首页

> 学术发表知识库

首页 学术发表知识库 问题

数学1500字论文

发布时间:

数学1500字论文

举一个例子:利用数学知识计算装修时所用窗子的面积、长、宽等,或是利用二次函数计算喷泉的半径等。再阐述一下这些应用对于生活的意义,比如说是生活变得更方便等等。参考范文:(网上搜来的,仅供参考)着科学的发展,数学在生活中的应用越来越广,生活的数学无处不在。而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。抽样调查,评估,彩票,保险等经常会遇到要计算概率的时候,举个例子在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的A={2500×12-2000X<0}={X>15}由此得知P=0.999931,而盈利10000以上的概率也有0.98305,以上的结果说明了为什么保险公司那样乐于开展保险业务的原因.除了保险,概率统计学对彩票也有有两个方面的应用 。据钱江晚报报道,彩票市场越来越火爆,据了解,南京某一期电脑福利彩票有一懂概率统计的彩民一个人中1个一等奖、3个二等奖、33个三等奖,有一期彩票有9注号码中一等奖,从而引发了无数彩民自己预测号码的愿望,概率统计方面的书籍也一下子走俏。许多平时见到符号就头疼的彩民也捧起概率书兴趣盎然地啃起来。东南大学经管院陈建波博士指出,概率书上讲的都是理论知识,一大堆数学计算公式,如何把概率书的理论运用到彩票选号中来,才是许多彩民关心的问题。实际上,概率统计学主要有两个方面的应用:一个方面是利用概率公式计算各种数字号码出现的概率值,然后选择最大概率值数字进行选号。举一个简单的例子,类似“1234567”七个数一直连续的彩票号码与非一直连续的号码出现的概率比例为:29:6724491(1:230000)左右,由于出现的概率值极低,因此一般不选这种连续号码。另一方面的应用是统计,即把以前所有中奖号码进行统计,根据统计得到的概率值来预测新的中奖号码,例如五区间选号法,就是根据统计进行选号的。南京的“专业”彩民则介绍一条选号规则———逆向选号法。从摇奖机的构造角度来说,它要保证每个数字中奖的概率都一样。虽然摇一次奖无法保证,摇100次奖也无法保证,但摇奖的次数越多,各个数字中奖的次数也必定越趋于平均。就像扔硬币,一开始就扔几次可能正反面出现的次数不一样,但随着扔的次数的增加,正反面出现的次数就会越来越接近。从这个角度考虑,在选号时就应该尽量选择前几次没中过奖的数字。这就是逆向选号法,即选择上一次或前几次没中奖的数字.......这也说明了概率的无所不在

人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。 如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。 但是,在数字的发展过程中,一件不愉快的事发生了。让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为"数"是万物的本源,支配整个自然界和人类社会。因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。他们所说的数是指整数。分数的出现,使"数"不那样完整了。但分数都可以写成两个整数之比,所以他们的信仰没有动摇。但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。如果设这个数为X,既然,推导的结果即x2=2。他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。而希帕索斯还是忍不住将这个秘密泄露了出去。据说他后来被扔进大海喂了鲨鱼。然而真理是藏不住的。人们后来又发现了很多不能用两整数之比写出来的数,如圆周率 就是最重要的一个。人们把它们写成 π、等形式,称它们为无理数。 有理数和无理数一起统称为实数。在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。这时人类的历史已进入19世纪。许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了。"i "成了虚数的单位。后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数。在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了。 数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念。所谓四元数,就是一种形如的数。它是由一个标量 (实数)和一个向量(其中x 、y 、z 为实数)组成的。四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。与此同时,人们还开展了对"多元数"理论的研究。多元数已超出了复数的范畴,人们称其为超复数。 由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。到目前为止,数的家庭已发展得十分庞大。

8、4、16、11、15、18、这组数的中位数是是13、平均数是12..

数学源于生活、根植于生活。数学教学就要从学生的生活经验和已有的知识点出发,联系生活讲数学,把生活经验数学化,数学问题生活化。激发学生学习数学的兴趣,让学生深刻体会到生活离不开数学,数学是解决生活问题的钥匙,从而增强学习数学的趣味性。 当我打开一年级的数学课本时,给我的印象好像一本童话书一样漂亮,每一课的内容,都有一个场景故事表现出来,把数学知识融入到了学生非常熟悉的生活中,与学生身边的生活联系较为密切。刚入学的一年级学生,大部分都受到学前教育,在生活中也学到一些与数学有关的生活知识,所以他们对数学并不是一无所知。我在第一单元实际数学教学中,尝试如何将学生已有的生活经验引导学生学习认数,取得了较好的效果。一、培养学生主动学习的愿望,让学生体会到身边有数学数学教学中,要善于引导学生观察生活中的实际问题,感受数学与生活的密切联系。在学习第一单元《快乐的校园》之前,我先带领学生熟悉美丽如画的校园和参与各种课内外活动,让学生体验感受学校生活的丰富多彩,从尔喜欢即将开始的校园生活。教授信息窗2《老鹰捉小鸡》这一课时,我把学生领到操场这个“大课堂”,实地做游戏组织教学活动。通过学生非常熟悉喜爱的“老鹰捉小鸡”的游戏,来学习1—10数的认识。在游戏中让学生数一数“有几个小朋友参加游戏?”“男同学有几人?”“女同学有几人?”等等,在数扎长辫女孩“排第几”的过程中感知数的另一个含义——“序数”。整节课,学生们“玩”的很开心,“大课堂”气氛很活跃,改变了以往枯燥乏味的被动式课堂,每一位学生都积极主动的参与到游戏学习中去,“学习”热情很高。学生在不知不觉中圆满完成了整节课的学习任务。这样的数学课堂,让学生深切体会到原来数学就在自己身边,身边就有数学,而且离得很近,使学生对数学逐渐产生亲切感,从而培养学生主动学习的愿望。二、发现生活中的数学问题,借助生活经验,学会探索解决数学问题学生的学前数学知识,生活中的数学常识,经验的建立,是依赖于实际生活实践,是学生看得见,摸得着,听的到的现实。生活中的数学问题具有形象性和启发性,它能唤醒学生已有的生活经验增强学习动机和信心,有助于引导学生进入数学情境,也有利于学生思维发展。教师要善于挖掘数学内容中的生活画面,让数学贴近生活,在组织学生活动中,引导学生讨论解决数学问题:我在信息窗1《科技小组活动》的教学中,学生在解决红点标示的问题“天上有几架飞机?”时,引导学生去看一看数一数,让学生充分利用情境图中的信息体会1-10各数的意义,再联系生活,广泛选取学生身边生活中非常熟悉的问题,进一步体会数的意义。如“我们的教室有几扇窗?几盏灯?教室门前有几棵树?”“你家里有几口人?你有几只铅笔……”等等。在教学中我注意选择学生身边的感兴趣的事物,提出数学问题,为学生在生活中寻找探索新知识的依托,使学生学会借助生活经验思考探索问题。三、有意识创设活跃的学习氛围和生动有趣的学习情境“好玩”是孩子的天性,托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的学习兴趣。”兴趣是人对客观事物产生的一种积极的认知倾向。怎样才能让孩子在玩中获得知识呢?我针对每课不同的学习内容,安排了很多不同的游戏、故事……在第一单元《快乐的校园-10以内数的认识》中,我带学生到操场上做他们非常熟悉、喜欢的“拔河、老鹰捉小鸡、小小运动会”等等 ,让他们边玩边数数 “拔河比赛,左边有几个小朋友?右边呢?运动会上,6号运动员排在第几?第1名是几号运动员?等等……”使学生在活跃的学习氛围和有趣、喜爱的“玩”中学会了1-10各数的认识。四、培养孩子数学的生活实践能力许多孩子在上学前,就会做100以内的加减,数100以内的数甚至更多,但是如果把它们拿到具体的生活中就不是那么尽如人意,一般5岁以后数学的思维能力才开始蒙发,上一年级的学生部分只能机械的数数,但对数的意义就不一定清楚,因此,就要加强数学与生活的联系,让学生在自己的身边熟悉的环境中寻找数。如3个人,1枝铅笔,5朵花等等,在生活中慢慢建立数的概念,认识数的含义。使学生在生活实践中得到锻炼,把数学真正融入现实生活中更好的为生活服务,同时用生活经验更好的为数学学习服务打好了结实的基础。总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学角度去观察事物,思考问题。激发对学习数学的兴趣,以及学好数学的愿望,树立学好数学的自信心。【网络产品】

数学论文1500字

也可以是就解决某一数学实际问题对自己的启发~~~或是生活中的某一问题引发的数学思考~~~~

初一数学小论文浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。 如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。 三、突出学习重点,突破学习难点 传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。 如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。 四、增强训练密度,提高教学效果 在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。 总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了。

着科学的发展,数学在生活中的应用越来越广,生活的数学无处不在。而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。抽样调查,评估,彩票,保险等经常会遇到要计算概率的时候,举个例子在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少?这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一计算就可以得知公司是几乎必定盈利的A={2500×12-2000X<0}={X>15}由此得知P=0.999931,而盈利10000以上的概率也有0.98305,以上的结果说明了为什么保险公司那样乐于开展保险业务的原因.除了保险,概率统计学对彩票也有有两个方面的应用 。据钱江晚报报道,彩票市场越来越火爆,据了解,南京某一期电脑福利彩票有一懂概率统计的彩民一个人中1个一等奖、3个二等奖、33个三等奖,有一期彩票有9注号码中一等奖,从而引发了无数彩民自己预测号码的愿望,概率统计方面的书籍也一下子走俏。许多平时见到符号就头疼的彩民也捧起概率书兴趣盎然地啃起来。东南大学经管院陈建波博士指出,概率书上讲的都是理论知识,一大堆数学计算公式,如何把概率书的理论运用到彩票选号中来,才是许多彩民关心的问题。实际上,概率统计学主要有两个方面的应用:一个方面是利用概率公式计算各种数字号码出现的概率值,然后选择最大概率值数字进行选号。举一个简单的例子,类似“1234567”七个数一直连续的彩票号码与非一直连续的号码出现的概率比例为:29:6724491(1:230000)左右,由于出现的概率值极低,因此一般不选这种连续号码。另一方面的应用是统计,即把以前所有中奖号码进行统计,根据统计得到的概率值来预测新的中奖号码,例如五区间选号法,就是根据统计进行选号的。南京的“专业”彩民则介绍一条选号规则———逆向选号法。从摇奖机的构造角度来说,它要保证每个数字中奖的概率都一样。虽然摇一次奖无法保证,摇100次奖也无法保证,但摇奖的次数越多,各个数字中奖的次数也必定越趋于平均。就像扔硬币,一开始就扔几次可能正反面出现的次数不一样,但随着扔的次数的增加,正反面出现的次数就会越来越接近。从这个角度考虑,在选号时就应该尽量选择前几次没中过奖的数字。这就是逆向选号法,即选择上一次或前几次没中奖的数字.......这也说明了概率的无所不在

浅谈诚实与数学

数学史论文1500字

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,2003.16(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报.2004.2.

[4]J.N.Kapur.数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

论文参考题目

1、非10进制记数的利和弊。

2、数的概念的发展与人类认识能力提高的关系。

3、比较古代埃及人和古代巴比伦人解方程的方法,探讨他们各自对后来的数学发展的启迪作用。

4、为什么毕达哥拉斯学派关于不可公度量的发现会在数学中产生危机?

5、欧几里得《原本》中的代数。

6、欧几里德《几何原本》与公理化思想;

7、在几何学中有没有“王者之路”。

8、无所不在的斐波那契数列。

9、文艺复兴时期数学发展的重要因素。

10、达•芬奇与数学。

11、十进制小数的历史。

12、圆周率的历史作用。

13、“圆”中的数学文化。

14、明代中国商业算术处于突出地位的原因。

15、近代中国数学落后的原因。

16、芝诺悖论与微积分的关系。

17、未解决的问题在数学中的重要性。

17、黄金分割引出的数学问题。

18、试论数学悖论对数学发展的影响。

19、第一次数学危机及其克服。

20、第二次数学危机及其克服。

21、第三次数学危机及其克服。

22、数学对当代社会文化的影响。

23、试论数学的发展对人类社会的进步的推动作用。

24、从历史观看数学。

25、数学符号的价值。

26、谈对数学本质的认识。

27、试论数学科学的价值。

28、函数概念的发展。

29、空间概念的发展。

30、曲线概念的发展。

31、数学对天文学的推动。

32、数学中无穷思想的发展。

33、数学中的美。

34、音乐中的数学。

35、艺术中的数学。

36、浅谈数学语言的特点。

37、论数学的抽象性。

38、关于数学的严谨性。

39、关于数学的真理性。

40、数学家的不幸。

41、数学家的幸运。

42、从数学史中扩展的数学知识。

43、从程大位的《算法统宗》“首篇”河图、洛书等看《易经》与珠算之联44、梵语的盛行——十进制的发明之谜 45、中国古代数学发展缓慢的启示

46、从矩阵的萌芽论中国传统数学的文化底蕴

47、《九章算术》刘徽注中的算法分析工作与算法分析思想

48、《费马大定理》读后感 49、黎曼猜想浅谈

50、再论《巧排九方》——一个传统的数字推理趣题之详解及其推广

51.、数学史上的三次危机

52、笛卡儿解析几何思想的文化内涵 53、理性数学的哲学起源

54、中国数学教育史研究进展

希望对你有帮助。

数学之美论文1500字

什么是数学美呢?它的本质是什么呢?从国内的研究来看,有这样一些描述:“数学美是一种人的本质力量通过宜人的数学思维结构的呈现”,“数学美是数学创造的自由形式”,“数学美是真与善的统一”,“数学美的本质在于序”……等等。 数学美的客观性:即指客观存在于数学领域中的审美对象是不以审美主体是否承认、是否意识到为转移的,尽管因审美主体的主观条件的不同,并不是所有的或特定的数学美都能为审美主体所感知,但这并不能改变这数学美的存在。 数学美的社会性:数学美是一种社会现象,因为数学美是对人而言的。数学家通过数学实践活动(特别是数学理论创造的实践活动),使自己的本质力量“对象化”了,或者说“自然人化”了。所谓的“人化”就是人格化,即自然物具有人的本质的印记,实质上就是社会化。这种社会化的内容正是数学美的内容,它是数学美产生的本原。 数学美的物质性:数学美的内容――人的本质力量必须通过某种形式呈现出来,必需要有附体,数学美的这种形式或附体,即数学美的物质属性。 数学美的宜人性:即数学美形式应该使审美主体感到愉悦。审美主体的愉悦性,一方面自然是由审美主体的心理和生理的原因造成的,另一方面,也是最根本的,还在于对象本身是具有足以引起主体愉悦的属性和条件。简言之,数学美的形式必须与人的认识、人类心灵深处的渴望的本质上相吻合。 首先要提到的当推古希腊时期的毕达哥拉斯,毕达哥拉斯学派第一次提出了“美是和谐与比例”的观点,认为宇宙的和谐是由数决定的,他运用这一美学思想形成了点子数(即形数)理论;并以所谓亲和数与完全数来反映体现宇宙和谐的“亲和”与“完全”。 作为古希腊唯心主义哲学的主要代表人物,柏拉图认为数学的美是一种纯抽象的美,尽管柏拉图的理念世界是抽象的世界,但他却第一次提出了理念世界是“真善美的统一”的见解。 17世纪,笛卡儿所创立的解析几何是数学史上极其杰出的成果,它使几何与代数得到完美的统一,充分揭示了数学的协调美和统一美。 18世纪,该世纪著名数学家欧拉的数学美思想在其《无穷小分析引论》中得到生动的体现,这是一部极其优美的数学专著。 19世纪,有人称19世纪的数学是“革命的数学”,数学美学思想在这一时期也极为活跃,拉普拉斯、高斯、哈密尔顿、黎曼等人在这方面都作出了贡献。 20世纪,数学家们开始自觉地运用数学美学方法,总结数学审美标准,探讨数学发明中的审定心理,其突出代表人物是19世纪末及20世纪初的庞加莱及被誉为“超人的天才”的冯·诺伊曼,还有研究数学领域中的发明心理学的法国著名数学家雅克·阿达玛。 数学美的表现形式 简单性 是数学美的基本表现形式之一。作为反映现实世界量及其关系规律的数学来说,那种最简洁的数学理论最能给人以美的享受。 简单性又是数学发现与创造中的美学因素之一。最简单的例子便是代数运算中之乘法与幂的运算的引进是源于避免重复的加法运算和重复的乘法运算: 统一性 是指部分与部分,部分与整体之间的内在联系或共同规律所呈现出来的和谐、协调、一致。 数学美中的统一性在数学中有很多体现。数学推理的严谨性和矛盾性体现了和谐;表现在一定意义上的不变性,反映了不同对象的协调一致。例如,数的概念的一次次扩张和数系的统一,运算法则的不变性;几何中的圆幂定理是相交弦定理、切、割线定理的统一形式。 对称性 是指组成某一事物或对象的两个部分的对等性。数学形式和结构的对称性、数学命题关系中的对偶性、数学方法中的对偶原理方法都是对称美的自然表现。毕达哥拉斯说:“一切立体图形中,最美的是球形,一切平面图形中最美的是圆形。”因为这两种形体在各个方向上都是对称的。此外,象正多边形、正多面体、旋转体和圆锥曲线等都给人以完善、对称的美感。在代数中轮换对称式表明了代数式中字母可以互换的对称关系。在数学解题方面,对称方法和反射方法往往使问题解决的过程简捷明快。 秩序性,就其愿意而言,秩序是事物在空间或时间上排列的先后、也可作为层次等等的理解。数学中的“秩序”具有极其重要的、决定性的意义,意大利数学家G·卡雷里认为,“数学是而且将总是一门被看作关系系统的序的科学。当涉及形式时,它从不会与它们的实质有关,而仅仅与这些形式之间可陈述的联系有关。单一元素只能在使之有序化的系统联系之中才得到决定并因而获得意义。” 奇异性,奇异性是指数学中原有的习惯法则和统一格局被新的事物(思想、方法、理论)所突破,或出乎意料、超乎想象的结果所带来的新颖和奇特。 数学美学方法的特点 1、直觉性,审美直觉是数学直觉中的一种重要类型,数学美学方法主要还是一种受审美直觉所驱动,而作出美学考虑的方法。正因为如此,数学美学方法的成功运用与主体的直觉能力就有很大关系。这一特点也说明,运用它所得到的结论,最终还要通过逻辑方法的检验才能成立。 2、情感性 数学美学方法的运用是建立在审美主体的数学美感之上的,和任何美感一样,人们对于数学的美感也具有强烈的感情色彩。愉悦、平和、明快、困惑、兴趣盎然、心满意足乃至于激动与惊异……数学美学方法总是是伴随着这种种感情体验,这与逻辑方法所具有纯粹理性形成了鲜明的对比。 3、选择性 数学美学方法是自觉地依据美学的考虑来作出选择的方法,它是“非常自足的、美学的、不受(近乎不受)经验的影响。”这种选择性使美学方法并不成为解决数学问题或获得数学发现的具体方法,而是一种确定方向、原则的策略方法。这种选择性是导致数学发现发明的指路灯,因此,它又使数学美学方法具有创造性。 4、评价性 数学美学方法常常表现为对已获数学成果的一种鉴赏与评价,一般来讲,逻辑方法的运用以问题的解决为方法的终结,而美学方法不仅关注问题是否解决,更主要是考虑问题的解决优美?前者着意于数学问题的“真”,后者着意于“真、善、美的统一”。庞加莱指出:“这并非华而不实的作风”,数学发展的历史已表明,美学方法的评价性对于“数学理论的富有成果性”来讲是不可或缺的。 数学美学方法运用的基本途径 1、增强审美自我意识,善于发现数学美因 在数学活动中,活动者的审美意识是客观存在的审美对象在活动者头脑中的能动反映,一般意义上也称为美感。它包括审美兴趣、审美倾向、审美能力、审美理想、审美感受等等。美感尽管表现为主观的,但它最终是来源于数学活动实践,数学中丰富的美的形式和美的因素(简称为美因)是美感产生的客观基础。只有在美因促使主体美感产生的条件下,主体才能作出美学的考虑。因此,善于发现数学美因,“识得庐山真面目”,是运用数学美学方法的前提。 2、在数学审美活动中,注意逻辑方法与直觉方法的结合。 美感的产生一般而言是直觉的,但这并不意味理性思维与审美无关,美学研究表明,理性思维在审美中是有重大作用的(数学审美更是如此)。在数学活动中,发获得真正的审美要,必须把逻辑思维方法与直觉方法结合起来。逻辑思维在数学审美中可以起到规范知觉、想象的趋向作用,前者渗透溶化于后者之中,才使审美感受不是一种初级的感性知觉,或一堆空幻的主观想象,而是对数学对象本质的某种能动的反映。 3、在数学认识、评价及创造过程中,自觉地以数学审美标准作指导。 审美教育的特征 1、和谐性:“和谐”是美学的一条重要的原理。中学数学教学中有许多内容是和谐性教育的好题材,和谐性也有助于开拓解题思路,培养学生解题的能力。 2、形象性:美育是一种形象性的教育,它总是通过审美对象的鲜明形象来诱发和感染教育者的。数学中直观教具、精美图形以及数形转化的方法都能产生审美教育中的形象性。 3、情感性:美育通过审美对象来激发人的审美情感,受教育者将有一定情绪体验,得到一定的情绪陶冶和心理满足,若能通过富有艺术性的教学活动激发起学生情感的涟漪,那无异于为学习添加了催化剂。 4、自由性:美育给人以自由感,人对客观事物的感受只有进入自由境界才能产生美感,因此,在审美教育中,要注意学生心理和生理的发展规律,善于引导和启发。 5、鲜明性:审美教育伴随着情感的激动,使受教育者不知不觉地在心灵中留下鲜明的印象,有时,即使知识被遗忘,而那触动情感的形象,却终生难忘。

数学是人类的一种文化,我们的数学学习,在内容上应当是现实的、有意义的、富有挑战性的。数学不仅帮助我们更好地探求客观世界的规律,同是也为我们交流信息提供了一种有效、简捷的手段。作为课程的数学并非指教材中那点结论性的知识点,例题、习题绝对不是数学学科的全部。“数学应该是阳光!”“数学应该是娱乐!”“数学很美,数学很有趣,数学很有竞争性,数学是人聪明的源泉。”我们在获取知识的同时,应当体会数学中的美,得到美的教育,熏陶和激励。

让我们一起来感受数学的简洁美。数学中的简洁美是无处不在的。数字和符号的使用可以替代语言文字,同时又浓缩了语言文字的全部含义。阿拉伯数字看似枯燥,但它是从无数具体的数量中抽象得出的。生活中的一个苹果、一枝铅笔、一只鸟、一群人、一堆西瓜……都可以有简单的1来表示。1是何等的抽象与概括!

让我们一起来体验数学的对称美。生活中许多美的事物都具有对称性,花丛中翩翩飞舞的蝴蝶,翱翔天际的白鸽,横跨天空的彩虹,片片翻飞的落叶……对称在数学中也随处可见,如11×11=121,111×111=12321……这样的算式体现着对称的美。在几何图形中,长方形、正方形、等腰三角形、等腰梯形、圆等等都是对称的。

让我们一起来欣赏数学的和谐美。数学中无不体现着统一和和谐的美。这种美既是精细的,又是深邃的。以数学中的图形为例,竖起线意味着刚直、挺拔,横直线意味着平稳、开阔,曲线给人以优美、柔和的感觉。“比例”的知识,可让我们了解“黄金分割法”以及美学用途。如维纳斯的雕像,埃菲尔换塔的底座与高的比,舞台上报幕员的最佳位置,名画《最后的晚餐》中重点人物都处在“黄金分割点”的位置上……

罗素说:“数学,如果正确地看,不但拥有真理,而且也具有至高的美。”数学中处处充满着对称、和谐、简洁的美,这些美只有在探索和创造的过程中才能慢慢地体会和领悟。让我们一起感受数学的简洁美,体验数学的对称美,欣赏数学的和谐美,共同走进数学的世界,体会数学中的美吧!

数学拥有非凡的美,而数学之美不像自然生长的鲜花那么显而易见,在数学课堂教学中,需要老师的耐心引导,学生才能够发现。下面我给你分享数学课堂之美论文,欢迎阅读。

长期以来,人们在数学教学中只致力于基础知识、基本技能与逻辑思维的教学与研究,而不善于发掘数学本身所特有的美,不注意用数学美来感染诱发学生的求知欲望,激发他们的学习兴趣,不重视引导学生发现数学美,鉴赏数学美,更谈不上引导学生创造数学美,以致使一些学生感到数学抽象枯燥,失去学好的信心。那么什么是数学美?在小学数学教育中如何发挥数学的美育功能呢?这是一个值得我们每一位小学教师思考的问题,我从以下几个方面进行了小学数学教学中美育渗透途径的研究。

一、在教材中感悟美

人们常说数学是万花筒,是一个五彩缤纷的世界。在数学教材中,蕴藏着丰富的美育因素,现行的数学教材正确处理了数学学科特点与儿童认知规律、德育与智育、教与学、减轻负担与提高素质等方面关系,把数学的抽象美、符号美、数的神奇美、数的和谐美和概括美、猜想美、浓浓的时代生活气息美、开放灵活美等融入在里面。我认为,挖掘和提炼教材中的美育因素,让学生感知数学美的存在,是激发学生情感,陶冶学生心灵的有效途径。

如在许多几何图形中就充满着无穷无尽的美,闪烁着美的风采。在教学《长方形、正方形、圆》时,我一走进教室,教室里所有学生的目光都聚集于我的胸前。“哇”有的学生忘乎所以地叫了来:“王老师,你今天真漂亮!”我就问:“为什么,今天老师看起来这么漂亮呢?”学生马上叫起来:“老师的衣服上贴了各种各样的粘纸,有长方形、正方形和圆形的。”学生被我这一举动一下子吸引住了,所以在接下去的学习中他们学得特别带劲。离下课还有近五分钟时,我布置了一个节目:“请小朋友们把发下来的卡片制作成一张明信片,正面用长方形、正方形、圆形粘纸进行组合拼贴,设计一幅美丽的图画,然后送给你最好是朋友。”学生特别兴奋,直到下课都不愿停手。在教学中我们要让数学成为“人的数学”,让数学充满生命的活力,要挖掘数学内在的美,使学生喜欢上数学。

二、在情景中感受美

在小学各科的教学中,都需要情境教学,低年级数学教学尤其需要情境教学。低年级学生年龄小,很幼稚,对事物充满好奇感,适宜在“玩”中学习数学。教师应创设种种情境与机会,鼓励学生探索、实践,寻找知识、情感与个体心灵的结合点,将生活与自我融进课堂,让学生感受到数学的美。

数学课本中的一些教学内容,可让学生进行情景表演。数学源于生活,必须融于一定的生活情境之中。课堂表演就是要创造一定的生活环境,给孩子一份自由发展、自由发挥的天地,使学生通过虚拟情景表演创造出行为美、语言美。小学生的表演欲望都是很强烈的,不管是低年级的孩子还是高年级的学生,他们都乐于参与、乐于交际,喜欢在各种情景中再现学习内容,把书上的知识用到生活中来。例如在教学“认识人民币”一课中,我就让学生扮演顾客和营业员表演一番,学生的积极性可高了,争先恐后的举手要求参加。我让他们分组,每组都有不同商品的价格,每个同学都配有不同面值的人民币。活动开始后,教室里买卖声不断,就像在生活中一样。又如:第一册教材《统计》一课中,利用多媒体创设出大象伯伯过生日的情境,让学生通过小组分工合作,来数一数大象伯伯家来客人的情况,从而得出来了哪些动物,哪家动物来的多,哪家动物来的少,渗透出统计知识。这样选择和设计与当今学生的生活密切相联系的教学内容,通过多媒体处理,将画面、声音于一体,能有效地调动学生多种感官参与学习活动,提高学生学习兴趣。把这一抽象的知识转化为形象直观的内容,把学生带入新奇的境界之中,学生由“奇”而生“趣”,由“趣”而生“惑”,心生疑惑,起了学生的求知欲,达到优化课堂教学的目的,同时也让学生感受到了数学美。

三、在活动中体验美

在“数学活动中感受美、欣赏美、体验美”是数学课程标准所积极倡导的重要理念。数学教学要在数学知识和师生之间架起一座桥梁,使数学中美的因素得以体现。大家都知道,仅仅凭借对美的事物的感知,所得的美感只停留在表面和潜层,是不深刻的,必须在感知美的过程中产生相应情绪体验,才能通过各种美的体验和品评鉴赏深化对美的形象认识与感知,获得丰富的审美体验。所以要精心的组织好真切的体验活动,使学生体验到数学的美。

如在《认识物体》时,我设计了“摸一摸,说一说”的游戏。把操作活动和表达结合起来,让学生摸一个物体并说出它的名称,也可以先给名称再去摸出相应的物体。让学生在活动中,学会表达,学会倾听,发展他们的数学交流能力。通过这种有趣的数学游戏,激发学生的学习兴趣,使学生获得良好的情感体验。

四、在教学评价中展现学科人文美

《数学课程标准》指出:“对数学学习的评价关注学生学习数学的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”这种以“人的发展”为目标评价方式,关注学生的个性差异,保护了学生的自尊心与自信心,是值得我们反思和研究的。因此,在我们的数学教学中,应以增进情感体验为导向,加大评价目标的多元化,评价方法的多样化,来促进学生的全面发展。因此,在我们的数学教学中,应以增进情感体验为导向,在作业批改中适当的运用一些激励的评语,来提高学生的学习兴趣,建立学习信心,展示数学的人文美。

例如,在平常的教学中,我们要以发展的眼光来评价学生,注意记载学生平时的表现,采用民主评议的方式,让学生评学生,学生评老师,老师评学生,让学生在民主评议的气氛中激励自己。对学生知识能力的检测,我们不光用一张试卷来考查学生,还应当增加一些面试、口试的环节,让学生动手操作,鼓励学生把自己最“得意”的技能表现出来,增强学生学习的信心,促进学生的全面提高。在学生出现错误时,教师不能急于指出错误,而要给学生以足够的时间和机会去发现错误、纠正错误,宽容学生的错误,给学生自我纠错的机会。在学生表达不清或者不能准确表达自己意思的时候,教师的话尽量让学生自觉纠错于无痕之间,凸现宽容,体现人文的关怀。

我想,在数学课堂教学中渗透美育,可以充分调动学生学习的积极性,使学生养成勇于探索、敢于创新的良好习惯,并在美的气氛中体验美的乐趣,享受美的快乐,在美的陶冶中主动、生动的发展,达到理性感知和情感活跃的和谐一致。数学的美育功能正是这样“随风潜入夜,润物细无声”,让我们有数学的美去营造更强烈的美育氛围,去塑造一代美的人,创造一个美的世界。

摘 要:部分高中学生反映高中数学课堂抽象、枯燥,数学作业难又无从下手,花在数学上的时间多,却不见成效,对数学学习逐渐失去信心. 本文从教师在教学实际中如何吸引学生在课堂上的注意力,如何巧记数学知识,如何进行探究讨论得出新知,感受成功的喜悦,如何布置有趣的作业让学生利用所学的数学知识技能解决实际问题等方面进行了探索,以有趣课堂促进教学的有效性,以有效教学提高学生的内在兴趣,让学生充分感受数学之美,从容面对数学.

关键词:教学有效性;数学课堂;创设情境;回归生活

部分高中学生觉得数学课堂比较抽象、枯燥,作业难,无从下手,对数学的学习没有信心,花了很多的时间在数学上,却总不见成效. 笔者认为,除了学生要努力之外,我们数学教师也应该丰富教学方式,让我们的数学课堂也能开出美丽的花朵,重新展现它活泼动人的一面,让我们的学生能够笑对数学. 具体到教学实际中,可以从以下几个方面来提高高中数学教学的有效性.

■创设课堂趣味情境,激发学生学数兴趣

在数学课堂教学中,要善于创设趣味的课堂情景,摆脱数学教师一味单调枯燥的讲解,在情景中活跃课堂氛围,让学生在愉悦的气氛中,激发他们学习数学的兴趣和积极主动接受知识的热情.

例如,在讲《两个计数原理》时以动画展示狐假虎威的后续篇:自从发生《狐假虎威》后,老虎因受到狐狸的愚弄而耿耿于怀,对狐狸是恨之入骨,在森林里咬牙切齿地说:“哼!狐狸呀狐狸,除非你躲着不出来,总有一天我会吃了你,咱们走着瞧.” 有一天,老虎外出觅食,在草地上巧遇狐狸,老虎高兴极了,真是踏破铁鞋无觅处,得来全不费工夫,“哈哈哈!我报仇的机会来了!”老虎继而一下子目露凶光,狐狸一看那老虎的气势,吓得魂都飞了一半,想着这得赶紧跑呀!逃命要紧!最近的是草地对面的小岛,岛上有树有洞,可以躲藏.此时画面定格显示:水上有3艘船通向小岛,岸上有4辆车子也通向小岛. 教师提问:狐狸若乘坐画面上的交通工具上岛,一共有多少种上岛方法?此时学生还处在趣味情景中,保护弱者的心态使他们急于帮狐狸想办法,计算着逃跑的方法,他们首先搞清狐狸的逃跑路线属分类原理,而不是分步原理,最后运用加法进行计算得出7种方法. 趣味的故事情节激发了学生们浓烈的学习兴趣,他们还在饶有兴趣地猜想狐狸能不能再躲过一劫了.

通过这些从身边搜集到的大量有趣的故事情境,搬到课堂教学中,让学生去体验感悟情景中的数学常识,从而归纳出重要的数学模型,让枯燥的数学概念、知识变得生动有趣起来,也便以加深理解,让学生充分感受数学的魅力.

■丰富课堂教学语言,巧记数学基础知识

纵观数学课本上面的概念、定律、规则,都是非常精练深奥的,有的甚至抽象难懂,高中数学知识点又多,概念容易混淆,要想充分理解和牢记它们,课堂上除了创设一些故事情境、生活情境等让数学课堂生动有趣之外,教师还要运用丰富的教学语言拨动学生的心弦,让学生在幽默、形象的语言讲解中,理解数学知识并长久地记忆它们.

例如,为记忆初等函数的几个定积分式子,笔者设计了一个语言童话:常函数和指数函数是好朋友,它们常在一起玩耍,今天它们结伴逛街,没想到微分算子也在街上,它可是常函数的克星,常函数最怕遇见它了,常函数远远看到微分算子,慌忙拉着指数函数离开,指数函数不解地问:“怎么回去啦?你身体不舒服吗?”“你没看到微分算子吗?”,常函数反问道,“看到啦,他怎么啦?”指数函数更奇怪了,常函数怯怯地说:“我若遇到它,被它微分一下,我就什么都没有啦!”指数函数想了想说:“倒也是的,你和我不一样,我可不怕它,它可不能把我怎么样,但我还是陪你回去吧,谁叫我俩是好朋友呢.”说完二人匆匆地回家了.学生被这形象有趣的语言童话深深吸引住了,静静地听着教师讲故事,在听讲中,理解了常函数、指数函数和微分算子之间的关系和它们之间的不同,对教师幽默的讲演报以热烈的掌声,想不到能把这么枯燥的数学概念讲得这么生动形象.

这种有效的教学方法,不仅趣化了课堂,让学生在童话世界里插上想象的翅膀,感受数学的语言之美,还强化了学生对数学基础知识的记忆.

■组织有趣的探究活动,加深数学知识的理解

学者史宁中曾说过:“我们必须清楚,世界上有很多东西是不可传递的,只能靠亲身经历. 智慧并不完全依赖知识的多少,而依赖知识的运用,依赖经验,教师只能让学生在实际操作中磨炼.” 数学教学更重要的是过程性的教学,因而教师应该给予学生充分的时间与空间,让学生在探究中体验数学,感悟数学,积累数学经验,从而更深刻地理解数学知识.

例如,在《等比数列前n项和》的教学中,设置问题情境:话说灰太狼想在森林里开一个公司,但苦于资金有限,于是去找喜羊羊投资,喜羊羊一口答应:“行,从今天开始我连续60天往你的公司注入资金,第一天投资10000元,以后每天都比上一天多投资10000元. 但作为回报,在投资的第一天起你必须返还我1元钱,第二天返还我2元钱……以后每一天返还的钱数为前一天的两倍,60天后我们两清.”灰太狼一听,两眼一转,心里越想越美……请问:灰太狼占大便宜了吗?通过问题情境的引入,在引出课题的同时激发学生的兴趣,有效地调动了学习的积极性,同时也激发了学生的探究欲望,学生首先想到,要回答这个问题,就需要计算出喜羊羊、灰太狼各自付出的钱数,再比较大小. 对于喜羊羊的钱数,根据之前所学的等差数列的求和公式,学生都会化简求和,但对灰太狼的钱数,学生知道是等比数列前n项和的问题,但却不知怎样化简计算!此时,教师及时引导学生回忆:前面我们学习等差数列求和所用的方法是倒序相加法,它的本质是得到了n个相同的和,把一般等差数列求和问题转化为常数列求和,利用方程的思想化繁为简,把不易求和的问题转化为易于求和的问题,从而求和的实质是减少了项. 那现在用这种办法还行吗?若不行,又该怎样简化运算?能否类比倒序相加的本质,根据等比数列项之间的特点,也构造一个式子,通过两式运算来解决问题呢?在教师的引导下,学生一步步探索起来,充分利用以前所学的知识,把问题一一完美解答,在富有挑战性的探究活动中,学生加深了新旧知识的理解,同时也获得了征服困难后的快乐.

有趣的探究活动,能激发学生的学习兴趣,让他们在探究活动中勤于思考,勇于开拓,体验探究的过程,感受探究的艰难、成功的喜悦,有效地培养他们的辩证思维能力和创新思维能力,充分提高他们的毅力和耐力,让他们坚信自己会登上数学之顶,领略数学的风采的.

■营造生活化数学课堂,体验活用数学的乐趣

高中阶段,多、难、枯燥的数学题影响着学生们学好数学的自信心,面对这种普遍现象,我们数学教师有责任化解学生的负面情绪,在教学过程中,创造一些生活化的课堂情景,让学生在自己熟悉的生活领域中学习数学,发现数学知识不仅仅只有课本上有,生活中到处都有数学,我们生活在数学的世界里,再把所学的数学知识应用到生活中去,解决生活中的实际数学问题,让学生切实感受到学有所用,体验活用数学的乐趣,增强学好数学的信心.

例如,学完“概率”知识后,笔者创设学生们熟悉的生活情景:寄信是同学们日常生活中都做过的事情,现在老师手中有n封信想请你们帮我投入m个邮箱,试问同学们你们有多少种投法?对于看似简单的生活问题,学生也不是一下子就能明确回答,笔者启发他们活用“概率”知识,虽然他们在和之间有过摇摆不定,有的甚至在举实例复算求证确定,但运用概率思维后,学生普遍感到思维简单又清晰,只要一步一步分析,第一封信有m种投法,第二封信也有m种投法,之后每封信都有m种投法,所以,总投法为mn种. 有一位学生在分析完解法之后,还总结出了一个记忆口诀“邮箱的信次方”,如此一来,以后碰到类似的问题,就只需要找出“谁是邮箱,谁是信”就可以对号入座了,这种方法得到了大家的一致认同,学生们快乐地交流着,分享着别人的成功经验.

学生通过活用数学知识解答完生活中的实际问题,内心充满了成就感,体验着成功的快乐,眼中的数学不再呆板乏味,原本平淡的数学题一下子变得妙趣横生了.

生动有趣的数学课堂,能够吸引学生的注意力,使学生乐于学习,提高了教学的有效性. 另一方面,教学有效则学生能真正掌握知识,促进成绩提高,体验成就感,从而保持了内在的学习兴趣. 所以,教师要以有趣课堂促进教学的有效性,以有效教学提高学生解题问题的能力,保证学生学习数学的内在兴趣和积极性,让学生充分感受数学之美,笑对数学.

《数学课程标准》(2011版)指出:数学是人类生活的工具;数学是人类用于交流的语言;数学能赋予人创造性;数学是一种人类文化。那么:数学课堂应该是学生从数学活动的亲身实践中去体验、探索知识的过程。如今的数学课堂追求的已不是华而不实的课堂,而是再现更多的既简约而灵动的真实课堂。其实,简简单单的数学课堂同样精彩,它能把丰富的内涵和思想用简单的数学语言表达出来,学生学得既轻松又快乐!我认为在小学数学课堂教学研究中,我们要努力寻找一条崭新理念的教研之路,那就是数学课堂教学应是简约、扎实、灵动。

一、简约而不简单

数学课堂应是呈现出高度凝练的简约,但简约并不等于简单。相反地,简约的背后包含着太多的“不简单”。

1、情境创设,精“简”有趣。

“情境创设”是数学教学中常用的一种策略,它有利于解决数学的高度抽象性和小学生思维的具体形象性之间的矛盾。但创设情境不必追求表面的繁华,忽视内在的思考性、高效性。因此,情境创设追求的是简单、高效。比如,在教学《动手做(一)》这一课时,我创设了学生喜欢的好朋友笑笑、淘气和智慧老人带领他们畅游智慧王宫这一情境,课始学生学习的积极性极高,他们渴望在王宫里探密,寻求数学知识。此时再呈现国王的三幅简笔画,让学生复习学过的平面图形,既有助于学生想象力的发展,又为新授的动手拼图做好铺垫,这样学生就会学得轻松、有趣。

2、教学方法,灵“活”有序。

《课标》指出:“数学教学是数学活动的教学”。为此,在教学《搭配中的学问》这一课中,我设计符合学生的认知规律,由浅入深,由易到难,具有层次性。学生在整个活动过程中,通过小组合作,自主探究,发现搭配方法的多样性,同时感受到合作的乐趣,起到互相启发,共同提高的功效。首先让学生借助学具衣服,通过动手配一配,议一议,写一写,找到多样化解决问题的方法。初步感悟要使搭配的方法不重复,不遗漏,需要有顺序、有条理的思考。再通过路线的搭配,发现用字母表示搭配路线的方法具有优越性。从而使学生的思维由具体自然过渡到抽象,思维能力得到提高。最后通过游艺项目价格的搭配和数字的组合方法,让学生自主试一试,说一说,让每个学生都有独立尝试成功的机会,从而进一步体会有顺序、有条理搭配的好处。使学生在自主寻求解决问题方法的基础上,知识得到迁移应用。

二、扎实而不零乱

课堂教学要注重实效,这是我国数学教育的优良传统。但在注重实效的过程中,学生获取的知识要扎实,而不是摸不清头绪,零乱无序。

1、自主探究,开发思维。

数学教育家弗赖登塔尔强调:学习数学唯一正确的方法是实行再创造,即由学生去把所学的东西自己发现并创造出来,教师只须引导和帮助学生去创造,而不是把现成的知识灌输给学生。因此,在教学《认识分数》这一课中,我让学生动手、动脑、动口,感悟知识的形成过程。如:在教学中我让学生用长方形纸折出1/2,发现出多种折法,并请学生介绍他的折法,获得分数的初步认识。再让学生折出1/4,接着再来感知四分之几,在此基础上让学生创造自己想要的分数,这些都为学生提供了一定的创造空间和探索空间。学生在探究中发现,在发现中创新,在创新中求知,思维能力提高了。

2、练习有度,拓展思维。

《标准》中指出:学生的学习内容应当是现实的,有意义的、富有挑战性的,这些内容是有利于学生主动地进行观察,猜测、推理与交流的数学活动。因此,在《认识分数》这一课的应用提升这一环节,我精心设计了法国国旗、五角星、巧克力这些生活中的实物图,让学生展开想象的翅膀,去拓展思维的空间,使学生体验到从不同角度去观察物体,联想到的是不同的分数。最后通过估一估《科学天地》、《艺术园地》各约占黑板报的几分之几,让学生进一步感受到生活中处处有数学。所设计的练习生动有趣,富有挑战性,使学生在巩固中经历了应用――拓展――提升――深化的学习体验。

3、巧设质疑,创新思维。

“学贵有疑。”科学家爱因斯坦说过:我没有什么特别的才能,只不过喜欢寻根究底追求问题罢了。质疑是创新的钥匙。因此,教师要鼓励学生发现问题,大胆质疑,在教学中要让学生多问几个为什么。例如:教学《圆的认识》中圆的画法时,有学生突然指出:如果所需要的圆比较大,而圆规又太小,应怎么画这个圆呢?又如:在教学“比的意义”时,有学生指出:比的后项不能为0,可在体育比赛中,为什么常出现3:0,4:0呢?对于学生的质疑,教师首先应表扬他们善于思考,敢于大胆质疑的精神,接着可让学生展开讨论,各抒已见,然后在教师适当点拔中解疑、释疑。这样不但让学生通过合作释疑,还在质疑、释疑过程中,加深学生对新知识深度、广度的理解,养成勇于思考的习惯,大胆创新的精神。

三、灵动而不生硬

传统的数学教学有太多的机械、沉闷,缺乏生气、乐趣和对好奇心的刺激。这种注入式的数学方法是我们所摒弃的,需要教师合理选材,创设条件,引导学生主动思维、主动学习、主动想象、主动实践,使生硬的课堂变得生动活泼、富有个性。

1、用好教材,合理取舍。

“用教材教,而不是教教材”已成为教师的共识。但用教材教,并不代表可以随意使用教材,用教材教的前提是充分尊重教材。当然,在理解教材编写意图后,结合学生的生活经验和实际情况,对教材适当剪裁、取舍,有时能够锦上添花。比如教学《比的应用》这一课时,我舍弃了教材中原有的例题,大量地从生活中就地取材,设计以调配绿色这一现实而有趣的学习活动,来激发学生的探究欲望,从而得出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论,使学生对按比分配的实际意义有了更深刻的理解和感悟。这样,在正确把握教材的基础上,因地制宜,因材施教,使我们的数学课堂更加灵动和鲜活。

2、动手操作,直观形象。

《标准》指出:“动手操作、自主探索与合作交流是学生学习数学的重要方式。”因此,教学要给学生足够的实践操作的空间,让每个学生都有参与活动的机会,使学生在动手中学习,在动手中思维。如在教学《观察物体――搭一搭》这一课时,我安排了两个活动:独立搭一搭,同桌合作搭一搭,再在方格纸上画出从三个方向看到的形状,引导学生用语言进行描述,从而丰富学生的表象,并感知立体图形与平面图形之间的关系,在充分时间的动手操作中,发展了学生的空间观念。

“Enjoy every day” 享受每一天,这句《泰坦尼克》中的Jack的经典台词真可谓一语道破生活的真谛——把生活看作是一个享受的过程,真正发现生活的可爱之处。孔子曰:“学有三境——知学者不如好学者,好学者不如乐学者。” 而这个乐又何尝不是学生学习的最大动力呢? 许多人认为数学是一门抽象的科学,不在于付出多少努力,而在于你的智力的高低。我却不以为然,数学,是一切自然中不可缺少的部分,它不需要华丽的词藻来修饰,也不需要人们过多的夸奖,它是一中既朴实又高超的智慧。要想学好数学,第一步离不开勤奋,勇于实践的精神,有人把数学比作万宝山。然而它的大门却不像游览胜地那样,可以让人门自由进出,对一些学习上的懦夫懒汉来说,面对金光四射的数学大门,却犹如隔窗观花,可望不可及。至于那些畏惧崎岖山路的人,他一生只是在万宝山徘徊空叹。只有那些敢于奋进的勇士,才有可能打开数学之门,满载而归。 数学,作为一门逻辑性极强的学科,其性质决定了她是神秘的、深奥的,她比起其他的学科来似乎更枯燥一些、无味一些。但她又的的确确的是美丽的、耐人寻味的,她是思想与思想的大胆碰撞,是智慧与智慧的平等交流,更是情感与情感的浸润融合。 无尽的数学知识正像辽阔的海洋,那大海深处蕴含着一个五彩缤纷的世界。让我们一起带着孩子们畅游其中,为这无垠海洋中数不尽的奇珍的美而陶醉,甚而我们或者我们的学生会有幸步入龙宫,见到更加奇伟怪丽、五彩斑斓的景象,一窥数学的美境。哥德巴赫猜想激励着人们不断去探索或研究,它的证明将会给人带来无尽的惊奇、无穷的乐趣;数学史上的许多高峰也正等待后人们去攀登。山越高,路才越奇,越奇才越有惊美的发现。 平淡中见新奇、新奇中才有艺术。明明在“意料之外”但又在“情理之中”。未曾料到才能引人人胜,峰回路转,柳暗花明,这也正是数学的魅力、数学的美。 我不是擅长格律的诗人,但我愿意谱写享受数学的绝妙诗歌。我不是擅长丹青的画师,但我愿意为享受数学涂抹一笔亮色。我不是擅长音律的舞者,但我愿意为享受数学狂舞亦歌。我不是热衷探险的勇者,但我愿意在享受数学的漫漫道路上不断探索……数学知识像海洋那样辽阔,像大山那样宏伟。一个人无论天资多么高,精力多么充沛,毅力多么顽强,学习条件多么优越,也不可能把所有数学知识学到手。有的同学总想学到一切,他们希望一串串熟了的葡萄旁边又开放着朵朵鲜花,可是,事实告诉我们:这是不可能的呀!我们必须从第一步起,一步一个脚印,脚塌实地的走下去,才有可能度过那个辽阔的大海、攀上那座宏伟的大山。数学知识的学习,单靠认真听讲、死记硬背是不行的。相传有一个人巧遇一位仙翁,仙翁点石成金送给他,但他不要金子,而要仙翁点石成金的指头。这个人为什么要指头呢?因为他懂得,不管送自己多少金子,金子总是有限的,但如果有了点石成金的指头,那就可以随心所欲了。我常常给学生讲这个故事,但我却启发学生:仙翁的指头固然好,但那毕竟是别人的。如果我们拿来使用是否灵呢?可见,我们更应该学到仙翁的点金之术。古人说:“受之以鱼,只供一饭之需,教人已渔,则终身受用无穷”,也就是这个道理。

函数论文1500字

从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。你写论文时总是无从下笔?下面是我整理的生活函数700字-议论文作文,欢迎阅读,希望大家能够喜欢。 "会当凌绝顶,一览众山小。"想要世界因你而矮小,你就必须变得高大,要想变得高就得登上山峰,要想登上山峰,就得做出流血、流汗的准备,既然做出了准备,就得表示,那就是正比例函数的图象。 元旦,回到了家中,碰见了我的舅伯(数学老师)。他在我的亲戚中是我最害怕的一位。我刚一踏进门,舅伯就把我叫到他的身旁,开始唠叨起来,我也只有像做错事的小孩低着头咬着唇沉默不语。突然听见舅伯说了我最敏感的话题--学习。 "听说你很喜欢玩啊!连你买的羽毛球拍都被你打断了,而且是在两个星期内啊!"舅伯说。 我听了十分的害怕,也十分不好意思,脸也不争气的红了,对于这种事只好沉默了。 "孩子啊!不要总是想着玩,学习是一个积累汗水的过程。积累得越多,知识越广泛全面,就像那正比例函数的图像。原点0是你的起点,x轴是你积累的.汗水,y轴是你的知识的表示者--成绩,若你积累的汗水越多,成绩就会越高,知识就会越广越全面;若你不积累或隔一段时间去积累,你的知识就怕对于别人为零。" 是啊!仔细想想学习正是如此,成绩也是如此。如2008年的游泳就获得8块金牌的非普尔斯,如果他没有把自己关在缺氧的条件下训练自己,积累自己的血汗,他哪里会获得"飞鱼"的称号。再加上2008年的撑杆跳的女运动员--伊辛巴耶娃。若不是他不畏寒冬酷暑坚持训练,又怎能一次又一次刷新自己创下的世界记录呢? 那些没有在x轴上用汗水描下点的人,又何以变得高呢?诶蒙斯若能沉下心来训练积累汗水,又何至于两次奥运金牌从手中溜走呢?程菲若能想想丘索维金娜是怎样保持身体的灵活度积累自己的汗水,又怎能落得"真程菲跳"输给"假程菲跳"的下场呢? 这样看来,积累的汗水越多就在x轴上值越大,所对应的y轴值越大,图象越高,你就登得越高,世界也就会因你而更加矮小。

哥们是二中的吧~你去找一个高二的借一下就行了,因为高一和高二的作业是完全相同的!

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

2.1.1伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

2.1.2Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

2.1.3,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

2.1.4用Г函数求积分

2.2贝塔函数的性质及应用

2.2.1贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

2.2.2对称性:=。事实上,设有

2.2.3递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

2.2.4

由上式得以下几个简单公式:

2.2.5用贝塔函数求积分

例2.2.1

解:设有

(因是偶函数)

例2.2.2贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

2.3贝塞尔函数的性质及应用

2.3.1贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

2.3.2贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

2.3.3为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

2.3.4贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例2.4,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,2000.5,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,1992.2.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

相关百科

热门百科

首页
发表服务