,有人发表了水灰比等学说,才初步奠定了混凝土强度的理论基础。 (5)1859年发明了贝塞麦转炉炼钢法,似的钢材得以大量生产,并愈来愈多地应用于土木工程。 (6)1867年法国人莫尼埃用铁丝加固混凝土制成花盆,并把这种方法应用到工程中,建造了一座蓄水池,这是应用钢筋混凝土的开端。1875年他主持建造了第一座长16m的钢筋混凝土桥。 (8)1779年英国用铸铁建成跨度为30.5m的拱桥;1826年英国用锻铁建成跨度为177m的悬索桥;1883年美国建成世界上第一座大跨钢悬索桥——布鲁克林桥;1890年英国又建成两孔主跨达521m的悬臂式刚架桥,这样,现代桥梁3种基本形式(梁桥、拱桥、悬索桥)相继出现。 自从有了铁路以后,桥梁所承受的载重逐倍增加,线路的坡度和曲线标准要求又高,且需要建成铁路网以增大经济效益,因此,为要跨越更大更深的江河、峡谷,迫使桥梁向大跨度发展。石材、木材、铸铁、锻铁等桥梁材料,显然不合要求,而钢材的大量生产正好满足这一要求。 在技术方面,只是凭经验修桥,曾使19世纪80~90年代的许多铁路桥发生重大事故;从这时起,正在发展中的结构力学理论得到了重视,而在它的静力分析理论完全确立并广泛普及之后,桥梁因强度不足而造成的事故显然大为减少。 二十世纪以来,公路交通有很大发展。在内陆,需要在更多的河流、峡谷之上建桥。在城市中,以及在各种交通线路相交处,需要建造立交桥。在沿海,既需在大船通航的河口、海湾、海峡修建特大跨度桥梁,又需在某些海岛与大陆之间修建长桥。 由于更多新技术新材料的出现,现代桥梁工程的发展尤其迅速,世界各国相继建造出超千米的桥梁。世界上跨径最大的预应力混凝土斜拉桥——西班牙的卢纳巴里奥斯桥,跨径达440m,采用了双面辐射形密索布置. 世界第一的悬索桥——日本明石海峡桥,横跨日本内海,使日本神户与淡路岛紧紧相连.这座大桥全长3190M,中央跨度1990m于1998年竣工.它可以承受里氏8.5级地震.目前中国在建的一批公路桥梁,无论是桥梁的数量还是工程规模、技术难度、科技含量,都代表着当今世界的先进水平,创造了中国建桥史之最。据悉,这些桥梁主要有:阳逻长江大桥,主跨1280米的悬索桥;南京长江三桥,主跨648米的斜拉桥;润扬长江公路大桥,跨江连岛的主跨1490米悬索桥和406米斜拉桥组合;深圳湾跨海大桥,主跨180米独塔单索面斜拉桥;苏通长江公路大桥,主跨1088米的斜拉桥,居世界第一;杭州湾跨海大桥,按双向六车道高速公路标准建设,全长36公里,是世上在建最长的公路跨海大桥。一个国家同时在建这么多世界级桥梁,在世界上不多见。 桥梁需要大量修建,而人力、物力、财力有限;于是,不断提高技术水平,引用新材料、新工艺、新桥式,对结构行为进行更精确的数值分析,采用更精确的结构试验进行验证,以使桥梁建设的经济效益不断提高,已成为时代的要求。 桥梁工程学主要研究桥渡设计,包括选择桥址,决定桥梁孔径,考虑通航和线路要求以确定桥面高程,考虑基底不受冲刷或冻胀以确定基础埋置深度,设计导流建筑物等;桥式方案设计;桥梁结构设计;桥梁施工;桥梁检定;桥梁试验;桥梁养护等方面。 在建桥材料方面,以高强、轻质、低成本为选择的主要依据,近期仍以发展传统的钢材和混凝土为主,提高其强度和耐久性。对于建筑钢材的脆断机理、初始几何缺陷等,以及混凝土材料的非弹性问题(收缩徐变以及疲劳等),将继续作充分的研究,使能正确控制结构的受力和变形。至于碳纤维塑料等在桥梁上的广泛应用,还必须在降低成本以后才有可能。 在桥梁勘察设计方面,随着交通事业的迅速发展,大跨度或复杂的桥型将不断涌现。高速公路的发展,对桥梁设计亦将提出新的要求。在桥式方案设计中,将有可能利用结构优化设计理论,借助电子计算机选出最佳方案。 在结构设计计算中,采用空间理论来分析桥梁整体受力已成为可能;以概率统计理论为基础的极限状态设计理论,将进一步反映在桥涵设计规范中,使桥梁设计的安全度得到科学合理的保证。桥梁美学作为时代、民族的文化在某些方面的反映,将愈来愈受到人们的重视:桥梁的面貌将蔚为大观。 在桥梁施工方面,对施工组织将充分利用电子计算机进行经济有效的管理。在施工技术中,将不断引用新技术和高效率、高功能的机具设备,借以提高质量、缩短工期、降低造价。如采用激光测量控制结构的精确定位;引用自升式水上平台克服深水基础的困难;利用遥控设备在沉井、沉箱中挖基,以减少劳动强度并避免人身危险;利用高质量的焊接技术,借能推广工地焊接等,此外,装配式桥梁也将有所发展,以使结构和构件标准化,生产工业化。 在桥梁养护维修方面,要求对既有桥梁建立完善的技术档案管理制度。在桥梁维修检查中,引用新型精密的测量仪表,如用声测法对结构材料的缺陷以及弹性模量进行测定;用手携式金相摄影仪检查钢材的晶体结构俾能及早进行加固防患于末然,以便延长桥梁的使用寿命。 桥梁工程始终是在生产发展与各类科学技术进步的综合影响下,遵循适用、安全、经济与美观的原则,不断的向前发展。人们除了要求桥的功能完善,还讲求桥的外形美观、有艺术性 ,桥梁地建造将更加复杂化,更加艺术化,桥梁的未来将更加多元化,是现代桥梁更现代,还是旧式桥梁的复兴,值得期待! 中国桥梁的历史可以上溯到6000年前的氏族公社时代,到了1000多年前的隋、唐、宋三代,古代桥梁发展到了巅峰时期。公元35年东汉光武帝时,在今宜昌和宜都之间,出现了架 设在长江上的第一座浮桥。 在秦汉时期,我国已广泛修建石粱桥。世界上现在是保 存着的最长、工程最艰巨的石粱桥,就是我国于1053一1059年 在福建泉州建造的万安桥,也称洛阳桥,此桥长达800米,共47 孔,位于“波涛汹涌,水深不可址”的海口江面上。此桥以 磐石铺遍桥位底,是近代筏形基础的开端,并且独具匠心地用养殖海生牡蛎的方法胶固桥基使成整体,此也是世界上 绝无仅有的造桥方法,近千年前就能在这种艰难复杂的水文 条件下建成如此的长桥,实是中华桥梁史上一次勇敢的突破。 我国古代石拱桥的杰出代表是举世闻名的河北省赵 县的赵州桥(又称安济桥),该桥在隋大业初年(公元605年左 右)为李春所创建,是一座空腹式的圆弧形石拱桥,净跨37m, 宽9m,拱失高度7.23m,在拱圈两肩各设有二个跨度不等的腹 拱,这样既能减轻桥身自重,节省材料,又便于排洪、增加美 观,赵州桥的设计构思和工艺的精巧,不仅在我国古桥是首屈一指,据世界桥梁的考证,像这样的敞肩拱桥,欧洲到19世纪中叶才出现,比我国晚了一千二百多年,赵州桥的雕 刻艺术,包括栏板、望柱和锁口石等,其上狮象龙兽形态逼 真,琢工的精致秀丽,不愧为文物宝库中的艺术珍品,我国 石拱桥的建造技术在明朝时曾流传到日本等国,促进了与世 界各国人民的文化交流并增进了友谊。 1240年建造的福建潭州虎渡桥,也是最令人惊奇的一 座粱式大桥,此桥总长约335m,某些石粱长达23.7m,沿宽度 用三根石粱组成,每根宽1.7m,高1.9m,重达200多吨,该桥一直 保存至今”历史记载,这些巨大石梁桥是利用潮水涨落浮运建 设的,足见我国古代加工和安装桥梁的技术何等高超。 广东潮安县横跨韩江的湘子桥(又名广济桥)此桥始 建于公元1169年,全桥长517.95m,总共20墩19孔,上部结构有 石拱、木梁、石梁等多种型式,还有用18条活船组成的长达 97.30m的开合式浮桥,设置浮桥的目的,一方面适应大型商 船和上游木排的通过,并且也避免了过多的桥墩阻塞河道, 以致加剧桥基冲刷而造成水害,这座世界上最早的开合式 桥,柱石桥之长、石墩之大、桥梁之多以及施工条件之困难 工程历时之久,都是古代建桥史上所罕见的。。 1957年,第一座长江大桥——武汉长江大桥的胜利建 成,结束了我国万里长江无桥的状况,从此“一桥飞架南北,天堑变通途”,桥的正桥为三联3X128m的连续钢桁粱,双 线铁路上层公路桥面宽18m,两侧各设2.25m人行道,包括引 桥在内全桥总长1670.4物,大型钢梁的制造和架设、深水管柱基础的施工等,对发展我国现代桥染技术开创了新路。 1969年胜利建成了举世瞩目的南京长江大桥,这是我国自行设计、制造、施工,并使用国产高强钢材的现代大型桥梁,正桥除北岸第一孔为128m简支钢桁粱外,其余为9 孔3联,每联为3x l60m的连续钢桁粱。上层是公路桥面,下层 为双线铁路,包括引桥在内,铁路部分全长6772m,公路部 分为4589m,桥址处水深流急,河床地,质极为复杂桥墩基础 的施工非常困难。南京长江大桥的建成显示出我国的建桥事 业已达到了世界先进水平,也是我国桥梁史又一个重要标 志。 在最近的1000年中,中国的桥梁技术全面落后于世界的脚步,中国第一座现代化桥梁的出现距今仅100多年历史,而且是由外国人建造的。从钱塘江大桥算起,中国人自己设计现代桥梁的历史还不足70年;从南京长江大桥算起,中国人自行设计建造大型桥梁的历史仅34年。而九十年代以来,中国桥梁的成就才使我们重新无愧于祖先地站到了世界前列,这是中国桥梁建设的伟大复兴时代。改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。 1990年四川省在宜宾市建成的小南门桥,跨径达到240米,已是当时世界上中承式拱桥中跨径最大的一座。2001年11月7日,小南门大桥因吊杆锈蚀造成部分桥面跨塌,在修复过程中,技术人员对全桥进行了检测,大桥整体结构依然完好。小南门大桥所付出的代价是创新的代价,没有创新我们就不可能一睹1400年前的赵州桥。 1991年,四川省苍溪县建成了中国第一座钢管混凝土拱桥——旺苍大桥,跨径115米。在此之后的几年中,各地虽然兴建了不少钢管混凝土拱桥,但跨径始终在200米以下徘徊,直到1998年,广西壮族自治区建成了三岸邕江大桥,一举将此类桥梁的跨径提高到270米;1999年又建成了跨径220米的六景大桥。此后,在湖北、浙江和贵州等省,跨径在250米左右的钢管混凝土公路、铁路拱桥开始增多。 1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 1997年重庆万县长江大桥建成。大桥位于万州区(原万县市)黄牛孔处,是上海至成都高速公路跨越峡江天险的特大型拱桥。大桥一跨飞渡长江,全长 856.12米,主拱圈为钢管混凝土劲性骨架箱型混凝土结构,主跨420米,桥面宽24米,为双向四车道,是1995年贵州省瓮安县建成江界河大桥,首次突破了中国混凝土拱桥跨径 300米大关,达到330米,一举成为世界最大的桁式组合拱桥。不仅如此,其拱顶桥面至水面高度达263米,居中国各类桥梁之首。大桥一跨飞跃乌江天险,主孔分108个桁片预制,运用桁架伸臂法悬拼架设,两岸引孔为桁式刚构,全桥轻盈简洁,凌空飞渡,气势不凡。 华夏第一桥——江阴长江公路大桥,是我国“八五”规划的“两纵两横”国道主干线中沿海主骨架的跨江工程,是目前 中国第一、世界第四大跨径钢悬索桥。大桥由桥塔、主缆、锚旋和钢箱梁等主要部件组成。大桥全长3071 米,主跨1385米;桥面宽33.8米,双向六车道,设计车速100公里/小时;通航净空为50米,可通行五万 吨级巴拿马型散货轮。江阴长江公路大桥的两根主索,各长2400多米,直径近1米,每根重1.4万 多吨,主索用127根直径5.3毫米的钢丝搅成索,再由169股钢索组成主索。主桥每边有85个吊杆,每个吊杆2根,用以连结主索和桥面。 两岸索塔标高为196.236米,相当于65层搂高。北塔基长43.5米,宽73.5米,下有123根近90米长的基础桩。北锚的混凝土陈井平面长69米,宽51米(面积相当于一片足球场大)。沉入地面58米,被称为世界第一大沉井。江阴长江大桥于1994年11月22日正式开工,1999年10月1日胜利通车,名列“中国第一,世界第四”。 改革开放以来的20多年中,中国的桥梁建造技术取得了举世瞩目的成就,前十年为此做了经济上、技术上和人才上的准备,九十年代迎来了跨越式的发展。展望未来,随着中国经济的发展,一批更大的越江跨海工程的建设,中国桥梁将会创造更辉煌的成就。中华民族的伟大复兴,必将造就一代巨人去引领世界桥梁的未来。 写作思路:可以根据现如今中国桥梁建设的发展水平进行阐述,可以从技术创新体制建设方面这个角度出发进行描述,中心要明确等等。 正文: 现如今,我国的桥梁建设事业飞速发展,如何利用现有的设备来满足人民对交通便利的需求,成为桥梁建设所要面对的主要问题。相信随着施工施工技术的发展、经验的积累及计算软件的普及,会出现更多更好的公路桥梁施工方法。 由于我国仍处于社会主义初级阶段,我国桥梁施工单位与其他一些企业一样,工作任务仍要靠上级直接下达命令,所要做的科研项目和技术改进还要靠有关部门立项拨款才可进行后续工作,而当桥梁施工完成后又往往束之高阁,只有一小部分能产生应有的可观效益。自从中国加入世贸组织以来,由于受国际关系的影响,我国桥梁建设行业与真正的国际标准要求还是存在很大的距离。这使得企业在桥梁施工的技术创新方面的紧迫感和积极性都大打折扣。 首先,在技术创新体制建设方面出现了缓慢进展的局势。虽然国家有关部门已经明令要求大型桥梁施工单位要建立以技术为中心的一种系统的创新体系,但仅仅有一小部分的企业响应了国家的号召,大部分桥梁施工单位仍选择维持旧有的施工技术体制,甚至有些企业仅仅在表面上建立了技术中心,而实际上却没有按新的体系运行。 其次,桥梁施工单位对技术创新工作的重视程度还是不够。由于施工建设市场的不完善和一些不良的施工风气的影响,许多人认为只要能拿下桥梁施工工程就可以把一系列的任务都能完成,这也就造成了他们重经营轻技术问题的产生。 除了以上两个方面,施工技术创新的投入还是不够。这也就导致了技术创新的积极性不够,多数桥梁施工单位对于科技的投入量不够,技术进步速度受到不同程度的影响,造成了产业升级相应滞缓。 施工人员可以利用强制式来对混凝土的拌制,需要注意的是拌制时间一定要达到施工要求,拌制时间既不能太长,也不能太短。因为搅拌时间如果过短,那么混凝土的混合将不会均匀,而搅拌时间如果过长,那么将会破坏混凝土原材料的结构。 同时,在混凝土搅拌的过程中,一定要严格的控制加水量和外加剂的用量。只有科学的控制水灰比例,减少混凝土的干缩量。只有把混凝土拌制均匀,才能达到混凝土的设计强度,从而满足桥梁施工的需要。 良好的混凝土施工技术不仅能降低混凝土内部的温度,还能减少混凝土的内外温差,这样会使由温度造成的裂缝产生几率得到降低。施工人员可以利用插入式振动器的振实来进行混凝土浇筑的过程,在这个环节,是不允许过振现象所导的混凝土表面粗、细集料离析而靠近模板的混凝土表面集料集中问题的出现,也要注意不可产生漏振而使混凝土表面产生麻面、蜂窝、孔洞、裂缝等质量问题。 在每次地振捣部位振动直到混凝土停止下沉不再冒出气泡、表面呈现平坦泛浆,才可以徐徐提起振动器。总之,混凝土的振捣应引起施工人员足够重视,只有混凝土振捣的结果符合要求,才能使桥梁的施工质量得到保证。 裂缝是桥梁施工的主要病害,那么对于防止裂缝产生的关键在于混凝土的养护。混凝土浇筑收浆完成后应及早进行洒水养护,保持混凝土表面处于湿润的状态。由于水泥在水化过程中产生很大的热量,混凝土空心板在浇筑完成后必须在侧模外喷水散热,以免混凝土由于温度过高,体积膨胀过大,在冷却后体积收缩过大产生裂缝。 在桥梁工程的施工期间,预应力的检查结果一切正常。但在后期的相邻标段的现浇梁施工时,却发现梁顶面的高程出现异常,这很可能是由于边墩顶内侧支座脱空造成的。在对桥梁预应力问题的处理中,桥梁施工单位面临着巨大的压力, 桥梁的基础、桥墩、现浇梁施工的各个工序都会造成预应力问题的发生。 在桥梁可以通车后,气温回升会造成桥梁弯处梁不同程度发生了支座脱空现象, 使桥面伸缩缝受到严重的损害而使路面无法正常行车。支座脱空的处理方法是十分困难和复杂的,需要将箱梁整体起顶后进行支座位移,同时要对墩帽及桥墩进行加宽处理,基础要增加钻孔桩。匝道被迫封闭,处理时间长达半年。 局部蜂窝问题的产生主要是因为混凝土结构强度大大降低了结构的严密性,其疏松的结构强度几乎达到了最低点。在桥梁的使用过程中,如果发生局部蜂窝问题,会导致它所承受能力极大地减少,并且遭受腐蚀而造成重大的损伤的几率更大,大大地降低了桥梁施工工程的承载力和耐久性。 现如今,我国的桥梁施工建设如火如荼,如何利用现有的施工技术来满足人民对交通便利的需求成为桥梁建设所要解决的主要问题。相信随着施工技术的发展、经验的积累,会出现更多更好的桥梁施工方法,为国家和人民的财产安全提供更有效的保障。桥梁检测与加固课程论文
桥墩的维修与检测的论文