首页

> 学术发表知识库

首页 学术发表知识库 问题

工控芯片国产化研究论文

发布时间:

工控芯片国产化研究论文

我国半导体行业发展的痛点是芯片被"卡脖子",受我国芯片产业的持续发展和利好政策的陆续出台的双因素影响,该领域已经被广大资本市场关注起来了。今天就来给大家介绍一个我国自主研发芯片的优质企业——中颖电子。

在还没有正式开始分析中颖电子之前,我把这份化工行业龙头股名单分享给各位小伙伴阅读一下,想了解的小伙伴不妨戳开下方链接吧:宝藏资料:化工行业龙头股名单

一、从公司角度来看

公司介绍:中颖电子主要从事自主品牌的集成电路芯片研发设计及销售,并提供相应的系统解无论是解决方案也好,还是售后方面的技术支持服务也好,都会得到提供。主要产品是微控制器芯片和OLED显示驱动芯片这两大类。中颖电子是国内较具规模的工控单芯片主要厂家之一,在家电MCU领域的地位是领头羊,主要是受我国已发展成为全球最大的家电、电子产品制造基地的影响。

简单和大家讲解了中颖电子的公司情况后,再来分析一下公司还有哪些做的好的地方?

优势一、芯片设计公司,汽车电子国产替代

中颖电子,它属于无晶圆厂的纯芯片设计公司,公司主要产品一个是工业控制级别的微控制器芯片,另一个是OLED显示驱动芯片。

如今中颖电子已正式对汽车电子领域进行投入,主要是研制开发车身控制MCU部分。为满足公司长期发展需要,中颖电子扩大主业投资而且规划在合肥建构第二总部,实现工控单芯片,锂电池管理芯片是要达到的目标,汽车电子,AMOLED显示驱动芯片等国产品已经全面的被其替代了。

优势二、行业地位领先,技术自主研发具备竞争优势

中颖电子是国内较具规模的工控单芯片主要厂家之一,在家电MCU领域的地位是领头羊,从我国已发展成为全球最大的家电中获益,成为了电子产品的制造地,芯片国产化一直受着国家政策的支持,公司业绩的发展最终也能实现持续性的增长。公司的锂电池管理芯片的销售也随着芯片的广泛应用,持续的升高动能展示了出来。公司坚持自主研发核心技术,充分发挥了更加贴近国内客户的这个优势,在技术创新以及产品质量及性价比等等方面,都已经赢得了市场综合竞争的优势了。

毕竟文章具有篇幅限制,若是大家想知道更多关于中颖电子的深度报告和风险提示,这篇研报会告诉大家,点击一下即可查阅:【深度研报】中颖电子点评,建议收藏!

二、从行业角度来看

芯片半导体行业:在宏观周期上看,受美国为首的技术反锁的影响之下,国内政策一直在支持周期。

产业链上分析,上游原材料、生产设备、耗材,紧缺+国产替代+供货不足;中游制造端而言,有国产厂商突围+扩产降本的情况存在;针对下游需求端来说,不仅有终端产品正常换代+新能源汽车新需求暴涨,并且有人工智能+云技术。芯片半导体迎来了少有的全产业链供需共振。

目前为止,行业正处于由周期底部向上加速的阶段,正是整个周期曲线导数的最高峰。芯片半导体

总的来讲,我认为中颖电子公司作为芯片设计行业的龙头企业,随着行业上升的盈利,有希望高速发展。但文章不是实时更新的,如果想更准确地知道中颖电子未来行情,直接戳开下面的链接,有专业的投顾会帮助你诊断股票,看下中颖电子现在行情是否到买入或卖出的好时机:【免费】测一测中颖电子还有机会吗?

应答时间:2021-12-08,最新业务变化以文中链接内展示的数据为准,请点击查看

芯片被“卡脖子”一直是我国半导体行业发展的痛点,随着我国芯片产业的持续发展及利好政策的陆续出台,该领域已经收到广大资本市场的的关注。今天就来为大家讲解一下我国自主研发芯片较为优秀的企业--中颖电子。

在还没有正式开始分析中颖电子之前,我把这份化工行业龙头股名单分享给各位小伙伴阅读一下,点击下面的链接就能查看:宝藏资料:化工行业龙头股名单

一、从公司角度来看

公司介绍:中颖电子主要从事自主品牌的集成电路芯片研发设计及销售,并提供相应的系统解对此能提供解决方案,也提供技术支持服务。主要产品包含了微控制器芯片和OLED显示驱动芯片这两种。中颖电子现在就是国内较具规模的工控单芯片主要厂家之一,在家电MCU领域算是整个行业的龙头,主要是受我国已发展成为全球最大的家电、电子产品制造基地的影响。

简单把中颖电子的公司情况介绍给你们之后,再来了解一下公司还有哪些亮点?

优势一、芯片设计公司,汽车电子国产替代

中颖电子,它的定位是无晶圆厂的纯芯片设计公司,公司主要产品不仅有工业控制级别的微控制器芯片,还有OLED显示驱动芯片。

目前中颖电子已正式进入汽车电子领域,主要是针对车身控制MCU部分进行研究。为了实现公司的长期发展,中颖电子加大主业经营并计划将第二总部设在合肥,将会实现工控单芯片以及锂电池管理芯片,AMOLED显示驱动芯片,汽车电子等全面替代了国产品。

优势二、行业地位领先,技术自主研发具备竞争优势

中颖电子现在就是国内较具规模的工控单芯片主要厂家之一,在家电MCU领域算是整个行业的龙头,从我国已发展成为全球最大的家电中获益,电子产品制造的基地,而且我们国家在政策上一直在积极地支持芯片国产化,公司业绩才能不断朝着持续性增长的方向发展。受公司的锂电池管理芯片的广泛应用的影响,其销售也有所改变,呈现持续的增长动能。公司一直以来都是坚持自主研发重要技术,充分发挥贴近国内客户的优势,在技术创新,产品质量及性价比等方面赢得了市场综合竞争优势。

由于在这没办法一次性说完,若是大家想知道更多关于中颖电子的深度报告和风险提示,这篇研报会告诉大家,点击一下即可查阅:【深度研报】中颖电子点评,建议收藏!

二、从行业角度来看

芯片半导体行业:宏观周上期现在已受国外以美国为首的技术反锁,国内政策支持周期。

上游原材料、生产设备和耗材的情况是紧缺、国产替代、供货不足,这便是产业链上的分析:中游制造端的情况就是国产厂商突围+扩产降本;下游需求端而言,有终端产品正常换代+新能源汽车新需求暴涨+人工智能+云技术的情况。芯片半导体也迎来了之前少有的全产业链供需共振。

目前来看,行业现在正处在由周期底部向上的加速阶段,正是整个周期曲线导数的最高峰。芯片半导体

整体上来讲,我觉得中颖电子公司作为芯片设计行业的知名企业,随着行业内不断增加的盈余,有望实现高速发展。但是文章具有一定的滞后性,假设想更准确地了解中颖电子未来是否有好的行情,赶快戳开下方链接领取,有专业的投顾在诊股方面替你把关,看下中颖电子现在行情是否到买入或卖出的好时机:【免费】测一测中颖电子还有机会吗?

应答时间:2021-11-29,最新业务变化以文中链接内展示的数据为准,请点击查看

中国芯片研究论文

2018年4月17日凌晨,美国商务部宣布,将禁止美国公司向中兴通讯销售零部件、商品、软件和技术7年,直到2025年3月13日。该消息一出,在我国国内引起了轩然大波,上至中国政府,下至普通百姓都深刻意识到,中国自行设计、制造芯片已刻不容缓。一块指甲盖大小的芯片,如今已成为全球企业竞争、 科技 比拼的重要筹码。 同年,还在美国密歇根大学攻读博士的叶茂在导师推荐下,开始独立负责一门研究生课程,主讲芯片集成纳米制造技术。看着教室里不同肤色、不同国家的学生,想到闹得沸沸扬扬的中国芯片被美国“卡脖子”事件,站在讲台上传授芯片集成纳米制造技术的叶茂,心中越来越不是滋味。在密歇根冰天雪地的深夜里,有一个想法在他的脑袋里冒了出来:“我或许可以做点什么”。 当这个想法越来越多地出现后,叶茂开始为回国做准备了。“我就在想,我既然掌握着芯片集成纳米制造这门技术,为什么要留在美国给外国学生讲呢,我应该回到国内去,给国内的学生讲这些知识。”几次辗转奔波之后,2020年,叶茂正式加入北京航空航天大学。 春寒料峭,市场的需求,政策的加持,科研的创新……在“中国芯”迎来绝地反击的“春天”里,叶茂就此蓄势发力,向着更多的可能全力奔跑。 即便已经跨入而立之年,叶茂的身上仍保持着最初的那种纯粹:无畏无惧,一往无前;随心而行,随遇而安。 2007年,叶茂考进华中 科技 大学材料科学与工程学院。在大学期间,叶茂并不算一个特别勤奋和“听话”的学生,他在学习上的动力大多来源于兴趣,喜欢做什么就去做什么。有一天,他突然萌生了“想出国去看一看”的想法,于是就自己准备出国考试(托福和GRE),并拿到了奖学金,去了美国密歇根大学攻读机械工程硕士。 叶茂的硕士导师是一个印度人,在美国密歇根大学有着举足轻重的影响力和地位。叶茂来到他的门下时,获得了一份研究工作,以此可以全免学费同时还有一份科研助理的工资,是很好的待遇。叶茂问导师:“我的成绩不是最好的,简历也不是最漂亮的,这么好的待遇为什么给我呢?” 叶茂的导师回答说,因为他觉得叶茂在这项研究上很有自己的想法。在去美国之前,叶茂已经和导师有过一些交流,在交流中,针对一些研究上的问题,他给出了多种解决方案,自此给他的导师留下了深刻的印象。“他觉得这是我很大的一个亮点。”跟随硕士生导师,叶茂从事了利用纳米生物材料仿生骨支架的相关工作,并取得了一系列成果。 2014年,叶茂硕士毕业后原本打算直接工作。他坦言道:“我读博士其实是一件十分偶然的事情。”当时,叶茂刚刚找到工作,偶然在一次学术报告上碰到了刚来到密歇根大学工作的Yasha Yi教授,通过交流,两个人碰撞出了很多新的想法,然后他的博士生导师对他说:“我们或许可以实现它们(这些想法)”。就这样,叶茂放弃了到手的工作机会,选择继续在密歇根大学攻读电子与计算机工程博士。 叶茂的主要研究方向是芯片集成光电子器件与芯片集成纳米制造技术。简单来说,后者是为前者服务的,为了制造芯片集成光电器件,往往需要花大量的时间和精力在芯片集成纳米制造技术上面。自2014年起,叶茂就进入美国顶级(state of the art)大型芯片集成实验室劳瑞纳米加工技术实验室(Lurie Nano Fabrication Facility)学习基于硅基材料的纳米制造和芯片集成技术,并在之后的研究工作中逐渐掌握了这项技术。 在国外的学习期间,叶茂主要围绕可见光波段光学超构表面和超构透镜、医用闪烁体的光抓取纳米结构及芯片集成激光雷达光学相控阵(OPA)器件等方面进行了深入系统研究,取得了若干国际领先的重要成果。 叶茂开发了基于大折射率富硅基氮化硅的超构透镜设计与制造工艺体系,突破了可对抗刻蚀延迟的超构透镜和无色散超构透镜设计技术,解决了可见光波段光学超构表面和超构透镜制造难度大、成本高及存在色散等难题,研制了基于可见光波段的光栅结构超构透镜、线偏振超构透镜和具有聚焦结构的超构透镜等集成光子学器件;他开发了可用于医用闪烁体材料的光抓取纳米结构,极大地提高了常规医用闪烁体的发光效率;针对芯片集成激光雷达中的核心偏光组件,他提出了基于光学相位矩阵(OPA)和光学超构表面相结合的非机械式可控偏光方案,可极大地减小激光雷达的体积、重量和成本。相关成果已在领域内知名学术期刊发表论文20余篇,授权国际专利1项。 其中叶茂研发的可设计聚焦结构的光学方法被世界知名 科技 评论《麻省理工 科技 评论》( MIT Technology Review )专题报道,并指出了此技术在未来芯片光刻行业具有重要应用前景(文章题目为“为什么超构透镜即将为芯片制造业带来革命”“Why metalens are about to revolutionize chip-making”)。 在国外学习和研究多年,叶茂与导师之间的关系更像是朋友和合作伙伴,这种关系一直维持到现在。叶茂说,他和他的博士生导师都是十分理想主义的人,总想着可以做出一些东西去改变世界。因此,他们的研究十分务实,往往会考虑一些前沿技术在工业界大规模应用的可行性,比如研发比较前沿的超透镜时要去研究如何降低成本,以实现大规模生产。 在与导师及其他老师的不断交流中,叶茂越来越坚定这种价值认知:做出好的成果不是为了发论文,不是为了功与名,而是为了去改善人们的生活,让这个世界变得更好。“我们一直在朝着这个目标前进,我们在做出成果时,往往第一时间就会想到,这个能不能得到应用?跟同行业相比,它的优势在哪里?我们做研究最终的目的一定是让科研成果惠及人类,惠及世界。”叶茂说道。 就像是一场修行,叶茂在美国不断汲取知识,增长见识,提升能力,迅速成长为芯片制造行业内的知名青年学者。他表示:“芯片集成纳米制造工艺的开发是非常费精力的,但是当你亲手制造出40纳米、20纳米的结构及器件后,你了解了芯片制造工艺的每一个细节,这都是非常宝贵的经验。现在,回过头想一想,这是我在美国最大的收获之一。” 即便已经在国外打下了一片自己的天地,但是叶茂回国就职的道路依然不是顺遂的。 在美国待了7年多,叶茂不认识国内学术界任何人,只能在网上搜索求职,海投简历。好在当时国内很多学校都有海外青年论坛,一些高校对叶茂热情地发出了邀约。于是,在2018年短暂的圣诞假期,他回国一次性跑了4所高校。但这不是一次成功的旅程,相比于叶茂拿出的一些纳米制造技术和器件成果,他当时碰到的老师们似乎对简历上论文的影响因子更感兴趣。那年的冬天,他第一次知道还有论文分区这回事。 也曾有人劝叶茂先在一些高影响因子的期刊多发几篇论文,再以此为台阶回国就业。思考过后,叶茂拒绝了。“我或许可以这么做,但这并不是我做研究的初心,研究成果的价值在于它是否能推进其所在领域的进步。我觉得能真正解决问题,能真正可以应用上的研究就是好的研究。”即便2018年的那次短暂回归没什么收获,但叶茂仍然坚持回国的想法。博士毕业后,他继续做了一年的博士后研究,将之前没有完成的工作完成,并于2019年年底又回到了国内。 这一次,叶茂遇到了懂他的“伯乐”——房建成院士。在经过一番深入的交流之后,房建成院士对他说:“你的研究做得不错,我们很需要你这样的做芯片集成光电子器件与纳米制造技术方面的人才。相比论文我们更看重能实际应用的成果,能解决问题,能真正有用且好用就行。”就这样,叶茂加入了北京航空航天大学,任副研究员。 “做研究,需要找到志同道合的人,我跟房院士的想法很一致,就是做出实际有用的东西。相比发文章,我们更在乎的是能不能把芯片集成事业做起来,在自己的领域制造出中国自己的芯片并付诸产业化,改变芯片工业的格局,使中国的芯片事业追上,甚至超赶美国。”叶茂说道。 相比于芯片的设计,芯片的制造才是制约我国芯片集成事业发展的关键“短板”。如何将光电子器件进行芯片化,做得那么小的同时还降低成本,有完善的功能、好的性能、高的良品率,是一个较大的难题,而叶茂就为了解决这个难题而归。 利用多年来在芯片集成光电子器件领域的研究积累,面向国家对关键测量与导航仪器的发展需求,叶茂回国后立即开展了芯片集成量子精密测量器件理论方法与制造技术研究工作,主要包括芯片集成原子磁强计、芯片集成原子陀螺仪、功能型光学超构表面技术、面向商用的平面集成光学超构透镜等,致力于为我国在短时间内实现核心关键光电子芯片技术的突破提供强大的技术支撑。同时,叶茂还依托国家重大科研项目的开展进行了相关平台建设和教学工作。 从事科研成果多年,叶茂鲜少有负面情绪的时候。回顾自己一路走来,他说:“有问题就解决问题,我其实没有那么多时间和精力去解决情绪上的事情。” 在美国时,虽然叶茂所在团队的资源不少,但是团队的人却很少,只有他和他的师弟两个博士。那些年,就是他们两个人完成了一项又一项科学研究。在芯片集成光电子器件的制作过程会出现各种各样的问题。但是叶茂和他的师弟没有一句怨言,只是埋头工作,最终完成了多项具有严格工程指标的科研任务。“其实,我们并没有觉得很累,就是一方面有计划地去做研究,另一方面发散思维多想办法,多尝试。我们没有时间去想:这个好难,做不出来怎么办?或者说,这个太难了,不想做了。这不可能,我们既然开始做了,就一定要做出来,而且要做好。” 回国时,虽然一开始没有得到认可,但是叶茂从未想过放弃。他想的还是:什么问题都是可以解决的,只要我把成果做出来,且能用上,总有一天会有人认可的。正是这样的乐观、坚韧的精神造就了现在的叶茂。 基于原子无自旋交换弛豫(SERF)效应的原子磁强计是目前最高精度的磁场测量传感器,其理论精度可达亚飞特量级,是目前战略磁测量与医学生物磁测量设备中的核心器件。原子磁强计的芯片化将极大地缩小目前器件体积(从传统的厘米级缩小至毫米甚至微米级),降低功耗和成本,是未来高精度、微型化、阵列式量子磁传感器件的必经之路。多种军用以及医疗装备如微型量子导航系统、微型深海探潜系统、高分辨脑磁成像装置和体内介入式生物磁测量设备等,都对原子磁强计的芯片化提出了迫切需求。 2014年美国桑迪亚国家实验室受美国国家卫生研究院(NIH)和美国能源部核安全部门(DOE-NNSA)等多家单位的支持,开启了微型芯片化SERF原子磁强计阵列(OPM)原理样机的研制。此外美国国家标准技术研究所(NIST)获得美国策略环境与发展研究计划(SERDP)资助,于近年开发了适用于芯片集成制造方法的垂直键合式原子磁强计原理样机,率先开始了芯片集成原子磁强计的研究。同时,我国也在“十四五”规划中明确提出了对芯片集成量子精密测量器件的迫切需求。而对原子磁强计进行芯片化的核心就是解决芯片集成原子磁强计中光子学操控与耦合的问题,这是一项微纳光子学、芯片集成纳米制造和量子精密测量多学科交叉的卡脖子问题。 为解决这一技术难题,叶茂申请了自然科学基金青年科学基金项目“芯片化原子磁强计中集成光子学操控与耦合问题的研究”。在项目研究中,他将 探索 芯片级微小型原子磁强计中的精准光学操控方法、光/量子耦合机制,在此基础之上开发用于芯片化原子磁强计的集成光子学操控与耦合方案,最后结合微型原子系综进行集成光/量子耦合极弱磁测量实验,以期为实现芯片集成原子磁强计从无到有的突破奠定基础。 芯片集成原子磁强计中光子学操控与耦合问题的解决,是突破现有瓶颈,开发高精度、阵列式、集成化精密量子测量系统的第一步,更是实现国家“十四五”规划纲要提出迫切需求的高分辨脑磁成像、深海/深地磁探测,以及芯片化量子测量系统所要解决的核心问题。 在更加贴近人们生活的应用方面,叶茂也提道:“举个例子,我们的手机里面有陀螺仪传感器,虽然对于人们的生活已经够用了,但是其实还没有到很理想的状态。如果把量子陀螺仪做到芯片化,那手机的导航定位会更加灵敏和精确。目前,大部分自动驾驶系统依靠激光雷达作为核心测距传感器,但现在的雷达还是比较大,只能放在车顶,如果做到芯片化,不但可以减小体积,更重要的是降低成本,这样一辆车上可以安装多个不同维度扫描的芯片集成激光雷达,从而使自动驾驶更加精确和安全。” 目前,相关的工作正在有序进行当中。叶茂表示,饭要一口一口吃,路也要一步一步走。制造中国自己的芯片不是一蹴而就的,但他愿意为了这个目标不懈努力。 除此之外,叶茂以全美顶级的芯片集成超净间实验室劳瑞纳米加工技术实验室为模板,致力于建造芯片集成超净间实验室体系。芯片集成超净间实验室是微结构微系统方向重要的实验制造平台,它对未来整个电子、电气、机械、材料、生物和光学等学科可以起到重要的支撑作用。不过,平台的建设是一个长期的项目,初期的目标是以建设百级的超净间和气体净化内循环体系,人员管理和使用体系为主。5年的预期目标是可以在实验室里自行制造超越我国目前工业芯片精度的纳米结构。 “回国后,我发现国内的芯片发展已经热了。如雨后春笋般,很多制造芯片的实验室也都搭建起来了。但是,相对的,国内缺少专业的设备调试、维护及工艺开发等相关人才。”虽然实验室的建设已经提上日程,但在前期的研究当中,叶茂提出暂时使用国内建设的公共纳米制造平台。他说:“因为国家在建造芯片制造实验室方面已经花了很多钱了,我们要充分地利用好它们。相比于欧美一些成熟实验室,它们可能没有足够的工艺积累,但设备还是很好的。我们可以进行合作,利用海外的工艺经验一起开展研究攻关,提升精度,达到一个利益最大化。” 同时,叶茂也表示,为了技术的自主可控,肯定要建立自己的实验室,但是在这之前,首先要培养或引进一批相关的人才,等搭建好成熟的人才储备与管理体系,才能更好地助力实验平台的建设。 在北京航空航天大学,叶茂拟开设全英文芯片集成纳米制造课程。这门课程目前在国内学校还比较少见,即便在美国,也只有条件优秀的几所大学开设了。然而整个工业界对于电子和光学器件的趋势都在往小型化、微型化方面发展,因此芯片集成纳米制造技术不光是用来制造芯片,更是制造多种功能的新型纳米结构/器件的必经之路。这项技术在未来必然会越来越普及。依托在美国教授这门课程的经验,叶茂希望通过开设这门课程,使国内学生更加了解这项技术,为我国培养更多的芯片集成纳米制造方面的人才。 对于自己的学生,叶茂有着自己的要求和期望。一是,他希望学生拥有一颗强大的内心,不能因为研究工作难而回避,甚至放弃,要有百折不挠的精神;二是,他希望学生可以将研究的过程变快乐一点,去享受科研的过程。“经验是最宝贵的财富,哪怕这个事情你最终没有做出来,但是过程中已经积累了很多宝贵经验。如果你不去尝试,不去 探索 ,怎么可能会获得经验呢?我还是那句话,有问题解决问题,不要去逃避,不要放弃,要有把它干成的精神。” 打篮球,学习吉他,跟着短视频练就一手好厨艺……工作之余的叶茂也很认真地在生活。无论是工作,还是生活,他保持着自己的节奏,不骄不躁。对于未来,叶茂不做过多设想,也不会因为未知而焦虑,于他而言,唯一明确要做的事情,就是把握当下、拼搏努力,全身心投入到自己热爱的科研事业里。

中国科学家又有一次伟大的突破,每一 次的科学探索都有大大的飞跃,作为青年一代的我发自内心的敬佩,少年强则国强,为你的贡献感到自豪。

张志维,目前就职于杭州电子科技大学。而就是这颗“两三粒芝麻大小”的芯片,却能足以满足5G甚至6G通信对于传输速率的需求。

用张志维自己的话来说就是:功率更高了,传输距离更大了。以前覆盖面积只有半个足球场那么大,现在最新的实验结果能传10公里。对老百姓来讲,(视频)电话清晰度会更好, 上网速率会更高。功率更高了,传输距离更大了。以前覆盖面积只有半个足球场那么大,现在最新的实验结果能传10公里。对老百姓来讲,(视频)电话清晰度会更好, 上网速率会更高。

△图源:中国蓝新闻

更重要的是,毫米波芯片长期以来一直被国外所垄断。但随着张志维和团队的研发成功,其导师认为:在某些领域应该能够不再依靠国外的芯片,解决了“卡脖子”问题在某些领域应该能够不再依靠国外的芯片,解决了“卡脖子”问题据了解,芯片已经应用在移动基站,可以实现卫星与地面基站、基站与基站之间的超大数据量的高速率传输。

这条消息一经公布,瞬间引发了大量网友的高度关注:甚至张志维的母校,杭州电子科技大学也发来“贺电”:很多网友在祝贺、点赞张志维取得突破成果之余,对张志维26岁能当上副教授这事陷入了“深思”:但除了成果本身,张志维此前求学、研发的经历,也成为了此次热议的焦点。谢绝60万年薪,选择留校任教

张志维本硕博均是就读于杭州电子科技大学。主要研究方向是微波/毫米波,与5G/6G通讯密切相关。而他决定研发芯片,还要从本科时的一段经历说起。那时的张志维正在参加竞赛,最终却以失败而告终。究其原因,正是在参赛过程中,张志维所使用的芯片发生了故障。于是,“造芯”这件事便深深地埋在了他的心里。

为此,他在2020年还特意去国外深造,每天坚持搞研究长达12小时。或许正是张志维如此的努力和拼搏,他在2020年到2021年期间,在芯片领域拿下了2个首次:

甚至他在国外的导师都对其评价到——“没有辜负你的母校”。而这些“业绩”,也为张志维在后来造芯的道路上铺下了high实的基础。

今年3月份,张志维顺利完成了博士论文的答辩。但当时的他面临着二选一的抉择——要么进大厂,要么留校。而即便众多大厂纷纷向他抛出橄榄枝、提供60万年薪的Offer,但张志维却毅然决然地选择了留校。

△图源:杭州电子科技大学官网

根据《中国科学报》的描述,张志维选择留校任教的原因是:因为喜欢校园自由且富有“创芯”的氛围。因为喜欢校园自由且富有“创芯”的氛围。这样的选择也让张志维成为了网友口中的“出道即巅峰”,一毕业就成为了特聘副教授。杭电辅导员申东升认为:这几年学校的人才聘任要求水涨船高,博士一毕业就成为特聘副教授,确实不容易。这几年学校的人才聘任要求水涨船高,博士一毕业就成为特聘副教授,确实不容易。但在这样的光环之下,少不了的是张志维一直以来的辛勤和努力。发表过19篇SCI论文,据杭州电子科技大学2022年“十佳大学生”评选现场宣传材料,张志维在硕博连读的5年时间内,共发表了19篇SCI论文。

他以第一作者身份发表的SCI论文超过10篇,其中9篇发表于IEEE协会旗下期刊。这些论文里面当然也包括提出混合EFJ功率放大器,以及阻抗频率调制的研究成果文章。2020年,张志维在导师程知群等人的指导下,研发出一种采用新型混合连续级EFJ功率放大器,来放大载波。此前,Doherty功率放大器(DPA)由于结构简单、成本低,在被基站中被广泛应用。但是传统的DPA有一些固有缺点,例如:带宽狭窄,且只有6dB的output back-off范围。而张志维和团队提出的EFJ类功率放大器的负载阻抗,不仅有传统的连续功率放大器类似的可变虚部,还有不一致的实部。

所以EFJ类功率放大器可有效结合EF类功率放大器的高能效,以及连续J类功率放大器在特定条件下的大带宽,从而大大弥补了DPA的缺陷。2021年,张志维和来自英国贝尔法斯特女王大学的Vincent Fusco等人在IEEE Transactions on Circuits and Systems II上发表了阻抗频率调制的研究成果论文。这是一种设计多频段功率放大器的新方法:将一个耦合器作为放大器的输出电路,以实现多频段阻抗转换。

△耦合器

通过结合获得的周期性阻抗轨迹和EFJ类功率放大器的阻抗空间,实现了实时获取所需的工作频率。目前,张志维和团队正在研究毫米波通信芯片3.0版本的技术迭代。

张志维表示:希望我们的研究成果,能够实现国产化芯片的替代。希望我们的研究成果,能够实现国产化芯片的替代。

根据2017年中国集成电路产业分析,我国在移动通信和计算机领域的国产芯片,占有比例接近为零,就算到了2020年占有率有所上升,但也很低,我国在芯片领域的发展落后,主要原因是因为缺少先进的光刻机,那何为光刻机呢,简单来说,光刻机是制造芯片的核心装备,它的工作原理有点像相片冲印,需要把集成电路的精细图形,通过光线曝光印到硅片上形成芯片,但一台光刻机的造价十分昂贵,通常在三千万至五亿美元之间,光刻机的优劣直接决定了芯片的性能,而世界上只有少数几个国家拥有高端的光刻机,我国于2018年研发的光刻机,光刻分辨率才22纳米,继续完善后也只能达到10纳米,而在芯片领域发达的国家,早就已经在制造7纳米、5纳米的芯片了。 阿斯麦是世界上能生产7纳米芯片的最大半导体供应商,我国中芯国际在2018年就进口了该类型的光刻机,但因为美国的打压,光刻机迟迟未到,中国制造芯片之路仿佛被人扼住了脖颈,没了芯片我国高 科技 的发展将会受到极大的影响,大到航天航空领域,小到人们手上的手机,就比如说华为基于5纳米工艺打造的,麒麟9000芯片可能成为绝版,而缺少芯片带来的恶劣后果,直接影响了我们的日常生活和国家 科技 发展,不过就算是这样,中国也有无数科研人员正在努力,让中国芯片绕开美国的封锁,比如正在研究的光子芯片的技术,让中国就算没有光刻机,也可以制造出高端的芯片,其中有一位年轻有为的青年科研家,他所带领的团队研究的光子芯片,已初有成效,为中国缺芯的局面带来曙光,他就是麻省理工学院毕业的沈亦晨,今天就和大家聊聊沈亦晨其人,以及他又是怎么用光子芯片打破美国封锁,让中国缺芯局面可解的。 沈亦晨出生在浙江杭州,从小便聪明伶俐,对电器十分感兴趣,喜欢将家里的小电器拆了又装,观察里面的构造,而这也得益于他父亲的影响,沈亦晨的父亲是一位电力工程师,当别的孩子都在玩玩具车时,沈亦晨的玩具就是父亲工作时的各种器材设备,当别的孩子在看漫画书时,沈亦晨看的书就是父亲书柜里那些晦涩难懂的电路图,和电力物理书,在父亲的耳濡目染下,沈亦晨对这一行业拥有着强烈的好奇心,他喜欢去学习去 探索 ,读完高中之后,沈亦晨就前往新加坡和美国,在新加坡南洋理工大学和美国霍普金斯大学,攻读物理专业,沈亦晨就像一条游进了宽阔大海的鱼,如鱼得水,他的知识系统迅速被扩展,并且在纳米光子学领域增长了学识,为后来的光子芯片研究,奠定了坚实的专业基础。 在沈亦晨求学之路上,无论是读研还是读博期间,沈亦晨积极参与光学研究,他在《科学》杂志上发表了论文得到了业界的好评,除此之外他还发表过25篇顶级期刊的论文,还拥有着10项美国专利,沈亦晨对光学研究的孜孜不倦,让他得了一个“追光者”的外号,其实关于光学的研究与应用,在数十年间一直有在进行,沈亦晨在研究中也也发现了光子比电子更快,而且耗能也更低,如果能用光子替代电子,那将是史无前例的进步,但是由于光像是一个难以琢磨的孩子,行为难以预测,也就是光具有不可控性,所以关于光学计算的研究就十分具有挑战性,沈亦晨向来就是喜欢挑战的人,他喜欢一个个谜题在自己手中解开的感觉。 在2016年时沈亦晨创立了自己的第一家公司,主要立足于使用太阳能发电和移动电子显示的方向,接着沈亦晨觉得只研究表面无法得到突破,于是他又成立了一家公司 曦智 科技 ,该公司的目标是要生产出光子芯片,这也正式开启了沈亦晨研究光子芯片的道路,沈亦晨和团队在研究中,建立了一个光学神经网络架构技术,在此技术下架构出来的芯片,就是一个可以变成的纳米光子处理器,能够取代传统电子晶体管,改进电子晶体管的性能 延迟 功耗问题,如果这光子芯片能够研发成功,将会带来飞跃性的进步。 不仅是原电子芯片计算能力的一千倍,它的耗能还将低于电子芯片一百倍,可别小看这一百倍的降低耗能,现在 社会 追求的都是一个低耗能,节约一切资源长途发展,光子芯片能使得全球数据服务器的用电量大大减少,而且应用面也会更加广,对增强现实 自动化等领域助益极大,沈亦晨凭借着这个研究,在2017年将学术成果报告发表在了顶级期刊上,业界为之震动,纷纷夸赞,而沈亦晨在当年也拿下了,麻省理工和哈佛大学 科技 创新赛的第一名,2018年沈亦晨刚成立不到两年的曦智 科技 ,就获得了百度和美国半导体企业的投资,金额高达1000万美元,折合人民币6500万。 现在的沈亦晨还在继续研究光子芯片,他在前几年的突破性进展,为现在中国缺芯的僵持局面,撕开了一道裂口,力挽狂澜般辅助我国解决芯片问题,沈亦晨的曦智 科技 目前已经建立了,设备更为先进 功能更为齐全的光学实验室,全力研发光子芯片的相关技术,虽然一时半会儿还不能马上上线光子芯片,但是只要开始永远不晚,正是有像沈亦晨这样优秀的青年人才,有决心有毅力,热爱学术研究,并且能够将理论与实际结合,勇于担当起兴国重任,才让我国现有的芯片技术快速发展,如今我国7纳米GPGPU芯片已经面世,中芯国际也在进军7纳米SOC芯片的研究,相信在未来,我国一定会“芯心满满”。

芯片生产毕业论文

真的很可笑,相同的题目,设计说明肯定大同小异,又不是研究成果,哪有什么新东西,重复率很高是正常的

单片机毕业论文答辩陈述

难忘的大学生活将要结束,毕业生都要通过最后的毕业论文,毕业论文是一种有计划的检验大学学习成果的形式,那么毕业论文应该怎么写才合适呢?以下是我为大家收集的单片机毕业论文答辩陈述,仅供参考,希望能够帮助到大家。

单片机毕业论文答辩陈述

各位老师好!我叫刘天一,来自**,我的论文题目是《基于AVR单片机的GSM—R基站天线倾角测量系统》。在这里,请允许我向宁提纲老师的悉心指导表示深深的谢意,向各位老师不辞劳苦参加我的论文答辩表示衷心的感谢。

下面我将从论文的背景意义、结构内容、不足之处三个方面向各位老师作一大概介绍,恳请各位老师批评指导。

首先,在背景和意义上,移动通信网络建设初期,基站站间距大、数量少、站型也不大,并且频率资源相对比较丰富。在这一阶段的网络规划时很少对天线的倾角做详细的规划,基站功率常常以满功率发射。对于越区覆盖则主要通过增加邻区的办法予以解决。

但随着网络的迅速发展,城市中的基站越来越密集,在一个中等城市通常分布着数十个基站,在省会城市更是达到了数百个基站之多,并且基站的密度越来越高,站型也越来越大,如果对越区覆盖的问题仍然釆用老办法解决,那么网络质量将难以保证。因此有必要在规划阶段就对基站天线的倾角、基站静态发射功率等进行更加细化合理的规划,从而减轻优化阶段的工作量。

合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围,而且可以加强本基站覆盖区内的信号强度。通常天线下倾角的设定有两方面侧重,一方面侧重于干扰抑制,另一方面侧重于加强覆盖。这两方面侧重分别对应不同的下倾角算法。一般而言,对基站分布密集的地区应该侧重于考虑干扰抑制(大下倾角);而基站分布比较稀疏的地方则侧重于考虑加强覆盖(小下倾角)。

规划阶段进行的倾角设计,在实际施工过程中会出现一定的偏差,在使用的过程中,由于季节变化或风、雨、雪、温度、湿度等自然条件影响,基站天线倾角会发生变化,进而影响场强质量。而移动通信已经是人类日常生活中不可或缺的一部分,正常的通信离不开基站的建设与维护,因此,基站天线倾角的实时、精确测量就显得尤为重要了。但现阶段移动通信基站的天线方位角、下倾角等基本是依靠人工现场通过罗盘、坡度仪等仪器进行测量得到的,而且由于基站的数量巨大,因而测量耗费了大量的时间、人力、物力,并且存在较大的测量人员人身安全隐患。因此,实现一种省时、省力的自动化测量仪器是非常亟需的。

为此,拟研发GSM—R基站天线倾角测量系统,实现不登塔作业即可完成基站天线倾角的测量工作,并可对各基站测试点进行联网,实现对基站天线倾角的实时监测。本系统可以大大降低GSM—R系统现场维护作业的人身安全风险和作业难度、强度,具有很高的实用性和安全性。

其次,在结构内容上,论文主要对基站倾角测量系统进行设计,主要研宄内容为:

(1)根据控制要求,选用倾角测量模块;学会使用并通过使用手册深入学习其特性及原理。

(2)采用ATmegal62作为控制芯片,进行倾角测量系统的硬件电路设计。整个系统分为主板和从板,通过芯片内置的TWI串行总线传输接口进行通信,由主板将数据通过无线模块发送给手持终端。

(3)采用JZ863数传模块,将其与上位机控制芯片、下位机控制芯片的异步串行接收/发送器USART连接,进行上位机与下位机的无线数据通信。

(4)在硬件平台基础上根据模块化思想进行倾角测量系统的软件程序设计。

(5)在设计好的软硬件平台上进行相关实验,实现控制系统设计目标和要求。

本文各章节安排如下:

第1章“引言”,对倾角测量系统进行了简要概述,介绍了研宄背景,并对本文的内容作了简介。

第2章“倾角测量传感器”,主要分析了本系统比较重要的倾角测量模块的原理以及SCA100T—D01倾角测量芯片,对其各个引脚的功能以及通信协议等进行了阐述,为后面的具体实现打下了基础。

第3章“ATmegal62微处理器结构及原理”,分析了本毕设使用的核心单片机芯片ATmegal62,包括它的各个引脚以及I/O端口,并且分析了本论文主要使用的通信协议,即同步串行SPI接口和USART串行口。

第4章“倾角测量系统软硬件实现”,本章首先对系统的总体设计进行了实现,包括主要的技术指标、主要的功能模块等。接着进行了本系统的硬件实现和软件实现。硬件实现包括各个功能模块的具体电路设计以及最后的PCB电路板制作,软件实现包括各个功能模块的程序设计。

第5章“倾角测量系统调试及实验”,本章主要进行了硬件电路的调试,并介绍了通过AVR Studio进行软件仿真以及下载,最后在搭建的系统软硬件平台的基础上,进行调试和实验,以此来验证基站倾角测量系统的硬件与软件设计。

第6章“结论”,本章主要总结了本论文的研究结果,并阐述了系统的不足之处和对以后工作的展望。

最后,在不足之处上,这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多。

[知识拓展]

论文答辩提问方式

在毕业论文答辩会上,主答辩老师的提问方式会影响到组织答辩会目的的实现以及学员答辩水平的发挥。主答辩老师有必要讲究自己的提问方式。

1、提问要贯彻先易后难原则。主答辩老师给每位答辩者一般要提三个或三个以上的问题,这些要提的问题以按先易后难的次序提问为好。所提的第一个问题一般应该考虑到是学员答得出并且答得好的问题。学员第一个问题答好,就会放松紧张心理,增强“我”能答好的信心,从而有利于在以后几个问题的答辩中发挥出正常水平。反之,如果提问的第一个问题就答不上来,学员就会背上心理包袱,加剧紧张,产生慌乱,这势必会影响到对后面几个问题的答辩,因而也难以正确检查出学员的答辩能力和学术水平。

2、提问要实行逐步深入的方法。为了正确地检测学员的专业基础知识掌握的情况,有时需要把一个大问题分成若干个小问题,并采取逐步深入的提问方法。如有一篇《浅论科学技术是第一生产力》的论文,主答辩老师出的探测水平题,是由以下四个小问题组成的。

(1)什么是科学技术?

(2)科学技术是不是生产力的一个独立要素?在学员作出正确回答以后,紧接着提出第三个小问题:

(3)科学技术不是生产力的一个独立要素,为什么说它也是生产力呢?

(4)你是怎样理解科学技术是第一生产力的?通过这样的提问,根据学员的答辩情况,就能比较正确地测量出学员掌握基础知识的扎实程度。如果这四个小问题,一个也答不上,说明该学员专业基础知识没有掌握好;如果四个问题都能正确地回答出来,说明该学员基础知识掌握得很扎实;如果能回答出其中的2—3个,或每个小问题都能答一点,但答得不全面,或不很正确,说明该学员基础知识掌握得一般。倘若不是采取这种逐步深入的提问法,就很难把一个学员掌握专业基础知识的情况准确测量出来。假如上述问题采用这样提问法:请你谈谈为什么科学技术是第一生产力?学员很可能把论文中的主要内容重述一遍。这样就很难确切知道该学员掌握基础知识的情况是好、是差、还是一般。

3、当答辩者的观点与自己的观点相左时,应以温和的态度,商讨的语气与之开展讨论,即要有“长者”风度,施行善术,切忌居高临下,出言不逊。不要以“真理”掌握者自居,轻易使用“不对”、“错了”、“谬论”等否定的断语。要记住“是者可能非,非者可能有是”的格言,要有从善如流的掂量。如果作者的观点言之有理,持之有据,即使与自己的观点截然对立,也应认可并乐意接受。倘若作者的观点并不成熟、完善,也要善意地、平和地进行探讨,并给学员有辩护或反驳的平等权利。当自己的观点不能为作者接受时,也不能以势欺人,以权压理,更不要出言不逊。虽然在答辩过程中,答辩老师与学员的地位是不平等的(一方是审查考核者,一方是被考核者),但在人格上是完全平等的。在答辩中要体现互相尊重,做到豁达大度,观点一时难以统一,也属正常。不必将自己的观点强加于人,只要把自己的观点亮出来,供对方参考就行。事实上,只要答辩老师讲得客气、平和,学员倒愈容易接受、考虑你的观点,愈容易重新审视自己的观点,达到共同探索真理的目的。

4、当学员的回答答不到点子上或者一时答不上来的问题,应采用启发式、引导式的提问方法。参加过论文答辩委员会的老师可能都遇到过这样的情况:学员对你所提的问题答不上来,有的就无可奈何地“呆”着;有的是东拉西扯,与你绕圈子,其实他也是不知道答案。碰到这种情况,答辩老师既不能让学员尴尬地“呆”在那里,也不能听凭其神聊,而应当及时加以启发或引导。学员答不上来有多种原因,其中有的是原本掌握这方面的知识只是由于问题完全出乎他的意料而显得心慌意乱,或者是出现一时的“知觉盲点”而答不上来。这时只要稍加引导和启发,就能使学员“召回”知识,把问题答好。只有通过启发和引导仍然答不出或答不到点子上的,才可判定他确实不具备这方面的知识。

【拓展】

单片机毕业论文开题报告参考

1. 课题名称:

数字钟的设计

近年来,随着单片机档次的不断提高,功能的不断完善,其应用日趋成熟、应用领域日趋广泛,特别是工业测控、尖端武器和日常家用电器等领域更是因为有了单片机而生辉增色,不少设备、仪器已经把单片机作为核心部分。单片机应用技术已经成为一项新的工程应用技术。尤其是Intel公司生产的MCS-51系列单片机,由于其具有集成度高、处理功能强、可靠性高、系统结构简单、价格低廉等优点,在我国得到了广泛的`应用,在智能仪器仪表机电一体化等方面取得了令人瞩目的成果。现在单片机可以说是百花齐放,百家争鸣,世界上各大芯片制造公司都推出了自己的单片机,从8位,16位,到32位,数不胜数,应有尽有由于主流C51兼容的,也有不兼容的,但他们各具特色,互成互补,为单片机的应用提供了广泛的天地。在高节奏发展的现代社会,以单片机技术为核心的数字钟越来越彰显出它的重要性。

3. 设计目的和意义:

单片机的出现具有划时代的意义。它的出现使得许多原本花费很高的复杂电路以及繁多的电气元器件都被取缔,取而代之的是一块小小的芯片。伴随着计算机技术的不断发展,单片机也得到了相应的发展,而且其应用的领域也得到更好的扩展。在民用,工用,医用以及军用等众多领域上都有所应用。为了,能够更好的适应这日新月异的社会,我们应当充实我们的知识面,方能不被时代的潮流踩在脚下。

介于单片机的重要性,我们应当对单片机的原理,发展以及应用有着一定的了解。所以,我们应当查阅相关资料,从而能够对单片机有个全方位的了解。进而将探讨的领域指向具体的国内,从而能够在科技与经济飞速发展的当今社会更好的应用这项技术。事实上,该项技术在国内有着极为广泛的发展前景,因此,通过对本课题的研究,我们因当能够充分认识到单片机技术的重要性,对单片机未来的发展趋势有所展望。

单片机的形成背景:

1.随着微电子技术的不断创新和发展,大规模集成电路的集成度和工艺水平不断提高。硅材料与人类智慧的结合,生产出大批量的低成本、高可靠性和高精度的微电子结构模块,推动了一个全新的技术领域和产业的发展。在此基础上发展起来的器件可编程思想和微处理(器)技术可以用软件来改变和实现硬件的功能。微处理器和各种可编程大规模集成专用电路、半定制器件的大量应用,开创了一个崭新的应用世界,以至广泛影响着并在逐步改变着人类的生产、生活和学习等社会活动。

2.计算机硬件平台性能的大幅度提高,使很多复杂算法和方便使用的界面得以实现,大大提高了工作效率,给复杂嵌入式系统辅助设计提供了物理基础。

3.高性能的EDA综合开发工具(平台)得到长足发展,而且其自动化和智能化程度不断提高,为复杂的嵌入式系统设计提供了不同用途和不同级别集编辑、布局、布线、编译、综合、模拟、测试、验证和器件编程等一体化的易于学习和方便使用的开发集成环境。

4.硬件描述语言HDL(Hardware Description Language)的发展为复杂电子系统设计提供了建立各种硬件模型的工作媒介。它的描述能力和抽象能力强,给硬件电路,特别是半定制大规模集成电路设计带来了重大的变革。

5.软件技术的进步,特别是嵌入式实时操作系统EOS(Embedded Operation System)的推出,为开发复杂嵌入式系统应用软件提供了底层支持和高效率开发平台。EOS是一种功能强大、应用广泛的实时多任务系统软件。它一般都具有操作系统所具有的各种系统资源管理功能,用户可以通过应用程序接口API调用函数形式来实现各种资源管理。用户程序可以在EOS的基础上开发并运行。

单片机的发展历史:20世纪70年代,微电子技术正处于发展阶段,集成电路属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功能比较简单,一般均把CPU、RAM有的还包括了一些简单的I/O口集成到芯片上,它还需配上外围的其他处理电路方才构成完整的计算系统。类似的单片机还有Z80微处理器。

1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计算机,并推向市场。它以体积小,功能全,价格低赢得了广泛的应用,为单片机的发展奠定了基础,成为单片机发展史上重要的里程碑。

在MCS-48的带领下,其后,各大半导体公司相继研制和发展了自己的单片机。到了80年代初,单片机已发展到了高性能阶段,象INTEL公司的MCS-51系列,Motorola公司的6801和6802系列等等,此外,日本的著名电气公司NEC和HITACHI都相继开发了具有自己特色的专用单片机。

80年代,世界各大公司均竞相研制出品种多功能强的单片机,约有几十个系列,300多个品种,此时的单片机均属于真正的单片化,大多集成了CPU、RAM、ROM、数目繁多的I/O接口、多种中断系统,甚至还有一些带A/D转换器的单片机,功能越来越强大,RAM和ROM的容量也越来越大,寻址空间甚至可达64kB,可以说,单片机发展到了一个全新阶段,应用领域更广泛,许多家用电器均走向利用单片机控制的智能化发展道路。

1982年以后,16位单片机问世,代表产品是INTEL公司的MCS-96系列,16位单片机比起8位机,数据宽度增加了一倍,实时处理能力更强,主频更高,集成度达到了12万只晶体管,RAM增加到了232字节,ROM则达到了8kB,并且有8个中断源,同时配置了多路的A/D转换通道,高速的I/O处理单元,适用于更复杂的控制系统。

九十年代以后,单片机获得了飞速的发展,世界各大半导体公司相继开发了功能更为强大的单片机。美国Microchip公司发布了一种完全不兼容MCS-51的新一代PIC系列单片机,引起了业界的广泛关注,特别它的产品只有33条精简指令集吸引了不少用户,使人们从INTEL的111条复杂指令集中走出来。PIC单片机获得了快速的发展,在业界中占有一席之地。

随后的事情,熟悉单片机的人士都比较清楚了,更多的单片机种蜂拥而至,MOTOROLA公司相继发布了MC68HC系列单片机,日本的几个著名公司都研制出了性能更强的产品,但日本的单片机一般均用于专用系统控制,而不象INTEL等公司投放到市场形成通用单片机。例如NEC公司生产的uCOM87系列单片机,其代表作uPC7811是一种性能相当优异的单片机。MOTOROLA公司的MC68HC05系列其高速低价等特点赢得了不少用户。

1990年美国INTEL公司推出了80960超级32位单片机引起了计算机界的轰动,产品相继投放市场,成为单片机发展史上又一个重要的里程碑。

我国开始使用单片机是在1982年,短短五年时间里发展极为迅速。1986年在上海召开了全国首届单片机开发与应用交流会,有的地区还成立了单片微型计算机应用协会,那是全国形成的第一次高潮。截止今日,单片机应用技术飞速发展,我们上因特网输入一个“单片机”的搜 索,将会看到上万个介绍单片机的网站,这还不包括国外的。随着微电子技术的高速发展,单片机在国民经济的各个领域得到了广泛的应用。首先,单片机技术不断进步,出现了许多新的技术和新的产品。本文以Intel MCS-51系列单片机为模型,阐述单片机的一般原理、应用以及单片机的影响,较为详细地介绍当前主要单片机厂家的产品系列及发展动向。主要内容包括:单片机的基本原理、硬件结构、发展趋势以及具体的应用介绍。本文主要目的是想让大家对单片机有一个更为深入的了解。

科技的进步需要技术不断的提升。试想,曾经一块大而复杂的模拟电路花费了您巨大的精力,繁多的元器件增加了您的成本。而现在,只需要一块几厘米见方的单片机,写入简单的程序,就可以使您以前的电路简单很多。相信您在使用并掌握了单片机技术后,不管在您今后开发或是工作上,一定会带来意想不到的惊喜。

数字钟的发展:1350年6月6日,意大利人乔万尼·德·党笛制造了世界上第一台结构简单的机械打点多功能数字钟,由于数字钟报价便宜,功能齐全,因此很快受到众多用户的喜爱。1657年,荷兰人惠更斯率先把重力摆引入机械钟,进而才创立了摆钟。

到了20世纪以后,随着电子工业的快速发展,电池驱动钟、交流电钟、电机械表、指针式石英电子钟表以及数字显示式石英钟表相继问世,数字钟报价非常合理,再加上产品的不断改良,多功能数字钟的日差已经小于0.5秒,因此受到广大用户的青睐。尤其是原子钟的出现,它是使用原子的振动来控制计时的,是目前世界上最精准的时钟,即使经过将近100万年,其偏差也不可能超过1秒钟。

多功能数字钟最早是在欧洲中世纪的教堂,属于完全机械式结构,动力使用重锤,打点钟声完全使用人工进行撞击铸钟,所以当时一个多功能数字钟工程在建筑与机械结构方面是非常复杂的,进而影响了数字钟报价。进入电子时代以后,电子多功能数字钟也相继问世。我国电子多功能数字钟行业从80年代开始渐渐成长壮大,目前不仅数字钟报价合理,在技术和应用水平上也已经达到世界同类水平。

4. 国内外现状和发展趋势:

纵观单片机的发展过程,可以预示单片机的发展趋势,大致有:

1.低功耗CMOS化

MCS-51系列的8031推出时的功耗达630mW,而现在的单片机普遍都在100mW左右,随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了CMOS(互补金属氧化物半导体工艺)。象80C51就采用了HMOS(即高密度金属氧化物半导体工艺)和CHMOS(互补高密度金属氧化物半导体工艺)。CMOS虽然功耗较低,但由于其物理特征决定其工作速度不够高,而CHMOS则具备了高速和低功耗的特点,这些特征,更适合于在要求低功耗象电池供电的应用场合。所以这种工艺将是今后一段时期单片机发展的主要途径。

2.微型单片化

现在常规的单片机普遍都是将中央处理器(CPU)、随机存取数据存储(RAM)、只读程序存储器(ROM)、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路)、WDT(看门狗)、有些单片机将LCD(液晶)驱动电路都集成在单一的芯片上,这样单片机包含的单元电路就更多,功能就越强大。甚至单片机厂商还可以根据用户的要求量身定做,制造出具有自己特色的单片机芯片。

此外,现在的产品普遍要求体积小、重量轻,这就要求单片机除了功能强和功耗低外,还要求其体积要小。现在的许多单片机都具有多种封装形式,其中SMD(表面封装)越来越受欢迎,使得由单片机构成的系统正朝微型化方向发展。

3.主流与多品种共存

现在虽然单片机的品种繁多,各具特色,但仍以80C51为核心的单片机占主流。所以C8051为核心的单片机占据了半壁江山。而Microchip公司的PIC精简指令集(RISC)也有着强劲的发展势头,中国台湾的HOLTEK公司近年的单片机产量与日俱增,与其低价质优的优势,占据一定的市场分额。此外还有MOTOROLA公司的产品,日本几大公司的专用单片机。在一定的时期内,这种情形将得以延续,将不存在某个单片机一统天下的垄断局面,走的是依存互补,相辅相成、共同发展的道路。

芯片介绍和元件说明,基本都是一样的,不用想了,要过查重率,就多写一些自己的想法,看法,自己的分析,也可以去请教一下别人,相关知识的具体原理,然后用自己话表述出来,就可以了。慢慢来吧,我也是过来人...

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1.适合PCB的穿孔安装; 2.比TO型封装(图1)易于对PCB布线; 3.操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/15.24×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。 Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。 以0.5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:7.8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1.适合用SMT表面安装技术在PCB上安装布线; 2.封装外形尺寸小,寄生参数减小,适合高频应用; 3.操作方便; 4.可靠性高。 在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装 90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。 BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: 1.I/O引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 3.厚度比QFP减少1/2以上,重量减轻3/4以上; 4.寄生参数减小,信号传输延迟小,使用频率大大提高; 5.组装可用共面焊接,可靠性高; 6.BGA封装仍与QFP、PGA一样,占用基板面积过大; Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术 BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按0.5mm焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。 1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:1.1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 1.满足了LSI芯片引出脚不断增加的需要; 2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。 曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 1.封装延迟时间缩小,易于实现组件高速化; 2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 3.可靠性大大提高。 随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

基因芯片研究历程论文

您到中国知网 里面有全部的论文库,全文的,可直接注册后下载,祝您愉快!我帮您下载了一篇很短的,不知道是否对您有用,其他的可看参考资料后自行下载哦。科技传播杂志吴卓颖编辑,有其他需要咨询的可直接加我。祝您好运哦!临床微生物检验的快速诊断技术研究进展关键词:分子生物 来源: CHKD期刊全文库《当代医学》2099年第16期(本文作者:解放军第二五二医院 李苏利)目前感染性疾病仍然是危害人类健康的重大隐患。随着新发和突发感染性疾病的涌现,曾已被控制的感染性疾病的卷土重来,造成感染性疾病的微生物种类日益复杂,常见的病原微生物的威胁不仅没有消除而且出现了大量耐药菌株,加上新的病原微生物的出现,给临床诊断和治疗带来了极大的困扰。严峻的现实给病原微生物的检测和诊断提出了更高的要求。世界卫生组织(WHO)对临床微生物实验室提出:临床微生物实验室尽可能把目标集中在快速诊断方面。利用一切手段将实验室数据转化为临床有用的信息。1 自动化鉴定技术的应用临床微生物的实验室检查以染色、培养、生化鉴定等为主,尤其是分离培养,目前仍然是许多病原体检测的“金标准”。但是,由于细菌的生长繁殖需要一定时间,使检测周期难以缩短。此外,很多病原体的培养受营养要求、抗生素应用及病原体含量等因素的影响,用传统人工方法操作复杂、检测周期长,敏感性与特异性也有限。为解决这一问题,各种自动化培养和鉴定系统不断产生,随着计算机的发展和应用,先后出现了许多自动与半自动细菌鉴定与药敏系统,统称为“微生物鉴定专家系统”,这些系统大大提高了临床实验室的工作效率和检测的准确性,传统鉴定方法也在逐步改进,并在一定程度内加快了检测速度。2 免疫学方法免疫学技术是利用特异性抗原抗体反应,检测病原微生物,简化了病原微生物的鉴定步骤,备受关注。各大文献数据库提供的数据显示,几乎建立了所有病原体的血清学检测方法,表明该方法已成为一种微生物实验室常用的成熟的检测技术。2.1 凝集技术 常用的凝集技术有乳胶凝集技术和血清凝集技术。用于微生物的初步诊断、分型、鉴定,例如霍乱弧菌和志贺菌的分型,大肠杆菌O.57:H7、脑膜炎球菌等,短时间内就可完成鉴定。该诊断法具有操作简便、快速、准确、特异性强、阳性率高等特点。2.2 荧光抗体技术 荧光抗体技术是根据抗原抗体反应具有高度的特异性,把荧光素作为抗原标记物,在荧光显微镜下检查呈现荧光的特异性抗原抗体复合物及其存在部位。荧光抗体技术的主要特点是特异性强、速度快。吕治林等报道由美国同行所作的用炭疽杆菌细胞壁(CW-DFA)和荚膜抗原(CAP-DFA)特异的荧光标记的单克隆抗体,可快速鉴别炭疽杆菌。2.3 酶免疫技术 酶联免疫技术现已被广泛地应用于多种病原微生物的检测,可检测样本中病原体抗原,也可检测机体中的抗体成分。应用单克隆抗体结合硝酸纤维膜上的斑点ELISA技术,已成功地自患者的咽拭标本中同时检出可能存在的肺炎支原体、流感病毒、副流感病毒、呼吸道合胞病毒和腺病毒。Gehring等用酶联免疫化学发光法(ELIMCL)测定大肠杆菌O.57:H7。许多疾病的检测都已有商品化的试剂盒出现。3 分子生物学技术随着分子生物学技术的迅速发展,使人们对微生物的认识从外部表型逐渐转向内部基因结构特征,微生物的检测也从生化、免疫方法转向基因水平检测,对于那些难培养和不可能培养的微生物,可直接通过获得基因信息,给微生物学的检测带来崭新的领域,为科学快速发展提供了新的机遇。3.1 PCR技术 PCR具有高度敏感性和特异性,在病原体检测上,对形态和生化反应不典型的微生物鉴定,常规方法常难以准确检测,即使出现大量死菌PCR也能做出准确的鉴定;不受混合标本的影响,可轻易从含有大量正常菌群的标本中鉴定病原菌;对于生长缓慢或难于培养的微生物鉴定,如分枝杆菌、幽门螺杆菌、支原体、衣原体、螺旋体等,目前其他方法阳性检出率很低,PCR技术对这类菌株的鉴定有重要意义。但是常规PCR技术也存在一些问题,如出现假阳性、形成引物二聚体,检测操作也比较繁琐,中间污染环节多,易出现假阳性或假阴性结果。为了克服这些不足,一些新的PCR技术渐衍生出来并被用于实践,如巢式PCR、逆转录PCR、多重PCR、通用引物PCR(UP-PCR)、PCR单链构象多态性分析、随机引物DNA多态性扩增(RAPD)、限制性长度多态性分析(RFLP)、实时荧光定量PCR等。3.2 基于16S rRNA与GyaB的检测技术3.2.1 以16S rRNA为靶基因进行检测 16S rRNA存在于所有原核生物细胞中,它们相对稳定且有较高的拷贝数,其序列中含可变区及高度保守区,因此可设计群、属、种特异性的探针。现阶段各种常见细菌的16S rRNA基因几乎全部测序完成,16SrRNA编码基因的这些特点使之成为较理想的细菌基因分类的靶序列,逐渐成为细菌鉴定、分类的“金标准”。3.2.2 以促旋酶(g yras e)B亚单位基因靶基因进行检测GyaB除了具有16S rRNA所具有的优点外,其基因进化率高于核糖体基因,还有GyaB在近乎全部细菌中呈单拷贝形式。有研究表明,基于GyaB序列构建的进化图谱与基于DNA-DNA杂交的相一致。因此,GyaB的分析特别适合于菌株的区别和鉴定。Fukushima等以GyaB基因为靶基因设计基因芯片来检测分枝杆菌属,实验结果显示此芯片鉴别分枝杆菌达到种水平,并且能区别密切相关的菌种,这对临床治疗具有重要的参考价值,说明分析GyaB基因序列对于在菌种水平鉴别细菌是快速而有效的方法。3.3 多位点序列分型 多位点序列分型(MLST)是近年来发展很快的分子生物学分析方法,具有很高的分辨能力,既适于分子流行病学研究,也可用于分子进化学的研究。MLST越来越多地被作为能进行国际间菌株比较的常用工具,建立一种更为准确的分析系统方法,并且用于研究出现的不同的抗生素抵抗株,相关特殊基因型及新的变异株引起的疾病流行病学分析和种群结构的研究。3.4 环介导等温扩增技术(LAMP) 环介导等温扩增技术(LAMP),是近年来发展出的一种敏感、特异、方便快捷的核酸扩增技术。与传统方法相比,不需要热循环为等温扩增,且由于反应中产生大量的副产物-白色焦磷酸镁沉淀,扩增产物可不经过电泳,通过肉眼观察或浊度计即可判定结果。因此LAMP是一种不需要热循环仪、肉眼即可判定结果的高度特异和敏感的DNA扩增方法。该法针对靶基因的6个区域设计4条特异引物,利用一种链置换聚合酶在恒温条件(65℃左右)保温约60min即可完成核酸扩增反应,扩增出特征性梯状条带。还可通过设计两条环引物可使反应速度提升1/2~1/3。LAMP技术可用于病原微生物的现场快速检测、战时野外及基层普及应用。4 分子生物传感器分子生物传感器是将新兴的传感器技术和分子诊断技术相结合而成的一种新技术,是现代临床诊断发展的一个新方向。由于生物传感器检测准确、操作简便等特点,近年来已经在许多领域取得了很大的进展,在感染类疾病诊断、药物筛选、未来战争生物战剂监测等领域获得了广泛的应用,其中临床中用于病原体检测的以DNA生物传感器最为常见。华裔科学家陈建柱最新制成的生物传感器,仅需20s时间即可检测出微量SARS病毒、天花病毒及炭疽杆菌等的存在,从而达到早期诊断的目的。5 基因芯片基因芯片是高通量的群体指标分析系统,基因芯片技术是一项全新的技术,它以一次性检查上万个基因的优势,被誉为是基因功能研究中最伟大的一项发明。它以许多特定的寡核苷酸片断或基因片断作探针,有规律地排列、固定在诸如硅片、 玻璃片、尼龙膜等固相介质上形成生物分子点阵,以达到一次试验同时检测多种疾病或多种样品的目的。基于高通量、微型化和平行分析的特点,基因芯片在微生物病原体检测、种类鉴定、功能基因检测、基因分型、突变检测和基因组监测等研究领域中发挥着越来越重要的作用。目前,许多细菌、病毒等病原体的基因组测序已经完成,将许多代表各种微生物的特殊基因制成1张芯片,经反转录就可检测样本中有无病原体基因的表达及表达水平,由此判断病人感染病原、感染进程以及宿主反应等,这样就大大提高了检测效率。6 蛋白指纹图谱技术蛋白质指纹图谱技术是随着蛋白质组学兴起的一种新技术。近年来,越来越多的学者意识到有必要从蛋白质水平来研究微生物。蛋白质是细菌功能的执行者,细菌种类繁多,不同的蛋白种类决定细菌千变万化的功能和特征。1996年,Clayin等采用MALDITOF MS质谱成功鉴定了革兰阴性和革兰阳性细菌,表明不同属种的细菌具有不同的蛋白指纹图谱,同一种细菌具有相似的蛋白指纹图谱,根据细菌蛋白指纹图谱可对细菌进行快速鉴定。中科院微生物所唐宏研究员等利用“蛋白质质谱指纹图谱”最新技术及其检测办法,可以分析得出SARS与非SARS病人血清中的蛋白质成分变化。这种检测SARS病毒方法经北京天坛医院临床证实,阳性率接近95%,特异性将近96%,能在病人发烧的第一天即可以得出满意的检测结果。有专家称蛋白质指纹图谱技术标志着一种划时代的诊断模式的诞生。随着计算机技术的不断发展,临床病原菌检测将向着高度自动化和开发简便的快速检测技术两个方向发展。分子生物学技术通过自动化仪器的使用,将在病原菌诊断、鉴定和耐药基因检测方面发挥巨大的的作用。随着多学科交叉时代的到来,最终将彻底改变临床病原菌检测的现状和传统观念,实现高效高质、快速统一。

李宝键教授在“展望21世纪的生命科学”一文中谈到基因组研究计划研究重要性时,引用《Scinence》上“第三次技术命革”中的一句话:“下一个传大时代将是基因组革命时代,它正处于初期阶段。”在当前的研究水平上,只要涉及生命体重要现象的课题,几乎离不开对基因及其作用的分析。2000年6月26日,英美两国首脑会同公私两大人基因组测序集团向世人正式宣告,人基因组的工作草图已绘制完成。科学家把这作为生命科学进入新时代的标志,即后基因组时代(post-genome era)。因此有必要对基因组及其研究内容和进展作一个了解。1基因组学及其研究内容基因组(GENOME)一词是1920年Winkles从GENes和chromosOMEs组成的,用于描述生物的全部基因和染色体组成的概念。1953年Watson和Crick发现DNA双螺旋结构,标志分子生物学的诞生,随着各学科的发展,当前生物学研究进入新的进代,在生物大分子水平上将不同的研究技术和手段有机的结合以攻克生物学难题。基因组研究可以理解为:(1)基因表达概况研究,即比较不同组织和不同发育阶段、正常状态与疾病状态,以及体外培养的细胞中基因表达模式的差异,技术包括传统的RTPCR,RNase保护试验,RNA印迹杂交,但是其不足是一次只能做一个。新的高通量表达分析方法包括微点阵(microarrary),基因表达序列分析(serial analysis of gene expression,SAGE),DNA芯片(DNA chip)等;(2)基因产物-蛋白质功能研究,包括单个基因的蛋白质体外表达方法,以及蛋白质组研究;(3)蛋白质与蛋白质相互作用的研究,利用酵母双杂交系统,单杂交系统(one-hybrid system),三杂交系统(thrdee-hybrid system)以及反向杂交系统(reverse hybrid system)等。1986年美国科学家Thomas Roderick提出了基因组学(Genomics),指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱),核苷酸序列分析,基因定位和基因功能分析的一门科学。因此,基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。随着1990年人类基因组计划(Human Genome Project,HGP)的实施并取得巨大成就,同时模式生物(model organisms)基因组计划也在进行,并先后完成了几个物种的序列分析,研究重心从开始揭示生命的所有遗传信息转移到从分子整体水平对功能的研究上。第一个标志是功能基因组学的产生,第二个标志是蛋白质组学(proteome)的兴起。2 结构基因组学研究内容结构基因组学(structural genomics)是基因组学的一个重要组成部分和研究领域,它是一门通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学。遗传信息在染色体上,但染色体不能直接用来测序,必须将基因组这一巨大的研究对象进行分解,使之成为较易操作的小的结构区域,这个过程就是基因作图。根据使用的标志和手段不同,作图有三种类型,即构建生物体基因组高分辨率的遗传图谱、物理图谱、转录图谱。2.1遗传图谱通过遗传重组所得到的基因在具体染色体上线性排列图称为遗传连锁图。它是通过计算连锁的遗传标志之间的重组频率,确定他们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示。绘制遗传连锁图的方法有很多,但是在DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。早期使用的多态性标志有RFLP(限制性酶切片段长度多态性)、RAPD(随机引物扩增多态性DNA)、AFLP(扩增片段长度多态性);80年代后出现的有STR(短串联重复序列,又称微卫星)DNA遗传多态性分析和90年代发展的SNP(单个核苷酸的多态性)分析。2.2物理图谱物理图谱是利用限制性内切酶将染色体切成片段,再根据重叠序列确定片段间连接顺序,以及遗传标志之间物理距离[碱基对(bp)或千碱基(kb)或兆碱基(Mb)的图谱。以人类基因组物理图谱为例,它包括两层含义,一是获得分布于整个基因组30 000个序列标志位点(STS,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)。将获得的目的基因的cDNA克隆,进行测序,确定两端的cDNA序列,约200bp,设计合成引物,并分别利用cDNA和基因组DNA作模板扩增;比较并纯化特异带;利用STS制备放射性探针与基因组进行原位杂交,使每隔100kb就有一个标志;二是在此基础上构建覆盖每条染色体的大片段:首先是构建数百kb的YAC(酵母人工染色体),对YAC进行作图,得到重叠的YAC连续克隆系,被称为低精度物理作图,然后在几十个kb的DNA片段水平上进行,将YAC随机切割后装入粘粒的作图称为高精度物理作图.2.3转录图谱利用EST作为标记所构建的分子遗传图谱被称为转录图谱。通过从cDNA文库中随机条区的克隆进行测序所获得的部分 cDNA的5'或3'端序列称为表达序列标签(EST),一般长300~500bp左右。一般说,mRNA的3' 端非翻译区(3'-UTR)是代表每个基因的比较特异的序列,将对应于3'-UTR的EST序列进行RH定位,即可构成由基因组成的STS图。截止到1998年12月底,在美国国家生物技术信息中心(NCBI)数据库中分布的植物EST的数目总和已达几万条,所测定的人基因组的EST达180万条以上。这些EST不仅为基因组遗传图谱的构建提供了大量的分子标记,而且来自不同组织和器官的EST也为基因的功能研究提供了有价值的信息。此外,EST计划还为基因的鉴定提供了候选基因(candidantes)。其不足之处在于通过随机测序有时难以获得那些低丰度表达的基因和那些在特殊环境条件下(如生物胁迫和非生物胁迫)诱导表达的基因。因此,为了弥补EST计划的不足,必须开展基因组测序。通过分析基因组序列能够获得基因组结构的完整信息,如基因在染色体上的排列顺序,基因间的间隔区结构,启动子的结构以及内含子的分布等。3功能基因组学研究功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。比较基因组学(Comparative Genomics)是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。利用模式生物基因组与人类基因组之间编码顺序上和结构上的同源性,克隆人类疾病基因,揭示基因功能和疾病分子机制,阐明物种进化关系,及基因组的内在结构。目前从模式生物基因组研究中得出一些规律:模式生物基因组一般比较小,但编码基因的比例较高,重复顺序和非编码顺序较少;其G+C%比较高;内含子和外显子的结构组织比较保守,剪切位点在多种生物中一致;DNA 冗余,即重复;绝大多数的核心生物功能由相当数量的orthologous蛋白承担;Synteny连锁的同源基因在不同的基因组中有相同的连锁关系等。模式生物基因组研究揭示了人类疾病基因的功能,利用基因顺序上的同源性克隆人类疾病基因,利用模式生物实验系统上的优越性,在人类基因组研究中的应用比较作图分析复杂性状,加深对基因组结构的认识。 此外,可利用诱变技术测定未知基因,基因组多样性以及生物信息学(Bioinformatics)的应用。4蛋白质组学研究基因是遗传信息的携带者,而全部生物功能的执行者却是蛋白质,它有自身的活动规律,因而仅仅从基因的角度来研究是远远不够的,必须研究由基因转录和翻译出蛋白质的过程,才能真正揭示生命的活动规律,由此产生了研究细胞内蛋白质组成及其活动规律的新兴学科——蛋白质组学(proteomics)。蛋白质组(proteome)是由澳大利亚Macquarie大学的Wilkins和Williams于1994首先提出,并见于1995年7月的“Electrophonesis”上,指全部基因表达的全部蛋白质及其存在方式,是一个基因、一个细胞或组织所表达的全部蛋白质成分,蛋白质组学是对不同时间和空间发挥功能的特定蛋白质群体的研究。它从蛋白质水平上探索蛋白质作用模式、功能机理、调节控制以及蛋白质群体内相互作用,为临床诊断、病理研究、药物筛选、药物开发、新陈代谢途径等提供理论依据和基础。 蛋白质组学旨在阐明生物体全部蛋白质的表达模式及功能模式,内容包括鉴定蛋白质表达、存在方式(修饰形式)、结构、功能和相互作用方式等。它不同于传统的蛋白质学科,是在生物体或其细胞的整体蛋白质水平上进行的,从一个机体或一个细胞的蛋白质整体活动来揭示生命规律。但由于蛋白质具有多样性和可变性,复杂性,低表达蛋白质难以检测等,应该明确其研究的艰难性。总体上研究可以分为两个方面:对蛋白质表达模式(或蛋白质组成)研究,对蛋白质功能模式(目前集中在蛋白质相互作用网络关系)研究。对蛋白质组研究可以提供如下信息:从基因序列预测的基因产物是否以及何时被翻译;基因产物的相对浓度;翻译后被修饰的程度等。由于蛋白质数目小于基因组中开放阅读框(ORF, open reading frame)数目,因此提出功能蛋白质组学(functional proteomics),功能蛋白质指在特定时间、特定环境和试验条件下基因组活跃表达的蛋白质,只是总蛋白质组的一部分。功能蛋白质组学研究是位于对个别蛋白质的传统蛋白质研究和以全部蛋白质为研究对象的蛋白质研究之间的层次,是细胞内与某个功能有关或某种条件下的一群蛋白质。对蛋白质组成分析鉴定,要求对蛋白质进行表征化,即分离、鉴定图谱化,包括两个步骤:蛋白质分离和鉴定。双向凝胶电泳(2-DGE)和质谱(MS)是主要的技术。近年来,有关技术和生物信息学在不断并迅速开发和发展中。蛋白质组研究技术体系包括:样品制备;双向聚丙烯酰胺凝胶电泳(two-dimensional polyacrylamide gel electrophoresis,2-D PAGE);蛋白质的染色;凝胶图像分析;蛋白质分析;蛋白质组数据库。其中三大关键是:双向凝胶电泳技术、质谱鉴定、计算机图像数据处理与蛋白质数据库。5与基因组学相关学科诞生随着基因组学研究的不断深入,人类有望揭示生命物质世界的各种前所未知的规律,完全揭开生命之谜,进而驾驶生命,使之为人类的社会经济服务。基因组研究和其它学科研究交叉,促进一些学科诞生,如营养基因组学(nutritional genomics),环境基因组学(environmental genomics),药物基因组学(phamarcogenomics),病理基因组学(pathogenomics),生殖基因组学(reproductive genomics),群体基因组学(population genomics)等。其中,生物信息学正成为备受关注的新型产业的支撑点。生物信息学是以生物大分子为研究,以计算机为工具,运用数学和信息科学的观点、理论和方法去研究生命现象、组织和分析呈指数级增长的生物信息数据的一门科学。研究重点体现在基因组学和蛋白质两个方面。首先是研究遗传物质的载体DNA及其编码的大分子量物质,以计算机为工具,研究各种学科交叉的生物信息学的方法,找出其规律性,进而发展出适合它的各种软件,对逐步增长的DNA 和蛋白质的序列和结构进行收集、整理、发布、提取、加工、分析和发现。由数据库、计算机网络和应用软件三大部分组成。其关注的研究热点包括:序列对比,基因识别和DNA序列分析,蛋白质结构预测,分子进化,数据库中知识发现(Knowledge Discovery in Database, KDD)。这一领域的重大科学问题有:继续进行数据库的建立和优化;研究数据库的新理论、新技术、新软件;进行若干重要算法的比较分析;进行人类基因组的信息结构分析;从生物信息数据出发开展遗传密码起源和生物进化研究;培养生物信息专业人员,建立国家生物医学数据库和服务系统[5]。20世纪末生物学数据的大量积累将导致新的理论发现或重大科学发现。生物信息学是基于数据库与知识发现的研究,对生命科学带来革命性的变化,对医药、卫生、食品、农业等产业产生巨大的影响。邹承鲁教授在谈论21世纪的生命科学时讲到,生物学在20世纪已取得巨大的发展,数理科学广泛而又深刻地深入生物学的结果在新的高度上揭示了生命的奥妙,全面改变了生物学的面貌。生物学不仅是当前自然科学发展的热点,进入21世纪后将仍然如此。科学家称21世纪是信息时代。生物科学和信息科学结合,无疑是多个学科发展的必然结果。

芯片的知识产权保护论文题目

嗨 乡村问题太失望 太失望了 太深奥

现在网络是侵犯知识产权的一块热地,大到windous系统的国家级盗版,中及淘宝网、当当网(上面的假货不用我举例吧)上的售假,小至个人站长们对内对外的很多贸易网站(仿牌lv、chanel之类)。这里的对知识产权的侵犯,民事、刑事都可能涉及(刑法第213条开始,你自己看看,这还只是商标)。我们国家对知识产权的重视也日益进步(可以从中国必将成为世界性国家方面论述);网络也必是未来的热点;现实中来看,很多电商们正如蛀虫般侵犯着国内、国外的知识产权。所以,你真可以在结合网络与知识产权的关系这一块发挥一下。至于名字,可以试试《电子商务领域知识产权保护对未来中国经济影响》。

母课题的名称是:知识产权与淘宝商城子课题:1、淘宝商城更名天猫:论企业商标战略2、企业进驻淘宝商城的商标注册与商标维权3、浅议淘宝网店图片盗用的版权侵权赔偿问题4、淘宝商城的版权保护问题研究以上论文题目是为知识产权量身打造的,我正愁没论文交呢,楼主写好了能不能上传来借鉴一下?

可以写写知识产权在中国的现在与发展,好好思考一下如何让国人有更强的知识产权的意识。

相关百科

热门百科

首页
发表服务