首页

> 学术发表知识库

首页 学术发表知识库 问题

基于机器视觉的工件缺陷检测论文

发布时间:

基于机器视觉的工件缺陷检测论文

计算机视觉测试一般是跑3D图像或动画来测的。这个主要是测试电脑的显卡性能。1、一般看工艺看核心位宽看显存看核心频率这些。2、然后很多都需要看SP单元等其他参数。3、显存只是增加处理图像的数据容量跟速度。

计算机毕业网专业计算机毕业设计网站五年老站

我给你一个题目,如果你写出来了,我保你论文得优秀。因为当年我就是选这个题目得的优秀。刚才我在网上搜了一下,网上还是没有与这个系统相关的论文。 《高考最低录取分数线查询系统》基本思想很简单,现在的高考分数线查询是很繁琐的,需要先把分数查出来,然后根据录取指南再找你的分数能被录取的学校,高考过的都知道,高考报考指南是一本多么厚的书。所以,这个系统的思想就是:你用所有高校近十年的录取分数线建立一个数据库,然后开发一个系统,当你输入查询命令的时候(查询命令可以用1,2,3这三个数来代替,用flog实现;输入1,查询的是符合你所输入的分数以下的所有高校信息;输入2,查询的是符合你所输入分数段之间的所有高校信息;输入3,查询大于你所给的分数线的高校信息。)当然,你可以再加上一些附加的功能。大致思想就这些。 郑州今迈网络部竭诚为你解答,希望我的答案能帮到你!

之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价

机器视觉缺陷检测论文

就是深度的对人眼的视觉成像进行模拟,毕竟产品还是面相大众来出售的,这样是最合理的方式

个人觉这样讲有点不太专业,缺陷、瑕疵、针孔只是我们需要检测的内容,并不是我们的产品名称,也不太专业,机器视觉技术的迅速发展,但相关知识的普及还不到位,对产品的名称也没统一的认识。比较稍微专业点的叫法应该是”机器视觉系统“或“视觉检测设备”,在系统设备中可以分为用于检测视觉检测系统、用于测量的视觉测量系统、用于定位的视觉定位系统等等,不管用途是什么,是用于什么检测内容,我们都可以通称为“机器视觉系统”或“视觉检测设备”,这样的话也便于需求企业找到专业的系统服务商。

主要是通过视觉机器设备来检测的,以国辰机器人为例,国辰表面缺陷检测系统使用人工智能技术,结合工业相机可在材料生产过程中全面检测材料表面质量,正确提供疵点各项参数,可检测断经、断纬、破洞、油污、经纬污、双纬、稀弄、粗节纱、空织、松紧经、圈纬、小散丝、松纬、经起毛、开口不清等瑕疵,统计和分析各类疵点,提供生产统计质检报告,为生产提质增效。

国辰表面瑕疵检测系统使用人工智能技术,结合工业相机可在材料生产过程中全面检测材料表面质量,正确提供疵点各项参数,可检测断经、断纬、破洞、油污、经纬污、双纬、稀弄、粗节纱、空织、松紧经、圈纬、小散丝、松纬、经起毛、开口不清等瑕疵,统计和分析各类疵点,提供生产统计质检报告,为生产提质增效。国辰机器人研发的表面瑕疵检测系统具体功能有:1、品种经过多次的测试,可检测常见缺陷,检测率高.2、能提高降等率,降级索赔率,经济效益高。以电子布为例,产量为168万米/台,总降等率为5%,GC Vision 拦截率为60%.3、所有疵点进行有效记录并自动保存相关图片.4、自动形成疵点统计报表.5、侦测到疵点时,可根据要求进行相应的动作(记录、报警、停机等).6、显示疵点的具体经纬位置和图片,形成疵点地图,为后期开裁提供基础数据.7、历史记录追溯:每卷布的各类信息可保存,可追溯.

基于机器视觉的工件尺寸检测论文

系统主要是针对于需要对工件外观尺寸、形状特征等进行精确测量和记录的场合而设计开发的;系统能够自动识别工件,并测量所需的特征参数;系统硬件选型及装配方案灵活,功能完善,操作简便◆ 应用范围 系统可广泛使用于需要对工件类产品进行工件识别、尺寸测量、外观特征分析、缺陷检测、坐标位置校正、旋转角度测量等场合;可适用于各类尺寸、形状的工件类产品,精度最高可以达到微米级;在各种类型流水线、生产台、工作台上都可装配使用。 ◆系统性能特点ü 硬件选型及装配方案设计灵活,可根据工件类型及现场情况来选用不同设计方案,包括光源种类、相机种类及分辨率、安装距离等ü 采集工作模式灵活可选:对于单个工件,可以选用面阵相机实现工件到位后硬件或者软件方式触发采集;对于较长的纺织品、印刷品等的检测,则可以选用线阵相机连续采集处理ü 具有面向不同待检产品的自适应学习能力,从而可以广泛适用于各种特定类型、尺寸的工件、缺陷或其它产品特征ü 具有各种功能模块,包括工件识别、尺寸测量、形状分析、缺陷检测、位置校正等,用户可根据自身需求进行选择搭配,并单独定制扩展模块以实现特殊需求ü 可根据用户需求提供各种人性化分析处理功能,包括检测结果数据保存及分析对比功能、图像或录像保存、提供剔除信号或报警信号等。ü 提供网络化功能扩展模块,检测数据、图像等信息可通过网络存储在服务器,方便多个客户端机器同时进行采集检测、保存和调用数据。QCROBOT拥有5年视觉检测项目的研发经验,在包装、制卡、印刷、饮料制造等行业取得了大量的研究成果。嘉铭拥有专业的机器视觉实验室,在番禺建立了视觉设备研发基地,为客户提供全面的机器视觉解决方案。QCROBOT可提供此机器视觉模块及工程解决方案。QCROBOT是一家由国防科技人员与中国图像协会联合创办的高科技企业组织。企业成立以来,一直致力于把机器视觉应用于产品生产,品质保证的开拓工作。客户广泛分布于电子加工、包装、印刷、纺织、机床、模具、陶瓷、制药、广告等设备制造业,以及军工、航空航天等特殊行业。除常规销售业务外,我公司还承接各种自动化设备的设计及制造以及机器人制造解决方案的制定和实施,为客户提供设备制定、系统集成、设计、加工等更完善的服务,QCROBOT可提供此机器视觉模块及工程解决方案。

在检测技术中,被测物体的外形往往具有某种几何形状,通常情况下,其长度、角度、圆孔直径、弧度等都是典型的待测几何参数。在传统的尺寸测量中,典型的方法是利用卡尺或千分尺在被测工件上针对某个参数进行多次测量后取平均值。这些检测设备或检测手段具有测量简便、成本低廉的优点,但测量精度低、测试速度慢,测试数据无法及时处理,不适合自动化的生产。 基于机器视觉的尺寸测量方法具有成本低、精度高、安装简易等优点,其非接触性、实时性、灵活性和精确性等特点可以有效地解决传统检测方法存在的问题。另外,基于机器视觉的尺寸测量方法不但可以获得尺寸参数,还可以根据测量结果及时给出反馈信息,修正加工参数,避免产生更多的次品,减少企业的损失。 被测物的尺寸测量通常包括多个参数尺寸,如距离测量、圆测量、角度测量、线弧测量区域测量等。基于机器视觉的自动检测和判定系统,可以对多种型号的孔径的内外侧尺寸、桥宽、槽宽等参数进行自动测量和判定。 尺寸测量是机器视觉技术普遍的应用领域,特别在自动化制造行业中,包括物件的长度、角度、孔径、直径、弧度等都是典型的物件待测几何参数。因为传统尺寸测量精度低、速度慢,无法满足大规模自动化生产的需要。而基于机器视觉的尺寸测量技术属于非接触性测量,具有检测精度高、速度快、成本低、便于安装等优点。基于机器视觉的尺寸测量技术,不但可以获取在线产品的尺寸参数,同时可对产品作出在线实时判定和分拣,应用十分普遍。 测量工件的各种尺寸参数,如长度测量、圆测量、角度测量、线弧测量、区域测量等,需要检测出工件相关区域的基本几何特征。因此,在提取出零件的边缘或零件的角点之后,如何检测工件的几何特征、形状参数、位置尺寸等是机器视觉系统软件在后台工作的主要内容。软件实现工件尺寸检测包括图像采集、图像处理、特征提取、尺寸计算以及结果输出等,其基本流程如下所示。                                                         图像采集→图像处理→特征提取→尺寸计算→输出结果

之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价

机器视觉缺陷与发展研究论文

机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。一个典型的工业机器视觉应用系统包括如下部分:光源,镜头,CCD照相机,图像处理单元(或图像捕获卡),图像处理软件,监视器,通讯/输入输出单元等。首先采用摄像机获得被测目标的图像信号, 然后通过A/ D 转换变成数字信号传送给专用的图像处理系统,根据像素分布、亮度和颜色等信息,进行各种运算来抽取目标的特征,然后再根据预设的判别准则输出判断结果,去控制驱动执行机构进行相应处理。机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。 机器视觉强调实用性,要求能够适应工业现场恶劣的环境,要有合理的性价比、通用的工业接口、较高的容错能力和安全性,并具有较强的通用性和可移植性。 它更强调实时性,要求高速度和高精度。视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果,如尺寸数据。上位机如PC和PLC实时获得检测结果后,指挥运动系统或I/O系统执行相应的控制动作,如定位和分选。从视觉系统的运行环境分类,可分为PC-BASED系统和PLC-BASED系统。基于PC的系统利用了其开放性,高度的编程灵活性和良好的Windows界面,同时系统总体成本较低。以美国DATA TRANSLATION公司为例,系统内含高性能图像捕获卡,一般可接多个镜头,配套软件方面,从低到高有几个层次,如Windows95/98/NT环境下C/C++编程用DLL,可视化控件activeX提供VB和VC++下的图形化编程环境,甚至Windows下的面向对象的机器视觉组态软件,用户可用它快速开发复杂高级的应用。在基于PLC的系统中,视觉的作用更像一个智能化的传感器,图像处理单元独立于系统,通过串行总线和I/O与PLC交换数据。系统硬件一般利用高速专用ASIC或嵌入式计算机进行图像处理,系统软件固化在图像处理器中,通过类似于游戏键盘的简单装置对显示在监视器中的菜单进行配置,或在PC上开发软件然后下载。基于PLC的系统体现了可靠性高、集成化,小型化、高速化、低成本的特点,代表厂商为日本松下、德国Siemens等。德国Siemens公司在工业图像处理方面拥有超过20年经验积累,SIMATIC VIDEOMAT是第一个高性能的单色和彩色图像处理系统,并成为SIMATIC自动化系统中极重要的产品。而99年推出的SIMATIC VS710是业内第一个智能化的、一体化的、带PROFIBUS接口的、分布式的灰度级工业视觉系统,它将图像处理器、CCD、I/O集成在一个小型机箱内,提供PROFIBUS的联网方式(通讯速率达12Mbps)或集成的I/O和RS232接口。更重要的,通过PC WINDOWS下的Pro Vision参数化软件进行组态,VS 710第一次将PC的灵活性,PLC的可靠性、分布式网络技术,和一体化设计结合在一起,使得西门子在PC和PLC体系之间找到了完美的平衡。机器视觉系统在印刷包装中的应用 自动印刷品质量检测设备采用的检测系统多是先利用高清晰度、高速摄像镜头拍摄标准图像,在此基础上设定一定标准;然后拍摄被检测的图像,再将两者进行对比。CCD线性传感器将每一个像素的光量变化转换成电子信号,对比之后只要发现被检测图像与标准图像有不同之处,系统就认为这个被检测图像为不合格品。印刷过程中产生的各种错误,对电脑来说只是标准图像与被检测图像对比后的不同,如污迹、墨点色差等缺陷都包含在其中。最早用于印刷品质量检测的是将标准影像与被检测影像进行灰度对比的技术,较先进的技术是以RGB三原色为基础进行对比。全自动机器检测与人眼检测相比,区别在哪里?以人的目视为例,当我们聚精会神地注视某印刷品时,如果印刷品的对比色比较强烈,则人眼可以发现的、最小的缺陷,是对比色明显、不小于0.3mm的缺陷;但依靠人的能力很难保持持续的、稳定的视觉效果。可是换一种情况,如果是在同一色系的印刷品中寻找缺陷,尤其是在一淡色系中寻找质量缺陷的话,人眼能够发现的缺陷至少需要有20个灰度级差。而自动化的机器则能够轻而易举地发现0.10mm大小的缺陷,即使这种缺陷与标准图像仅有一个灰度级的区别。但是从实际使用上来说,即便是同样的全色对比系统,其辨别色差的能力也不同。有些系统能够发现轮廓部分及色差变化较大的缺陷,而有些系统则能识别极微小的缺陷。对于白卡纸和一些简约风格的印刷品来说,如日本的KENT烟标、美国的万宝路烟标,简单地检测或许已经足够了,而国内的多数印刷品,特别是各种标签,具有许多特点,带有太多的闪光元素,如金、银卡纸,烫印、压凹凸或上光印刷品,这就要求质量检测设备必须具备足够的发现极小灰度级差的能力,也许是5个灰度级差,也许是更严格的1个灰度级差。这一点对国内标签市场是至关紧要的。标准影像与被检印刷品影像的对比精确是检测设备的关键问题,通常情况下,检测设备是通过镜头采集影像,在镜头范围内的中间部分,影像非常清晰,但边缘部分的影像可能会产生虚影,而虚影部分的检测结果会直接影响到整个检测的准确性。从这一点来说,如果仅仅是全幅区域的对比并不适合于某些精细印刷品。如果能够将所得到的图像再次细分,比如将影像分为1024dpi X 4096dpi或2048dpi X 4096dpi,则检测精度将大幅提高,同时因为避免了边缘部分的虚影,从而使检测的结果更加稳定。采用检测设备进行质量检测可提供检测全过程的实时报告和详尽、完善的分析报告。现场操作者可以凭借全自动检测设备的及时报警,根据实时分析报告,及时对工作中的问题进行调整,或许减少的将不仅仅是一个百分点的废品率,管理者可以依据检测结果的分析报告,对生产过程进行跟踪,更有利于生产技术的管理。因为客户所要求的,高质量的检测设备,不仅仅是停留在检出印刷品的好与坏,还要求具备事后的分析能力。某些质量检测设备所能做的不仅可以提升成品的合格率,还能协助生产商改进工艺流程,建立质量管理体系,达到一个长期稳定的质量标准。凹版印刷机位置控制及产品检测由设置在生产线上的摄像机连续摄取印制品的视频图像,摄像的速度在30 帧/s 以下且可调。摄像机采集到的图像,首先进行量化,将模拟信号转化成数字信号,从中抽取一张有效代表镜头内容的关键帧,并将其显示在显示器上。对于一帧图像,可采用对静止图像的分析方法来处理,通过尺寸测量和多光谱分析可识别出视频图像上各色标,得出色标间距和色标的颜色参数以及一些其他相关。由于各种因素影响,会出现各种各样的噪声,如高斯噪声、椒盐噪声及随机噪声等。噪声给图像处理带来很多困难,它对图像分割,特征提取,图像识别,具有直接的影响,因此实时采集的图像需进行滤波处理。图像滤波要求能去除图像以外的噪声,同时又要保持图像的细节。当噪声为高斯噪声时,最常使用的是线性滤波器,易于分析和实现;但线性滤波器对椒盐噪声的滤波效果很差,传统的中值滤波器能减少图像中的椒盐噪声,但效果不算理想,即充分分散的噪声被去掉,而彼此靠近的噪声会被保留下来,所以当椒盐噪声比较严重时,它的滤波效果明显变坏。本系统改进型中值滤波法。该方法首先求得噪声图像窗口中去除最大和最小灰度值像素后的中值,然后计算该中值与对应的像素灰度值的差,再与阈值相比较以确定是否用求得的值代替该像素的灰度值。图像分割在该阶段中检测出各色标并与背景分离,物体的边缘是由灰度不连续性所反映的L 边缘种类可分为两种,其一是阶跃性边缘,它两边的像素的灰度值有显著不同;其二是屋顶状边缘,它位于灰度值从增加到减小的变化转折点L对于阶跃性边缘,其二阶方向导数在边缘处呈零交叉,因而可用微分算子来做边缘检测算子。微分算子类边缘检测法类似于高空间域的高通滤波,有增加高频分量的作用,这类算子对噪声相当敏感,对于阶跃性边缘,通常可用的算子有梯度算子Sobel 算子和Kirsh 算子。对于屋顶状边缘可用拉普拉斯变换和Kirsh 算子。由于色标为长方形,且相邻边缘灰度级相差较大,故采用边缘检测来分割图像。这里采用Sobert 边缘子来进行边缘检测,它是利用局部差分算子来寻找边缘,能较好的将色标分离出来。在实际的检测过程中,采用彩色图像边缘检测方法,选择合适的彩色基(如强度、色度、饱和度等)来进行检测。根据印刷机的类型特点,即印刷机各色的颜色和版图的特点,进行多阈值处理,得到各色的二值图。将分割后的图像进行测量,通过测量值来识别物体,由于色标为形状规则的矩形,所以可对下述特征进行提取:(1) 由像素计算矩形面积,(2) 矩形度,(3) 色度(H ) 和饱和度(S ),然后根据各色标的间隔的像素点数量得到色标间的间距,与设定值比较,得到两者的差值,共进行m 次测量,取平均差值,给数字交流伺服调节部分提供相应的调节信号。以调节色辊的相对位置,从而消除或减少印刷错位。在特征提取时,对图像进行多光谱图像分析,可以定量地表示色标,如彩色数图像中像素的颜色,采用HIS 格式得到各色标颜色信息的两个参数:色度和饱和度,以此来检测油墨的质量。对各色二值图再进行统计计算或与标准图形进行样板匹配,测量印刷过程中墨屑等参数。印刷机由开卷机放卷运行依次经过各印刷单元,进行各色的印刷和烘干,由收卷机进行收卷L 每色印刷都会在印料的边沿印上以供套色用的色标,该色标线水平10mm,宽1 mm ,每个相邻颜色的标志线在套印精确时应相互平行,垂直(纵向)相巨20 mm,由设置在生产线上的摄影机连续摄取印制品的视频图像,通过尺寸测量和多光谱分析可识别出视频图像上各色标,得出色标间距和色标的颜色参数L如果相邻两色色标间隔大于或小于20 mm ,则说明套印出现了偏差。将该偏差信号送给伺服变频驱动单元,驱动交流伺服电机,使相应的套色修正辊ML上下移动来延长或缩短印料自上一单元印刷版辊到该单元印刷版辊的行程来动态修正。 在现代包装工业自动化生产中,涉及到各种各样的检查、测量,比如饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别等。这类应用的共同特点是连续大批量生产、对外观质量的要求非常高。通常这种带有高度重复性和智能性的工作只能靠人工检测来完成,我们经常在一些工厂的现代化流水线后面看到数以百计甚至逾千的检测工人来执行这道工序,在给工厂增加巨大的人工成本和管理成本的同时,仍然不能保证100%的检验合格率(即零缺陷),而当今企业之间的竞争,已经不允许哪怕是0。1%的缺陷存在。有些时候,如微小尺寸的精确快速测量,形状匹配,颜色辨识等,用人眼根本无法连续稳定地进行,其它物理量传感器也难有用武之地。这时,人们开始考虑把计算机的快速性、可靠性、结果的可重复性,从而引入了机器人视觉技术。一般地说,首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,如:面积、长度、数量、位置等;最后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。机器视觉的特点是自动化、客观、非接触和高精度,与一般意义上的图像处理系统相比,机器视觉强调的是精度和速度,以及工业现场环境下的可靠性。 机器视觉极适用于大批量生产过程中的测量、检查和辨识,如:对IC表面印字符的辨识,食品包装上面对生产日期的辨识,对标签贴放位置的检查。 在机器视觉系统中;关键技术有光源照明技术、光学镜头、摄像机、图像采集卡、图像处理卡和快速准确的执行机构等方面。在机器视觉应用系统中;好的光源与照明方案往往是整个系统成败的关键;起着非常重要的作用;它并不是简单的照亮物体而已。 光源与照明方案的配合应尽可能地突出物体特征量;在物体需要检测的部分与那些不重要部份之间应尽可能地产生明显的区别;增加对比度;同时还应保证足够的整体亮度;物体位置的变化不应该影响成像的质量。在机器视觉应用系统中一般使用透射光和反射光。 对于反射光情况应充分考虑光源和光学镜头的相对位置、物体表面的纹理;物体的几何形状、背景等要素。光源的选择必须符合所需的几何形状、照明亮度、均匀度、发光的光谱特性等;同时还要考虑光源的发光效率和使用寿命。光学镜头相当于人眼的晶状体;在机器视觉系统中非常重要。 一个镜头的成像质量优劣;即其对像差校正的优良与否;可通过像差大小来衡量;常见的像差有球差、彗差、像散、场曲、畸变、色差等六种。摄像机和图像采集卡共同完成对物料图像的采集与数字化。 高质量的图像信息是系统正确判断和决策的原始依据;是整个系统成功与否的又一关键所在。 在机器视觉系统中;CCD 摄像机以其体积小巧、性能可靠、清晰度高等优点得到了广泛使用。 CCD 摄像机按照其使用的CCD 器件可以分为线阵式和面阵式两大类。 线阵CCD 摄像机一次只能获得图像的一行信息;被拍摄的物体必须以直线形式从摄像机前移过;才能获得完整的图像;因此非常适合对以一定速度匀速运动的物料流的图像检测;而面阵CCD 摄像机则可以一次获得整幅图像的信息。图像信号的处理是机器视觉系统的核心;它相当于人的大脑。 如何对图像进行处理和运算;即算法都体现在这里;是机器视觉系统开发中的重点和难点所在。 随着计算机技术、微电子技术和大规模集成电路技术的快速发展;为了提高系统的实时性;对图像处理的很多工作都可以借助硬件完成;如DSP、专用图像信号处理卡等;软件则主要完成算法中非常复杂、不太成熟、尚需不断探索和改变的部分。从产品本身看,机器视觉会越来越趋于依靠PC技术,并且与数据采集等其他控制和测量的集成会更紧密。且基于嵌入式的产品将逐渐取代板卡式产品,这是一个不断增长的趋势。主要原因是随着计算机技术和微电子技术的迅速发展,嵌入式系统应用领域越来越广泛,尤其是其具备低功耗技术的特点得到人们的重视。另外,嵌入式操作系统绝大部分是以C语言为基础的,因此使用C高级语言进行嵌入式系统开发是一项带有基础性的工作,使用高级语言的优点是可以提高工作效率,缩短开发周期,更主要的是开发出的产品可靠性高、可维护性好、便于不断完善和升级换代等。因此,嵌入式产品将会取代板卡式产品。由于机器视觉是自动化的一部分,没有自动化就不会有机器视觉,机器视觉软硬件产品正逐渐成为协作生产制造过程中不同阶段的核心系统,无论是用户还是硬件供应商都将机器视觉产品作为生产线上信息收集的工具,这就要求机器视觉产品大量采用标准化技术,直观的说就是要随着自动化的开放而逐渐开放,可以根据用户的需求进行二次开发。当今,自动化企业正在倡导软硬一体化解决方案,机器视觉的厂商在未来5-6年内也应该不单纯是只提供产品的供应商,而是逐渐向一体化解决方案的系统集成商迈进。在未来的几年内,随着中国加工制造业的发展,对于机器视觉的需求也逐渐增多;随着机器视觉产品的增多,技术的提高,国内机器视觉的应用状况将由初期的低端转向高端。由于机器视觉的介入,自动化将朝着更智能、更快速的方向发展。

机器视觉可以看作是与人工智能和模式识别密切相关的一个子学科或子领域。从我个人的研究经验看,限制机器视觉发展的瓶颈是多方面的,其中最重要的可以归结为三个方面:计算能力不足、认知理论未明以及精确识别与模糊特征之间的自相矛盾。 1.机器视觉面向的研究对象主要是图像和视频,其特点是数据量庞大、冗余信息多、特征空间维度高,同时考虑到真正的机器视觉面对的对象和问题的多样性,单一的简单特征提取算法(如颜色、空间朝向与频率、边界形状等等)难以满足算法对普适性的要求,因此在设计普适性的特征提取算法时对计算能力和存储速度的要求是十分巨大的,这就造成了开发成本的大幅度提高。 2. 如何让机器认知这个世界?这一问题目前没有成熟的答案,早期的人工智能理论发展经历了符号主义学派、行为主义学派、连接主义学派等一系列的发展但都没有找到令人满意的答案,目前较新的思想认为应该从分析、了解和模拟人类大脑的信息处理功能去构建智能机器视觉系统,但神经科学的发展目前只能做到了解和模拟大脑的一个局部,而不是整体(当然计算能力限制也是原因之一)。事实上,我们对人是如何对一个目标或场景进行认知的这一问题仍停留在定性描述而非定量描述上。 3. 机器视觉系统经常被人诟病的问题之一就是准确性。以十年前如火如荼的人脸识别算法为例,尽管一系列看似优秀的算法不断问世,但目前为止在非指定大规模样本库下进行人脸识别的准确率仍然无法满足实际应用的需求,因此无法取代指纹或虹膜等近距接触式生物特征识别方法。这一问题的出现并非偶然。因为目标越精细,越复杂,信息越大,则其模糊性和不确定性也越强。人类之所以能够较好的对人脸进行识别,其实也是以牺牲一定的准确性为代价的。而机器视觉在做的事情一方面想要借鉴人脑或人眼系统的灵感去处理复杂而庞大的信息流,另一方面又想摒除人脑在模式识别方面存在的精确性不足的缺陷。这显然是一种一厢情愿的做法。 综合以上三点,机器视觉的发展在短期内难有重大突破,当前的实用技术仍然还是会集中在特定性任务或特定性目标的识别算法的开发上。

计算机视觉领域的突出特点是其多样性与不完善性。这一领域的先驱可追溯到更早的时候,但是直到20世纪70年代后期,当计算机的性能提高到足以处理诸如图像这样的大规模数据时,计算机视觉才得到了正式的关注和发展。然而这些发展往往起源于其他不同领域的需要,因而何谓“计算机视觉问题”始终没有得到正式定义,很自然地,“计算机视觉问题”应当被如何解决也没有成型的公式。尽管如此,人们已开始掌握部分解决具体计算机视觉任务的方法,可惜这些方法通常都仅适用于一群狭隘的目标(如:脸孔、指纹、文字等),因而无法被广泛地应用于不同场合。对这些方法的应用通常作为某些解决复杂问题的大规模系统的一个组成部分(例如医学图像的处理,工业制造中的质量控制与测量)。在计算机视觉的大多数实际应用当中,计算机被预设为解决特定的任务,然而基于机器学习的方法正日渐普及,一旦机器学习的研究进一步发展,未来“泛用型”的电脑视觉应用或许可以成真。人工智能所研究的一个主要问题是:如何让系统具备“计划”和“决策能力”?从而使之完成特定的技术动作(例如:移动一个机器人通过某种特定环境)。这一问题便与计算机视觉问题息息相关。在这里,计算机视觉系统作为一个感知器,为决策提供信息。另外一些研究方向包括模式识别和机器学习(这也隶属于人工智能领域,但与计算机视觉有着重要联系),也由此,计算机视觉时常被看作人工智能与计算机科学的一个分支。

深度学习是人工智能的热点发展方向之一,将推动我们步入控制设计和工业物联网的新台阶。机器视觉在工业控制领域极其重要,借助这些技术,使用数据驱动部署复杂的机器和设备。为了比竞争对手更好地服务其目标客户,当今的嵌入式设计团队正在寻求机器学习(ML)和深度学习(DL)等新技术,以便在有限的资源下按时向市场开发和部署复杂的机器和设备。借助这些技术,团队可以使用数据驱动的方法构建复杂的单系统或多系统模型。 ML和DL算法不是使用基于物理学的模型来描述系统的行为,而是透过数据推断出系统的模型。 传统ML算法适用于处理数据量相对较小且问题的复杂度较低的情况。 但如果是像自动驾驶汽车这样的大数据问题呢? 解决这个挑战需要采用DL技术。 本文介绍了这种新兴技术将如何推动我们进入控制设计和工业物联网(IIoT)应用的下一个时代。

基于机器视觉技术的表面检测论文

题目列出来就不错了。内容估计要花钱买吧

超声波振动测量仪!

计算机毕业网专业计算机毕业设计网站五年老站

我这有一键式影像检测仪

可以测量表面瑕疵

可以测量表面缺陷

基本可以满足你的要求。

相关百科

热门百科

首页
发表服务