谁能把下面这段改造C618普通车床的文字,用AutoCAD制作一下,然后截大图发过来,急急急急急急急急急 高分悬赏 !!!!!!!!!!!!!!!(毕业论文赶时间)qq 3627923751、进给机构改造 拆掉普通丝杆、光杆进给箱、溜板箱,换上滚珠丝杠螺母副;安装螺距6的滚珠丝杠,X和Z轴配置三相混合式步进电机,其减速箱速比为1︰4,为提高加工精度,采用双片齿轮错齿法消除间隙。另外,在2个轴的床身上分别按装限位保护和机械原点用的接近开关。纵向进给机构的改造:利用原机床进给箱的安装孔和销孔安装齿轮箱体。滚珠丝杠仍安装在原丝杠的位置,两端采用原固定方式,这样可减小改装现场,并由于滚珠丝杠的摩擦系数小于原丝杠,从而使纵向进给整体刚性略优于以前。横向进给机构改造:保留原手动机构,用于调整操作,原有的支撑结构也保留,步进电机、齿轮箱体安装在中拖板的后侧。纵、横向齿轮箱和丝杠全部加防护罩,以保持防尘和机床整体美观。改造后的横向进给系统如图2所示。2、换刀机构的改造改造 在车床加工中常用外圆刀、内园刀、切割刀、螺纹切削刀4种,因此,电动刀架选择四工位免抬刀式。拆除原手动刀架和小拖板,装上数控电动刀架上。3、主轴进给机构改造 保留原主轴变速箱和手动换档机构,增加主轴电机正反转、电磁制动的电控装置,加装光电编码器并使其与主轴保持1︰1的比例关系。编码器与车床主轴之间用弹性元件联结,具体用波纹管联结。三、电气系统改造设计1、主控电路的设计主轴变速以及正、反转控制采用变频器调速控制,数控刀架正、反转通过改变电路相序来实现,2、主控电路设计主控电路完成数控系统、主轴电机、数控刀架以及驱动系统供电控制。数控系统I/0接口主要实现与编码器接口、步进电机控制接口、数控刀架接口和开关量输入输出接口。主轴编码器反馈信号接口。9芯D型插座,接受主轴编码器的头脉冲、码道脉冲,所选编码器每转脉冲应为1024P。X轴、Z轴及主轴控制接口。15芯D型插座,用来控制X轴、Z轴步进电机的运动和主轴的转速。开关量输入输出接口。37芯D型插座,开关量输入输出类型:①冷却液控制口;②辅助输入输出口;③刀架控制信号;④主轴控制信号;⑤主轴换档控制口;⑥超程信号输入口;⑦回零信号输入口。RS-232通讯接口。9芯D型插座,用于连接RS232C接口的计算机或外部设备。
机械设计课程设计原始资料一、设计题目热处理车间零件输送设备的传动装备二、运动简图图11—电动机 2—V带 3—齿轮减速器 4—联轴器 5—滚筒 6—输送带三、工作条件该装置单向传送,载荷平稳,空载起动,两班制工作,使用期限5年(每年按300天计算),输送带的速度容许误差为 ±5%.四、原始数据滚筒直径D(mm):320运输带速度V(m/s):0.75滚筒轴转矩T(N•m):900五、设计工作量1减速器总装配图一张2齿轮、轴零件图各一张3设计说明书一份六、设计说明书内容1. 运动简图和原始数据2. 电动机选择3. 主要参数计算4. V带传动的设计计算5. 减速器斜齿圆柱齿轮传动的设计计算6. 机座结构尺寸计算7. 轴的设计计算8. 键、联轴器等的选择和校核9. 滚动轴承及密封的选择和校核 10. 润滑材料及齿轮、轴承的润滑方法11. 齿轮、轴承配合的选择12. 参考文献七、设计要求1. 各设计阶段完成后,需经指导老师审阅同意后方能进行下阶段的设计;2. 在指定的教室内进行设计. 一. 电动机的选择 一、电动机输入功率 二、电动机输出功率 其中总效率为查表可得Y132S-4符合要求,故选用它。 Y132S-4(同步转速 ,4极)的相关参数 表1额定功率 满载转速 堵转转矩额定转矩 最大转矩额定转矩 质量二. 主要参数的计算一、确定总传动比和分配各级传动比传动装置的总传动比 查表可得V带传动单级传动比常用值2~4,圆柱齿轮传动单级传动比常用值为3~5,展开式二级圆柱齿轮减速器 。初分传动比为 , , 。二、计算传动装置的运动和动力参数 本装置从电动机到工作机有三轴,依次为Ⅰ,Ⅱ,Ⅲ轴,则1、各轴转速2、各轴功率3、各轴转矩表2项目 电机轴 高速轴Ⅰ 中间轴Ⅱ 低速轴Ⅲ转速 1440 576 135.753 62.706功率 5.5 5.28 5.070 4.869 转矩 36.476 87.542 356.695 1038.221传动比 2.5 4.243 3.031 效率 0.96 0.96 0.922 三 V带传动的设计计算一、确定计算功率 查表可得工作情况系数 故 二、选择V带的带型根据 ,由图可得选用A型带。三、确定带轮的基准直径 并验算带速 1、初选小带轮的基准直径 。查表8-6和8-8可得选取小带轮的基准直径 2、验算带速 按计算式验算带的速度 因为 ,故此带速合适。3、计算大带轮的基准直径 按式(8-15a)计算大带轮的基准直径 根据教材表8-8,圆整得 。4、确定V带的中心距 和基准直径 (1)按计算式初定中心距 (2)按计算式计算所需的基准长度 =1364mm查表可选带的基准长度 (3)按计算式计算实际中心距 中心距的变化范围为 。5、验算小带轮上的包角 6、计算带的根数(1)计算单根V带的额定功率 由 查表可得 根据 和A型带,查表可得 、 、 。故 (2)计算V带的根数Z 故取V带根数为6根7、计算单根V带的初拉力的最小值 查表可得A型带的单位长度质量 应使带的实际初拉力 。8、计算压轴力 压轴力的最小值为 四 减速器斜齿圆柱齿轮传动的设计计算一、高速级齿轮1、选定齿轮类型、精度等级、材料及齿数(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。(2)运输装置为一般工作机器,速度不高,故选用7级精度。(3)材料选择:查表可选择小齿轮材料为40 (调质),硬度为280HBS;大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。(4)选小齿轮齿数 ,大齿轮齿数 ,取 (5)选取螺旋角,初选螺旋角 2、按齿面接触强度设计,按计算式试算即 (1)确定公式内的各计算数值①试选 ,由图10-26 , 则有 ②小齿轮传递转矩 ③查图10-30可选取区域系数 查表10-7可选取齿宽系数 ④查表10-6可得材料的弹性影响系数 。⑤查图10-21d得按齿面硬度选取小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 。⑥按计算式计算应力循环次数⑦查图可选取接触疲劳寿命系数 , 。⑧计算接触疲劳许用应力取失效概率为1%,安全系数 ,按计算式(10-12)得(2)计算相关数值①试算小齿轮分度圆直径 ,由计算公式得 ②计算圆周速度 ③计算齿宽 及模数 ④计算总相重合度 ⑤计算载荷系数 查表可得使用系数 ,根据 ,7级精度,查表10-8可得动载系数 ,由表10-4查得 的值与直齿轮的相同,为1.419 , 故载荷系数 ⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得 ⑦计算模数 3、按齿根弯曲强度设计,按计算式(10-17)试算即 (1)确定公式内的各计算数值①、计算载荷系数 ②根据纵向重合度 ,查图10-28可得螺旋角影响系数 。③查图可选取区域系数 , , 则有 ④查表取应力校正系数 , 。⑤查表取齿形系数 , 。(线性插值法)⑥查图10-20C可得小齿轮的弯曲疲劳强度极限 ,大齿轮的弯曲疲劳强度极限 。⑦查图可取弯曲疲劳寿命系数 , 。⑧计算弯曲疲劳许用应力 ,取弯曲疲劳安全系数 ,按计算式(10-22)计算得⑨计算大、小齿轮的 并加以计算大齿轮的数值较大。(2)设计计算 对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取 ,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径 来计算应有的齿数,于是有 取 ,则 4、几何尺寸计算(1)计算中心距 将中心距圆整为 。(2)按圆整后的中心距修正螺旋角 因 值改变不多,故参数 、 、 等不必修正。(3)计算大、小齿轮的分度圆直径(4)计算齿轮宽度 圆整后取 , 。二、低速级齿轮1、选定齿轮类型、精度等级、材料及齿数(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。(2)运输装置为一般工作机器,速度不高,故选用7级精度。(3)材料选择,在同一减速器各级小齿轮(或大齿轮)的材料,没有特殊情况,应选用相同牌号,以减少材料品种和工艺要求,故查表可选择小齿轮材料为40 (调质),硬度为52HRC;大齿轮材料为45钢(调质),硬度为45HRC.(4)选小齿轮齿数 ,大齿轮齿数 (5)选取螺旋角,初选螺旋角 2、按齿面接触强度设计,按计算式试算即 (1)确定公式内的各计算数值①试选 ②小齿轮传递转矩 ③查表10-7可选取齿宽系数 , 查图10-26可选取区域系数 , , 则有 ④查表可得材料的弹性影响系数 。⑤查图得按齿面硬度选取小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 。⑥按计算式计算应力循环次数⑦查图可选取接触疲劳寿命系数 , 。⑧计算接触疲劳许用应力取失效概率为1%,安全系数 ,于是得(2)计算相关数值①试算小齿轮分度圆直径 ,由计算公式得 ②计算圆周速度 ③计算齿宽 及模数 ④计算总相重合度 ⑤计算载荷系数 查表可得使用系数 ,根据 ,7级精度,查表可得动载系数 , , , 故载荷系数 ⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得 ⑦计算模数 3、按齿根弯曲强度设计,按计算式试算即 (1)确定公式内的各计算数值①计算载荷系数 ②根据纵向重合度 ,查图可得螺旋角影响系数 。③计算当量齿数④查表可取齿形系数 , 。⑤查表可取应力校正系数 , 。(线性插值法)⑥查图可得小齿轮的弯曲疲劳强度极限 ,大齿轮的弯曲疲劳强度极限 。⑦查图可取弯曲疲劳寿命系数 , 。⑧计算弯曲疲劳许用应力取弯曲疲劳安全系数 ,按计算式计算⑨计算大、小齿轮的 并加以计算大齿轮的数值较大。(2)设计计算 对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取 ,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径 来计算应有的齿数,于是有 取 ,则 4、几何尺寸计算(1)计算中心距 将中心距圆整为 。(2)按圆整后的中心距修正螺旋角 因 值改变不多,故参数 、 、 等不必修正。(3)计算大、小齿轮的分度圆直径(4)计算齿轮宽度 圆整后取 , 。五 轴的设计计算一、高速轴的设计1、求作用在齿轮上的力高速级齿轮的分度圆直径为d 2、选取材料可选轴的材料为45钢,调质处理。3、计算轴的最小直径,查表可取 应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使 与带轮相配合,且对于直径 的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。故取 。4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)根据前面设计知大带轮的毂长为93mm,故取 ,为满足大带轮的定位要求,则其右侧有一轴肩,故取 ,根据装配关系,定 (2)初选流动轴承7307AC,则其尺寸为 ,故 , 段挡油环取其长为19.5mm,则 。(3) 段右边有一定位轴肩,故取 ,根据装配关系可定 ,为了使齿轮轴上的齿面便于加工,取 。(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则 (5)计算可得 、(6)大带轮与轴的周向定位采用普通平键C型连接,其尺寸为 ,大带轮与轴的配合为 ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6.求两轴承所受的径向载荷 和 带传动有压轴力 (过轴线,水平方向), 。将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系图一 图二 图三 [注]图二中 通过另加弯矩而平移到作用轴线上图三中 通过另加转矩而平移到指向轴线同理 6 、求两轴承的计算轴向力 和 对于 型轴承,轴承的派生轴向力 故 7、求轴承的当量动载荷 和 对于轴承1 对于轴承2 查表可得径向载荷系数和轴向载荷系数分别为:对于轴承1 , 对于轴承2 , 8、求该轴承应具有的额定载荷值因为 则有 故 符合要求。9、弯矩图的计算水平面: , N,则其各段的弯矩为:BC段: 由弯矩平衡得M- CD段: 由弯矩平衡得铅垂面: 则其各段弯矩为:AB段: 则 BC段: 则 CD段: 则 做弯矩图如下 从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表 表3载荷 水平面 垂直面 支持力 弯矩 总弯矩 扭矩 10、按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环变应力,取 ,轴的计算应力 前已选定轴的材料为45钢,调质处理,查表可得 ,因此 ,故安全。11、键的选择和校核高速轴上与大带轮相配合的轴上选择键连接,由于大带轮在轴端部,故选用单圆头平键(C型)根据 ,从表6-1中查得键的截面尺寸为:宽度: 高度: ,由轮毂宽度并参考键的长度系列,取键长为: 键、轴承和轮毂材料都为钢查表可得 取其平均植, 键的工作长度 键和轮毂键槽的接触高度 则 ,故合适。所以选用:键C GB/T 1096-200312、确定轴上圆角和倒角尺寸取轴端倒角为 ,各轴肩处圆角半径为2。二、中间轴的设计1、求作用在齿轮上的力因为高速轴的小齿轮与中速轴的大齿轮相啮合,故两齿轮所受的 、 、 都是作用力与反作用力的关系,则大齿轮上所受的力为 中速轴小齿轮上的三个力分别为2、选取材料可选轴的材料为45钢,调质处理。3、计算轴的最小直径,查表可取 轴的最小直径显然是安装轴承处,为使轴承便于安装,且对于直径 的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。故取 。4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)初选滚动轴承7008AC,则其尺寸为: 故 用挡油环定位轴承,故 段右边有一定位轴肩,故 低速级小齿轮与箱体内壁距离为16 ,与箱体内壁距离为8 ,故左边挡油环长为24 ,则 (2)低速级小齿轮轮毂为95 ,即 取两齿面的距离为8 ,即 (3)右边也用挡油环定位轴承和低速级大齿轮,故 。 段轴长略短与其齿轮毂长,又毂长为55 ,故取 、 、 各有一定位轴肩,故依次可取 (4)计算可得 6、轴上零件的周向定位低速级大齿轮的轴采用普通平键A型连接。其尺寸为 齿轮与轴的配合为 ,滚动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为 。求两轴承所受的径向载荷 和 将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系图一 图二 图三 7、求两轴承的计算轴向力 和 由齿轮中计算得, 对于 型轴承,轴承的派生轴向力 算得 所以 8、求轴承的当量动载荷 和 对于轴承1 对于轴承2 查表可得径向载荷系数和轴向载荷系数分别为:对于轴承1 , 对于轴承2 , 9、求该轴承应具有的额定载荷值因为 则有 故 符合要求。10、弯矩图的计算水平面: 。AB段: 则 即 BC段: 则 CD段: 则 。铅垂面: AB段:BC段:CD段:做弯矩图如下从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表 表4载荷 水平面 垂直面 支持力 弯矩 总弯矩 扭矩 11、按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环变应力,取 ,轴的计算应力 前已选定轴的材料为45钢,调质处理,查表可得 , ,故安全。 12、键的选择和校核一般的8级以上精度的齿轮有空心精度要求,应选用平键连接,由于齿轮不在轴端,故选用圆头普通平键(A型) 取键长 ,键、轴承和轮毂材料都为钢查表可得 取其平均植, 键的工作长度 键和轮毂键槽的接触高度 则 ,故合适。所以选用:键 GB/T 1096-200313、确定轴上圆角和倒角尺寸取轴端倒角为 ,各轴肩处圆角半径见365页……三、低速轴的设计1、求作用在齿轮上的力因为高速轴的小齿轮与中速轴的大齿轮相啮合,故两齿轮所受的 、 、 都是作用力与反作用力的关系,则2、选取材料可选轴的材料为45钢,调质处理。3、计算轴的最小直径,查表可取 轴的最小直径显然是安装联轴器处轴的直径 ,为了使所选的轴直径 与联轴器的孔径相配合,且对于直径 的轴有两个键槽时,应增大10%-15%,然后将轴径圆整,故取 。并选取所需的联轴器型号联轴器的计算转矩 ,查表可得,考虑到转矩变化小,故取 其公称转矩为 。半联轴器的孔径 ,长度 ,半联轴器与轴配合的毂孔长度 4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度①为了满足半联轴器安装的轴向定位要求,Ⅰ-Ⅱ轴段右端需制出一轴肩,故Ⅱ-Ⅲ段的直径 。 ②查手册99页,选用 型弹性柱销联轴器L③初选滚动轴承7051AC,则其尺寸为 故 左边轴承安装处有挡油环,取其长度为20mm,则 ④挡油环右侧用轴肩定位,故可取 ⑤取齿面与箱体内壁距离 轴承座距箱体内壁距离为 。用挡油环对齿面定位时,为了使油环可靠的压紧齿轮, 段应略短于轮毂宽度,故取 所以取 ⑥齿轮左侧用轴肩定位,取 则 ,轴换宽度 ,取 。⑦由装配关系可确定 ⑧计算得 , , 。6、轴上零件的周向定位 齿轮、半联轴器与轴的周向定位均采用普通平键 型 连接。轴与齿轮连接采用平键 ,L=70 ,齿轮轮毂与轴的配合为 。同样半联轴器与轴连接,采用键 。半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合保证的,此外选轴的直径尺寸公差为 。7、轴上齿轮所受切向力 ,径向力 ,轴向力 , 。8、求两轴承所受的径向载荷 和 将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系图一 图二 图三 9、求两轴承的计算轴向力 和 对于 型轴承,轴承的派生轴向力 故 10、求轴承的当量动载荷 和 , 。查表可得径向载荷系数和轴向载荷系数分别为:对于轴承1 , 对于轴承2 , 因轴承运转载荷平稳,按表13-6, ,取 则 。 。11、求该轴承应具有的额定载荷值因为 则有 预期寿命 故合格12、弯矩图的计算水平面: , .AB段:弯矩为0BC段:CD段:铅垂面: , .AB段弯矩为0BC段:CD段:做弯矩图如下 从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表 表5载荷 水平面 垂直面 支持力 弯矩 总弯矩 扭矩 13、按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环 变应力,取 ,轴的计算应力前已选定轴的材料为45钢,调质处理,查表可得 ,因此 ,故安全。14、键的选择和校核选键型为普通平键(A) 根据 ,从表6-1中查得键的截面尺寸为:宽度 =25 ,高度 。取键长 。键轴和毂的材料都是钢,有表6-2查得许用挤压应力 ,取平均值 。键的工作长度 ,键与轮毂键槽的接触高度 , 故选取键A: GB/T 1096-20037、确定轴上圆角和倒角尺寸取轴端倒角为 ,各轴肩处圆角半径为2。六.箱体结构的设计减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,大端盖分机体采用 配合.1. 机体有足够的刚度在机体为加肋,外轮廓为长方形,增强了轴承座刚度2. 考虑到机体内零件的润滑,密封散热。因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为 3. 机体结构有良好的工艺性.铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.4. 对附件设计 A 视孔盖和窥视孔在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固B 油螺塞:放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。C 油标:油标位在便于观察减速器油面及油面稳定之处。油尺安置的部位不能太低,以防油进入油尺座孔而溢出.D 通气孔:由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.E 盖螺钉:启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。钉杆端部要做成圆柱形,以免破坏螺纹.F 位销:为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.G 吊钩:在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.减速器机体结构尺寸如下:名称 符号 计算公式 结果箱座壁厚 10箱盖壁厚 9箱盖凸缘厚度 12箱座凸缘厚度 15箱座底凸缘厚度 25地脚螺钉直径 M24地脚螺钉数目 查手册 6轴承旁联接螺栓直径 M12机盖与机座联接螺栓直径 =(0.5~0.6) M10轴承端盖螺钉直径 =(0.4~0.5) 10视孔盖螺钉直径 =(0.3~0.4) 8定位销直径 =(0.7~0.8) 8 , , 至外机壁距离 查机械课程设计指导书表4 342218 , 至凸缘边缘距离 查机械课程设计指导书表4 2816外机壁至轴承座端面距离 = + +(8~12)50大齿轮顶圆与内机壁距离 >1.2 15齿轮端面与内机壁距离 > 10机盖,机座肋厚 9 8.5轴承端盖外径 +(5~5.5) 120(1轴)125(2轴)150(3轴)轴承旁联结螺栓距离 120(1轴)125(2轴)150(3轴)七. 润滑密封设计对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.油的深度为H+ H=30 =34所以H+ =30+34=64其中油的粘度大,化学合成油,润滑效果好。密封性来讲为了保证机盖与机座联接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗度应为 密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太大,国150mm。并匀均布置,保证部分面处的密封性。八、课程设计心得体会 作为一名机械设计制造及自动化大三的学生,我觉得能做类似的课程设计是十分有意义,而且是十分必要的。在已度过的大三的时间里我们大多数接触的是专业基础课。我们在课堂上掌握的仅仅是专业基础课的理论面,如何去锻炼我们的实践面?如何把我们所学到的专业基础理论知识用到实践中去呢?我想做类似的大作业就为我们提供了良好的实践平台。在做本次课程设计的过程中,我感触最深的当数查阅大量的设计手册了。为了让自己的设计更加完善,更加符合工程标准,一次次翻阅机械设计手册是十分必要的,同时也是必不可少的。我们是在作设计,但我们不是艺术家。他们可以抛开实际,尽情在幻想的世界里翱翔,我们是工程师,一切都要有据可依.有理可寻,不切实际的构想永远只能是构想,永远无法升级为设计。 作为一名专业学生掌握一门或几门制图软件同样是必不可少的,由于本次大作业要求用 auto CAD制图,因此要想更加有效率的制图,我们必须熟练的掌握它。虽然过去从未独立应用过它,但在学习的过程中带着问题去学我发现效率好高,记得大一学CAD时觉得好难就是因为我们没有把自己放在使用者的角度,单单是为了学而学,这样效率当然不会高。边学边用这样才会提高效率,这是我作本次课程设计的第二大收获。但是由于水平有限,难免会有错误,还望老师批评指正。参考文献〔1〕濮良贵,纪明刚. 机械设计. 7版. 北京:高等教育出版社, 2001.〔2〕张策, 机械原理与机械设计[M]. 北京:机械工业出版社, 2004.[3] 吴宗泽,罗胜国. 机械设计课程设计手册. 北京: 高等教育出版社, 2007. [4] 王伯平.互换性与测量技术基础(第2版). 北京: 机械工业出版社,2006
我有 怎么联系你E:\课程设计\二级直齿圆柱齿轮减速器课程设计\二级直齿圆柱齿轮减速器课程设计
这个吗
我也需要 百度查找中......
减速器概述 1.1、减速器的主要型式及其特性减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动或齿轮—蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机措中应用很广。 减速器类型很多,按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。 1.1.1 圆柱齿轮减速器当传动比在8以下时,可采用单级圆柱齿轮减速器。大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。单级减速器的传动比如果过大,则其外廓尺寸将很大。二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。为此,在设计这种减速器时应注意:1)轴的刚度宜取大些;2)转矩应从离齿轮远的轴端输入,以减轻载荷沿齿宽分布的不均匀;3)采用斜齿轮布置,而且受载大的低速级又正好位于两轴承中间,所以载荷沿齿宽的分布情况显然比展开好。这种减速器的高速级齿轮常采用斜齿,一侧为左旋,另一侧为右旋,轴向力能互相抵消。为了使左右两对斜齿轮能自动调整以便传递相等的载荷,其中较轻的龆轮轴在轴向应能作小量游动。同轴式减速器输入轴和输出轴位于同一轴线上,故箱体长度较短。但这种减速器的轴向尺寸较大。圆柱齿轮减速器在所有减速器中应用最广。它传递功率的范围可从很小至40 000kW,圆周速度也可从很低至60m/s一70m/s,甚至高达150m/s。传动功率很大的减速器最好采用双驱动式或中心驱动式。这两种布置方式可由两对齿轮副分担载荷,有利于改善受力状况和降低传动尺寸设计。关键词:减速器 刚性 零部件 方案
一、传动方案拟定…………….……………………………….2二、电动机的选择……………………………………….…….2三、计算总传动比及分配各级的传动比……………….…….4四、运动参数及动力参数计算………………………….…….5五、传动零件的设计计算………………………………….….6六、轴的设计计算………………………………………….....13七、滚动轴承的选择及校核计算………………………….…20八、键联接的选择及计算………..…………………...………23九、联轴器的选择计算………..……………………………24十、减速器箱体要求与附件的选择………………………….25十一、减速器机体结构尺寸设计…………………………….27十二、润滑与密封…………………………………………….28十三、课程设计总结………………………….………………28十四、参考资料目录………………….………………………30 是这个吧,找我
浅谈齿轮强度设计几个问题的探讨论文
0 引言
齿轮传动是机械传动中最重要的传动之一。公元前300 多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。17 世纪末到18 世纪初,人们开始对齿轮的强度问题进行研究。欧洲工业革命以后,齿轮技术得到高速发展,齿轮传动在机械传动及整个机械领域中的应用极其广泛。齿轮设计成为机械设计中重要的设计内容之一。目前国际上比较常见的有关齿轮强度设计公式,除了我国的国家标准( GB) 有关齿轮强度的计算方法以外主要有: 国际标准化组织( ISO) 计算方法; 美国齿轮制造商协会( AGMA) 标准计算方法;德国工业标准( DIN) 计算方法; 日本齿轮工业会( JGMA)计算方法; 英国BS 计算方法等。作者在从事机械设计特别对齿轮设计的教学中,发现不少地方的知识点描述比较简单,不容易理解,为此,在文中对齿轮设计的几个问题如齿轮的失效方式、齿轮强度设计的历史、现状进行了深入分析,探讨我国齿轮强度设计的历史来源以及在齿轮设计中的一些困惑。通过深入的分析,有助于大家更好地理解齿轮设计公式的意义和来龙去脉。
1 齿轮失效方式的探讨
齿轮在传动过程中会出现各种形式的失效,甚至丧失传动能力。齿轮传动的失效方式与齿轮的材料、热处理方式、润滑条件、载荷大小、载荷变化规律以及转动速度等有关。人们对齿轮失效的认识是一个发展的过程。18 世纪中叶人们就开始对齿轮的失效进行研究。对齿轮摩擦磨损、点蚀形成和齿面胶合有了初步的认识。1928 年,白金汉发表了有关齿轮磨损的论文,并将齿面失效分为点蚀、磨粒磨损、胶合、剥落、擦伤和咬死等6 种失效形式。1939 年,Rideout 将齿轮损伤分为正常磨损、点蚀、剥落、胶合、擦伤、切伤、滚轧和锤击等8 种形式。1953 年Borsoff 和Sorem 将齿轮损伤分为6 类。1967 年尼曼根据大量试验,对渐开线齿轮的4 种失效形式画出了承载能力的限制关系图,并指出当齿轮转速较低时,影响软齿面齿轮承载能力的主要因素是点蚀,影响硬齿面齿轮承载能力的是断齿; 而对于高速重载传动齿轮,影响因素往往是胶合。自上世纪50 年代以来,一些国家以标准的形式对齿轮损伤形式进行分类,对名词术语、表现特征、引发原因等都有规定。如1951 年美国将齿轮损伤分为两大类,一类是齿面损坏,包括磨损、塑性变形、胶合、表面疲劳等,另一类是轮齿的折断。前一大类齿面损坏是齿轮作为高副由于摩擦学原因而引起的表面损伤; 后一大类轮齿的折断是轮齿作为受力构件由于体积强度不够而发生的破坏。1968 年奥地利国家标准规定了齿轮损伤的名词术语。
1983 年,我国颁布了齿轮轮齿损伤的术语、特征和原因国家标准( GB /T3481 - 83) ,将齿轮损伤形式分为5 大类,即磨损、齿面疲劳( 包括点蚀和剥落) 、塑性变形、轮齿折断和其他损伤,共26 种失效形式。1997 年,我国颁布了对GB/T3481 - 1983 修订的GB/T3481 -1997 国家标准。目前我国在大多数的机械设计教材和机械设计手册中齿轮失效方式都进行了简化,一般分为5 大类,即轮齿折断、齿面疲劳点蚀、齿面胶合、齿面磨损和塑性变形。
2 齿轮强度设计的探讨
2. 1 轮齿弯曲强度计算
1785 年,英国瓦特提出了齿根弯曲强度的计算方法,把轮齿看成为矩形截面的板状悬臂梁,随后出现多种弯曲强度计算公式。1893年,路易斯发表了轮齿弯曲强度计算式,而且用内切抛物线法找齿轮的危险截面,这一方法称为“抛物线法”[12],如图1 所示。路易斯以载荷作用于齿顶推导出齿根弯曲应力公式,但是对于重合度大于1 小于2 的齿轮传动,理论上只有当单对齿啮合时,载荷才全部由一个齿承受。对于重合度大于2 小于3 的足够精密的齿轮,因为同时有2 对以上的齿轮在啮合,其最大弯曲应力的作用点要低。
在此之后,又出现30°切线法、尼曼法、白金汉法等。1980 年, ISO 提出“渐开线圆柱齿轮承载能力的基本原理”( ISO 6336 - 1980) ,公布了轮齿弯曲强度、齿面接触强度的计算方法。
过去,我国的齿轮强度计算方法一直比较混乱,没有统一的标准,对生产、科研以及教学带来诸多问题。于是, 1981 年我国成立了“渐开线圆柱齿轮承载能力计算方法”国家标准课题组,以ISO6336—1980为根据,开展全面的研究工作。1983 年颁布了渐开线圆柱齿轮承载能力计算方法的国家标准( GB /T3480—1983) 。
目前,我国有关齿轮弯曲强度的设计公式基本上采用30° 切线法,即作与轮齿对称中心线成30°夹角并与齿根圆角相切的斜线,两切点的连线是齿根危险截面位置。而且以单对齿啮合区的最高点作为最不利载荷作用点,这时产生的弯曲应力最大,如图2 所示。另外,弯曲疲劳强度计算公式中,齿形系数在许多机械设计中只是说明与齿数有关,与模数无关,并未做详细说明,不容易理解。下面对相关问题进行详细分析。如图2 所示,齿根弯曲应力为σF =MW= FnhFcosαFbS2F /6 = 6KFthFcosαFbS2Fcosα= KFtbm6( hFm) cosαF( SFm)2cosα( 1)式中,αF为齿顶圆压力角。令式( 1) 中的YF =6( hFm) cos αF( SFm)2cos α式中,YF称为齿形系数,由路易斯在其轮齿弯曲强度计算式中首次引用。可以看出,YF是与齿轮形状的几何参数有关的一个系数。因为,根据齿轮形成原理,齿数的变化将引起轮齿上hF、SF、aF等参数的变化,由于hF、SF、aF均与齿轮模数成正比,致使齿形系数中的模数可以约去。因此,齿形系数不受模数的影响,而只与齿数有关,齿数越多YF越小,反之YF越大。这就是在机械设计的教材中经常会看到“标准齿轮的齿形系数只与齿数有关而与模数无关”的原因。
2. 2 齿轮压应力对弯曲应力的影响
根据30°切线法及齿轮受力分析。将法向力Fn移至轮齿中线并分解成相互垂直的两个分力,即圆周力Ft和径向力Fr。根据力学理论,Ft使齿根产生弯曲应力为σF,Fr则产生压应力σy。因此齿根危险截面上受到的应力为弯曲和压缩组成的组合应力,并导致齿根两边的应力大小不相等。然而,在相关的机械设计资料中都没有将由于径向力产生的压应力计算在齿轮的弯曲强度计算公式中,而且在大多数的相关教材中都认为: 压应力相对于齿根最大弯曲应力比较小,可以忽略不计。但是压应力到底多少,为什么可以忽略不计,很少有人进行计算,下面对压应力与弯曲应力进行探讨。如图2 中,Ft产生其弯曲应力σF如式( 1) 所示。由Fr产生压应力σy为σy = Fnsin αFbSF( 2)由式( 1) 及式( 2) 可得σyσF= SF6hFtan αF设OD = h',则SF = 2h' tan30°,因此σyσF= tan 30tan αF3h'hF假设标准齿轮模数为m,齿数z。则齿顶圆压力角为cos αF = rbra= zz + 2cos α,由于h'hF< 1,因此,当不考虑h'hF的影响时,σyσF的大小取决于齿轮的齿数。为了便于讨论,取ξ = σyσF称为压应力对弯曲应力的影响系数。则根据计算可以得到ξ 与齿数的对应关系,如图3 所示。可见,压应力对弯曲应力的影响与齿数有关,而模数无关,而且随着齿数的变化而变化,齿数越少其影响越大,反之影响就越小,最终趋于一水平线。最小约为最大弯曲应力的8%,特别当h'hF< 1 时,压应力更小,可以忽略不计。这就是为了简化计算,在计算轮齿弯曲强度时一般只考虑弯曲应力的原因。从图2 可知,弯曲应力分为拉伸侧的拉应力和压缩侧的压应力。实际证明,拉伸侧是危险侧,因拉伸侧的`裂纹扩展速度较大。压缩侧有时虽裂纹出现较早,但发展速度较慢。所以大多数的公式以拉伸侧的应力作为设计时的计算应力。而且根据齿轮弯曲疲劳实验分析证明,考虑弯曲应力、压应力与只考虑弯曲应力的结果,实际上没有多大差别。因此,在齿轮弯曲疲劳强度计算中只考虑弯曲应力。
2. 3 齿面接触疲劳强度计算
图4 赫兹接触应力模型齿面接触疲劳强度计算是针对齿轮齿面疲劳点蚀失效进行计算的强度计算。1881 年,赫兹提出两个圆柱体接触时接触面上载荷分布公式,该式作为齿面强度计算的理论基础,如图4 所示。根据赫兹接触应力理论,在载荷作用下接触区产生的最大接触应力为σH = Fnπb·1ρ1± 1ρ21 - μ21E1+ 1 - μ22槡 E2( 3)式中,Fn为作用在圆柱体上的载荷; b 为接触长度;μ1、μ2分别为两圆柱体材料的泊松比; E1、E2为两圆柱体材料的弹性模量。ρ1、ρ2为两圆柱体接触处的半径,式中“+”号用于外接触,“-”号用于内接触。1898 年,拉塞根据法向力应用“压强”原理研究齿面的接触疲劳强度问题。1908 年,奥地利的维德基将赫兹的两个圆柱体的接触应力理论应用于计算轮齿齿面应力,并绘出了沿啮合线最大接触应力变化图。1932 年,英国BS 根据实验数据提出基础表面应力作为齿面强度计算方法。1940 年,美国AGMA 采用齿面强度最重负荷点的接触应力最大值计算方法。
1949 年,白金汉提出节圆上齿面接触应力不超过许用值的计算方法,后来该方法被许多计算方法所采用。1954 年,尼曼采用最大负荷点上滚动压力。至今,我国皆以赫兹公式作为计算齿面接触疲劳强度的理论基础,即以赫兹应力作为点蚀的判断指标。通常令1ρΣ= 1ρ1± 1ρ2,ρΣ称为综合曲率,对于标准齿轮,1ρΣ= 2d1 sin αi ± 1i 。并令式( 3 ) 中的ZE =1π 1 - μ21E1+ 1 - μ22E 槡为弹性影响系数。从而,获得渐开线直齿圆柱齿轮接触疲劳强度的基本公式为σH = ZEZH2KT1bd21i ± 1槡 i #[ σ ] H( 4) 式中,ZH = 2槡sin αcos α,称为区域系数,对于压力角α= 20°的标准齿轮,ZH≈2. 5。在机械设计手册或机械设计教材中,有关齿轮接触疲劳强度公式有很多版本,其中最常见的是将一对钢制标准齿轮齿面接触强度校核公式进行简化,取钢制齿轮的E1 = E2 =2. 06 ×105MPa,μ1 =μ2 =0. 3,便获得机械设计中常用的校核公式。σH = 671 KT1bd21i ± 1槡 i ≤[ σ ] H( 5)
2. 4 齿面胶合强度计算
齿轮另外一个常见的失效是齿面胶合。有关齿轮胶合比较统一的说法是: 相互啮合的两金属齿面,在一定的压力下直接接触发生黏着,同时又随着齿面运动而使金属从齿面上撕落而引起的黏着磨损现象。胶合分为冷胶合和热胶合。对于高速重载的齿轮传动,齿面瞬时温度较高,相对滑动速度较大,则容易发生热胶合。对于低速重载的重型齿轮传动,由于齿面间压力过大,导致齿面油膜被破坏,尽管齿面温度不高,但也容易产生胶合,称为冷胶合。
对于齿轮齿面胶合强度计算的研究,目前主要基于两种理论,一是基于Pv 值( 压力与速度的乘积) 或PTv ( T 为啮合点到节点的距离) 值作为计算胶合的指标。另一种是以齿面温度作为判定胶合的准则的布洛克算法。1975 年,温特提出积分温度法。现在ISO 的标准中主要以这两种方法为主。2003年,我国颁布“圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法”国家标准( GB - Z 6413. 1 - 2003和GB - Z 6413. 2 - 2003)。该标准等同采用了ISO/TR 13989 - 2000“圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法”。曾经有人试图以按弹性流体动力润滑理论计算齿面间的油膜厚度作为胶合的评判依据。
我国多数的机械设计教材中齿轮强度设计一般只提供齿面接触疲劳强度和齿根弯曲疲劳强度两种计算方法,并未提供有关齿面胶合的强度计算公式。
3 结束语
文中分别对机械设计教学中有关齿轮的强度设计问题进行了分析和探讨,详细解读我国齿轮强度设计的历史沿革及现状,以及齿轮强度设计计算过程中让人困惑的问题及解决方法。研究指出,在齿轮弯曲疲劳强度的计算中,压应力对弯曲应力的影响是有限的,一般可忽略不计,只有当需要精确计算时,应当考虑其影响。论文的研究可以帮助齿轮设计人员和学生更好地理解齿轮设计中的相关内容,为将来从事机械设计工作打下良好的基础。
我可以做. 联系方式资料里有.
你想 别人帮你做好这个不太现实毕竟这个有点工作量的不过 你可以造网上找个模板 自己参考着做这个资料 机械cad论坛有 你去那里找找
仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;滚筒直径D=220mm。运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.99×0.95=0.86(2)电机所需的工作功率:Pd=FV/1000η总=1700×1.4/1000×0.86=2.76KW3、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×1.4/π×220=121.5r/min根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比KW 同转 满转 总传动比 带 齿轮1 Y132s-6 3 1000 960 7.9 3 2.632 Y100l2-4 3 1500 1420 11.68 3 3.89综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/121.5=11.682、分配各级传动比(1) 取i带=3(2) ∵i总=i齿×i 带π∴i齿=i总/i带=11.68/3=3.89四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=473.33(r/min)nII=nI/i齿=473.33/3.89=121.67(r/min)滚筒nw=nII=473.33/3.89=121.67(r/min)2、 计算各轴的功率(KW)PI=Pd×η带=2.76×0.96=2.64KWPII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW3、 计算各轴转矩Td=9.55Pd/nm=9550×2.76/1420=18.56N?mTI=9.55p2入/n1 =9550x2.64/473.33=53.26N?mTII =9.55p2入/n2=9550x2.53/121.67=198.58N?m五、传动零件的设计计算1、 皮带轮传动的设计计算(1) 选择普通V带截型由课本[1]P189表10-8得:kA=1.2 P=2.76KWPC=KAP=1.2×2.76=3.3KW据PC=3.3KW和n1=473.33r/min由课本[1]P189图10-12得:选用A型V带(2) 确定带轮基准直径,并验算带速由[1]课本P190表10-9,取dd1=95mm>dmin=75dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm由课本[1]P190表10-9,取dd2=280带速V:V=πdd1n1/60×1000=π×95×1420/60×1000=7.06m/s在5~25m/s范围内,带速合适。(3) 确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×500+3.14(95+280)+(280-95)2/4×450=1605.8mm根据课本[1]表(10-6)选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2=497mm(4) 验算小带轮包角α1=1800-57.30 ×(dd2-dd1)/a=1800-57.30×(280-95)/497=158.670>1200(适用)(5) 确定带的根数单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KWi≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99Z= PC/[(P1+△P1)KαKL]=3.3/[(1.4+0.17) ×0.94×0.99]=2.26 (取3根)(6) 计算轴上压力由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)=791.9N2、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=3.89取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78由课本表6-12取φd=1.1(3)转矩T1T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm(4)载荷系数k : 取k=1.2(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×473.33×10×300×18=1.36x109N2=N/i=1.36x109 /3.89=3.4×108查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05按一般可靠度要求选取安全系数SHmin=1.0[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=49.04mm模数:m=d1/Z1=49.04/20=2.45mm取课本[1]P79标准模数第一数列上的值,m=2.5(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=2.5×20mm=50mmd2=mZ2=2.5×78mm=195mm齿宽:b=φdd1=1.1×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=122.5mm(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×(2.53/121.67)1/3mm=32.44mm考虑键槽的影响以及联轴器孔径系列标准,取d=35mm3、齿轮上作用力的计算齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N齿轮作用力:圆周力:Ft=2T/d=2×198582/195N=2036N径向力:Fr=Fttan200=2036×tan200=741N4、轴的结构设计轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。(1)、联轴器的选择可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85(2)、确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位(3)、确定各段轴的直径将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.(5)确定轴各段直径和长度Ⅰ段:d1=35mm 长度取L1=50mmII段:d2=40mm初选用6209深沟球轴承,其内径为45mm,宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+19+55)=96mmIII段直径d3=45mmL3=L1-L=50-2=48mmⅣ段直径d4=50mm长度与右面的套筒相同,即L4=20mmⅤ段直径d5=52mm. 长度L5=19mm由上述轴各段长度可算得轴支承跨距L=96mm(6)按弯矩复合强度计算①求分度圆直径:已知d1=195mm②求转矩:已知T2=198.58N?m③求圆周力:Ft根据课本P127(6-34)式得Ft=2T2/d2=2×198.58/195=2.03N④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=2.03×tan200=0.741N⑤因为该轴两轴承对称,所以:LA=LB=48mm(1)绘制轴受力简图(如图a)(2)绘制垂直面弯矩图(如图b)轴承支反力:FAY=FBY=Fr/2=0.74/2=0.37NFAZ=FBZ=Ft/2=2.03/2=1.01N由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为MC1=FAyL/2=0.37×96÷2=17.76N?m截面C在水平面上弯矩为:MC2=FAZL/2=1.01×96÷2=48.48N?m(4)绘制合弯矩图(如图d)MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m(5)绘制扭矩图(如图e)转矩:T=9.55×(P2/n2)×106=198.58N?m(6)绘制当量弯矩图(如图f)转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[51.632+(0.2×198.58)2]1/2=65.13N?m(7)校核危险截面C的强度由式(6-3)σe=65.13/0.1d33=65.13x1000/0.1×453=7.14MPa< [σ-1]b=60MPa∴该轴强度足够。主动轴的设计1、选择轴的材料 确定许用应力选轴的材料为45号钢,调质处理。查[2]表13-1可知:σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa2、按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为:d≥C查[2]表13-5可得,45钢取C=118则d≥118×(2.64/473.33)1/3mm=20.92mm考虑键槽的影响以系列标准,取d=22mm3、齿轮上作用力的计算齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N齿轮作用力:圆周力:Ft=2T/d=2×53265/50N=2130N径向力:Fr=Fttan200=2130×tan200=775N确定轴上零件的位置与固定方式单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通过两端轴承盖实现轴向定位,4 确定轴的各段直径和长度初选用6206深沟球轴承,其内径为30mm,宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。(2)按弯扭复合强度计算①求分度圆直径:已知d2=50mm②求转矩:已知T=53.26N?m③求圆周力Ft:根据课本P127(6-34)式得Ft=2T3/d2=2×53.26/50=2.13N④求径向力Fr根据课本P127(6-35)式得Fr=Ft?tanα=2.13×0.36379=0.76N⑤∵两轴承对称∴LA=LB=50mm(1)求支反力FAX、FBY、FAZ、FBZFAX=FBY=Fr/2=0.76/2=0.38NFAZ=FBZ=Ft/2=2.13/2=1.065N(2) 截面C在垂直面弯矩为MC1=FAxL/2=0.38×100/2=19N?m(3)截面C在水平面弯矩为MC2=FAZL/2=1.065×100/2=52.5N?m(4)计算合成弯矩MC=(MC12+MC22)1/2=(192+52.52)1/2=55.83N?m(5)计算当量弯矩:根据课本P235得α=0.4Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2=59.74N?m(6)校核危险截面C的强度由式(10-3)σe=Mec/(0.1d3)=59.74x1000/(0.1×303)=22.12Mpa<[σ-1]b=60Mpa∴此轴强度足够(7) 滚动轴承的选择及校核计算一从动轴上的轴承根据根据条件,轴承预计寿命L'h=10×300×16=48000h(1)由初选的轴承的型号为: 6209,查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,查[2]表10.1可知极限转速9000r/min(1)已知nII=121.67(r/min)两轴承径向反力:FR1=FR2=1083N根据课本P265(11-12)得轴承内部轴向力FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N(2) ∵FS1+Fa=FS2 Fa=0故任意取一端为压紧端,现取1端为压紧端FA1=FS1=682N FA2=FS2=682N(3)求系数x、yFA1/FR1=682N/1038N =0.63FA2/FR2=682N/1038N =0.63根据课本P265表(14-14)得e=0.68FA1/FR1
老师给你规定了论文范围了啊 自己在那个范围里写啊,可以写小的项目 也可以写大的理论啊
我当年毕业的时候就是做的这个设计,你看看是这个吗 图纸我都有的。塑料齿轮模具设计及其型腔仿真加工摘 要:本课题来源于盐城羽佳塑业,任务是塑料齿轮模具设计及其型腔仿真加工.注射成型是塑料成型的一种重要方法,它主要适用于热塑性塑料的成型,可以一次成型形状复杂的精密塑件。本课题就是将双联齿轮作为设计模型,将注射模具的相关知识作为依据,阐述塑料注射模具的设计过程。本设计对双联齿轮进行的注塑模设计,利用proe软件对塑件进行了实体造型,对塑件结构进行了工艺分析。明确了设计思路,确定了注射成型工艺过程并对各个具体部分进行了详细的计算和校核。如此设计出的结构可确保模具工作运用可靠,保证了与其他部件的配合。 最后用mastercam仿真加工型腔。本课题通过对双联齿轮杯的注射模具设计,巩固和深化了所学知识,取得了比较满意的效果,达到了预期的设计意图。关键词:塑料模具;注射成型;模具设计;The design of gear plastic injection mold and cavity simulation processingAbstract: The subjects come from the Yujia Plastic Corporation. Task is what the design of gear plastic injection mold and cavity simulation processing. Plastic injection molding molding is an important method, which is primarily applicable to thermoplastic plastic molding, Molding can be a complex shape of precision plastic parts. To study the topic ,we make double-gear the design model, make the injection mold-related knowledge the basis for elaborate plastic injection mold design process.In the designment we design double-gear with the injection mold design, using software proe to plastic parts to solid modeling, and making technics analysis to the structure of Plastic Parts for the process.We definite the design,and identify the injection molding process as well as some specific details of the calculation and verification.The structure of such a design can be used to ensure reliable Die work ,to ensure cooperation with the other parts of the tie. Finally,simulation processing cavity with mastercam .we have consolidated and deepened the learning, gain a satisfied result, achieve the desired design intent through the process of double-gear mold design.Key words : Plastic mold; Injection molding; Mold design;目 录1 前言 12 模具总体设计 32.1 制品的分析 32.2模具总体方案设计 42.3注射机的选择 52.4型腔数的确定 52.5型腔的布局 62.6分型面的确定 72.7浇注系统设计 72.7.1浇口的形式 72.7.2流道、主流道衬套及定位环的设计 82.7.3冷料井的设计 92.8冷却系统的设计 102.9模架的选择 112.10导柱、导套的选择 122.10.1导柱的选择 122.10.2导套的选择 122.11顶杆设计 132.12复位杆 142.13锁模力的校核 142.14开模行程的校核 152.15总装配图及三维造型图 152.15.1总装配图 152.15.2模具的三维造型图 173工艺分析及仿真加工 183.1模具的注塑工艺分析 183.2模具成型件制造工艺与加工工序 193.2.1模具成型件制造工艺 193.2.2模具成型件的加工工艺 203.3数控仿真 204结论 25参考文献 26致谢 27附录
两级圆柱齿轮减速器的设计 泵叶轮注射模具的设计 齿轮套注塑模具及注塑模腔三维造型CAD CAM
减速器概述 1.1、减速器的主要型式及其特性减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动或齿轮—蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机措中应用很广。 减速器类型很多,按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。 1.1.1 圆柱齿轮减速器当传动比在8以下时,可采用单级圆柱齿轮减速器。大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。单级减速器的传动比如果过大,则其外廓尺寸将很大。二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。为此,在设计这种减速器时应注意:1)轴的刚度宜取大些;2)转矩应从离齿轮远的轴端输入,以减轻载荷沿齿宽分布的不均匀;3)采用斜齿轮布置,而且受载大的低速级又正好位于两轴承中间,所以载荷沿齿宽的分布情况显然比展开好。这种减速器的高速级齿轮常采用斜齿,一侧为左旋,另一侧为右旋,轴向力能互相抵消。为了使左右两对斜齿轮能自动调整以便传递相等的载荷,其中较轻的龆轮轴在轴向应能作小量游动。同轴式减速器输入轴和输出轴位于同一轴线上,故箱体长度较短。但这种减速器的轴向尺寸较大。圆柱齿轮减速器在所有减速器中应用最广。它传递功率的范围可从很小至40 000kW,圆周速度也可从很低至60m/s一70m/s,甚至高达150m/s。传动功率很大的减速器最好采用双驱动式或中心驱动式。这两种布置方式可由两对齿轮副分担载荷,有利于改善受力状况和降低传动尺寸设计。关键词:减速器 刚性 零部件 方案
我会帮你问问的