首页

> 学术发表知识库

首页 学术发表知识库 问题

光的折射物理论文

发布时间:

光的折射物理论文

物理还要写论文,天呐!

在实际生活当中,有很多有趣而奇 妙的光现象。大到吸引全球注意力的日 食、月食,小到肥皂泡上的彩色图案, 只要你留心,随时都能发现自己身边的 光现象。不过,你有没有思考过它们的 原因呢?其实,这些光现象很多都可以 用我们学过的波的知识来解释,现在就 让我们去看一看自己身边奇妙的光现象 吧物理论文——形形色色的光现象 广义范围内的光指全部电磁波。迄今为止,所知的 最长波长为107米左右,最短波长为10-15米左右。 可见光指能引起人视觉的电磁波,其波长约在 7.7×10-7~3.9×10-7米,它包括从红光到紫光的各 种单色光 。 下面我们将针对可见光谈以下几个问题: 1 光的传播 2 光的反射 3 光的折射 4 光的衍射 5 光的干涉 6 光的散射 7 极光物理论文——形形色色的光现象 一、光的传播 在均匀介质中光沿直线传播。 这条性质我们是司空见惯了。也正 是光的这条性质,使人们费了很大劲才 弄清光的波动性质。究竟有什么现象是 光的直线传播造成的呢?就让我们看一 下吧。物理论文——形形色色的光现象 日食、月食是一重要的 天文现象,是光在同一种均 匀介质中沿直线传播的例 证。物理论文——形形色色的光现象 日全食、日偏食和 日环食 月球的影可以分为本影、半影和伪半 影三部分。月球绕地球的轨道和地球 绕太阳的轨道都不是正圆,所以日、 月同地球之间的距离时近时远。因 此,在日食时,观察者在本影范围看 到太阳全部被月球遮住,称为日全 食;观察者在半影内则见到太阳部分 被月球遮住,称为日偏食;观察者在 伪本影内见到太阳的中间部分被月球 遮住,周边剩下一个光环,称为日环 食。当月球绕地球运行到太阳与地球 之间几乎与太阳同起同落时,从地球 上见不到月球,这时称为朔,日食现 象发生在朔的时候。朔的周期约为29.5 天。但不是每隔29.5天都发生一次日 食,原因是月球绕地球运行的轨道平 面和地球绕太阳运行的轨道平面不完 全重合,两者之间有5°9’的平均夹 角。所以只有当朔时太阳离两个轨道 平面的交点在某一角度以内时才会发 生日食。物理论文——形形色色的光现象 月全食、月偏食与半影月食 月食是月球进入地球阴影,月面变暗的现象。地球在背着太阳的方向 有一条阴影,叫地影。地影分为本影和半影两部分。本影没有受到太 阳直接射来的光,半影受到一部分太阳射来的光。月球在绕地球运行 过程中进入地影后就发生月食。月球整个都进入本影发生月全食;部 分进入本影发生月偏食。月全食和月偏食叫本影月食。有时月球只进 入半影而不进入本影,发生半影月食。 当地球处在太阳与月球之间时,月球朝向地球的一面照满太阳光,从 地球上看月球,月球呈光亮的圆形,这叫望。望的周期与朔相同,月 食只能发生在望的时候。但由于地球与月球运行轨道不在同一平面, 而有一个5°9′的夹角,不是所有望的时候都发生月食。只有当月球 运行到两个轨道平面的交点附近时,月食才可能发生。物理论文——形形色色的光现象 由于地球的本影比 月球大得多,在月 全食时,月球会会 完全进入地球的本 影区内,因此,绝 不会出现月环食这 种现象。 发生月食时, 地面上的观测面积 很大,可覆盖半个 地球,只要是天气 晴朗的夜空就能看 得到。物理论文——形形色色的光现象 本影区是光线完全射不到的地方。点光源生成的影区 周围可以出现亮边,这是由于光的波动性,光遇到障 碍物后,发生衍射的结果。发光体越大,本影区越 小。如白炽灯下的人影很清楚,荧光灯下的人影十分 模糊,就是两者比较而言,白炽灯可看成是点光源, 发光面小;荧光灯的发光面就比白炽灯大得多。医院 里外科手术用的无影灯,就是在一个很大的圆形灯罩 里交错排列或呈环形排列几个到10多个灯球,每个灯 球里有一个镜面灯泡,灯炮下半部的内壁上涂有一层 铝,把光线均匀柔和地反射到整个灯球上。这样,各 个灯球都能把光线照射到手术台上,既保证有足够的 亮度,同时又不留任何影子。物理论文——形形色色的光现象 星光闪烁 夜晚,天上的星星,特别是地平线附近的星星,常以震动的形 式急速变化。时明时暗,上下跳动,左右摇晃。而且有时颜色也 有变化,这就使所谓的星光闪烁,或者说是星星“眨眼”。这是由 于大气处于经常不断地运动中,空气密度也相应地不断变化。又 因为不同光波的折射率是不同的,所以看起来,位置和颜色都不 断地变化。 来自地平线附近的星光,由于穿过的大气层厚,又由于底层大 气变化大,所以闪烁显著。地面的发光物也会有同样的闪烁现 象。 星光闪烁往往反映出大气的不稳定,是天起变化的征兆,所以 有“天上星星跳,风雨就来到”的谚语。 同样的原因,在炎热的夏季,地面上的目标物,由于强烈的增 热,空气密度变化大,大气层不稳定,折射率不断变化,远处看 起来一些树木、房屋等会产生晃动,气象学上称为闪晃。这中闪 晃也和星星闪烁一样,是天起变化的征兆,因为这是大气层不稳 定的表现。物理论文——形形色色的光现象 假设地球表面不存在大气层,那么 人们观察到的日出时刻与实际存在的大 气层的情况相比将延后 。这是由于太阳 光在不均匀的大气层中传播发生弯曲的 原因。海市蜃楼也是介质不均匀造成的 众人皆知的现象。这些现象等说到折射 时再详细说明。物理论文——形形色色的光现象 二、光的反射 我们能够看到的物体有的是光源(自己能发出光 线),有的则是因为它们能反射光。光的反射分为镜 面反射和漫反射,而以漫反射最为常见。光线经光滑 面发生的反射现象。镜反射遵循反射定律,反射光线 是有规律的。平面镜、球面镜及各种曲面的反射都是 镜反射。镜反射能生成各种像,并在适当位置和范围 内能观察到。在现实中,大量的反射都不是在光滑面 上进行的,反射面是粗糙的。在粗糙的表面进行的无 规则反射叫漫反射。漫反射的光线能到各个方向,但 就其中的每条光线而言,都遵循反射规律。一般物 体,我们之所以能从各个方向看到它,就是漫反射的 结果。漫反射在实际中有广泛的应用。物理论文——形形色色的光现象 我们常见的平面镜的反射就是镜面 反射。平行光经镜面反射仍平行。很多 时候我们都利用镜面反射,但有时镜面 反射却是我们要避免的。比如教学用的 黑板,如果太光滑就会造成很多同学看 不清字。这是因为反射光大部分光沿与 镜面反射的路径传播。这时只要把黑板 弄粗糙一些即可。物理论文——形形色色的光现象 当光射到两种媒质界面,只产生反射而不产生 折射的现象叫全反射。当光由光密媒质射向光 疏媒质时,折射角将大于入射角。当入射角增 大到某一数值时,折射角将达到90°,这时在 光疏媒质中将不出现折射光线,只要入射角大 于上述数值时,均不再存在折射现象,这就是 全反射。所以,产生全反射的条件是:①光必 须由光密媒质射向光疏媒质。②入射角必须大 于临界角。由于镜面反射常常造成光的能量损 失,常常用全反射透镜代替平面镜。潜望镜就 是这样做的。全反射的应用很广,如改变光的 传播方向、测量折射率和传导光束等。物理论文——形形色色的光现象 三、光的折射 光的折射满足折射定律。其内容如下:①折射线、法线、入射线在同 一平面内。②折射线、入射线在法线的两侧。③折射角的正弦与入射 角的正弦的比值是一常数。 光由光速大的媒质进入光速小的媒质,光线将向法线偏折,即光线配 法线的夹角变小。 在水底有一束光源,光束达到水面然后折射到空气中,当然,也有一 部分光线产生反射。当入射角加大时 ,更多的光线产生反射。当入 射角大于或等于临界角时,发生全反射。临界角是由两个介质的折射 率来决定的: n 是两个介质的折射率。 nair water sinθ nair / nwater crit物理论文——形形色色的光现象 在地球上观察日出时,太阳发出的光线进入大 气层经过无数次折射才映入观察者的眼帘,观察者 认为光是直线传播的,所见太阳好像在如图1-40所示 的S′处的“太阳”乃是阳光经过大气层折射后形成的 虚像。实际上这时的太阳S还在地平线以下。物理论文——形形色色的光现象 透过燃烧得很旺的炉火 上方空气看炉火另一侧竖立 木棍,发现木棍不规则地左 右晃动变得弯曲了,如图所 示,这是由于人眼所见木棍 的虚像密度分布变化的气流 飘移。物理论文——形形色色的光现象 雨后初晴的早晨或傍 晚,或者远处还落着小雨, 另一边又在出太阳,常观察 到天空出现彩虹,这是由于 光的折射产生的色散现象, 如图所示,太阳光进入水滴 后,因各色光的折射率不同 而产生色散。实际上是一部 分光线反射,一部分光线折 射进入水滴,在水滴里面发 生内部反射(全反射)然后 再从水滴折射而出,人眼可 见各色光。物理论文——形形色色的光现象 眼睛 视觉器官。眼睛和照相机相似,一部分是光学成像系统,能够保证在视网膜上形 成外界物体清晰的像;另一部分是与照相底片相似的感光层,即视网膜上的感光 细胞及其外段的光敏色素。 眼球近似于球体,内部的角膜、水样液、晶状体及玻璃体构成屈光系统,起到一 个双凸透镜的作用。眼睛比照相机机构要复杂得多。除了有一套自动调节控制机 制外还能把光携带的信息变成神经电信号并经过初步加工处理传到大脑。 眼睛有一套自动调节控制机制,即能使远处的物体成像在视网膜上,也能使近处 的物体成像在视网膜上。其原因是晶状体本身是有弹性的,可以靠周围肌肉的运 动改变它的表面的弯曲程度,从而改变其焦距。因此眼睛是一种精巧的变焦距系 统。眼睛要看清一个物体,除了像要成在视网膜上以外,还需要成在视网膜上的 像足够的明亮,这主要靠瞳孔的调节,瞳孔的大小是可以改变的,改变它就可以 控制进入眼球的光线的多少,它的作用像照相机的光圈。另外眼睛要看清楚一个 物体还要满足第三个条件,就是物体的两端对眼睛光心所张的视角要大于1分。当 物体对眼睛所张的视角小于1分的时候,在视网膜上所成的像就会落在同一个感光 细胞上,整个物体看上去就会缩成了一点无从分辨。 物体上射出的光一部分进入眼睛在视网膜上成一实像,我们就看清了物体。眼睛 不仅能看清物体,而且还能看清物体通过光学系统所成的虚像,虚像是反射光线 或折射光线的反向延长线形成的,但这些反射光线或折射光线进入眼睛后能在视 网膜上成一实像。 人们眼球的焦距只有1.5厘米左右,所以观察的物体一般总在眼睛的两倍焦距以 外,它在视网膜上所成的像是缩小倒立的实像,由于长时间的感受已养成习惯, 脑神经能清楚地识别各种物体,不至有上下倒置、左右易位的感觉。物理论文——形形色色的光现象 近视眼 一种远点为有限距离的非正常眼,这种眼睛的折光本 领比正常的眼睛大些,或者角膜到视网膜的距离比正 常的眼睛长些。晶状体在曲率最小的时候,也不能把 平行光束会聚在视网膜上(而是聚在视网膜前),这 种眼睛远点不是无限远,只适于看较近的物体,近点 也比10厘米小,要使这种眼睛能够看清楚无限远的物 体,必须把物体在视网膜前所成的像,移到视网膜 上。矫正近视眼的方法是配带一副用凹透镜做的眼 镜,利用这种透镜对于光束的发散作用可以使得物体 所成的像远一点,刚好成在视网膜上。青少年多患近 视眼,因此应该注意眼睛的保健。

研究光折射对眼睛的伤害论文

近视眼的成因是由于眼睛长时间看近处的东西,晶状体变厚,使物体的像成在了视网膜的前方;远视眼的成因是由于眼睛经常看远处的东西,晶状体变薄,使得物体的像成在了视网膜的后方。

物理还要写论文,天呐!

在学习、工作生活中,大家都写过论文,肯定对各类论文都很熟悉吧,通过论文写作可以培养我们的科学研究能力。相信很多朋友都对写论文感到非常苦恼吧,下面是我收集整理的科学小论文作文,希望对大家有所帮助。

对于科技这个词语,大家都很熟悉。简单说来,科技就是科学技术。从广义的角度来看,它是指自然科学技术和社会科学技术的总和。

改革开放以来,随着时间的推移,科技如雨后春笋,正在祖国大地迅猛地发展。环顾生活,科技是无处不在的,科技就在我身边!

夜晚走在路上,有电灯给我们照明;给朋友打个电话,随手可以掏出手机;回到家里,打开电视看看新闻,开启电脑,可以和朋友聊天;妈妈用电饭煲蒸好了饭;开开电暖器;一家人围坐在一起,欣赏着妈妈用电炒锅调制出来的美味佳肴……你看,随时随地,我们能离开科技吗?

科技的用处可是大了去啦!比如说:如果没有电动车,我们就不便和远方的亲朋好友交往;如果没有动车组,人们到各地旅游就很难实现朝发夕至;如果没有航天飞机,人们进入太空将是一句空话;如果没有破冰船,我们就很难到南极考察;如果没有航天器具,人们登月将只能是幻想……

相反,有了科技,我们的生活将变得更加美好——有了传真,我们的文件,瞬间可以轻松地传出!有了机器人,它可以置身人们难以到达的空间;运用激光,可以制成健身器材;有了空调,即使是炎热的夏日,也可以让人们舒适如春……

不难看出:这一切,人们享用的都是科技的成果!

由此可知:科技,帮助我们创造了优越的生活环境;科技,提高了我们的生活质量;科技,是全世界人们智慧的结晶!

我们身处科技中,要不断学习新的科技!

科技就在我们身边,我们还要大力发展科技!

我学习了《铁罐和陶罐》这篇课文,知道了铁罐放在泥土里容易腐烂,我的脑袋里冒出了一个小问号:“那么铁放在哪里生锈最快呢?为此,我反复思考研究做了一个小实验。首先准备三个小铁片,然后一个放在冰箱里;一个埋进泥土里;最后一个放在盐水中,看看哪一种会更快使铁片生锈。一天下来,我来到冰箱,小心翼翼地拿出铁片,仔细观察起来,可铁片却一点儿变化都没有,我接着来到花盆前,挖出藏在土壤里的铁片,可结果仍是如此,最后我来到水杯前,拿出浸在盐水里的铁片,可也是一点都没变。这可让我纳了闷:“难道得时间长一点才能出效果?”我疑惑地走开了,几天之后,我又来到那儿,惊奇地发现在泥土里的铁片有一点点生锈,而在盐水里的铁片早已锈迹斑斑。这到底是怎么回事呢?带着这个疑问,我打开了电脑,原来是原电池反应,离子导电,因为两种金属通常是活动性不同的两种,以铁和铜为例,因为空气中有水分,水中通常容有酸性气体,如二氧化碳,铁片遇到酸失去电子成为铁离子,电子则通过金属移动到铜,再还原成氢气,形成一个原电子,这种反应成为析氢气反应。铁的这种腐蚀内称为电化学腐蚀,电化学腐蚀比一般的氧气还原性腐蚀速率更快,从实验和资料中证明,盐水会让铁片更快生锈!

想不到就一个问题,竟然要花那么大的功夫去查找资料,去思考其中问题,一个问题的答案或许就那么几个字,可是它其中包含的道理和知识是无法估量的,科学家付出的汗水也是无法想象预计的,那些科学家真的是为人类做出了很大的贡献。大千世界无奇不有,猛然间我恨不得把所有的问题都思考出一个答案来解释,也正是了解这些后,我对大自然的好奇心越来越强了。总之,受益匪浅。大自然一个永远说不完的话题,永远解释不完的奥秘。

去年寒假,我回连云港玩儿。

有天晚上,我去姐姐家睡觉,睡觉前习惯性地和姐姐聊天。姐姐跟我说,前段时间连云港下雪啦!那雪花洁白洁白的,在空中跳跃着,就像一个个可爱的小精灵。第二天早上大地一片洁白,银装素裹,然而到了中午雪就开始融化了。可是化雪了,我们反而觉得比下雪时还要冷呢。…… “啊?!”听了姐姐的话,我吃了一惊,“为什么呢?”我又刨根问底。姐姐耸耸肩,表示不知道。我暗暗寻思起来。

按常理说,天气冷了,要到零摄氏度以下才会有雪,那时,天气肯定很冷啊!而化雪,那时太阳暖烘烘地照着,人也应该感到暖烘烘的阿!相比之下,不用说,肯定化雪时比下雪时要暖和多了!可是按照姐姐说的…根本不可能嘛!难道姐姐在我?不会!

第二天早上见到爸爸妈妈,我张口就是晚上的那个问题,那些话还没经我同意,就迫不及待地冒了出来。爸爸妈妈笑了笑,说:“你可以上网查。”

我回到姐姐家,打开电脑,来到百度网查了起来。

突然,一行字映入了我的眼帘:

水结冰要放热,而冰融化为水要吸热,但根据热力学基本定律:物体的热量只能从高温物体转移到低温物体。水与冰雪的相互转化温度为0摄氏度,水结冰放热到环境中会使环境温度升高,但最高不可能超过0摄氏度,否则热量的流向就会“掉头不顾”;另一方面,雪融化为水要吸热,使环境温度下降。但环境温度最低也不可能降到0摄氏度以下,否则低于0摄氏度的环境就会使冰雪融化的过程产生“逆转”。因此,从理论上讲,下雪决不可能比融雪温度低。简评:许多科学发明或发现都是在不经意之间呢

“咕咕,咕咕……”我正在写作业,突然听到从厨房里传来了一阵怪叫声。天生胆小的我不禁吓了一跳。我蹑手蹑脚地走过去 想看个究竟,可没有发现什么可疑的东西。这时,又传来了“咕咕、咕咕”的声音,我这才注意到,原来是脚边的泡菜坛子在作怪。咦,泡菜坛子怎么会冒泡呢?会不会是空气钻进去,然后又从水里冒出来呢?可是,泡菜坛的盖子盖得紧紧的,

一丝空气也跑不进去呀!

姐姐上班回来了,还没有进大门,我就迫不及待地跑上去问:“姐姐,姐姐,泡菜坛里为什么会冒泡泡呢?”姐姐笑眯眯地说:“泡菜坛里的菜泡得时间长了会产生一种厌氧菌,它可以在没氧气的情况下大量繁殖,当它发酵的时候,就会排出气体,所以泡菜坛子里会冒泡泡。”

什么?厌氧菌?我最怕细菌了,它们都是坏东西,怎么可以出现在食物里呢?我们吃了这些东西生病了可怎么办呢?姐姐的回答已经满足不了我的好奇 心。我拿来《百科全书》寻找答案。啊,答案在这里!原来,自然 界里有一些菌(如酵母菌、厌氧菌),可引起食物发酵,产生酸,同时放出气体,它们对人类并无害处。我想:以前奶奶做好后只有拳头般大小的馒头,蒸过之后成了巴掌那么大,而且又香又甜,原来都是酵母菌的功劳啊!没有想到,以前在我眼中深恶痛绝的菌类,却在我们的生活中发挥着这么重大的作用。

我正想得入神,突然泡菜坛子里又冒出了一个大泡泡。姐姐对我说:“其实,大自然中还有非常多奇妙的现象,只要你留心去观察,就会发现。”看,“咕咕”叫的泡菜坛就是非常好的证明。

树干为什么是圆锥状的?圆锥状树干有哪些好处?一直很困惑,为了找出问题的答案,我们进行了深入的观察、分析、研究。在辅导老师的帮助下,我们查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。

经过实验,我们发现:

(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;

(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;

(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;

(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。

以上的实验反映了自然规律、自然界给我们启示:

(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;

(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。

在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。

大家好,今天我给大家讲两个科学小问题的答案,你们想先听哪一个呢?哦,是蚂蚁为什么不会迷路呢,还是凸透镜能点火呢?哦,你要先听蚂蚁为什么不会迷路呀。好!马上为您揭晓!

蚂蚁是社会性很强的昆虫,彼此通过身体发出的信息素来进行交流沟通,当蚂蚁找到食物时,会在食物上撒布信息素,别的蚂蚁就会本能地把有信息素的东西拖回洞里去。当蚂蚁死掉后,它身上的信息素依然存在,当有别的蚂蚁路过时,会被信息素吸引。

但是死蚂蚁不会像活的蚂蚁那样跟对方交流信息(互相触碰触角),于是它带有信息素的尸体就会被同伴当成食物搬运回去通常情况下,那样的尸体不会被当成食物吃掉,因为除了信息素以外,每一窝的蚂蚁都有自己特定的识别气味,有相同气味的东西不会受到攻击,这就是同窝的蚂蚁可以很好协作的`基础。

蚂蚁在行进的过程中,会分泌一种信息素,这种信息素会引导后面的蚂蚁走相同的路线。如果我们用手划过蚂蚁的行进队伍,干扰了蚂蚁的信息素,蚂蚁就会失去方向感,到处乱爬。如果你想逗它们玩,把手一伸,它们就乱套了。

下面我为你讲述下一个的答案,冰之所以会融化,是因为冰接收的热量比失掉的多,总体处于接收热量状态,所以融化。

在南极、北极,或者气温处于零下的地区,水冻成冰后是不容易化的,例如南极的冰川一直都存在,即使每天有阳光照射,也不易融化!

冰凸透镜可以点火,是因为光的折射,光进入凸透镜后折射到一个点,该点温度足够高,就可以点火了。但是光进入冰凸透镜的同时,冰也吸收了一部分光的热量,如果外部温度很低的话,冰吸收的热量就都散失出去了,所以冰才不会融化;如果外部温度很高,冰还同时吸收太阳光的热量,那么很快冰就会融化掉了。

总而言之,冰在折射光的同时,也在吸收光的热量,关键看外部温度是高是低。

真是有趣的实验啊!

保护自己的眼睛,可不是一件容易的事。

小学生要保护眼睛不近视,主要是读写的姿势要正确,眼睛与书之间要保持30厘米以上距离,不在强烈的太阳光下和太暗的光线下看书,也不要在走路、乘车时看书,不要躺着和趴着看书,读写时间也不要太长,我们学校就开展了让孩子在室外有足够的活动时间来保护我们的视力活动,另外还要坚持做好眼保建操,还要向窗外远眺或看一些绿色植物。不要长时间观看电视节目、操作电脑和玩电子的游戏;现在人们工作、学习越来越多的人使用电脑,就连我们小学生写完作业后也要上网玩一会网络小游戏,但最好不要超过一个小时,要保持一个科学小论文300字 最适当的姿势,眼睛与屏幕的距离应在40—50厘米,使双眼平视或轻度向下注视荧光屏,这样可以使颈部肌肉轻松,并使眼球暴露面积减小到最低,电脑室内光线要适宜,不可过亮或过暗,也可以通过设置屏幕色调、饱和度、亮度来保护眼睛。使用电脑的姿势也很重要,最好使用可以调节高低的椅子,使操作者与电脑屏幕中心位置在同一水平线上,坐着时应有足够的空间放双脚,不要交叉双脚以免影响血液循环。

经常使用电脑的人容易患上“干眼症”,就是我们用电脑时间长了,人会感到眼睛疲劳、视线模糊、眼睛干燥或充血、畏光、酸胀甚至丧失眼睛的聚光能力。如是出现眼睛干涩、发红、有灼热感或有异物感、眼皮沉重,看东西模糊,甚至出现眼球胀痛或头痛,就需要到医院看眼科医生了。

我在网络上看到电脑操作者在荧光屏前工作时间长,视网膜上的视紫红质会被消耗掉,而视紫红质主要由维生素A合成,多吃富含维生素A的食物,如;动物肝脏、胡萝卜,、西红柿、红薯、菠菜、豌豆苗等,保护眼睛也可以从饮食上下功夫,多吃新鲜蔬菜对保护眼睛,防治眼疾,提高视力也是非常有益的。

暑假的一天,我在家写作业,一不小心把钢笔里的墨水溅到本子上了。我忙伸手拿纸,想擦干净,却发现纸篓里的纸快用完了,只有两三张在纸篓底下,拿的时候手必须使劲向下伸,才能拿到。既费时又费力,十分不方便。我不禁想:有没有什么办法能解决这个问题呢?我想了半天也没想出什么好办法。突然,客厅里的脚踏式垃圾筒提醒了我,对呀!只要把纸篓底下弄一个托,打开纸篓时就将纸托起来,关上时纸托就降下去,这样不就解决了这个问题了吗!

说干就干!我先找了个差不多大的盒子,然后把盒子上的盖子剪下来,加工成似老式窗户一样的左右匀称的两半,放在一旁备用。然后找来一个保鲜膜(塑料袋也可),把保鲜膜剪成与盒子等宽的长方形,长度要比盒子长10--15厘米。再把先剪好的两片盖子粘在盒子上,用胶纸固定,但不要太紧,使盒盖能轻松的打开。假如太紧也没关系,可以在盒盖上分别粘两块吸铁石,再在盒子两侧的相同位置上粘两块吸铁石,就OK了。最后把保鲜膜的两端与盒子两端对齐,粘住。要注意的是,不要全粘在盒盖上,只把保鲜膜的两端粘在盒子最外端就行了。

其实这个方法不止可以用在装卫生纸上,一些小的饰品拉,儿童拼图拉,工艺纸拉,蜡笔拉,药品拉等等都可以装在这样的盒子里。在这里我还要提醒大家,因为保鲜膜太薄,因此太重或带尖的物品要用比较硬的塑料袋,延长使用寿命。

科技就是这样,只要你善于留心周围,那就会有源源不断的科技发明在你的脑海里闪光!

科学往往是很吸引人的,而且科学还是永远探索不完的,永远新鲜有趣的。比如,就拿漂浮的鸡蛋这一实验来说,也许很多人都知道,但做实验的过程远比听说的要新颖。

实验很简单,材料只有四样:大玻璃杯、食盐、勺子、鸡蛋。虽说简单,却可以从中收获无限知识。

首先,我拿起水壶,在玻璃杯里倒进大半杯水,接轻轻把鸡蛋放入水中,鸡蛋在杯中沉入底部后就不动了,似乎在休息。

接我放了1勺盐,鸡蛋没有动静;我开始放第2勺盐,鸡蛋仍然安安静静的躺在杯底;我一气之下放了6勺满满的盐,鸡蛋没有辜负我的期望,上升的一点;最后,我不服输的放了2勺盐,鸡蛋上升指数又高了些。

我听说别人的鸡蛋可以漂浮的水中间,就把鸡蛋拿出来,用勺子搅拌了一下未融的半成品盐水,待杯子底部的盐化了,才慢慢把鸡蛋放进去,这时,鸡蛋不停地上下浮动,我等了一会儿,鸡蛋不动了,挣扎浮出水面。

最后,我把剩余的2勺盐倒入水中,鸡蛋逐步上升到水面,如戴泳圈在自在的游泳,我淘气的用手指把鸡蛋往下压,松开手指,鸡蛋又很快飘回到水面。

为什么鸡蛋会飘浮起来?我从电脑中取得了收获:鸡蛋刚放进清水里的时候,由于鸡蛋的比重比水大,鸡蛋受到的浮力小于本身的重量,所以它会沉到底部;放盐后,水把盐溶解了,水的比重增加,当盐水的比重等于鸡蛋的比重时,鸡蛋就会浮在水的中间;再继续加盐,当盐水的比重大于鸡蛋的比重时,鸡蛋就会浮在盐水的上面,并且鸡蛋顶部露出水面。

老师在课堂上告诉我们:任何物体在水里都会受到浮力,受到浮力的大小等于物体排开水的体积的重量,这就是名的“阿基米德定律”,也叫浮力定律。其实科学就和长大要学的物理差不多。

我很惊奇这个小小的实验居然蕴含了如此丰厚的定理,这才明白科学除了用来放松用来玩,还对我们有很深的重要性。我暗暗下定决心在往后的日子里好好学物理,好好研究这有趣的科学。

妈妈把家里搞成了一个小花园,花盆里装满了肥沃的泥土,各种各样的植物正生气勃勃地焕发着活力。芦荟绿得极艳,仿佛是一种液体的绿色,仿佛能拧出水来。紫薇花也欣然怒放,紫色的小花在一片草绿中透露着紫色的信号。一品红正如它的名字一样,红得似霞,深红色的花瓣下点缀着几片绿叶。我疑惑了:植物的生长必须依靠土壤吗?

于是,我找来两个塑料杯,在一只中盛上半杯水,放入三颗绿豆;另一只杯子中先放入1/4杯的泥土,放入一颗绿豆,再覆上土,压实,放在阳光可照射之处。

一天过去了,水里的绿豆没有发生太多的变化,但埋在泥土里的绿豆已发了芽,弯弯地贴着杯壁,正面看过去似乎是数字中的“6”。

过了两天,绿豆的动静越来越大,泡在水中的绿豆竟褪了皮,发了芽,样子颇似小蝌蚪。而放在泥土里的绿豆的芽已经有3-4厘米长了。

又过去了两天,绿豆的差距越来越明显。泡在水中的绿豆仍只有约莫摸1厘米左右长的芽儿,但在泥土中的绿豆的芽儿已破土而出,露出了小脑袋,似乎在惊喜地打量世界。

距离种下绿豆已有一周多时间,但现在的局势大有不同。在水里的绿豆因喝足了水,而长得越发粗壮,但现在的埋在土里的绿豆状况大不如前,因为土壤太过干燥而干枯,钻出泥土约有4厘米的芽儿已“睡”在了土地上。

我上网查了资料,才发现,原来植物必须的几个条件分别是:适宜的温度、阳光、空气与水份。当植物离开这些条件是便会死亡。

事实证明:植物的生长不一定需要突然的栽培。这使我解开了心中的谜团。

秋风一起,金黄的树叶纷纷落下。我在门前做清洁工作,发现了一个有趣的现象:地上的叶片大数是“面朝黄土背朝天”,这是为什么呢?

其他的落叶是不是也一样呢?我想再去观察观察吧。在这一周里,我去观察了许多树的落叶情况。结果我发现,绝大多数的落叶是“面朝黄土背朝天”。

我想应该做一个模拟实验来验证一下我的想法。于是我制作了像叶片一样的风筝去放。由于不太会放,所以放了很多次风筝也没有飞起来。我记得风筝落地时总是重竹条的一面朝地,这是不是和落叶朝天有相同的地方呢?

难道树叶也和我做的风筝一样,一面重一面轻?带着这个假设,我采了许多种不同的树叶进行观察。我发现,叶面表皮好像是里面的叶脉排列稀疏一些,光滑一些,叶背面叶脉排列紧密一些,粗糙一些。于是我在爸爸的帮助下,做了一个叶片的模型,用了一些细铁丝,编成了网状,有的稀疏,有的紧密。然后把稀疏的铁丝网和紧密的铁丝网连成正反两面。然后我将“叶片”从空中抛下10次,8次是紧密的铁丝网一面在下,2次是稀疏的铁丝网一面在下。

通过实验,我豁然开朗,于是我又到互联网、书上查找有关树叶的资料,终于明白了落叶“面朝黄土背朝天”的科学秘密,原来,两种结构不同的细胞层,形成了同一片树叶的“背”与“面”,由于比重不同,树叶在飘落的过程中,会翻转变化,重的一面朝下,轻的一面朝上,这样降落最稳定。所以落地后,细胞紧密而重的一面朝黄土,细胞系数而轻的一面朝天。

科学真有趣,今后我要多做这样的实验,长大后做更多更复杂的实验,为人类造福。

我外婆家住在萧山围垦,家里有个养鸡场。每次到她家去,餐桌上总少不了鸡与蛋。

去年的一天,我去外婆家,只见那里的鸡正流行瘟疫,死了不少,外婆心疼得吃不下饭。我无意中削了一块仙人掌喂了一只闹瘟疫的鸡。时隔不久,我们发现这只鸡变得有精神了,也有了食欲。经检查,这只鸡的病基本消除。查找这只鸡病愈的原因,大家认为大概是仙人掌起了作用。这时,我想起老师曾经说过,在中国医学中,非常多植物都可入药,能治疗一些疾病。

为了搞清楚真正原因,我与表哥开始到养鸡场进行调查。我们得知许多养鸡户也在试着用仙人掌治鸡瘟与其他疾病。

那么,仙人掌与鸡瘟到底有什么关系呢?我们经过查阅资料与走访专家,最后了解到:仙人掌的茎含有槲皮素葡萄糖、树脂、酒石酸、蛋白质。茎叶又含三萜、苹果酸、琥珀酸,还含有24%碳酸钾,槲皮素、酒石酸均有抗菌素作用,是鸡瘟的克星。至此,我们明白了仙人掌为什么可以治鸡瘟,同时也惊叹仙人掌的神奇功效。

为了进一步确认仙人掌治疗鸡瘟的最佳用法与用量,我们又做了一个实验。

我们先取鸡场内同时患病的鸡20只,将它们分成5组,每组4只。再取一些新鲜仙人掌,削去表皮上的小刺洗净后,用榨汁机把仙人掌榨出汁液。最后,用量杯量出一定量的仙人掌汁液与一定量的饲料充分拌匀,然后喂鸡,对5组病鸡的不同用量取得了不同的效果。

实验结果表明,第四组取得了最佳效果,也就是说鸡早晚各服用4克仙人掌汁取得的治疗效果最好。由此我想到,如果将仙人掌制成药品用于鸡瘟疫的防治与治疗,一定会有非常好的效果,而且会减少合成药物带来的污染。因为仙人掌便于种植,还可以节省大量人力、财力资源,推广普及快,具有极佳的市场前景。

你家是不是有毛衣?我想,你一定说有的。现在的每家每户都有毛衣,可是你是否观察过毛衣呢?仔细观察,你就会发现毛衣上有许多的小圆球,由毛衣上的毛组成。这样不仅妨碍美观,还会让你摸起来非常不舒服。如果处理不当,会损坏整个毛衣,反而更不好。这个时候就轮到毛球修剪器上场了。只见它开足马 力,对着毛球一刮,就看见毛球全部都不翼而飞,毛衣干干净净。正在我对这个毛球修剪器赞叹不已时,突然升起一团疑云,毛球修剪器到底是怎样修剪的呢?

我正疑惑时,爸爸发话了,让我自己去寻找答案。

我拿出说明书,仔细的研究了一下,便开始拆修剪器。我先把修理器的开关关闭,再把最外层的外刀网旋开,拔出来,然后再把最主要的圆刀拿出来,上面有着极其锋利的刀片,再往下就看见了风叶,上面有着四块竖起来的板,打开开关就会飞快的转动,在风叶的最下面,还有着一个巨大的缺口,毛球就是从这里掉下去,掉进储物仓,保存在里面。

原来,这个修剪器,由一个马达转动风叶,风叶连接着圆刀,风叶一高速转动,圆刀也高速转动。外面的外刀网隔开了衣服与圆刀,防止直接接触衣物造成的破损。外刀网上有许多小孔,在接触衣物时让毛球伸进外刀网,被圆刀直接割断。被割断的毛球从圆刀的旁边掉入下面的风叶上。风叶上的四块竖起的板子在高速转动的情况下,像打羽毛球一样,把毛球“打”进储物仓。在实验的过程中,我发现了一个问题:我一把外刀网旋下来,这个修理器就不再转动。难道是没有电了?那为什么刚才还转的这么快?经过我多次试验,发现风叶旁有一个按钮,就像冰箱上的灯一样,有个下压按钮。外刀网旋紧后,会把这个按钮往下压,压到最底部时,保护功能就会关闭,修剪器就会正常工作。

原来一个毛球修剪器还有这么大的学问啊!

眼睛的晶状体过薄导致对光的折射能力弱

光的衍射小论文

在实际生活当中,有很多有趣而奇 妙的光现象。大到吸引全球注意力的日 食、月食,小到肥皂泡上的彩色图案, 只要你留心,随时都能发现自己身边的 光现象。不过,你有没有思考过它们的 原因呢?其实,这些光现象很多都可以 用我们学过的波的知识来解释,现在就 让我们去看一看自己身边奇妙的光现象 吧物理论文——形形色色的光现象 广义范围内的光指全部电磁波。迄今为止,所知的 最长波长为107米左右,最短波长为10-15米左右。 可见光指能引起人视觉的电磁波,其波长约在 7.7×10-7~3.9×10-7米,它包括从红光到紫光的各 种单色光 。 下面我们将针对可见光谈以下几个问题: 1 光的传播 2 光的反射 3 光的折射 4 光的衍射 5 光的干涉 6 光的散射 7 极光物理论文——形形色色的光现象 一、光的传播 在均匀介质中光沿直线传播。 这条性质我们是司空见惯了。也正 是光的这条性质,使人们费了很大劲才 弄清光的波动性质。究竟有什么现象是 光的直线传播造成的呢?就让我们看一 下吧。物理论文——形形色色的光现象 日食、月食是一重要的 天文现象,是光在同一种均 匀介质中沿直线传播的例 证。物理论文——形形色色的光现象 日全食、日偏食和 日环食 月球的影可以分为本影、半影和伪半 影三部分。月球绕地球的轨道和地球 绕太阳的轨道都不是正圆,所以日、 月同地球之间的距离时近时远。因 此,在日食时,观察者在本影范围看 到太阳全部被月球遮住,称为日全 食;观察者在半影内则见到太阳部分 被月球遮住,称为日偏食;观察者在 伪本影内见到太阳的中间部分被月球 遮住,周边剩下一个光环,称为日环 食。当月球绕地球运行到太阳与地球 之间几乎与太阳同起同落时,从地球 上见不到月球,这时称为朔,日食现 象发生在朔的时候。朔的周期约为29.5 天。但不是每隔29.5天都发生一次日 食,原因是月球绕地球运行的轨道平 面和地球绕太阳运行的轨道平面不完 全重合,两者之间有5°9’的平均夹 角。所以只有当朔时太阳离两个轨道 平面的交点在某一角度以内时才会发 生日食。物理论文——形形色色的光现象 月全食、月偏食与半影月食 月食是月球进入地球阴影,月面变暗的现象。地球在背着太阳的方向 有一条阴影,叫地影。地影分为本影和半影两部分。本影没有受到太 阳直接射来的光,半影受到一部分太阳射来的光。月球在绕地球运行 过程中进入地影后就发生月食。月球整个都进入本影发生月全食;部 分进入本影发生月偏食。月全食和月偏食叫本影月食。有时月球只进 入半影而不进入本影,发生半影月食。 当地球处在太阳与月球之间时,月球朝向地球的一面照满太阳光,从 地球上看月球,月球呈光亮的圆形,这叫望。望的周期与朔相同,月 食只能发生在望的时候。但由于地球与月球运行轨道不在同一平面, 而有一个5°9′的夹角,不是所有望的时候都发生月食。只有当月球 运行到两个轨道平面的交点附近时,月食才可能发生。物理论文——形形色色的光现象 由于地球的本影比 月球大得多,在月 全食时,月球会会 完全进入地球的本 影区内,因此,绝 不会出现月环食这 种现象。 发生月食时, 地面上的观测面积 很大,可覆盖半个 地球,只要是天气 晴朗的夜空就能看 得到。物理论文——形形色色的光现象 本影区是光线完全射不到的地方。点光源生成的影区 周围可以出现亮边,这是由于光的波动性,光遇到障 碍物后,发生衍射的结果。发光体越大,本影区越 小。如白炽灯下的人影很清楚,荧光灯下的人影十分 模糊,就是两者比较而言,白炽灯可看成是点光源, 发光面小;荧光灯的发光面就比白炽灯大得多。医院 里外科手术用的无影灯,就是在一个很大的圆形灯罩 里交错排列或呈环形排列几个到10多个灯球,每个灯 球里有一个镜面灯泡,灯炮下半部的内壁上涂有一层 铝,把光线均匀柔和地反射到整个灯球上。这样,各 个灯球都能把光线照射到手术台上,既保证有足够的 亮度,同时又不留任何影子。物理论文——形形色色的光现象 星光闪烁 夜晚,天上的星星,特别是地平线附近的星星,常以震动的形 式急速变化。时明时暗,上下跳动,左右摇晃。而且有时颜色也 有变化,这就使所谓的星光闪烁,或者说是星星“眨眼”。这是由 于大气处于经常不断地运动中,空气密度也相应地不断变化。又 因为不同光波的折射率是不同的,所以看起来,位置和颜色都不 断地变化。 来自地平线附近的星光,由于穿过的大气层厚,又由于底层大 气变化大,所以闪烁显著。地面的发光物也会有同样的闪烁现 象。 星光闪烁往往反映出大气的不稳定,是天起变化的征兆,所以 有“天上星星跳,风雨就来到”的谚语。 同样的原因,在炎热的夏季,地面上的目标物,由于强烈的增 热,空气密度变化大,大气层不稳定,折射率不断变化,远处看 起来一些树木、房屋等会产生晃动,气象学上称为闪晃。这中闪 晃也和星星闪烁一样,是天起变化的征兆,因为这是大气层不稳 定的表现。物理论文——形形色色的光现象 假设地球表面不存在大气层,那么 人们观察到的日出时刻与实际存在的大 气层的情况相比将延后 。这是由于太阳 光在不均匀的大气层中传播发生弯曲的 原因。海市蜃楼也是介质不均匀造成的 众人皆知的现象。这些现象等说到折射 时再详细说明。物理论文——形形色色的光现象 二、光的反射 我们能够看到的物体有的是光源(自己能发出光 线),有的则是因为它们能反射光。光的反射分为镜 面反射和漫反射,而以漫反射最为常见。光线经光滑 面发生的反射现象。镜反射遵循反射定律,反射光线 是有规律的。平面镜、球面镜及各种曲面的反射都是 镜反射。镜反射能生成各种像,并在适当位置和范围 内能观察到。在现实中,大量的反射都不是在光滑面 上进行的,反射面是粗糙的。在粗糙的表面进行的无 规则反射叫漫反射。漫反射的光线能到各个方向,但 就其中的每条光线而言,都遵循反射规律。一般物 体,我们之所以能从各个方向看到它,就是漫反射的 结果。漫反射在实际中有广泛的应用。物理论文——形形色色的光现象 我们常见的平面镜的反射就是镜面 反射。平行光经镜面反射仍平行。很多 时候我们都利用镜面反射,但有时镜面 反射却是我们要避免的。比如教学用的 黑板,如果太光滑就会造成很多同学看 不清字。这是因为反射光大部分光沿与 镜面反射的路径传播。这时只要把黑板 弄粗糙一些即可。物理论文——形形色色的光现象 当光射到两种媒质界面,只产生反射而不产生 折射的现象叫全反射。当光由光密媒质射向光 疏媒质时,折射角将大于入射角。当入射角增 大到某一数值时,折射角将达到90°,这时在 光疏媒质中将不出现折射光线,只要入射角大 于上述数值时,均不再存在折射现象,这就是 全反射。所以,产生全反射的条件是:①光必 须由光密媒质射向光疏媒质。②入射角必须大 于临界角。由于镜面反射常常造成光的能量损 失,常常用全反射透镜代替平面镜。潜望镜就 是这样做的。全反射的应用很广,如改变光的 传播方向、测量折射率和传导光束等。物理论文——形形色色的光现象 三、光的折射 光的折射满足折射定律。其内容如下:①折射线、法线、入射线在同 一平面内。②折射线、入射线在法线的两侧。③折射角的正弦与入射 角的正弦的比值是一常数。 光由光速大的媒质进入光速小的媒质,光线将向法线偏折,即光线配 法线的夹角变小。 在水底有一束光源,光束达到水面然后折射到空气中,当然,也有一 部分光线产生反射。当入射角加大时 ,更多的光线产生反射。当入 射角大于或等于临界角时,发生全反射。临界角是由两个介质的折射 率来决定的: n 是两个介质的折射率。 nair water sinθ nair / nwater crit物理论文——形形色色的光现象 在地球上观察日出时,太阳发出的光线进入大 气层经过无数次折射才映入观察者的眼帘,观察者 认为光是直线传播的,所见太阳好像在如图1-40所示 的S′处的“太阳”乃是阳光经过大气层折射后形成的 虚像。实际上这时的太阳S还在地平线以下。物理论文——形形色色的光现象 透过燃烧得很旺的炉火 上方空气看炉火另一侧竖立 木棍,发现木棍不规则地左 右晃动变得弯曲了,如图所 示,这是由于人眼所见木棍 的虚像密度分布变化的气流 飘移。物理论文——形形色色的光现象 雨后初晴的早晨或傍 晚,或者远处还落着小雨, 另一边又在出太阳,常观察 到天空出现彩虹,这是由于 光的折射产生的色散现象, 如图所示,太阳光进入水滴 后,因各色光的折射率不同 而产生色散。实际上是一部 分光线反射,一部分光线折 射进入水滴,在水滴里面发 生内部反射(全反射)然后 再从水滴折射而出,人眼可 见各色光。物理论文——形形色色的光现象 眼睛 视觉器官。眼睛和照相机相似,一部分是光学成像系统,能够保证在视网膜上形 成外界物体清晰的像;另一部分是与照相底片相似的感光层,即视网膜上的感光 细胞及其外段的光敏色素。 眼球近似于球体,内部的角膜、水样液、晶状体及玻璃体构成屈光系统,起到一 个双凸透镜的作用。眼睛比照相机机构要复杂得多。除了有一套自动调节控制机 制外还能把光携带的信息变成神经电信号并经过初步加工处理传到大脑。 眼睛有一套自动调节控制机制,即能使远处的物体成像在视网膜上,也能使近处 的物体成像在视网膜上。其原因是晶状体本身是有弹性的,可以靠周围肌肉的运 动改变它的表面的弯曲程度,从而改变其焦距。因此眼睛是一种精巧的变焦距系 统。眼睛要看清一个物体,除了像要成在视网膜上以外,还需要成在视网膜上的 像足够的明亮,这主要靠瞳孔的调节,瞳孔的大小是可以改变的,改变它就可以 控制进入眼球的光线的多少,它的作用像照相机的光圈。另外眼睛要看清楚一个 物体还要满足第三个条件,就是物体的两端对眼睛光心所张的视角要大于1分。当 物体对眼睛所张的视角小于1分的时候,在视网膜上所成的像就会落在同一个感光 细胞上,整个物体看上去就会缩成了一点无从分辨。 物体上射出的光一部分进入眼睛在视网膜上成一实像,我们就看清了物体。眼睛 不仅能看清物体,而且还能看清物体通过光学系统所成的虚像,虚像是反射光线 或折射光线的反向延长线形成的,但这些反射光线或折射光线进入眼睛后能在视 网膜上成一实像。 人们眼球的焦距只有1.5厘米左右,所以观察的物体一般总在眼睛的两倍焦距以 外,它在视网膜上所成的像是缩小倒立的实像,由于长时间的感受已养成习惯, 脑神经能清楚地识别各种物体,不至有上下倒置、左右易位的感觉。物理论文——形形色色的光现象 近视眼 一种远点为有限距离的非正常眼,这种眼睛的折光本 领比正常的眼睛大些,或者角膜到视网膜的距离比正 常的眼睛长些。晶状体在曲率最小的时候,也不能把 平行光束会聚在视网膜上(而是聚在视网膜前),这 种眼睛远点不是无限远,只适于看较近的物体,近点 也比10厘米小,要使这种眼睛能够看清楚无限远的物 体,必须把物体在视网膜前所成的像,移到视网膜 上。矫正近视眼的方法是配带一副用凹透镜做的眼 镜,利用这种透镜对于光束的发散作用可以使得物体 所成的像远一点,刚好成在视网膜上。青少年多患近 视眼,因此应该注意眼睛的保健。

光在传播过程中遇到障碍物,光波会绕过障碍物继续传播. 如果波长与障碍物相当,衍射现象最明显. 光的衍射 惠更斯—菲涅尔原理 惠更斯原理----介质中波动传播到的各点,都可看成是发射子波的新波源,在以后的任何时刻,这些子波的包迹就是新的波阵面. 惠更斯原理只能定性解释波的衍射现象,不能给出波的强度,不能解释衍射现象中明暗相间条纹的形成. 菲涅耳在惠更斯原理基础上加以补充,给出了关于位相和振幅的定量描述,提出子波相干叠加的概念. 波在前进过程中引起前方P点的总振动,为面 S 上各面元 dS 所产生子波在 该点引起分振动的迭加.与有关. 这样就说明子波为什么不会向后退.面元 dS 所产生的子波在 P 点引起光振动的振幅: 当=0时, 最大.当 时从同一波面上各点发出的子波,在传播到空间某一点时,各个子波之间也可以互相迭加而产生干涉现象.这个经菲涅尔发展的惠更斯原理称为惠更斯—菲涅耳原理 [编辑本段]菲涅耳衍射----发散光的衍射光源—衍射孔—接收屏距离为有限远.计算比较简单. 光源—衍射孔—接收屏距离为无限远. 观察比较方便,但定量计算却很复杂. [编辑本段]夫琅禾费单缝衍射 当衍射角 =0时,所有衍射光线从缝面AB到会聚点0都经历了相同的光程,因而它是同位相的振动. 在O点合振动的振幅等于所有这些衍射线在该点引起的振动振幅之和,振幅最大,强度最大. 2.夫琅禾费单缝衍射 O点呈现明纹,因处于屏中央,称为中央明纹. 设一束衍射光会聚在在屏幕上某点 P ,它距屏幕中心 o 点为 x,对应该点的衍射角为 . 单缝面上其它各点发出的子波光线的光程差都比AC小. 在其它位置: 过B点作这束光的同相面BC, 由同相面AB发出的子波到P点的光程差,仅仅产生在由AB面转向BC面的路程之间. A点发出的子波比B点发出的子波多走了AC=asin 的光程. 每个完整的半波带称为菲涅尔半波带. 菲涅尔半波带法: 用 / 2 分割 ,过等分点作 BC 的平行线(实际上是平面),等分点将 AB 等分----将单缝分割成数个半波带. 特点: 这些波带的面积相等,可以认为各个波带上的子波数目彼此相等(即光强是一样的). 每个波带上下边缘发出的子波在P点光程差恰好为 /2,对应的位相差为 . 菲涅尔数:单缝波面被分成完整的波带数目.它满足: 若单缝缝宽a,入射光波长 为定值,波面能被分成几个波带,便完全由衍射角 决定. 若m=2,单缝面,被分成两个半波带,这两个半波带大小相等,可以认为它们各自具同样数量发射子波的点.每个波带上对应点发出的子波会聚到P点,光程差恰好为 /2,相互干涉抵消.此时P点为暗纹极小值处. 依此类推,当m=2k (k=1,2,3… )时,即m为偶数时,屏上衍射光线会聚点出现暗纹. 如果对应于某个衍射角 ,单缝波面AB被分成奇数个半波带, 分割成偶数个半波带, 分割成奇数个半波带, P 点为暗纹. P 点为明纹. [编辑本段]结论 波面AB 按照上面的讨论,其中的偶数个半波带在会聚点P处产生的振动互相抵消,剩下一个半波带的振动没有被抵消. 屏上P点的振动就是这个半波带在该点引起的振动的合成,于是屏上出现亮点,即呈现明纹. 减弱 加强 1.加强减弱条件 2.明纹,暗纹位置 暗纹 明纹 分割成偶数个半波带, 分割成奇数个半波带, P 点为暗纹. P 点为明纹. 波面AB 讨论: (1)暗纹位置 两条,对称分布屏幕中央两侧. 其它各级暗纹也两条,对称分布. (2) 明纹位置 两条,对称分布屏幕中央两侧. 其它各级明纹也两条,对称分布. 3.中央明纹宽度 中央明纹宽度:两个一级暗纹间距. 它满足条件 4.相邻条纹间距 相邻暗纹间距 相邻明纹间距 除中央明纹以外,衍射条纹平行等距.其它各级明条纹的宽度为中央明条纹宽度的一半. 1). 衍射现象明显. 衍射现象不明显. 2). 由微分式 看出缝越窄( a 越小),条纹 分散的越开,衍射现象越明显;反之,条纹向中央靠拢. 当缝宽比波长大很多时,形成单一的明条纹,这就是透镜所形成线光源的象.显示了光的直线传播的性质. 几何光学是 波动光学在 时的极限情况 结论

单边衍射?? 高中物理那里有啊 就只有单缝衍射

负折射材料的研究进展论文

负折射率材料(Negative index materials)的介电常数和渗透率(Permeability)都是负的,导致负的折射率。由于这二个参数都是负的,这种材料又称双负材料。从术语表中,这种材料的名称有“左手介质”,”负折射率介质"和"向后介质“。光学材料中,如果介电常数和渗透率都是正的,光波在这种介质中向前传播;如二者都是负的,则光波向后传播。如二者有不同的极性,则波不传播。用数学表示,在坐标平面中,用介电常数表示水平轴,渗透率表示垂直轴,则在第二和第四象限中有(0,0)坐标。1968年Victor Veselago发表文章,理论上假设,介电常数和渗透率同时为负平面波的传播,在这样的材料中,他指出,相速度会与玻印亭向量(Poynting Vector)反平行。这是与自然材料波的传播相茅盾的。2000年和2001年,第一次证明有负折射率的人工材料出现。2007年已有许多研究组进行负折射率材料的研究实验。目前,已经证明,具有负折射率的材料只有人工结构的材料。

负折射现象是俄国科学家Veselago [1] 在1968 年提出的:当光波从具有正折射率的材料入射到具有负折射率材料的界面时,光波的折射与常规折射相反,入射波和折射波处在于界面法线方向同一侧。直到本世纪初这种具有负折射率的材料才被制备出来[2]。这种材料由金属线和非闭合金属环周期排列构成,也被称为metamaterial。在这种材料中,电场、磁场和波矢方向遵守“左手”法则,而非常规材料中的“右手”法则。因此,这种具有负折射率的材料也被称为左手材料,光波在其中传播时,能流方向与波矢方向相反。英国科学家Pendry 提出折射率为-1的一个平板材料可以作为透镜实现完美成像[3],可以放大衰势波使成像的大小突破光学衍射极限。负折射现象实验和超透镜提出时引起极大的争议,因为这些概念违反人们的直觉。

负折射率(介电常数和磁导率同时为负)的问题是近年来国际上非常活跃的一个研究领域。当电磁波在负折射率材料中传播时,电场E、磁场B和波矢k三者构成左手螺旋关系,因而负折射率材料又称为左手性材料(left-handed materials)。Veselago 1968 年首次在理论设想了左手型材料。Pendry在1996年与1999年分别指出可以用细金属导线及有缝谐振环阵列构造介电常数ε和磁导率μ同时为负的人工媒质。2001年,Smith等人沿用Pendry的方法,构造出了介电常数与磁导率同时为负的人工媒质,并首次通过实验观察到了微波波段的电磁波通过这种人工媒质与空气的交界面时发生的负折射现象。尽管初期人们对Smith等人的实验有许多争论,但2003年以来更为仔细的实验均证实了负折射现象。产生负折射率现象有两类材料。一类材料是由于局域共振机制导致介电常数和磁导率同时为负,既材料具有有效的负折射率。这类材料又被称为特异材料(meta materials)。Smith等人的有缝谐振环阵列就属于特异材料。但是有缝谐振环阵列结构具有较大的损耗和较窄的负折射带宽,在应用中会受到许多限制。另一类材料是光子晶体,其本身并不具有有效的负折射率,但在某些特殊情况下光子能带的复杂色散关系会导致负折射现象。在光子晶体中,电磁波在周期结构中的Bragg散射机制起着主要作用。尽管局域共振机制和非局域的Bragg散射机制都会产生负折射现象,但两种机制各有特点。对于Bragg机制,人们已经了解的较为清楚,通过合适的光子晶体结构选取以及光子能带设计,可以得到所需的负折射通带。但Bragg机制要求周期结构的晶格常数要与能隙的电磁波波长相比拟,对微波波段将导致结构过大从而限制器件应用。另外,由于Bragg机制的非局域性,它对周期性结构的不完整性(如存在结构无序和缺陷)较为敏感。与Bragg机制相反,局域共振机制不要求周期结构的晶格常数要与能隙的电磁波波长相比拟,而且对无序和缺陷不敏感。但目前人们对利用局域共振机制设计负折射率材料的一些关键问题了解不够,例如如何增大负折射通带带宽、减小损耗等。提出另一种制备特异材料的方法,该方法利用在微波传输线中周期性加载集总电感-电容共振单元来实现有效负折射率。与Smith 等人的有缝谐振环阵列结构比较,周期性集总电感-电容共振结构不仅具有较小的损耗和较宽的负折射带宽,而且容易实现外场调控。在负折射率材料中,电磁波的相速度(波矢方向)与群速度(波印廷矢量方向)的传播方向相反,很多光学现象,诸如折射、多普勒频移、切伦科夫辐射、甚至光压等都要倒逆过来。突破媒质衍射极限的平面成像是负折射率材料的一个重要应用,这方面的研究引起人们极大兴趣。由于负折射材料在基础研究及应用方面的重要意义,它被美国《科学》杂志列为2003年十大重大突破之一。有关负折射率材料的研究目前正在从深度和广度两个不同的层面迅速展开,许多新奇的理论与实验结果不断出现。以下仅列举与本申请书相关的3个方面新进展。(1)有关光子在负折射率材料界面与表面的奇异传播行为的数值模拟结果发现,光子从正折射率材料向负折射率材料传播时,在界面上反射光与折射光并不是同时出现,而是反射光先出现,折射光经过一个称之为“电容充电”过程后再出现。类似的“电容充电”在光子势垒隧穿过程中也存在,但两者之间的是否有联系目前不清楚。(2)有关含负折射率材料光子晶体的奇异输运行为发现,由正、负折射率材料组成的一维光子晶体中存在零平均折射率(n=0)能隙。该能隙不同于通常的Bragg能隙,即能隙的位置与晶格大小无关而且无序的影响很小。这方面的研究工作很活跃,将会拓宽人们对复杂人工结构中光子输运行为的认识。(3)利用局域共振机制设计负折射率材料。现有的负折射率材料是建立在局域共振导致介电常数和磁导率同时为负(又被成为双负性材料)的基础上,提出一种新的机制来形成负折射率材料,即利用介电常数为正而磁导率为负(或介电常数为负而磁导率为正)的单负性材料单的交替周期性结构来实现有效负折射率。最近的研究表明特殊周期性集总电感-电容共振结构可以实现单负性材料,这方面的研究不仅使得负折射率材料的实现方式更为多样化,而且将加深人们对形成负折射率机制的认识。

肿瘤放射物理学论文题目

随着社会的发展和人们道德、价值、法律观念的增强,现代社会要求一名合格医生应该具备丰富的专业知识同时具备良好的个人素质。医生应该本着严于律己的精神不断学习完善自己,提高个人的素质,而医学生的素质教育为其形成良好的职业素质打下了重要的基础。下面是搜索整理的临床医学论文题目大全105个,供大家参考阅读。临床医学论文题目大全一: [1]定西市疑似风疹标本ELISA与RT-PCR法检测分析[2]居家吞咽康复操在老年脑卒中患者中的应用及效果观察[3]3.0T MR扩散加权成像与不同成像序列联合应用对乳腺良恶性病变定性诊断价值临床研究[4]经静脉内耳钆造影MRI对可疑梅尼埃病的诊断价值[5]基于三种试剂盒分析新型冠状病毒特异性抗体的动态变化[6]基于罗伊适应模式的护理干预对双相情感障碍患者社会缺陷及认知功能的影响[7]驻地医院联合整建制驰援医疗队救治新型冠状病毒肺炎的护理管理实践[8]宫颈癌术后延伸野螺旋断层放疗与固定野调强放疗剂量学比较[9]新型冠状病毒感染患者恢复期肛拭子中SARS-CoV-2核酸检测结果评价[10]数字OT训练系统结合作业疗法对脑卒中患者上肢功能及ADL的影响[11]肌内效贴技术结合针刀治疗卒中后肩痛的临床研究及安全性分析[12]吞咽功能训练配合低频电刺激治疗脑卒中吞咽障碍的临床疗效[13]穴位肌电生物反馈联合rood技术对脑卒中后足下垂患者平衡功能的影响[14]三种不同免疫检验方法检测HIV抗体的价值比较[15]探讨认知护理对高血压性脑出血患者治疗依从性的影响[16]综合护理措施在手术室切口部位感染预防的应用研究[17]气管切开稳定期慢性阻塞性肺病患者的肺康复护理体会[18]优质护理应用于宫颈球囊在足月妊娠促宫颈成熟促进自然分娩的实践效果[19]社区心理护理干预对脑卒中患者康复的影响[20]集束化护理在重症监护室护理中的应用效果分析[21]基于快速康复理念的护理干预对胃癌根治术患者术后恢复的影响[22]鼻内镜下鼻窦开放术治疗慢性鼻窦炎围手术期的临床护理分析[23]试论医务社会工作在静脉输液治疗安全环境构建过程中的作用[24]~(125)I粒子源剂量计算参数模拟研究[25]左氧氟沙星联合哌拉西林/他唑巴坦对产超广谱β-内酰胺酶耐碳青霉烯类肺炎克雷伯菌的防耐药突变浓度及耐药机制的研究[26]2009—2018年浙江省宁波市吸毒人群HIV、梅毒和HCV感染状况及其行为特征[27]临床护理路径在新型冠状病毒肺炎患者中的应用效果[28]沙门氏菌主要流行血清型耐药性的研究进展[29]学龄后腭裂术后语音障碍患者语音训练方法研究[30]不同严重程度认知障碍组脑内血管周围间隙研究[31]多系统萎缩患者轻度认知功能障碍的静息态低频振幅研究[32]脑静息态功能磁共振局部一致性分析在轻度认知障碍患者中的初步研究[33]静息态fMRI评价脑瘫患儿手术前后的脑功能[34]自闭症儿童早期大脑过度发育的sMRI研究[35]老年重症监护室糖尿病患者血糖难控制的原因分析及护理措施分析临床医学论文题目大全二: [36]磁共振血管造影侧枝血管在卒中机械取栓术后预后中的应用价值[37]3.0 T单体素磁共振波谱成像离体及在体检测2-羟基戊二酸效能初探[38]基于心脏磁共振特征追踪技术的高血压患者早期左房功能障碍的定量研究[39]心脏磁共振成像技术对OSAHS患者心脏的研究[40]IVIM-DWI技术对前列腺癌内分泌治疗效果的应用研究[41]骨折内固定术后复查MAVRIC-SL序列去金属伪影的研究[42]大脑中动脉闭塞致缺血性脑卒中患者FVH-DWI匹配性与预后的相关性分析[43]磁共振动态增强成像联合扩散加权成像对乳腺良恶性疾病鉴别诊断价值[44]磁共振诊断精囊腺囊肿并结石1例[45]干燥综合征腮腺MRI的研究进展[46]磁共振弹性成像技术对肝纤维化诊断的新进展[47]重症胰腺炎并发腹腔高压的影像学研究进展[48]腹针加头针联合艾司唑仑片治疗原发性失眠45例[49]康复护理在颅脑损伤中的应用[50]骨科术后患者康复锻炼的重要性[51]X光片和多排螺旋CT、MR对骨关节创伤的诊断对比[52]急性心肌梗死合并完全左束支阻滞的心电图诊断价值[53]二维联合三维超声在胎儿唇腭裂中的应用价值[54]心脏超声与心电图对高血压性心脏病的诊断效果及检出率影响分析[55]浅析CT影像学技术应用于周围性小肺癌中的诊断价值[56]胎儿肢体及手足畸形产前超声诊断及图像分析[57]CT三维重建对微小肺癌早期诊断的价值[58]眼内肿瘤超声弹性成像的鉴别诊断价值[59]临床与影像护理的有效配合对脑卒中患者磁共振检查中的作用分析[60]低、高频探头超声联合在急性阑尾炎诊断中的应用[61]肝纤维化分期诊断中磁共振弹性成像技术的临床应用[62]小儿肾病综合征并肺动脉栓塞的CT表现及临床护理[63]腹部CT检查对诊断结肠肿瘤性肠梗阻的价值[64]CT增强扫描中离子型与非离子型碘造影剂副反应对比效果分析[65]磁共振弥散加权成像和动态增强诊断前列腺疾病临床效果观察[66]临床护理路径(CNP)标准在CT增强护理中的应用疗效分析[67]核磁共振波谱检查在前列腺癌诊断及病情判断中的应用疗效分析[68]老年终末期肾病患者腹膜透析对肾功能及心功能的影响[69]百里醌通过激活SIRT1/STAT3通路对脓毒症所致大鼠肝损伤和糖代谢紊乱的保护作用[70]艾滋病模型中关键指标SIV DNA绝对定量微滴式数字PCR技术的创新应用临床医学论文题目大全三: [71]113例肠杆菌科细菌血流感染临床特征与病原分析[72]多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[73]断层径照治疗局部中晚期下咽癌的剂量学研究[74]尼帕病毒Taqman qRT-PCR检测方法的建立[75]利用宏基因组纳米孔测序方法检测模拟临床样本中的基孔肯雅病毒和辛德毕斯病毒[76]三维全容积成像技术评价高血压是否合并超体重患者左心室容积及收缩功能[77]康复者血浆治疗新型冠状病毒肺炎疗效分析1例[78]辽宁省社区老年高血压患者自我管理能力和生活质量的相关性[79]批量新型冠状病毒肺炎患者救治护理工作实践与思考[80]重症监护室肺癌患者拔管后经鼻高流量氧疗与储氧面罩吸氧有效性的比较[81]血液透析、腹膜透析及肾移植对终末期肾病患者生存质量的影响及影响因素分析[82]应用PDCA循环法护理神经外科手术患者的效果[83]方舱CT技术进展与临床应急使用现状[84]应用上肢康复操视频对乳腺癌改良根治术后患者生活质量的干预效果[85]发热门诊与隔离病房无缝隙对接在疑似新冠肺炎患者管理中的效果研究[86]快速康复护理对骨折术后患者康复的影响研究[87]血清C肽与糖化血红蛋白检验诊断糖尿病的临床效果评价[88]优质护理措施在小儿糖尿病酮症酸中毒治疗中的应用分析[89]综合护理对糖尿病甲状腺癌患者术后临床疗效及相关内分泌激素水平的影响[90]社区糖尿病患者管理流程的探讨[91]老年糖尿病疾病护理管理中应用优质护理的效果评价[92]品管圈在提高居家胰岛素笔废弃针头回收率中的应用[93]目标策略的针对性护理干预在老年阑尾炎合并糖尿病患者围手术期中的应用观察[94]糖化血清白蛋白检测在糖尿病血液透析患者中的临床意义[95]电话随访联合IMB模型的健康教育对初诊2型糖尿病患者治疗依从性及自护能力的影响[96]综合性护理对老年糖尿病合并心律失常行心脏起搏器置入术后患者心理状态及生活质量的影响[97]糖尿病患者的内科综合护理干预方法及其有效性分析[98]全面护理干预在结石性胆囊炎合并2型糖尿病患者围手术期中的应用观察[99]目标性护理干预在肺癌合并糖尿病围手术期的应用研究[100]探讨护理对策及生活方式指导对糖尿病性脑血管疾病的影响[101]72例2型糖尿病患者腹腔镜下胃旁路手术治疗后的护理[102]健康行动过程取向理论指导下的护理干预在妊娠期糖尿病患者中的应用观察[103]静脉微量泵应用前列地尔注射液治疗糖尿病下肢血管病变中不良反应的观察及护理对策[104]动态血糖监测指导下的个体化营养联合瑜伽运动在妊娠期糖尿病患者中的应用观察[105]整体护理在糖尿病肾病血液透析患者中的临床价值分析以上就是关于临床医学论文题目大全的分享,希望对你有所帮助。

看这样行不:【摘要】 目的:明确5种MRI征象对膝关节盘状半月板的诊断价值。方法:分析532例经关节镜证实的膝关节MRI图像,其中包括43例盘状半月板及其不同程度损伤的MRI图像。在不告知关节镜结果的条件下, 由2名有经验的放射科医生分别对诊断盘状半月板的5个征象及其不同程度损伤进行评价,差异协商解决。分别计算出每种征象的敏感性。结果:冠状面上外侧半月板中部最窄处>15 mm或与外侧平台关节面的比值>50%;矢状面上(层厚4 mm)半月板的前后角相连形成“领结样”改变达四层或四层以上。此两种征象的敏感性分别为86.0%和74.1%,诊断率最具可靠性。盘状半月板常合并变性、撕裂,且不同程度的损伤可影响盘状半月板征象的准确判断。结论:盘状半月板在MRI有多种征象,各种征象对诊断的能力有所不同。当合并不同程度损伤时亦会影响其征象的正确判断。 【关键词】 膝关节 盘状半月板 核磁共振 MR imaging of Discoid Menisci of the knee: evaluation with signs LI Pei, ZHENG Zhuo-qing, YUAN Liang(1. The third affiliated hospital of Xinxiang medical college, Henan 453000, China; 2. The third affiliated hospital of Beijing university) 【Abstract】 Objective:To determine the value of five MRI imaging signs in diagnosing discoid menisci and injury of the knee. Methods:MRI imaging of 532 knees with subsequent attenuated exams were retrospectively evaluated, based on the results of arthroscopy of 43 discoid menisci. .two radiologist evaluated each MRI exam independently with discrepancies resolved by consensus. Each MRI exam was analyzed for the five sign, sensitivity for diagnosing discoid menisci were calculated for the presence of each individual sign.Results: The ratio of width of meniscus to that of tibia plateau was over 50%. On the sagittal plane, there were consecutive 4 layers or more showed"tie"change which derived form the connection of anterior and posterior horns. The sensitivities of there two signs ranged was 86.0% and 74.1%. The following two signs had higher value. Discoid menisci were often combined with degeneration and laceration, different injure can affect the accurate judgment of signs in discoid menisci.Conclusions: Discoid menisci have many signs on MRI imaging, different signs have different diagnosing ability. The accurate judgment of signs can be affected when combined with different injure. 【Key words】Knee; Discoid menisci; MRI 盘状半月板作为一种先天畸形改变了膝关节的正常解剖,容易导致半月板的损伤。MRI是目前诊断半月板病变的最佳手段。分析532例经关节镜证实的43例盘状半月板膝关节图像,致力于明确MRI各个征象对诊断盘状半月板的价值,且合并损伤后,明确其损伤程度的诊断价值。 1 材料与方法 1.1 一般资料 对象2005年6月至2006年6月间检查并经关节镜证实的532例膝关节图像,其中盘状半月板43例, 25例女性,18例男性,年龄11~70岁,有3人为双膝,右膝19 例,左膝 24例,均为外侧半月板。 1.2 MRI检查方法 所有病例均使用德国西门子1.5T MRI扫描仪(Vislon)常规包裹或表面线圈。患者伸直位,所有膝关节接受常规MRI扫描,至少扫描矢状面和冠状面。矢状面采用自旋回波T1WI(SE.T1WI TR=440 ms. TE=12 ms)快速自旋回波T2WI(TSET T2WI:TR=3 094 ms. TE=96 ms)或快速小角度激发(FLASH:TR=425 ms. TE=11 ms 翻转角为20°或90°),冠状面采用脂肪饱和抑制SE双回波(TR=3500 ms,TE=16/96 ms)所扫层厚均为4 mm,间距为0.4 mm。 1.3 资料分析方法 在不告知关节镜结果的条件下由两名经验丰富的放射科医生分别阅片,差异协商解决。 1.3.1 评价文献中诊断盘状半月板的5个常用标准〔1-4〕。 1.3.1.1 前后角连续性 在矢状面上以4 mm层厚扫描,有四层或四层以上显示半月板前后角连续性呈“领结样”改变。 1.3.1.2 矢状面后角与前角最大高度差≥2 mm。 1.3.1.3 内外侧半月板高度差 冠状位盘状半月板外侧缘的最大高度高于对侧>2 mm。 1.3.1.4 半月板宽度或冠状面上侧块最小宽度:半月板最窄处的宽度>15 mm或超过胫骨一侧平台一半以上。 1.3.1.5 矢状面上半月板次外层最小厚度>2 mm。 1.3.2 分别测量前角、体部及后角的高度和宽度 2 结果 在532例膝关节MRI图像中,经关节镜确诊43例盘状半月板,两位医生对其盘状半月板的5种征象分析如下:(1)前后角连续性达四层或四层以上,有31例出现此征象,敏感性为74.1%;(2)矢状面后角与前角最大高度差≥2 mm,有24例出现此征象,敏感性为55.8%;(3)内外侧半月板高度差,15例出现此征象,敏感性34.9%;(4)半月板宽度或冠状面上侧块最小宽度>15 mm或超过胫骨一侧平台一半以上,有37例出现此征象,敏感性86.0%;(5)矢状面上半月板次外层最小厚度>2 mm,有 6例出现此征象,敏感性13.9%。同时出现以上5种征象的有4例,5种都没出现的有5例,出现第(1)种和第(4)种征象的有31例,出现2种或2种以上征象的有35例。此组病例经关节镜证实有40例合并不同程度损伤,其中半月板变性3例,半月板撕裂37例,发生桶柄状撕裂的有11例,半月板囊肿形成1例。表1 43例盘状半月板前角、体部、后角高度及宽度范围及平均值测量(略)

相关百科

热门百科

首页
发表服务