π的历史 圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。 在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。 公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。 祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为卢道夫数。 之后,西方数学家计算 π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π 值。电子计算机问世后, π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的 π,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π 值已到4.8亿位。π 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。
π=3.1415926……这是我们再熟悉不过的数字。最近,麻省理工学院的科学家却算出π≈3.115——一个明显偏离了正确答案的数字,而且这个毫无精确度可言的结果,还被写成了论文。
不用惊讶,这位天体物理学家的真正目的不是让π值更精确,而是从引力波中寻找π,进而验证广义相对论。
撰文 | 丹尼尔·加里斯托(Daniel Garisto)
翻译 | 王语嫣
至少在3700年前,巴比伦的数学家就估算出了圆的周长和直径之间的比值。他们将答案镌刻在一块朴素的泥板上:25/8,也就是3.125。最近,麻省理工学院的理论天体物理学家卡尔-约翰·哈斯特(Carl-Johan Haster)也得到了类似的结果:在一篇预印本论文中,他将π的值计算到了 3.115左右 。
等会……这个数值,似乎与我们记忆中π的数值有一些差距。近些年来,科学家利用高性能的计算机将π精确到了小数点后近500万亿位。虽然靠后的位数你可能不清楚,但对于3.1415926……,你一定背得滚瓜烂熟。哈斯特的估算,从精确度上来讲,可能落后了几千年。然而,精确度也的确不是他计算的目的——他真正的目的,是 通过π值检验爱因斯坦的相对论,这个将引力与时空结合起来的理论。
当两个大质量物体(比如黑洞)碰撞时,在时空中产生的涟漪就是引力波。引力波中暗含了大量关于物理定律的信息。哈斯特作为LIGO团队的成员,注意到π在描述波传播的函数中多次出现。
“卡尔的思路是,‘你看,这些函数都和π有关。所以咱们干脆把π变化一下,然后看看结果(和广义相对论)是否一致。’” 约翰·霍普金斯大学的理论物理学家埃马努埃莱·贝尔蒂(Emanuele Berti)说。
哈斯特想到,可以把π看作一个变量,而不是常数。这样,他就可以比较引力波方程与LIGO 的实验结果。理论上来讲,只有当π接近其原本的值(约为3.14)的时候,爱因斯坦的理论才能够与观测结果一致。 如果LIGO的观测在π等于其他值的情况下也符合广义相对论,那或许说明广义相对论还不够成熟。
哈斯特将π的测试范围定在了-20~20,并对比了20余起已观测到的引力波事件。他最终发现, π大约为3.115时,观测结果和理论相吻合 ,这一结果与π的实际数值相近。这样看来,爱因斯坦的理论并没有什么问题。“在我看来,这项研究可爱又迷人,同时还为广义相对论提供了相当有力的证明。”哈斯特说。
π无处不在,它不仅出现在圆中,还与氢原子的能级和针落下的方式有关(布丰投针问题:如果将一把针撒落在一张画有等间距横线的纸上,针掉落在线上的概率与π相关)。π出现在引力波的方程中的原因则更复杂一些: 引力波与其自身相互干渉。
“引力波在传播时,会遇上时空弯曲,其中就包括引力波之前所造成的弯曲。”贝尔蒂说。就好像朝平静的水面扔一块石头,涟漪就会在水面上传播开来;如果此时再扔一块石头,水波就会发生变化——上一块石头造成的涟漪与这块石头的发生了干涉。引力波的原理与此类似,只是介质不是水,而是时空本身。
描述这种自相干现象的方程中也出现了π。在2016年LIGO对爱因斯坦理论的检验中,他们只改变了单一项,而不是π这样的公因子。尽管2016年的研究足以验证爱因斯坦的广义相对论,但科学家还是想知道当方程中的几项同时变化时会有什么结果,而哈斯特的研究正好提供了一种方法。
然而,这个证明的确还存在一些问题。其中之一就是哈斯特的结果存在较大误差:他对π的估计值大约在3.027到3.163之间。要得到更精确的答案,需要观测质量更轻的物体的合并事件,比如中子星合并,这类事件所产生的引力波波长是黑洞合并所产生的300倍。就好比听一首歌,听得时间越长,认出这首歌的可能性就越高。目前,科学家只观测到两次中子星合并事件。而在因疫情而暂时关闭的LIGO重启之前,这个数字都不会改变。
尽管该研究结果精度不足,并不是每个人都对此表示担心。“有些人说我们或许应该把‘圆周率日’(3月14日)改成‘圆周率周’(3月2日-3月15日),以代表现有的误差。”西北大学的天体物理学家克里斯·贝里(Chris Berry)开玩笑地说,他也是此项研究和LIGO团队的一员。
当然,随着这项研究即将正式发表,那些爱好圆周率的物理学家们又可以“饱餐一顿”了。贝里开玩笑地说,“多多产粮”并不是一件坏事:至少盛宴过后,研究者们又多了种估算圆周率的新方式——测量自己圆润的体型。
原文链接:
本文由微信公众号“环球科学”(ID:huanqiukexue)授权转载
转载请先联系
古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。
1、马青公式
π=16arctan1/5-4arctan1/239
这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。
还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。
2、拉马努金公式
1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。
1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。丘德诺夫斯基公式的另一个更方便于计算机编程的形式是:
3、AGM(Arithmetic-Geometric Mean)算法
高斯-勒让德公式:
这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。
4、波尔文四次迭代式:
这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表的。
5、bailey-borwein-plouffe算法
这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。
6、丘德诺夫斯基公式[1]
这是由丘德诺夫斯基兄弟发现的,十分适合计算机编程,是目前计算机使用较快的一个公式。以下是这个公式的一个简化版本:
<算法设计与分析> 这类书上有的.
分数分别产生于测量及计算过程中。在测量过程中,它是整体或一个单位的一部份;而在计算过程中,当两个数(整数)相除而除不尽的时候,便得到分数。 一般可分为五期: 上古期:(2700B.C.~200B.C.)对数学有所创见的有伏羲氏、黄帝、隶首、缍等人。其成就归纳如下: 1. 结绳:最古的记数方法,传为伏羲所创。 2. 书器:一种最古的记数工具,传为隶首所创。 3. 河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。 4. 八卦:传为周公所创,是最初的二进制法。 5. 规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。 6. 几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。 7. 九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。 8. 技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。 9. 算学教育:周朝时,把算数列为六艺之一,再小学时就受以珠算。 初等数学在此时期已有相当基础,算数与几何由于人类实际生活的需要已初步形成,但并无形成一定逻辑关联的系统。 中古期:(200B.C.~600A.D.由汉至隋)中国数学家对于算学已有可考据的著作。 1. 而对圆周率寄算最有成就者为祖冲之。所得结果比之西方早一千多年。 2. 算经十书的编篡: 算经十书为:周髀,九章算术,孙子算经,张丘健算经,夏侯阳算经,五曹算经,海岛算经,五经算术,辑古算经及缀术,后因缀术亡失,而已数术记遗代之;其中辑古算经在唐朝才完成。此时期的数学成就,可以从这十本算经中之其概略。数学成就可归纳为以下各点: (1)分数论的应用 (2)整数勾股形的计算 (3) 平方零约数:已建立开方的方法有两种 (4)方程论:已有联立一次方程的解法。九章算数方程章为世界最早包含不只一个未知 数的算 式和联立方程组概念,并产生了正负数的概念。 (5)平面立体形的计算:一切直线图的面积和体积公式皆正确;圆面积、球体积为近似公式 (6)级数论上的成就:已有等差、等比问题产生。 (7)数论上的成就:孙子算经上的「物不知数」是一次同余式问题,由此以后所推广的中国剩余定理比西洋早了一千多年。 (8)数学教育制度的建立 近古期:(600A.D.~1367A.D.由唐到宋元) 分为前后两期,各以唐及宋元为代表。可以说是中国数学史的黄金时代;数学教育制度更臻完善,民间研究数学的风气很盛。数学成就归纳如下: (1) 代数学上的成就:中国古代数学家很早就知道利用代数方法解决实际问题;这时期天元术的产生促使代数学向前发展,使其成为更完整的数学体系。其它数学也获得更进一步的发展。数学家们掌握天元术之后,很快地把它应用到多元高次方程组而产生所谓的四元术;并利用天元术开方。开方数也推广到多乘方,比西洋数学家的发现早约五百年。求数学高次方程的正根方法也已建立起理论根据。 (2) 几何学与三角学的成就:割圆术得到进一步的推广,除了平面割圆术外,球面割圆术也已产生,球面三角由此而初步建立起来。 (3) 数论上的成就:一次同余的理论基础扩大了应用范围,有八次联立一次同余式的问题出现,在整数论上是一个伟大的成就。所用解一次同余式的方法为有名的辗转相除法,即西方数学家所谓欧几里得算法。 (4) 级数论上的成就:级数论在世界数学史上有着悠久的历史,中算家所论述的在此中占有一定位子。由高阶等差级数研究中发明了招差数、垛积数。 (5) 纵横图说的研究:一些有名的纵横图(所谓方阵图)已经产生。 由以上所述,可以看出,有系统的代数学已建立起来,更多的数学方法与数学概念也得到更进一步的推广与发展。 婆罗门、天竺数学输入中国,但中国的数学并没有受到影响;同时中国的数学也输入了百济和日本。 近世纪:(1367A.D.~1750A.D.明初到清初) 为中国算学衰落时期,统治者对数学教育不注重,民间研习数学风气不盛。 回回历法在元末明初输入中国,至明末,应用回回历法已近尾声。自利玛窦至中国之后,西洋历法、西洋数学也随之输入中国。当时还有人研究中算,但由于中算不如西算的简明有系统,故中国古算陷入停顿状态而得不到新的发展。 西洋数学输入的有笔算、筹算、代数学、对数术、几何学、平面及球面三角术、三角函数表、比例对数表、割圆术及圆锥曲线说。 著名的天元术停滞不前,珠算随着实际生活的需要而产生,很多有关珠算实用算数书陆续出版;珠算术的发明是中算的革命、我国的伟大成就。 清初的一些大数学家都致力于西洋数学的研究,编写了数学各科的入门书籍。中国数学输入朝鲜及把元明数学输入日本。 最近世期:(1750A.D.~1910A.D.清干隆三十七到清末) 西算输入告一段落。这时学术潮流偏向古典考证一路发展,数学研究也转到古代数学方面去,对算经十书与宋元算书加以传刻与研讨到达最高峰。当时数学家很多都能兼通中西数学,在高等数学方面获得相当的成就。 对圆周率解析法作深入的探讨,级数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。
1、谈谈计算教学的改革2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究(一)5、改进教学方法培养创新技能6、21世纪我国小学数学教育改革展望7、面向21世纪的小学数学课程改革与发展8、不拘一格育“鸣凤”使学生真正成为学习的主人9、改革课堂教学的着力点10、谈素质教育在小学数学教学中的实施11、素质教育与小学数学教育改革12、浅谈学生数学思维能力的培养13、浅议表象积累与培养学生的思维能力14、也谈学生创新意识培养15、实施创新教学策略 培养学生创新意识16、10以内加法整理和复习17、改良“有余数除法计算”教法18、给学生创新的时间和空间和谐愉悦19、主动探索——一年级《统计》教学片断评析20、小学数学教育--教师之家--教师培训
学术堂精选了十个好写的工程造价毕业论文题目供大家进行参考:1.浅谈工程项目内部成本控制及措施2.对施工企业加强工程项目管理的几点思考3.建筑工程项目承包管理方式的探讨4.如何进行项目成本管理5.施工项目管理与项目成本控制6.项目管理对工程质量的影响和对策7.工程项目承包管理特点粗探8.建设工程招标投标的发展趋势9.试论建筑市场的价格竞争10.工程量清单模式下企业投标报价问题的研究
这里搜集了一些小学数学教学论文题目,仅供参考。1、课堂有效提问的初步探究2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究5、改进教学方法培养创新技能6、使学生真正成为学习的主人7、改革课堂教学的着力点8、谈素质教育在小学数学教学中的实施9、素质教育与小学数学教育改革10、浅谈学生数学思维能力的培养11、实施创新教学策略,培养学生创新意识12、10以内加法整理和复习13、改良“有余数除法计算”教法14、给学生创新的时间和空间15、谈谈计算教学的改革16、面向21世纪的数学素质及其培养17、能被3整除的数的特征18、年、月、日19、培养自学能力,推进素质教育20、浅谈小学数学总复习的“步步反馈,逐层提高”法21、入情才能入理 激情方能启思22、实施“生活数学”教育,培养自主创新能力23、数学作业批改中巧用评语24、提高认知水平,培养自学能力25、圆的面积”的教案26、圆柱的认识27、运用多媒体辅助教学,优化数学教学方法28、组织课堂讨论 优化课堂教学29、重视学生获取知识的思维过程30、小论文巧算圆的面积31、联系生活实际提高课堂效率32、数学教学中如何调动学生的学习积极性33、根据心理学的理论进行计算法则教学34、简单应用题教学再探35、创设情境,培养学生创造个性36、学生“四会”能力的培养37、营造探究氛围一例38、实施创新教育 培养创新人格39、《9和几的进位加法》教学设计40、信息技术与小学数学41、合理运用学具 提高数学课堂教学效率42、略谈“问题解决”与小学数学教学43、渗透数学思想方法 提高学生思维素质44、引导学生参与教学过程 发挥学生的主体作用45、培养学生的创新意识要处理好的几个关系46、浅谈“数形结合”在小学低段数学教学中的应用47、借助学具,提高数学课堂效率48、对数学新课程理念下练习课教学的几点思考48、多通道促进数学课堂公平50、上“活”概念课,灵动新课堂51、对学生数学作业订正现状调查分析及对策52、对小学数学动态生成式课堂结构的认识53、对新课程中估算教学的几点想法54、谈小学应用题教学如何为学生自主探索创造条件55、小学数学课堂中的口头评价56、让新理念成为把握教材的支撑点57、立足现实起点,提高课堂效率58、谈课堂教学中有效情境的创设59、提高数学课堂教学效率之我见60、为学生营造一片探究学习的天地
对于会计专业的论文来说,拟定一个好的题目很重要,好的题目能够提供论文的核心信息、方便读者快速地了解一篇论文大致内容,还能方便审稿者迅速评价论文,决定该论文的取舍。本文整理了 100个“会计专业毕业论文题目范例”, 以供参考。 会计专业毕业论文题目范例一: 1、基于作业成本法的物流成本控制研究 2、我国自主品牌汽车车联网服务的盈利模式创新研究 3、建筑业人工成本上涨趋势及应对策略研究 4、我国军民融合产业融资问题研究 5、电动汽车充电基础设施投资价值驱动因素研究 6、基于面板数据的中国股份制商业银行资本效率实证分析 7、我国商业银行盈利模式市场化转型研究 8、融资约束与企业贸易模式选择 9、我国纺织服装上市公司社会责任履行能力的提升研究 10、挣值法用于建筑工程成本控制的研究 11、事务所行业专长与审计质量的关系 12、煤炭上市公司资本结构对企业价值影响的实证研究 13、制造业上市公司成本费用变动对财务竞争力的影响 14、化石能源低位下的中国碳减排成本研究 15、融资方式对我国医药制造业技术创新产出影响的区域差异研究 16、S公司物流海运成本优化 17、N公司EPC项目成本超支原因分析与对策研究 18、内部控制视角下高等学校财务风险及其防范研究 19、HQ公司物流成本的控制与优化 20、大型设备吊装总承包项目的费用控制 21、 2017年第四季度金融会计动态 22、 企业金融会计风险及防范措施浅析 23、 关于强化金融会计内部审计的对策探讨 24、 基于金融会计视角分析金融风险的合理防控 25、 网络经济对传统金融会计的影响 6、 新型金融环境下金融会计风险的原因分析 27、 浅述互联网金融会计核算及税收管理 28、 浅谈互联网金融会计核算问题 29、 2018年第一季度金融会计动态 30、 商业银行金融会计风险防范与控制 31、 企业金融会计风险原因的分析及防范措施 32、 浅析大数据时代下金融会计面临的机遇与挑战 33、 企业金融会计的风险因素及合理化防范路径分析 34、 金融会计理论探索与制度创新——中国会计学会金融会计专业委员会2017年学术年会综述 35、 新形势下金融会计风险成因与防范措施研究 36、 基于金融会计视角分析金融风险的合理防控策略 37、 基于金融会计视角分析金融风险的合理防控 38、 分析金融会计视角下的金融风险防范 39、 应用型高校金融会计创新创业教育体系研究 40、 互联网金融会计核算问题分析 41、 中国会计学会金融会计专业委员会2018年学术年会召开 42、 企业金融会计的风险因素及防范路径 43、 信息化背景下的金融会计风险分析 44、 加强企业金融会计制度建设促进企业可持续发展 45、 浅析金融会计 46、 浅谈金融会计综合效益指标创新管理问题 47、 企业金融会计风险原因的分析及防范措施 48、 企业金融会计风险原因的分析及防范措施 49、 金融会计信息系统市场环境的塑造 50、 企业金融会计的风险因素及合理化防范对策 会计专业毕业论文题目范例二: 51、ZL公司出口退税税收筹划问题研究 52、NX电力公司全面预算管理问题研究 53、制造业上市公司负债融资对投资行为影响的实证研究 54、辽宁装备制造业上市公司可持续增长能力评价研究 55、J银行N支行操作风险内部控制的研究 56、K银行信贷风险内部控制研究 57、基于商誉-净资产模型的商业银行价值评估研究 58、我国金融类上市公司社会责任绩效和财务绩效的关系研究 59、表外业务发展对商业银行绩效和风险水平影响的实证研究 60、在华外资银行盈利能力差异性与影响因素研究 61、H银行基于平衡计分卡的绩效管理研究 62、评估机构伦理气氛与评估师越轨行为关系研究 63、会计师事务所合伙人内部治理机制研究 64、地方高校预算控制体系研究 65、建设银行黑龙江省分行会计业务操作风险管理研究 66、我国上市钢铁企业财务危机预警及应用研究 67、政治关联对铁路债务融资能力影响及风险管控研究 68、农民专业合作社绩效及影响因素研究 69、医药制造业上市公司广告支出与财务绩效的关系研究 70、岳池县农村白酒企业财务风险研究 71、基于财务视角的电力基建工程风险控制研究 72、流通成本变动与制造业空间集聚的机制分析 73、出口代理企业内部控制体系构建与评价 74、利率市场化环境下HF农商行内部资金转移定价系统构建研究 75、绿色建筑运营阶段隐性成本估算模型研究 76、齐二机床公司成本控制问题研究 77、我国小额贷款公司债权融资问题研究 78、A航运公司内部控制缺陷研究 79、我国制造业上市公司信用风险评估研究 80、制造业企业预算管理的完善研究 81、 金融会计风险在企业中的原因和防范措施 82、 如何防范与化解金融会计风险 83、 企业金融会计风险原因的分析及防范措施 84、 如何发挥金融会计在金融风险防范中的作用 85、 安徽省金融会计学会召开第四次会员代表大会暨四届一次理事会 86、 浅谈金融会计在防范金融风险中的作用 87、 保险行业金融会计在防范金融风险中的作用 88、 新型金融环境下金融会计风险成因与防范措施分析 89、 互联网金融会计监督探讨 90、 企业金融会计的风险因素及合理化防范路径思考 91、 金融会计国际化对我国商业银行的影响研究 92、 企业金融会计的风险防范及控制 93、 企业金融会计的风险防范及控制 94、 企业金融会计的风险防范及控制 95、 结合金融会计的角度探讨金融风险防范 96、 金融会计理论在茶叶经济中的应用 97、 以金融会计服务促进区域茶产业发展模式研究 98、 浅析商业银行金融会计风险防范与控制 99、 金融会计风险及其防范措施分析 100、 企业金融会计的风险防范及控制
圆周率—π ▲什麼是圆周率? 圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。 ▲什麼是π? π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。 ▲圆周率的发展史 在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。 亚洲 中国: 魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。 汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。 公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。 印度: 约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。 婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。 欧洲 斐波那契算出圆周率约为3.1418。 韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537 他还是第一个以无限乘积叙述圆周率的人。 鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。 华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9...... 欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。 之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。 π与电脑的关系 在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。 在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。 为什麼要继续计算π 其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢? 这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。 ▲π的年表 圆周率的发展 年代 求证者 内容 古代 中国周髀算经 周一径三 圆周率 = 3 西方圣经 元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形 的面积 2.圆面积与以直径为长的正方形面积之比为11:14 3. 圆的周长与直径之比小於3 1/7 ,大於 3 10/71 三世纪 刘徽 中国 用割圆术得圆周率=3.1416称为'徽率' 五世纪 祖冲之 中国 1. 3.1415926<圆周率<3.1415927 2. 约率 = 22/7 3. 密率 = 355/113 1596年 鲁道尔夫 荷兰 正确计萛得的35 位数字 1579年 韦达 法国 '韦达公式'以级数无限项乘积表示 1600年 威廉.奥托兰特 英国 用/σ表示圆周率 π是希腊文圆周的第一个字母 σ是希腊文直径的第一个字母 1655年 渥里斯 英国 开创利用无穷级数求的先例 1706年 马淇 英国 '马淇公式'计算出的100 位数字 1706年 琼斯 英国 首先用表示圆周率 1789年 乔治.威加 英国 准确计萛至126 位 1841年 鲁德福特 英国 准确计萛至152 位 1847年 克劳森 英国 准确计萛至248 位 1873年 威廉.谢克斯 英国 准确计萛至527 位 1948年 费格森和雷恩奇 英国 美国 准确计萛至808 位 1949年 赖脱威逊 美国 用计算机将计算到2034位 现代 用电子计算机可将计算到亿位 ▲背诵π 历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42,000个位数。 目前,最常用的记忆圆周率技巧就是字长法,以每个字的字数代表圆周率的一个位数。在这种方法中最简单的就是“How I wish I could calculate pi.” 用中文去背圆周率也很简单,因为每个数字都只有一个音节,这样背起来就如背诗一样,只不过有点言不及义,例如: 山巅一石一壶酒 3.14159 二侣舞扇舞 26535 把酒砌酒扇又搧 8979323 饱死罗..... 846..... 关於π的有趣发现 将π的头144个小数位数字相加,结果是666。144也等於(6+6)*(6+6) 爱因斯坦的生日恰好是在π日(3/14/1879) 从π的第523,551,502个小数位开始,是数列123456789。 从第359个位数开始,是数字360。也就是说第360个位数正好位於数字360的中央。 在头一百万个小数中,除了2和4,其他数字都曾连续出现7次。 资料来源 <<神奇的π>> David Blatner 著 商周出版 <<新世纪数学>>1A 第7课 牛津大学出版社
数学史选讲的新课标要求:通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。教师应鼓励学生对数学发展的历史轨迹、自己感兴趣的历史事件与人物,写自己的研究报告。为此,结合新课程内容,我简要总结了中国数学史的发展过程,主要分为以下七个阶段: 第一时期:中国数学的萌芽(远古~春秋) 古希腊学者毕达哥拉斯有这样一句名言:“凡物皆数”。在7000年以前,我们的祖先甚至连2以上的数字还数不上来,在逐步摸索中,先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。《周髀算经》是周代传下来有关测量的理论和方法,其中就有中国最早的勾股定理。 春秋时代,诸子百家中的墨家的思想《墨经》中的几何学与逻辑、无限分割思想,体现出理性思维。孔子修改过的古典书籍之一《周易》中含有组合学知识,坐标系思想,二进制思想,还出现了八卦,这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。 第二时期: 中国古代数学框架的形成(战国~秦汉) 到了战国时期,在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在《管子》、《荀子》、《周逸书》等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。 秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。 《九章算术》集先秦到西汉数学知识之大成,确定了中国古代数学的框架、内容、形式、风格和思想方法的特点。全书有90余条抽象性算法、公使,246道例题及其解法,基本上采用算法统率应用题的形式,包括丰富的算术、代数和几何。从体系方面,归纳的,开放的,以计算为中心的算法体系,体现实用性,如“出南北门求邑方”。 第三时期:数学理论的奠基(魏晋~唐初) 在这一时期,数学教育的正规化和数学人才辈出,为数学理论奠定了基础。 赵爽,三国时代吴国人,全面注《周髀算经》,其中的“勾股圆方图注”是对勾股定理的最早证明。 刘徽,三国时代魏国人,是中国古代最伟大的数学家之一。他为《九章算术》做注,《九章算术注》集中了秦汉以来的创造发明,把中国古代数学提高到了一个新的水平,奠定了中国数学教育体系的坚实的基础.其中主要成果:(1)求得圆周率为157/50,(2)出入相补法,棋验法,齐同原理等;(3)数学概念的严格定义.例如幂,率,方程,正负数等;(4)割圆术,反映了数学的极限思想.(5)“重差”之法.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.祖冲之是我国南北朝时期杰出的数学家、天文学家。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践。他在数学上的杰出成就是关于圆周率的计算。祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理". 中国从隋建立起数学专科教育,开设算学馆.学习内容主要是算经十数;学制七年;三位一体(读书,考试,做官)的体制;学生来源整个大众,任何人可以报。 第四时期:中国传统数学的高潮(宋元时期) 数学内容在宋元达到高峰:数学教育家出现,专门研究数学教育制度。在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,如宋元五大数学家是:贾宪、秦九韶、杨辉、李冶、朱世杰。 贾宪,北宋数学家。他继承了《九章算术》以来的诸多方法,扬弃了他们的不足,在算法机械化方面做出了贡献。他构造贾宪三角的“增乘方求廉法”,把中国古代数学的程序化思想又提高到一个新的阶段。 秦九韶,南宋著名数学家。他在数学上的贡献主要有:1、一般高次方程的解法;2、建立一般线性方程组严整规范的算法;3、一次同余式组完整解法程序的建立;4、三斜求积公式(等价于海伦公式)。 杨辉,南宋末年著名的数学家和数学教育家。在教学过程中,他搜集、阅读了大量数学著作,先后完成数学著作15种21卷。为普及日常所用的数学知识,他专门写了《日用算法》一书,书中的题目全部取自社会生活,多为简单的商业问题,也有土地丈量、建筑和手工业问题。他还为初学者制定了《习算纲目》,主要数学教育思想有:由浅入深,循序渐进;重视解题能力的培养,强调精讲多练,举一反三;充分利用直观材料,抽象与具体相结合;理论结合实际,注重应用能力的培养;循循善诱,指导学生学法。他的现金的教育思想和数学方法对后世也有深刻的影响。 元代著名数学家李冶和朱世杰私人传授数学的教育实践。李冶以《益古演段》教材,从最简单的方程,不等式,算术一直到四元术;朱世杰著有《算学启蒙》和《四元玉鉴》传世。 第五时期:中国传统数学的衰落(明初~清中1840年) 满清统治者为了维护其部族的统治压抑民智,如同黑暗的欧洲中世纪一样,思想领域实行强控制,不光政治文化的书籍要禁,就连包括数学在内的科学技术也不放过。《几何原本》、《天工开物》大批明代的科技成果或毁或弃,只要和官方的程朱理学不统一的,都要禁止。满清统治不支持西方传教士向中国的学者介绍西方科学知识和数学知识,不鼓励中国学人参与中西文化交流。学习西方科技不是国策,也没有形成社会风气。中国数学日渐衰落。 第六时期:中西数学的合流(清中~清末1911年) 自明末西方数学开始大规模传入中国以来,直到20世纪初中国数学与西方数学合流,这300多年间中国数学的发展实际上就是中国数学由传统走向近代的过程。以三角学、天元术和垛积术为纲具体研究数学研究内容的西化过程,中国数学家对西方数学的“拒斥”与“吸纳”之间的微妙关系在改变。中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。然而,即使是这样,在世界的同行们之中,我国也仍然没达到领先的地位。 第七时期:现代数学的奠基与发展(公元1911年~公元1976年) 19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。从1847年,形成了一个出国留学的高潮。这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。其中在数学方面做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。 1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。在文化大革命的十年中,社会失控,人心混乱,科学衰落,在数学的园地里除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。 中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究…
圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对 π 的认识过程,反映了数学和计算技术发展情形的一个侧面。 π 的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。实验时期 通过实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用 π =3这个数值。最早见于文字记载的有基督教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值。在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七”,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率 π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。 早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世纪,曾取 π= √10 = 3.162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。几何法时期 凭直观推测或实物度量,来计算 π 值的实验方法所得到的结果是相当粗略的。 真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把 π 的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。圆周长大于内接正四边形而小于外切正四边形,因此 2√2 < π < 4 。当然,这是一个差劲透顶的例子。据说阿基米德用到了正96边形才算出他的值域。 阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中。在这一书中,阿基米德第一次创用上、下界来确定 π 的近似值,他用几何方法证明了“圆周长与圆直径之比小于 3+(1/7) 而大于 3 + (10/71) ”,他还提供了误差的估计。重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出 π =3.1416,取得了自阿基米德以来的巨大进步。 在我国,首先是由数学家刘徽得出较精确的圆周率。公元263年前后,刘徽提出著名的割圆术,得出 π =3.14,通常称为“徽率”,他指出这是不足近似值。虽然他提出割圆术的时间比阿基米德晚一些,但其方法确有着较阿基米德方法更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。另外,有人认为在割圆术中刘徽提供了一种绝妙的精加工办法,以致于他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率 π =3927/1250 =3.1416。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。这种精加工方法的效果是奇妙的。这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们对它缺乏理解而被长期埋没了。 恐怕大家更加熟悉的是祖冲之所做出的贡献吧。对此,《隋书·律历志》有如下记载:“宋末,南徐州从事祖冲之更开密法。以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。” 这一记录指出,祖冲之关于圆周率的两大贡献。其一是求得圆周率 3.1415926 < π < 3.1415927 其二是,得到 π 的两个近似分数即:约率为22/7;密率为355/113。 他算出的 π 的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界记录九百多年。以致于有数学史家提议将这一结果命名为“祖率”。 这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承与发展,祖冲之才能得到这一非凡的成果。因而当我们称颂祖冲之的功绩时,不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故。后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值。祖冲之是否还使用了其它的巧妙办法来简化计算呢?这已经不得而知,因为记载其研究成果的著作《缀术》早已失传了。这在中国数学发展史上是一件极令人痛惜的事。祖冲之的这一研究成果享有世界声誉:巴黎“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山…… 对于祖冲之的关于圆周率的第二点贡献,即他选用两个简单的分数尤其是用密率来近似地表示 π 这一点,通常人们不会太注意。然而,实际上,后者在数学上有更重要的意义。 密率与 π 的近似程度很好,但形式上却很简单,并且很优美,只用到了数字1、3、5。数学史家梁宗巨教授验证出:分母小于16604的一切分数中,没有比密率更接近 π 的分数。在国外,祖冲之死后一千多年,西方人才获得这一结果。 可见,密率的提出是一件很不简单的事情。人们自然要追究他是采用什么办法得到这一结果的呢?他是用什么办法把圆周率从小数表示的近似值化为近似分数的呢?这一问题历来为数学史家所关注。由于文献的失传,祖冲之的求法已不为人知。后人对此进行了各种猜测。 让我们先看看国外历史上的工作,希望能够提供出一些信息。 1573年,德国人奥托得出这一结果。他是用阿基米德成果22/7与托勒密的结果377/120用类似于加成法“合成”的:(377-22) / (120-7) = 355/113。 1585年,荷兰人安托尼兹用阿基米德的方法先求得:333/106 < π < 377/120,用两者作为 π 的母近似值,分子、分母各取平均,通过加成法获得结果:3 ((15+17)/(106+120) = 355/113。 两个虽都得出了祖冲之密率,但使用方法都为偶合,无理由可言。 在日本,十七世纪关孝和重要著作《括要算法》卷四中求圆周率时创立零约术,其实质就是用加成法来求近似分数的方法。他以3、4作为母近似值,连续加成六次得到祖冲之约率,加成一百十二次得到密率。其学生对这种按部就班的笨办法作了改进,提出从相邻的不足、过剩近似值就近加成的办法,(实际上就是我们前面已经提到的加成法)这样从3、4出发,六次加成到约率,第七次出现25/8,就近与其紧邻的22/7加成,得47/15,依次类推,只要加成23次就得到密率。 钱宗琮先生在《中国算学史》(1931年)中提出祖冲之采用了我们前面提到的由何承天首创的“调日法”或称加权加成法。他设想了祖冲之求密率的过程:以徽率157/50,约率22/7为母近似值,并计算加成权数x=9,于是 (157 + 22×,9) / (50+7×9) = 355/113,一举得到密率。钱先生说:“冲之在承天后,用其术以造密率,亦意中事耳。” 另一种推测是:使用连分数法。 由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈 二数之后,再使用这个工具,将3.14159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650… 最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。至于上面圆周率渐近分数的具体求法,这里略掉了。你不妨利用我们前面介绍的方法自己求求看。英国李约瑟博士持这一观点。他在《中国科学技术史》卷三第19章几何编中论祖冲之的密率说:“密率的分数是一个连分数渐近数,因此是一个非凡的成就。” 我国再回过头来看一下国外所取得的成果。 1150年,印度数学家婆什迦罗第二计算出 π= 3927/1250 = 3.1416。1424年,中亚细亚地区的天文学家、数学家卡西著《圆周论》,计算了3×228=805,306,368边内接与外切正多边形的周长,求出 π 值,他的结果是: π=3.14159265358979325 有十七位准确数字。这是国外第一次打破祖冲之的记录。 16世纪的法国数学家韦达利用阿基米德的方法计算 π 近似值,用 6×216正边形,推算出精确到9位小数的 π 值。他所采用的仍然是阿基米德的方法,但韦达却拥有比阿基米德更先进的工具:十进位置制。17世纪初,德国人鲁道夫用了几乎一生的时间钻研这个问题。他也将新的十进制与早的阿基米德方法结合起来,但他不是从正六边形开始并将其边数翻番的,他是从正方形开始的,一直推导出了有262条边的正多边形,约4,610,000,000,000,000,000边形!这样,算出小数35位。为了记念他的这一非凡成果,在德国圆周率 π 被称为“鲁道夫数”。但是,用几何方法求其值,计算量很大,这样算下去,穷数学家一生也改进不了多少。到鲁道夫可以说已经登峰造极,古典方法已引导数学家们走得很远,再向前推进,必须在方法上有所突破。 17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。 π 的计算历史也随之进入了一个新的阶段。分析法时期 这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算 π 。 1593年,韦达给出这一不寻常的公式是 π 的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 π 值。 接着有多种表达式出现。如沃利斯1650年给出:1706年,梅钦建立了一个重要的公式,现以他的名字命名:再利用分析中的级数展开,他算到小数后100位。 这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个: 1844年,达塞利用公式:算到200位。 19世纪以后,类似的公式不断涌现, π 的位数也迅速增长。1873年,谢克斯利用梅钦的一系列方法,级数公式将 π 算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚韧不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶: π 的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以致于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的 π 值。 又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在 π 的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。 对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把 π 计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。 人们对这些在地球的各个角落里作出不懈努力的人感到不可理解,这可能是正常的。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗? 1948年1月弗格森和伦奇两人共同发表有808位正确小数的 π 。这是人工计算 π 的最高记录。计算机时期 1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本革命。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到2061.5843亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。 不过,现在打破记录,不管推进到多少位,也不会令人感到特别的惊奇了。实际上,把 π 的数值算得过分精确,应用意义并不大。现代科技领域使用的 π 值,有十几位已经足够。如果用鲁道夫的35位小数的 π 值计算一个能把太阳系包围起来的圆的周长,误差还不到质子直径的百万分之一。我们还可以引美国天文学家西蒙·纽克姆的话来说明这种计算的实用价值: “十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量。” 那么为什么数学家们还象登山运动员那样,奋力向上攀登,一直求下去而不是停止对 π 的探索呢?为什么其小数值有如此的魅力呢? 这其中大概免不了有人类的好奇心与领先于人的心态作怪,但除此之外,还有许多其它原因。1、它现在可以被人们用来测试或检验超级计算机的各项性能,特别是运算速度与计算过程的稳定性。这对计算机本身的改进至关重要。就在几年前,当Intel公司推出奔腾(Pentium)时,发现它有一点小问题,这问题正是通过运行 π 的计算而找到的。这正是超高精度的 π 计算直到今天仍然有重要意义的原因之一。 2、 计算的方法和思路可以引发新的概念和思想。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。实际上,确切地说,当我们把 π 的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。因而如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。在这方面,本世纪印度天才数学家拉马努扬得出了一些很好的结果。他发现了许多能够迅速而精确地计算 π 近似值的公式。他的见解开通了更有效地计算 π 近似值的思路。现在计算机计算 π 值的公式就是由他得到的。至于这位极富传奇色彩的数学家的故事,在这本小书中我们不想多做介绍了。不过,我希望大家能够明白 π 的故事讲述的是人类的胜利,而不是机器的胜利。 3、还有一个关于 π 的计算的问题是:我们能否无限地继续算下去?答案是:不行!根据朱达偌夫斯基的估计,我们最多算1077位。虽然,现在我们离这一极限还相差很远很远,但这毕竟是一个界限。为了不受这一界限的约束,就需要从计算理论上有新的突破。前面我们所提到的计算,不管用什么公式都必须从头算起,一旦前面的某一位出错,后面的数值完全没有意义。还记得令人遗憾的谢克斯吗?他就是历史上最惨痛的教训。 4、于是,有人想能否计算时不从头开始,而是从半截开始呢?这一根本性的想法就是寻找并行算法公式。1996年,圆周率的并行算法公式终于找到,但这是一个16进位的公式,这样很容易得出的1000亿位的数值,只不过是16进位的。是否有10进位的并行计算公式,仍是未来数学的一大难题。 5、作为一个无穷数列,数学家感兴趣的把 π 展开到上亿位,能够提供充足的数据来验证人们所提出的某些理论问题,可以发现许多迷人的性质。如,在 π 的十进展开中,10个数字,哪些比较稀,哪些比较密? π 的数字展开中某些数字出现的频率会比另一些高吗?或许它们并非完全随意?这样的想法并非是无聊之举。只有那些思想敏锐的人才会问这种貌似简单,许多人司空见惯但却不屑发问的问题。 6、数学家弗格森最早有过这种猜想:在 π 的数值式中各数码出现的概率相同。正是他的这个猜想为发现和纠正向克斯计算 π 值的错误立下了汗马功劳。然而,猜想并不等于现实。弗格森想验证它,却无能为力。后人也想验证它,也是苦于已知的 π 值的位数太少。甚至当位数太少时,人们有理由对猜想的正确性做出怀疑。如,数字0的出现机会在开始时就非常少。前50位中只有1个0,第一次出现在32位上。可是,这种现象随着数据的增多,很快就改变了:100位以内有8个0;200位以内有19个0;……1000万位以内有999,440个0;……60亿位以内有599,963,005个0,几乎占1/10。 其他数字又如何呢?结果显示,每一个都差不多是1/10,有的多一点,有的少一点。虽然有些偏差,但都在1/10000之内。 7、人们还想知道: π 的数字展开真的没有一定的模式吗?我们希望能够在十进制展开式中通过研究数字的统计分布,寻找任何可能的模型――如果存在这种模型的话,迄今为止尚未发现有这种模型。同时我们还想了解: π 的展开式中含有无穷的样式变化吗?或者说,是否任何形式的数字排列都会出现呢?著名数学家希尔伯特在没有发表的笔记本中曾提出下面的问题: π 的十进展开中是否有10个9连在一起?以现在算到的60亿位数字来看,已经出现:连续6个9连在一起。希尔伯特的问题答案似乎应该是肯定的,看来任何数字的排列都应该出现,只是什么时候出现而已。但这还需要更多 π 的数位的计算才能提供切实的证据。 8、在这方面,还有如下的统计结果:在60亿数字中已出现连在一起的8个8;9个7;10个6;小数点后第710150位与3204765位开始,均连续出现了七个3;小数点52638位起连续出现了14142135这八个数字,这恰是的前八位;小数点后第2747956位起,出现了有趣的数列876543210,遗憾的是前面缺个9;还有更有趣的数列123456789也出现了。 如果继续算下去,看来各种类型的数字列组合可能都会出现。拾零: π 的其它计算方法在1777年出版的《或然性算术实验》一书中,蒲丰提出了用实验方法计算 π 。这个实验方法的操作很简单:找一根粗细均匀,长度为 d 的细针,并在一张白纸上画上一组间距为 l 的平行线(方便起见,常取 l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数,于是就可以得到 π 的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为 p = 2l/πd 。利用这一公式,可以用概率方法得到圆周率的近似值。在一次实验中,他选取 l = d/2 ,然后投针2212次,其中针与平行线相交704次,这样求得圆周率的近似值为 2212/704 = 3.142。当实验中投的次数相当多时,就可以得到 π 的更精确的值。 1850年,一位叫沃尔夫的人在投掷5000多次后,得到 π 的近似值为3.1596。目前宣称用这种方法得到最好结果的是意大利人拉兹瑞尼。在1901年,他重复这项实验,作了3408次投针,求得 π 的近似值为3.1415929,这个结果是如此准确,以致于很多人怀疑其实验的真伪。如美国犹他州奥格登的国立韦伯大学的L·巴杰就对此提出过有力的质疑。 不过,蒲丰实验的重要性并非是为了求得比其它方法更精确的 π 值。蒲丰投针问题的重要性在于它是第一个用几何形式表达概率问题的例子。计算 π 的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。 在用概率方法计算 π 值中还要提到的是:R·查特在1904年发现,两个随意写出的数中,互素的概率为6/π2。1995年4月英国《自然》杂志刊登文章,介绍英国伯明翰市阿斯顿大学计算机科学与应用数学系的罗伯特·马修斯,如何利用夜空中亮星的分布来计算圆周率。马修斯从100颗最亮的星星中随意选取一对又一对进行分析,计算它们位置之间的角距。他检查了100万对因子,据此求得 π 的值约为3.12772。这个值与真值相对误差不超过5%。 通过几何、微积分、概率等广泛的范围和渠道发现 π ,这充分显示了数学方法的奇异美。 π 竟然与这么些表面看来风马牛不相及的试验,沟通在一起,这的确使人惊讶不已。
数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。这样的例子在数学史上不胜枚举。在此奋斗的过程中所蕴涵的深刻的哲理,也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出的数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。由此可见,数学史并不是单纯的数学成就的编年记录。 那么是不是只有研究数学的人才需要了解数学史呢?或者说了解了数学史只是对学习和研究数学的人才有好处呢? 数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。著名的哲学家A.Whitehead在批评以往思想史家们忽视数学的地位时,曾打了一个比喻来说明数学是人类思想史的要素之一。他说:“假如有人说:编著一部思想史而不深刻研究每一个时代的数学概念,就等于是在《哈姆雷特》这一剧本中去掉了哈姆雷特这一角色,这一说法也许太过分了,我不愿说的这样过火。但这样做却肯定地等于是把奥菲莉这一角色去掉了。奥菲莉对整个剧情来说,是非常重要的[2]。”他仅是就思想史而言。实际上我们可以说:不了解数学史,就不可能全面了解整个人类文明史。 研究数学史对数学自身的发展所起的作用也是不可估量的。众所周知,2000年荣获首届国家最高科学技术奖的吴文俊院士是数学机械化研究的倡导者。他在示性类和示嵌类研究中取得了根本重要性的结果,在多种问题中被广泛应用。他提出的用计算机证明几何定理的方法,与常用的基于数理逻辑的方法根本不同,显现了无比的优越性,改变了国际上自动推理研究的面貌,被称为自动推论领域的先驱性工作,并因此获得Herbrand自动推论杰出成就奖。吴文俊教授在分析所取得的成绩时指出,“我们是遵循我国古代机械化数学的启示,把几何代数化,把非机械化的几何定理证明转化为多项式方程的处理,从而实现了几何定理的机器证明。”像这样认真研究数学思想将之用以指导数学研究并取得重大成绩的例子不胜枚举。即使对于高等数学的教学来说,数学史所起的作用也是不可低估的。 如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。由此体现出了微积分的重要性以及它和各科之间的关系。因此,《微积分》总是作为高等院校理工类的一门重要的必修课。一般制订为两学期教学计划。它包含了微分学,积分学,空间解析几何,无穷级数和常微分方程的基础知识。我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。并由于受传统教学课时和内容上的安排的影响,高等数学的教学往往存在课时少,内容多的矛盾。所以,广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注意进行数学知识的传授,忽视了数学的思想性和趣味性。当代著名数学家Courant曾指出:“微积分,或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具。遗憾的是,微积分的教学方法有时流于机械,不能体现出这门学科乃是一种撼人心灵的智力奋斗的结晶。” 作为高等数学的教师,我们也有过这样的经验,虽然仔细备课全面讲解下来,却发现教学效果并不理想,对一些抽象的概念难以理解,普遍反映听不懂。长此以往,个别同学甚至失去了能学好高等数学的信心,对学习失去了兴趣。经过几代人对高等数学教学方法的不断研究,数学史在高等数学教学中的所起的作用已被大家所认可。那些认为在教学中讲述数学史是华而不实的多余之举,是在浪费时间,任为应该多把“宝贵的时间”用在习题训练上的思想已经成为过去。在教师教学里,引进与主题相关的数学史题材,对学生的学习会有很正面的意义,不仅能调动了同学们的学习热情,尤其能协助学生将抽象观念具体化。因为不论在科技应用层面或思想突破方面,数学重要概念的演进确有其实用面的意义,因此具有启发性的数学史方面的教学实属必要。 基于以上的认识,近来,关于这方面已经取得了不少的研究成果。国内,国际上的交流活动也日益频繁。在一些学校已经将数学史设为一门选修课。系统的介绍数学的起源与发展。这对高等数学的教学起到了很好的辅助作用。但是由于这方面人材的短缺,也有一些学校并不能开出这门选修课。再者作为一门单独的选修课,它要系统的体现出数学的起源与发展,并不能做到与高等数学所授内容适时匹配。所以,这就要求我们广大教授高等数学的教师在平时高等数学的教学中就应该做到与数学史的有机结合。 怎样才能在繁重的教学任务和紧张的课堂教学时间里将数学知识的传授和数学史的介绍有机的结合起来呢?怎样才能在有限的课堂时间里既做到保证了教学任务的完成又做到通过数学史的介绍提升了大家的学习兴趣,传递了数学思想呢? 综观历史发展的长河,重要思想的诞生离不开重要的人物。对数学的发展也是如此。德国著名数学家H.Weyl说过:“如果不知道各位前辈所建立和发展的概念,方法和成果,我们就不能理解近50年数学的目标,也不能理解它的成就。”由此可见,研究数学人物在数学史的研究中的重要性。 在高等数学的教材中我们会接触到一些根本重要性的定理和概念。如“牛顿——莱布尼兹定理”、“拉格朗日中值定理”、“富里叶三角级数等等。”这些定理和概念的学习不仅对于学习高等数学知识来说是重要的,并且对于提高数学素质也是及其必要的。它们是微积分的精华,是高等数学教学的必讲内容。这些定理和概念大都是以重要数学人物的名字命名的。他们也恰恰是微积分的创立者和先驱们。这就提醒了广大教师,在课堂教学过程中适当的加入先驱们的生平和业绩的介绍就不仅能在有限的时间里完成我们的教学任务还可以起到提升大家的学习兴趣,传递了数学思想的作用。对我们的课堂教学起到了画龙点睛的作用。 牛顿[3](1642~1727)是英国数学家、物理学家、天文学家。他出身于农民家庭。1661年考入剑桥大学三一学院。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明,微积分,万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”牛顿的微积分理论主要体现在《运用无穷多项方程的分析学》、《流数术和无穷级数》、《求曲边形的面积》三部论著里。在《运用无穷多项方程的分析学》这一著作里,他给出了求瞬时变化率的普遍方法,阐明了求变化率和求面积是两个互逆问题,从而揭示了微分与积分的联系,即沿用至今的所谓微积分的基本定理。在《流数术和无穷级数》里,牛顿对他的微积分理论作出了更加广泛而深入的说明。例如,他改变了过去静止的观点,认为变量是由点、线、面连续运动而产生的。而在《求曲边形的面积》这一篇研究可积曲线的经典文献里,牛顿试图排除由“无穷小”造成的混乱局面。把求极限的思想方法作为微积分的基础在这里已出露端倪。牛顿还曾说过:“如果我之所见比笛卡儿等人要远一点,那只是因为我是站在巨人肩上的缘故。” 莱布尼兹[3](1646~1746)是德国数学家、自然主义哲学家、自然科学家。他的第一篇微分学论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》是历史上最早公开发表的关于微分学的文献。他也是历史上最伟大的符号学家。他曾说:“要发明,就得挑选恰当的符号,要做到这一点,就要用包义简明的少量符号来表达或比较忠实地描绘事物的内在本质,从而最大限度减少人的思维劳动。”例如,dx、dy、∫、log等等,都是他创立的。他的优越的符号为以后分析学的发展带来了极大的方便。 以上只是我们在浩瀚的数学人物的海洋中,采摘的两颗最耀眼的明珠,对他们的生平与业绩只进行了一些简介。这些内容的介绍在课堂上占用不了多少“宝贵”的时间,然而通过这些,使我们活生生的看到了数学的发展是曲折的,一个重要概念的产生是离不开实际问题的,只有对实际问题进行精力的思索,就可以找出问题的本质,抽象出数学思想。还有作者在解决实际问题时频繁运用的“无穷小”、“流数”等概念,使我们体会到正确、熟练掌握基本概念对于理解数学思想的重要性。对于平时我们视为枯燥的数学符号,却正是它是最直接、最简练表达数学思维的工具。并且从先驱们的言行里我们能感受到科学家的治学态度和对知识的执着追求,这往往能激发大家刻苦钻研,勇往直前的奋斗精神。 最后,我们相信,作为高等数学的教师,我们的目的不仅是为大家传授数学知识,更重要的是使大家在学习数学知识的过程中掌握数学思想,提高大家的数学素养。将数学史与数学知识的传授有机地结合起来就能很好地达到以上的目的。经过多年的教学实践,在高等数学的教学中适时地加入数学人物的介绍就能对高等数学的教学起到很好的辅助作用。我们相信,对于高等数学的教师,如果熟悉了数学人物的生平、业绩、治学态度、治学方法、趣闻轶事等等,对高等数学的教学来说有百利而无一害,一定会把高等数学讲授得更生动、有趣和富有哲理。而对于很多正在学习高等数学的学生,一旦了解了这些数坛前辈们的学术成就和道德风范,也必将从中受到鼓舞,继而提高学习兴趣,做出更大的成绩。
小学数学论文浅谈估算教学的现状与改进措施大溪二小 徐再立摘 要:估算教学让我们觉得有很多困惑,如学生的"先算后估","估算速度慢于精确计算"以及"估算方法举棋不定"等现象,说明了我们的估算教学有待改进.改进估算教学法就要转变教师观念,重视估算教学;结合具体情境,培养估算意识;教给估算策略,提高估算能力.关键词:估算教学效果 教师观念 估算意识 估算能力估算教学随着新课程的诞生而成为了广大教师讨论的焦点问题之一.我们不难发现,虽然我们对估算教学进行着积极探讨,但估算教学还是让我们觉得有很多困惑.例如学生的"先算后估","估算速度慢于精确计算"以及"估算方法举棋不定"等现象,都说明了我们的估算教学有待改进.那么,到底是什么原因使得估算教学效果不好 我们又该怎么做才能提高估算的教学效果呢 我想从教师和学生两个层面来谈谈对改进估算教学的初浅想法.转变教师观念,重视估算教学现状分析从现状看,教师并不象课程标准那么重视估算教学.原因有以下三个:1.教师受传统教学观念的影响.估算教学在老教材中是选学内容,在新教材中是必学内容,而且在教材的各册各章节中都有要求.但是教师受传统教学观念的影响,没有将估算教学作为一种计算能力来培养,往往是教材有安排则教,无安排则不教,没有自始至终地坚持培养,根本没有将估算教学与精确计算平起平坐,并肩作战.2.教师对估算教学功能认识不明确.我从个人和同行者身上发现,我们很多教师都认为估算的功能就是在没必要精确计算时充当一种简便计算方法,或者是充当检验精确计算是否正确的验算方法.很多教师都没有认识到,估算除了以上两种功能之外,它更重要的功能是在培养学生的数感和数学素养上.3.估算教学的评价现状使得教师对估算教学不重视.由于估算教学不是作为独立单元安排教学,对估算教学效果的评价也不是独立而显著的,往往只是在纸笔测验中加入少量几道只要求给出估算结果的估算题.这样少量几道题的分数相对一张试卷来说,失与得的差别也不是很大,因此,估算教学效果也不被教师怎样看重.(二)改进措施1.走出传统教学观念的辐射圈.教师要从老教材中走出来,阅读新课程标准,了解估算教学目标;教师还要纵观新教材,梳理整套教材安排体系,了解估算教学在整个教材体系中的安排情况;理清新教材对估算教学的重视程度,不要再受传统教学观念的影响,重视估算教学.教师要明白口算,笔算与估算是三种基本计算技能,口算能力,笔算能力与估算能力组成了一个人完整的计算能力,要培养学生的数学能力,这三种技能缺一不可.因此,我们在平时的教学中要注意,以前对估算有所轻视,现在应着重花时间来弥补,不能因学生的估算能力欠缺而影响他的数学能力.因此,教师要足够重视估算的教学.2.认清估算教学的功能.估算是一种计算方法,它的基本功能是在不需要精确计算时使用它来快速计算;估算还经常充当验算的角色.估算除了这两个功能外还有一个重要的功能是它可以培养学生的数感与数学素养.如通过对数与量的估算,可以使学生亲身体验所学的数与量的大小与多少,例如, 当学习了自然数1-100后,可让学生去估算一把黄豆有多少粒,一个教室有多少人,待估算出结果后再去精确地算一算, 看二者之间的差距, 从中体验1—100等数到底有多少.这不正体现了新课标提出的让学生在体验中学习数学吗 通过估算教学还可以促进学生建立用数学的意识, 提高用数学的能力.例如,在超市购物时,估算需要多少钱 买水果时,感觉一袋水果有多重.这些问题都可以使学生将书本知识转化为实际生活问题,加强书本知识与生活问题之间的联系.因此,我们说估算教学是很有必要的,需要引起教师的足够重视.3.改变估算教学效果的评价机制.要改变估算教学效果的评价机制,学生估算能力的评价应避免简单的只看估算结果的纸笔方法,重视估算过程的考查[1].可以采用以下措施:⑴写出估算过程.如49×3≈50×3;⑵写出估算结果的大致范围.49×3300人,答:他们不能同时上船."看到这种状况,我与学生有了如下对话:师:"这道题必须要精确计算吗 "沉默片刻,生1:"不用."师:"为什么 "生1:"因为100加200就有300了."师:"他是用什么方法计算的.这种方法你们觉得怎么样 "生2:"他用估算的方法,比较简便.可以就写作138+202 〉300."师:"那你们为什么不这样做 "学生哑然.这个案例使我想到,我们的学生是怎么了,他们在写题时不是都不喜欢多写字吗 那他们为什么宁可多写几个字,也不用估算的方法呢 我们苦苦教学的估算,不是成了"纸上谈兵"了吗 这样学估算还有意义吗 2.习惯使然.学生估算意识不强的还有一个现状是学生习惯于看到题就精确计算,而不先思考用什么方法计算更合适.(二)改进措施1.要提高小学生的估算能力,首先要让学生明确估算的意义,这样才提高他们学习估算的积极性[2].这就必须要求我们创造具体情境,结合具体情境,培养学生的估算意识.如果不是在具体情境中谈培养估算意识就比较空洞.比如著名特级教师吴正宪老师上的《估算》一课,她在课的开始环节,就创设了一个情境,青青和妈妈去超市购物,选好了商品后,妈妈的问题是:妈妈带了200元钱,够不够 再让学生判断在下列哪种情况下,使用估算有意义:A,妈妈考虑200元够不够时;B,营业员要将每种商品的价格输入收银机时;C,妈妈被告知要付多少钱时.在这里,吴老师没有问"买这几件物品大约需要多少钱 "而是设计了这样一道选择题,显然是从培养学生估算意识角度考虑的.像吴老师这样,在教学估算之前,先让学生来判断什么时候需要估算 什么时候需要精确计算 使学生明白了我们为什么要学估算 学估算有什么用 不正是数学课程标准提出的"人人都要学有用的数学"吗 这比我们口口声声的告诉学生"估算很有用","估算比精确计算要简便"来得有效得多.当然,这里所指的具体情境并不都是指上面购物环境,还可以是在碰到其他有具体情况的问题时,如下列算式中,得数比800大的算式是( )A,462+335 B,397×2 C,1000-209 D,215×4很明显,像这样的题用估算解决比较快.所以通过比较解决这道题的速度,也可以培养学生的估算意识.2.培养学生的估算意识除了要使学生明白什么时候用估算之外,还要使学生养成估算的习惯.培养估算习惯要靠时间与毅力来实现.如计算之前,先估一估得数大致在什么范围,精确计算之后,又估一估值是不是在这个范围之内等.课堂上多些"请估一估","说说你是怎么估的"这样的要求.经过一定时间这样的训练之后,学生就会有估算的意识和习惯.当然,这里行要求教师自身要有估算意识和习惯.三,教给估算策略,提高估算能力(一)现状分析1."先算后估"现状存在.我们不难发现有一部分学生(特别是中差生)碰到估算题时是先精确计算出结果,再对精确结果求出近似值的.这种状况在新课改刚开始几年存在的相当多,目前仍然部分存在.主要原因是学生估算速度慢于精确计算,估算能力不强造成的.2.估算方法"举棋不定".根据我的教学经验及调查结果发现,有一部分学生不喜欢估算而喜欢精确计算的原因是:精确计算答案唯一,方法也常常具有唯一性,而估算的方法和结果都具有多样性,学生在估算能力不强的情况下对使用估算方法感到信心不足,举棋不定.3.片面的训练"先估后算"教学模式.教师在估算教学中,往往很注重估着算,就是着重让学生在通过近似后的算.这样也是片面的,有些题目可以能通过不用求近似数就能估出来的,也就是说估算策略是很重要的.(二)改进措施虽然估算的方法灵活多样, 答案也不具有唯一性, 但估算并非无法可依,无章可循, 也是可以总结出一般的估算策略的.要使学生能灵活,主动地使用估算,我们必须要教给学生估算的策略与技巧,提高估算能力.1.熟练撑握求近似值的方法.求近似值是估算教学的基础,这就要求我们多设计类似于"这个数接近几","这是一个多大的数","看到这个数,你想到了什么数"等问题,使学生看到一个数就能在头脑中反应出它的近似数.对于学生取近似数时出现不同的结果,如378看作380,400,350等不同的近似数,我们都要做出相宜的评价,而不能以教师心中的满意答案来否定学生的想法.我们要鼓励学生敢于取近似值,敢于表达自己的想法,学生的数感就会逐渐得到增强,估算的速度也会得到提高.2.学会调整策略,培养优化意识.估算是非常讲究策略性的一种计算方法.我们要让学生充分体验估算的方法多样化与优化的过程,给他们自己体验选择估算策略的过程.如著名特级教师吴正宪法老师在《估算》一课中对估算的调整策略很重视.她先通过学生自己得出"最好用中估,凑调估或大小估的方法进行估算".再安排了以下两道练习来感悟估算的策略意识.(1)学校组织350名同学去春游, 租了7辆汽车, 每辆汽车有56个座位, 要求每人一个座位, 够吗 (2)一辆卡车, 自重986千克, 车上载有6箱货物, 每箱285千克, 能顺利通过一座限重3吨的桥吗 吴老师组织学生讨论: "对于这种问题, 大估,小估……哪种估算方法好啊 " "大估有把握, 还是小估有把握 ""以后要估算的时候, 是大估或小估, 还是…… " 学生自己得出"要根据实际情况确定估算的方法, 有时大估比较有把握, 有时小估保险些……".像这些需要调整策略来估算的问题是学生的薄弱之处,特别是中差生,所以,我们平时要加强估算调整策略的训练,使学生在经验支持下灵活使用估算本领.3.运用策略灵活估.⑴灵活利用数学规律,性质来估算[3].利用数学规律和性质来估算,可以省去求近似值的步骤,能使估算更简洁,更快速.如利用一个不是0的数乘纯小数,积小于这个数的规律,就可以判定4.9×0.6的积必定小于4.9,在比较〇 时,可以想>,=.所以>.熟练掌握数学规律与性质,可以使估算速度更快.⑵根据实际需要选用估计方法.估算并非都是要求近似值的,有些情况下可以省去求近似值的步骤.如我们在教学"吨的认识"时,就只要让学生感觉50千克有多重,想象1吨即1000千克,有20个50千克的重量,实际上这也是估一估的过程.在一些生活实例中,有时也可以不用求近似值来估.如估一个会场的人数,我们是不会把一个人当单位,然后想有多少个这样的一个人.而应该是先想我们班有50人,那么这里大概有多少个50,当然也可在想想100人大概是多少后,再想想这里有多少个100人.参考文献:[1]张俊英,对小学数学估算教学的思考,小学教学研究,2008(6)[2]张丽珍,小学数学教学中估算能力的培养,甘肃教育,2001(9)[3]周 豪,小学生估算能力的培养,小学教学参考,2001(3)小学数学论文计算教学中 "情景串"教学资源的开发和利用温岭市横湖小学 鲍 淼[内容摘要]在计算课中自始至终发挥导向作用,使学生通过解决"情景串"中的问题引发对数学计算的学习,将解决问题与计算学习二者紧密结合,让学生既经历计算知识与技能的形成过程,又能把学到的计算知识作为解决问题的工具,把应用意识的培养贯穿于数学学习的全过程,这是"情景串"教学的核心内涵.教师应找准"支点",创设具有"数学韵味"的"情景串",在计算课中真正发挥其应有的价值.本文从以下几方面来阐述"情景串"教学资源的开发:一,动态的情景串来源于静态的主题情景图;二,动态的情景串来源于贴近的生活实践;三,动态的情景串来源于生动的动画故事;四,动态的情景串来源于有趣的游戏活动.[关键词]动态情景串 静态主题图 生活实践 动画故事 游戏 [正文]美国国家委员会在《人人关心数学教育的未来》报告中指出:"今天一个数学本领仅限于计算的人,几乎没有什么可贡献于当今的社会,因为廉价的计算器就能够把事办得更好".如果现在还是把计算教学的目标定位于牢记计算法则,形成计算技能,显然是缺乏现实意义的,教师应该借助计算教学这个载体,引领学生主动参与,积极探索,使他们在获得计算知识的同时,情感,态度,价值观等方面得到和谐的发展.因而,计算教学目标的确定,不能只满足于让学生掌握方法,学会计算,而是着眼于让学生体会计算学习的需要,让学生经历计算策略的探索,感悟计算思维的魅力,真正发挥计算教学的育人价值,从而使学生在获得计算知识的同时,情感,态度和价值观得到和谐发展.如何加强计算与应用的有机结合成为了数学教学中一块难啃的"骨头".数学课需要学生注意力高度集中,思维积极活动才能完成学习任务.而对于小学生来讲,课堂注意力集中的时间相对较短,更何况是内容相对枯燥的计算课.如果我们把课堂上学习的内容通过创设相关联的一组情景将整节课链接成"情景串",即整堂课中围绕着一个主题的大情景来组织教学,将教学内容分散地设计在相联系的情景的各个环节中,即各个"情景串"中.从而引发了一系列相对独立的又有着一定逻辑关系的问题,形成"问题串",还计算教学一个现实生活的背景,加强了"书本世界"与学生"生活世界"的沟通, 这无疑会大大增加所学知识的趣味性和吸引力,防止学生"注意力疲劳",有助于营造"动态生成"的课堂.下面就结合我平时的教学,说一说我在数学计算教学中是怎样进行"情景串"教学资源的开发和利用.一,动态的情景串来源于静态的主题情景图实施情景串教学并非无源之水,无本之木.新教材在排版上明显文字叙述少了,随之而来的是一幅幅生动有趣,五彩缤纷的主题图嵌入我们师生的视野,也深深地吸引着我们.正是这些将一幅幅寓知识,思想,情感于一体的主题图融入我们的课堂教学,为我们的教学设计提供了丰富的资源,给枯燥的数学赋予了新鲜的生命,使我们的情景串教学成了有源之水,有本之木.充分挖掘主题图,以学生感兴趣的相对独立的故事或活动演绎"主题图"情景,把丰富的情景画面与具体的数学知识有机结合起来,让丰富的情景设置在学生学习的过程中自始至终发挥一定的导向作用,帮助学生在快乐的氛围中学习知识.如第四册"表内除法(二)"的第一课时,例1给出了学生庆祝节日的主题情景图,而配备的练习1——4的主题图分别是小猴爬竿,小兔采蘑菇,小鸟送信,小猪吹泡泡.而低年级学生对静态信息窗的兴趣持续时间过短,相对独立的主题图使课堂显得过于松懈,存在一节课中前半节课学生兴致高昂,后半节课学生死气沉沉,按部就班的现象,于是我尝试着把静态的,相对独立的几个信息窗转变为一个动态的连贯的情景串.把整节课设计成以学生喜欢的"庆祝六一"为主线,通过"布置联欢会场"(例1的教学内容)—— "参加快乐的游园活动"( 练习1——4的教学内容)展开教学. 情景一:布置节日的教室(教学例1)."今天是快乐的六一儿童节,你们高兴吗 小朋友们为了庆祝自己的节日,要把教室打扮一番,我们一起去看看吧!"(课件呈现)这一环节的设计目的是根据信息窗提出问题串,探讨计算的方法.使学生体会因为要解决问题才有了计算,计算是伴随解决问题而产生的.情景二:游园活动"盲人问路"(练习1)老师准备带你们去参加六一节的游园活动,你们想不想参加呢 盲人问路的游戏规则:一人蒙眼随意指题,其他学生参与计算.情景三,情景四,情景五分别是游园活动"小猫钓鱼","水中捞月","吹泡泡",相对应的是练习2——练习4.通过对教材的有效调整,把静态的信息窗变为动态的情景串,将用乘法口诀求商的计算技能以图画,操作,语言等形式为载体,潜意识地传递给学生,让学生能在直观,生动的游戏情境中兴趣盎然地去计算,使他们体会到用乘法口诀求商是帮助人们解决实际问题的工具,让学生发现数学就在身边,对数学产生亲切感.二,动态的情景串来源于贴近的生活实践选取学生熟悉的生活情景,可以直接选取教材中提供的学生熟悉的日常生活情景进行加工或自己创设学生感兴趣的现实生活情景,将学生感兴趣的生活实践活动情景贯穿起来,编排成"情景串". 如第四册表内乘除法的练习课中我是这样设计的:情景串大背景:星期天老师带领同学们到游乐园去玩.情景一:出发前,班长清点人数. 师:我先请班长清点一下我们今天一共来了几组 (6组)小 朋友看一看每组有多少人 (4人)师:板书:一共6组,每组4人.师:谁能根据这两条信息提出一个问题 (一共有多少人 )谁能解决这个问题 情景二:开始出发,如何租车 课件画面:停车场里有8辆车,每辆车限坐3人.情景三:来到游园门口,准备买票.课件画面:游乐园门口,张贴有游客须知及门票价格(每人2元).情景四:进入游乐园,设计游乐项目及游览路线.课件画面:游乐园内各项游乐设施的价格及相关规定.情景五:休息,到游乐园内的食品超市购物.课件画面:游乐园一食品超市内,矿泉水2瓶6元,汽水每瓶4元.在以上一连串相关的情景中,有明,暗两条线,明线是游览,暗线是"观察画面,搜集信息——根据获取信息提出问题——合作交流,计算解决问题",在整个学习过程中,学生兴致勃勃,积极动脑,热烈参与,在看似游玩的过程中,既巩固熟练了表内乘除法,又培养了应用知识解决实际问题的能力.一节课,始终围绕"游览"这一情景而展开,教师给学生创设了一个又一个的情景,引发一环又一环的问题,为学生自主学习,自主探索活动提供了一个有效的平台,促使学生层层深入地思考,体验与感悟,让学生自觉地,全身心地投入到计算学习活动中,用心发现,用心思考,真诚交流,在跌宕起伏的情感体验中自主完成对知识的建构.创造性地巧构情景串,将计算的内容,知识与技能溶入了丰富多彩,生动有趣,具体现实的生活场景中,激活了学生学习的积极性;激活了学生思维的灵活性;激活了学生问题意识,形成了问题串;改变了学生的学习方式,使学生在现实的"情景串"中,会应用数学思想,发现问题,提出问题,自主探究计算解决问题;在"情景串"中合作交流体验到学习数学的乐趣,促进学生的发展.三,动态的情景串来源于生动的动画故事单靠一幅图,一段话是很难创设出让学生感兴趣的情景的.动画故事是小学生的最爱,小学生对于动画故事非常感兴趣,他们思维也就容易被启迪,开发,激活.对来源于动画故事的情景串就会产生可持续的动机,这是一种催化剂,使计算教学跳出纯粹为计算而计算的技能训练的老路子,让学生在生动具体的情景中学习数学,算用结合,使课堂充满生趣.如第一册在教学"用数学"时,上课伊始,我就以"森林里的早晨"那美丽的画面,鸟儿的叫声吸引孩子们的注意力,使孩子们仿佛身临其境.整节课我设计了引导一系列学生去郊游大森林的事理情景串,把教材中的例题,习题有机地串联了起来,使学生仿佛置身于愉快的旅途之中,让学生在玩中学,乐中学,学中乐.把抽象的知识具体化,静态的画面动态化,使学生的各种感官参与学习活动,形成了生动活泼,兴趣盎然的学习氛围,促成了认识活动的探索化,动态化和情感化.如第五册第六单元中"一个因数中间有0的乘法",我尝试着把静态的,相对独立的信息窗改变以学生喜欢的《西游记》神话故事为主线的一个动态的情景串.情景一:(例5主题图)王母娘娘要过大寿,她派7个仙女到蟠桃园去摘仙桃为自己祝寿,仙女们到蟠桃园一看,大吃一惊,只见孙悟空正坐在桃树大口大口地吃着桃子,树上一个仙桃也没有了,仙女们赶快回来向王母娘娘禀报:"仙桃都被孙悟空吃光了,一个也没摘到".让学生列加法算式与乘法算式,讨论得出:0和任何数相乘都得0.情景二:(例6主题图)小朋友,吃了蟠桃真的能长寿吗 (不能)是啊,生命在与运动,我们应该像这位老寿星一样每天坚持体育锻炼.老寿星每天要在公园步行3圈,每圈508米,你能算出老寿星每天步行多少米吗 想一想,要算老寿星每天步行多少米,怎样列算式 学生探究算法,得出:不管因数中间是否有0,都要用这个一位数去乘多位数里的每一个数位上的数,即使十位上是0也要乘,如果没有进位,积的十位上要用0占位.情景三:(巩固深化,拓展应用)现在正是小朋友长身体的时候,所以我们一定要参加体育锻炼,你们瞧,聪聪就要去参加智力长跑了,我们也去参加好吗 (具体练习略,在以下闯关练习中渗透了基础题,提高题,拓展题)这一情景串的创设亲切,简单,自然,让学生在熟悉的动画故事情景中提出有关的计算问题,学生在故事中练习,在故事中学到知识,不仅感到轻松,愉快,而且在不知不觉中,就把一节课的知识学会了,直到下课时还意犹未尽.四,动态的情景串来源于有趣的游戏活动来源于生动有趣的游戏活动的情景串特别适用于计算练习课与复习课.计算练习复习课,大家都无所适从,要不一题一题照着讲,要不分类来讲,的确枯燥,不知不觉成了我们数学老师心中永远的痛.对于学生尤其是中低年级的小学生而言,单纯地出示练习复习材料让学生直接练习,仅仅停留在对知识简单回炉上,他们会觉得枯燥乏味.但如果根据练习复习内容,用情景串将知识进行有效整合,提升,枯燥的练习复习课就会变得有趣有益.如第三册数学第二单元"100以内数的加法和减法"的整理复习课, 整堂课我设计了三个阶梯式情景游戏.游戏一:"比比谁取到的收获卡多",要求任选一张收获卡填出并贴在黑板上,对的为优胜者,主要是归纳100以内两位数加,减两位数笔算法则.学了"100以内的加法和减法",你们都有哪些收获 如我学会了用竖式计算加法和减法,在用竖式计算时要注意( )对齐;笔算加法时,( )位满十,要向( )位进1;;笔算减法时,( )位不够减,就要从( )位退( );解决问题时,当结果不需要十分精确时,可以用( )的方法找到与结果相近的数.游戏二:"请你露一手"用自己喜欢的竖式计算各题.每生领到一张题卡,在规定时间内算对的为优胜者.主要检验计算的正确率和速率.游戏三:"智取宝盒",小精灵聪聪和明明看到小朋友这么能干,想邀请你们到他们的聪明屋游玩,聪明屋中有两个宝盒,里面装着许多智慧星和聪明豆,你们想得到吗 要想拿到智慧星和聪明豆,赶紧解决宝盒上的题卡,题卡设计将实际生活与现实情境相结合,包含了购物的估算,解决生活中的数学问题.思路表达清晰,解答方法正确的为优胜者.这样的设计让学生耳目一新,克服了单调,枯燥,以题讲题的弊端,让课堂绽放出万花筒般斑斓的色彩,达到情意共鸣,互动生成的课堂氛围."情景串"的创设,应是充满计算课堂的整个时空,只要有计算活动的进行,就有相应的计算背景,它应当是多维度,全方位的,应当在学生整个的计算学习过程中自始至终发挥一定的导向作用,促进学生进行自主,有效的学习.以激发学生的计算兴趣为支柱,以培养学生的数学问题意识为导向,以促进教学目标的有效达成为目的,努力创设"合适的"情景串.让情景串以"数学"为支撑,让情景串多一点"数学味",使我们的数学课堂不失"数学味",使我们的计算课堂不失"生活味"!- -
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 追问: 呃、好像不符合老师的要求回答: 为什么呢? 追问: 我们要写的是关于某道题目的解析过程、而且是六年级的,教材是江苏版的
摘要: 估算是发展学生数感的有效途径之一,也是保证计算正确的重要环节,尤其对提高学生的计算能力很有益处。在估算的教学中,更重要的是使学生形成估算的意识,根据不同的问题情境选择适当的估算策略,并能加以解释,灵活运用估算方法对计算结果的合理性加以判断。估算教学对于全面提升学生数学能力具有非常深远的意义。 关键词: 估算教学 意识 策略 评价估算是发展学生数感的有效途径之一,也是保证计算正确的重要环节,计算前进行估算,可以估计出大致结果,为计算的准确性创设条件;计算后进行估算,能判断计算有无错误,为及时纠错提供了根据。在平时的学习中把估算内化为学生一种自觉、自主的意识,使其具有一定的估测能力,势必会有利于学生计算、推理、反思能力的培养。经过一段时间的实践,笔者对优化估算教学有几点感悟:一、创设情境,激发内需——“我要估”。华罗庚曾经说过“人们对于数学产生枯燥无味,神秘难懂的印象,原因之一便是脱离实际。”由于小学生生活经验不丰富,他们很难体会到估算在现实生活中的应用价值,所以估算教学需要结合具体情境来进行。作为教师,要想强化学生的估算意识,培养学生的估算能力,首先要学会创设具体的情境去改变学生对估算的态度,学生才会产生强烈的探索欲望,才会自发地调动全部感观,积极、主动地参与到估算学习中去,从而感受估算魅力,增强估算意识,使学生变“要我估”为“我要估”。例如,妈妈带钱去超市,要买洗衣粉(每袋6元)、毛巾(每条8元)、洗发水(每瓶28元)、大米(每袋33元)各一件,带100元够吗?这是教学中创设的生活中的一个购物情景,有的孩子看到题就拿起笔计算,花费了很多力气;而有的孩子刚读完题就有了答案,问他怎么会这么快找到答案的,方法是:把28看成30,33也看成30,6看成10,8也看成10,30+30+10+10=80(元),100元钱够的。在对比中,学生充分体会到了运用估算的优越性,觉得平时学的精算虽然十分有用,但有时运用估算解决问题也是一种有效的手段,对于生活中“够不够”“能不能”的问题,往往不需要精确计算,只要“抓大放小”,粗略估计即可。又如:小红喜欢书店里的4本书,《小学生作文》9.80元,《趣味数学》7.40元、《童话故事》7.60元,《脑筋急转弯》7.20元,她带了16元钱,买了其中两本书,猜一猜她买的可能是哪两本书?这样具有一定挑战性的问题,很容易激发学生的学习兴趣,并能积极调动学生的思维,增强学生估算意识,变“被动”估算为“主动”估算。二、注重指导,形成策略——“怎么估”估算和学生的思维活动紧密相关,我们教师要在不同的场合提供学生估算的机会,让学生在各种具体情境中逐步地体验、感悟估算的过程。当然,生活中的估算有时受实际情况的限制,会有各种不同的情况,我们要指导学生根据客观实际探索合适的估算方法,灵活运用估算策略,去解决生活中的问题,这样也便于培养学生思维的灵活性。(1) 取近似值估算法取近似值法就是对算式中的数先取近似值,最好是取整十、整百的数,然后再进行计算,这样计算起来就简单多了? 例如,算98乘32的积是多少,可以将98看成100,将32看成30,那么就先计算100×30;还可以将98看成100,将32不变,计算100×32。用近似数估算的方法,可以简化题目,使问题易于口算。取近似值估算法尤其适用于多位数的乘法,检验得数是否正确。(2)数位估算法数位估算法就是根据因数、被除数、除数的位数,估计积或商是几位数。例如,四年级教学三位数乘(除以)两位数的乘、除法时,积的位数等于两个因数位数之和或比这个和少1,商的位数等于被除数的位数减去除数的位数所得的差或比这个差多1。如:376×54,学生可以根据这一经验推出它的积是五位数。 (3)经验估算法。经验估算法就是根据学生的生活常识和经验进行估算的一种方法。如二年级(下册)“倍数的实际问题”新课结束后,出示这样一道题:爸爸今年36岁,是爷爷岁数的一半,是儿子年龄的4倍,爷爷和儿子今年各几岁?学生可以根据自身的生活经验和常识,很快就可以判断出爷爷年龄不会少于36岁,儿子则不可能多于36岁。这样,学生在解题,估算中体会到他们所学习的不是枯燥、刻板的东西,而是有趣的、富有生气的,同时也是有用的数学,进而激发自主学习的兴趣。(4)首尾估算法 首尾估算法比较适用于整数运算,就是根据算式中每个数的个位上的数,估计得数个位上的数。例如,检验3668-408-104=3104是否正确,只需算一下个位上的数:8-8=0,10-4=6,因此可以断定得数3104是错的。又如:在乘法计算中,计算356×74用尾数估算6×4=24可判定得数的个位是4;3058÷7商的最高位是“4”,否则就错。(5)循规估算法。根据有规律进行估算,如小数或分数乘除法,根据一个因数(0除外)小于1,积小于另一个因数,一个因数大于1,积大于另一个因数;除数大于1,商小于被除数,除数小于1,商大于被除数……估算的方法是多样的,教师不能简单地用“哪种估算结果更精确”或“哪种估算方法更简单”的单一要求作为评价的标准,应该更为关注估算过程是否合情合理;判断推理是否合乎逻辑,有条有理。要鼓励学生积极解释自己的观点,交流自己的看法,不要轻易地用一两句话就否定学生的思考方法。三、合理评价,培养意识——“我会估”由于学生选择估算策略的差异,必然也导致学生对同一问题估算出来的结果的不一致。对此,教师是否能够以单一的标准去评价学生呢?显然是否定的。教师应当关注学生的估算过程,关注学生的差异,作出不同的评价,既保证结果的合理性,又体现评价的层次性。1、鼓励估算方法的多样,引领学生交流优化由于每个学生独特的生理遗传、不同的文化环境、家庭背景和生活经历,对相关数学知识和技能的掌握情况及思维方式、水平的不同,估算时必然会有各种各样不同的方法。教师要尊重每一个学生的个性特征,鼓励学生估算方法多样化,同时组织学生积极地开展交流,让学生表达自己的想法,解释估算的过程。交流时,有的学生的估算方法对其他学生而言,具有一定的启发性;而有的学生在其他学生的启发下,又能得到新的估算方法。互相取长补短,使学生认识到另外视角的观点和策略,体会到同一个问题可以有不同的解决方法,促使学生进行比较和优化。在各抒已见、畅所欲言中,学生的思维得到了碰撞,能力得到了提高。让每个学生都能根据自己的认知水平和学习能力选择适合自己的认知方式与思维策略进行估算,势必会出现另一番令人惊喜的景象:学生因相互间的启发而带来更多更新的策略与方法的有效生成,教师可以引导学生再一次去了解、经历或体验估算的内容、意义和方法,使之逐步内化为他们算法策略的一部分。因此在估算的评价中我们切忌用“这个估法好” 一语定乾坤,垄断学生的思维,阻止学生思维水平的发展、数感的培养。我们还可以尝试这样说:“你是怎么想的?”、“说说你的理由”、“为什么可以这样想?”久而久之,估算会成为学生们自觉而明智的一种选择。2、允许估算结果的多样,引领学生体会合理精确计算的结果是唯一的,而估算往往把算式中的数据看成近似数来估算,由于对数据的处理不同,必然会产生不同的估算结果。因此,在估算教学中,教师要跳出传统计算教学答案唯一的框框,不必也不能把估算结果局限于某个特定的答案,更不能以是否接近精确值作为衡量、评价估算正确与否的依据,重要的是要关注估算结果是否合情合理。估算主要有两类,一类是根据实际问题来进行估算,另一类是脱离实际问题的情境,纯算式的进行估算。根据实际问题,选择合理的估算策略,结果合理方为正确;脱离实际问题情境,属于纯算式的估算,只要结果落在区间内,就算正确。但要根据不同年龄的学生的认知实际,给予针对性的评价。笔者也认为这样评价估算结果才能有助于新课程标准中估算目标的达成。例如教学三位数乘两位数:四年级同学去秋游,每套门票和车票49元,一共需要104套票,问应该准备多少钱买票?列式为104×49。估算方法一:49≈50, 104≈100 ,50×100=5000;估算方法二:49≈50 ,104≈110 ,50×110=5500。解决后应该引导学生思考,谁估得更好些,为什么?通过比较后学生认为第二种方法好,并分析总结出了这种购票或购物的问题时,不能就是想用“四舍五入”的基本方法解决问题,而要考虑实际情况,即“少钱不卖,多钱可剩”的估计原则,并且学生从中进一步的明确了解决现实问题时要做到具体问题具体分析的真正意义。因此不同的情境会选择不同的估算方法,有时把两个或几个数同时估大比较合理,有时把两个数同时估小也能解决问题。教师应让学生根据问题的需要,运用生活经验,灵活选择估算方法。再如低年级学生刚刚接触估算,它的估算结果落在区间内,但是范围比较大,也是可以的。高年级的学生已经有了一定的估算经验,就要引导他不断地进行再反思,再调整,把估算的结果能落在更趋于合理的位置上。比如78×365≈( ),刚开始学习的时候,学生可能这样估70×300,或者80×300,或者80×400,这样我们都可以视为是合理的。有了一定的计算技能以后,老师要引导学生不断地去进行反思,还可以估成80×350,这时候的范围就比原来要小多了。估算能力的培养不是一蹴而就的,这样随着学生年龄的增大,经验的不断积累,学生慢慢学会比较分析哪种估算策略最接近精确结果,逐渐学会合理、灵活的估算。所以对于学生估算的评价,我们更应该关注的不是结果,而是估算的过程。估算既是一种技能,一种策略;更是一种意识,一种经历。我们不仅要着眼于培养训练学生估算的具体思维方式方法,又要让学生感受、体验到估算的价值进而迸发对运用估算的主观能动反应,两者不能偏废,行为与意识并重。因此,估算教学,任重而道远。