首页

> 学术发表知识库

首页 学术发表知识库 问题

陶瓷色釉料研究现状论文

发布时间:

陶瓷色釉料研究现状论文

陶瓷色釉料一般指色料和釉料,而两者又是联络的,即能够合成为色釉(或称色彩釉)。色料是发生色彩的物质,一般称为色剂(pigment),是以上色物和其它质料合作,经高温搬烧而制得的无机上色资料。色剂可用来制造陶瓷颜料,即以色剂和熔剂配成有色的无机陶瓷点缀彩料;也能够色剂掺入根底釉中,制造成各种色釉。陶瓷色釉料在配制方面,不仅用到通常的原料如长石、石英和高岭土等,而且要用多种不可少的着色原料和辅助原料。色剂,一般是指生成有色化合物可掺入白釉或坯泥中使用的基本色料。颜料一般是指调整到使用温度的可直接用于釉下或釉上彩绘的着色料。颜色釉是含有着色化合物或色剂的彩色釉料。将来陶瓷色釉料的研制开发任务越来越大,其在国际陶瓷业的竞争中将占有越来越重要的位置。我国陶瓷业应该加快吸收先进工艺技术,继续提高产品的档次与科技含量,并逐渐形成自己的釉产品体系与装饰特色。

陶瓷色料与釉料一样,是装饰建筑卫生陶瓷产品的外衣。它与陶瓷产品的胎体及釉料紧密结合一体,发挥着装饰美化建筑卫生陶瓷产品的作用,从而使产品形成一个五彩缤纷的陶瓷世界。现在陶瓷业的发展已经进入一个新颖的颜色釉时代,建筑卫生陶瓷产品的装饰越来越多地倾向于直接采用各种颜色釉,以构筑琳琅满目的新产品系列,满足国内外市场的不同需求。因此,熟练掌握好陶瓷釉中色料的使用技术,对于提高产品的档次、丰富企业的产品品种与种类具有非常重要的意义。色料使用技术包括了色料应用于陶瓷釉产品的所有的工艺方面,其中主要有色料使用工艺性条件问题;色料色调问题;色料粒度选择问题;色料的相容与排斥问题等几项技术特点与技术要求。色料的问题实际上是一门边缘科学,其中又涉及到其他相关学科,如色彩学、陶瓷物理化学及工艺学方面的问题。

具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为0.012K,锌为0.75K,铝为1.196K,铅为7.193K。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T医学研究等 磁体科学和技术 强磁场的价值在于对物理学知识有重要贡献。八十年代的一个概念上的重要进展是量子霍尔效应和分数量子霍耳效应的发现。这是在强磁场下研究二维电子气的输运现象时发现的(获85年诺贝尔奖)。量子霍尔效应和分数量子霍尔效应的发现激起物理学家探索其起源的热情,并在建立电阻的自然基准,精确测定基本物理常数e,h和精细结构常数(=e2/h(0c等应用方面,已显示巨大意义。高温超导电性机理的最终揭示在很大程度上也将依赖于人们在强磁场下对高温超导体性能的探索。 熟悉物理学史的人都清楚,由固体物理学演化为凝聚态物理学,其重要标志就在于其研究对象的日益扩大,从周期结构延伸到非周期结构,从三维晶体拓宽到低维和高维,乃至分数维体系。这些新对象展示了大量新的特性和物理现象,物理机理与传统的也大不相同。这些新对象的产生以及对新效应、新现象的解释使得凝聚态物理学得以不断的丰富和发展。在此过程中,极端条件一直起着至关重要的作用,因为极端条件往往使得某些因素突出出来而同时抑制其它因素,从而使原本很复杂的过程变得较为简单,有利于直接了解物理本质。 相对于其它极端条件,强磁场有其自身的特色。强磁场的作用是改变一个系统的物理状态,即改变角动量(自旋)和带电粒子的轨道运动,因此,也就改变了物理系统的状态。正是在这点上,强磁场不同于物理学的其他一些比较昂贵的手段,如中子源和同步加速器,它们没有改变所研究系统的物理状态。磁场可以产生新的物理环境,并导致新的特性,而这种新的物理环境和新的物理特性在没有磁场时是不存在的。低温也能导致新的物理状态,如超导电性和相变,但强磁场极不同于低温,它比低温更有效,这是因为磁场使带电的和磁性粒子的远动和能量量子化,并破坏时间反演对称性,使它们具有更独特的性质。 强磁场可以在保持晶体结构不变的情况下改变动量空间的对称性,这对固体的能带结构以及元激发及其互作用等研究是非常重要的。固体复杂的费米面结构正是利用强磁场使得电子和空穴在特定方向上的自由运动从而导致磁化和磁阻的振荡这一原理而得以证实的。固体中的费米面结构及特征研究一直是凝聚态物理学领域中的前沿课题。当今凝聚态物理基础研究的许多重大热点都离不开强磁场这一极端条件,甚至很多是以强磁场下的研究作为基础。如波色凝聚只发生在动量空间,要在实空间中观察到此现象必需在非均匀的强磁场中才得以可能。又如高温超导的机理问题、量子霍尔效应研究、纳米材料和介观物体中的物理问题、巨磁阻效应的物理起因、有机铁磁性的结构和来源、有机(包括富勒烯〕超导体的机理和磁性、低维磁性材料的相变和磁相互作用、固体中的能带结构和费米面特征以及元激发及其互作用研究等等,强磁场下的研究工作将有助于对这些问题的正确认识和揭示,从而促进凝聚态物理学的进一步发展和完善。 带电粒子象电子、离子等以及某些极性分子的运动在磁场特别是在强磁场中会产生根本性变化。因此,研究强磁场对化学反应过程、表面催化过程、材料特别是磁性材料的生成过程、生物效应以及液晶的生成过程等的影响,有可能取得新的发现,产生交叉学科的新课题。强磁场应用于材料科学为新的功能材料的开发另辟新径,这方面的工作在国外备受重视,在国内也开始有所要求。高温超导体也正是因为在未来的强电领域中蕴藏着不可估量的应用前景才引起科技界乃至各国政府的高度重视。因此,强磁场下的物理、化学等研究,无论是从基础研究的角度还是从应用角度考虑都具有非常重要的科学和技术上的意义,通过这一研究,不仅有助于将当代的基础性研究向更深层次开拓,而且还会对国民经济的发展起着重要的推动作用。

品 名:超导陶瓷拼音:chao1dao3tao2ci2英文名称:superconductivity ceramics说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。奇异的超导陶瓷1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

陶瓷色釉料研究现状论文摘要

陶瓷色釉料是每一件陶瓷产品所不可或缺的材料,除了表面有明显上釉痕迹的陶瓷产品之外,没有上釉的陶瓷产品也普遍使用了坯体色料,色釉料对于一件陶瓷产品来说,虽然没有像空气对于人那样重要,但其重要性已经是举足轻重的了,已经是陶瓷产品不可分割的一部分。色釉料的优良性能:呈色稳定性好,即在高温条件下不易反应、不放出气体、抗腐蚀,在熔融釉中溶解度小,色彩稳定;呈色力强,在釉料中加入较少量,就可达到所需的色度;混溶性好,不同颜色的金澳色釉料之间可按任意比例混合使用,制备出各种丰富多彩的调和色,应用范围广。

陶瓷色釉料一般指色料和釉料,而两者又是联络的,即能够合成为色釉(或称色彩釉)。色料是发生色彩的物质,一般称为色剂(pigment),是以上色物和其它质料合作,经高温搬烧而制得的无机上色资料。

色剂可用来制造陶瓷颜料,即以色剂和熔剂配成有色的无机陶瓷点缀彩料;也能够色剂掺入根底釉中,制造成各种色釉。

陶瓷色釉料在配制方面,不仅用到通常的原料如长石、石英和高岭土等,而且要用多种不可少的着色原料和辅助原料。色剂,一般是指生成有色化合物可掺入白釉或坯泥中使用的基本色料。颜料一般是指调整到使用温度的可直接用于釉下或釉上彩绘的着色料。颜色釉是含有着色化合物或色剂的彩色釉料。

将来陶瓷色釉料的研制开发任务越来越大,其在国际陶瓷业的竞争中将占有越来越重要的位置。我国陶瓷业应该加快吸收先进工艺技术,继续提高产品的档次与科技含量,并逐渐形成自己的釉产品体系与装饰特色。

建筑卫生陶瓷行业非常注重采用先进的釉料技术,国内已经出现一大批专业性很强的陶瓷釉料和陶瓷熔块、色料公司。建筑卫生陶瓷产品中所用的釉料越来越丰富多样,目前多数陶企使用的釉料产品。

这些丰富的釉料充分反映出许多特性,以及釉产品或者某些施釉和烧成特征。诸如包括釉料的化学成分,配料成分,产品用途,成瓷后的物理化学特性。有的表明了其工艺方法及釉面的外观表象,以及将来建筑卫生陶瓷用釉料的发展指向。

郎红:即郎窑红,完全按照明朝永乐、宣德的红釉来制作的,即追求红宝石般艳丽温润格调。于康熙年间,江西巡抚郎廷主持景德镇窑务时所烧。郎窑红釉是以铜为着色剂,在1300摄氏度以上高温还原焰中烧成,在烧造过程中对烧成的气氛、温度等技术指数要求很高,烧制极为困难,数百窑亦难烧成一件。故民谚有“若要穷,烧郎红”的说法。 而在收藏市场则有这样一句相对的民谚“家有郎红,吃穿不愁!”这样的两句民谚深刻的说明了郎窑红其优美的品质。 中国红:除了是代表中国的颜色外,也有一种陶瓷制品叫中国红。由于红色在高温条件下很容易分解,极不容易上色,千百年来红色的陶瓷烧制难度非常高。目前中国已经能够生产中国红,其色彩非常鲜丽。中国红以精湛的制瓷技艺著称于世,在四大发明出现以前,它就已经传遍世界。红色是中华民族最喜爱的颜色,并且也是最受世界各国青睐的颜色。红瓷承载着吉祥、尊贵、自古就成为皇室追求的珍品。今天,中国红瓷将红瓷技艺运用到日常生活器具中,使古代只能皇家享用的红瓷进入到我们现代人的生活中。红瓷的每一件产品,从设计到研发,皆由专业设计师精心选材、构思,并结合不同理念所创造的工艺精品。无论是外观还是内涵,均能见到设计师的巧思妙想,因此产品拥有很高的艺术价值和观赏价值。我们拥有一群观念前卫且极具个性的专业协作团队。我们以客户所提供的信息基础和要求作为起点进行整体的方案规划,用崭新的创意和独特的手法精心设计,精工细作,将客户形象展现在产品多样的红瓷中。强大的设计能力、高度的责任心、规范的经营、合理的价格以及完美的服务是红窑瓷业一贯追求。不仅如此,更重要的是,它向世人再一次证明,中华民族具有悠久历史的、光辉灿烂的陶瓷文化再国际上的领先地位不可动摇。祭红 :属于高温颜色釉,烧造祭红难度非常高,成品率低,“祭红釉”有千窑一宝之说。祭红釉瓷器釉色厚实,深沉,工艺难度不易掌控,完善的产品尤为难得,祭红釉配方含有许多珍贵材质,其配料成本之高令人惊叹!在上海世博会上看过景德镇市宝瓷林公司烧造的高温颜色釉色彩艳丽,器型种类多,随色相单一,但感觉很丰富!国红成了大师级艺术家室内的雅玩,成了各国收藏家刻意追求的宝贝。烧陶艺是用影青比较好一些,从色彩角度来看,纯黑会使得色彩失去原本的活力,没有生机,所以我认为用影青比较好一些。

陶瓷色釉料在配制方面,不仅用到通常的原料如长石、石英和高岭土等,而且要用多种不可少的着色原料和辅助原料。而所谓的色剂,一般是指生成有色化合物可掺入白釉或坯泥中使用的基本色料。颜料一般是指调整到使用温度的可直接用于釉下或釉上彩绘的着色料。颜色釉是含有着色化合物或色剂的彩色釉料。将来陶瓷色釉料的研制开发任务越来越大,其在国际陶瓷业的竞争中将占有越来越重要的位置。我国陶瓷业应该加快吸收先进工艺技术,继续提高产品的档次与科技含量,并逐渐形成自己的釉产品体系与装饰特色。

陶瓷釉料毕业论文

1、主要仪器和试剂 1.1 仪器 WFD-Y2型原子吸收分子光光度计(北京第二光学仪器厂) 钙、镁空心阴极灯(日本岛津) 1.2 试剂 盐酸:优级纯 硝酸:优级纯 硫酸:优级纯 高氯酸:分析纯 氧化锶:分析纯,配制20%水溶液 氧化铝溶液:1毫克/毫升(用99.99%的铝片配制) 氧化钙标准溶液(甲):1毫克/毫升 配制方法是准确称取经灼烧的氧化镁(高纯)1.000克于250毫升烧杯中,加入1:1盐酸10毫升低温加热溶解,冷却后移至1升容量瓶中,用水稀释至刻度,摇匀。 氧化镁标准溶液(乙):20微克/毫升 配制方法是,准确吸取氧化镁标准溶液(甲)10毫升于500毫升容量瓶中,用水稀释至刻度,摇匀。 2、实验方法 根据原子吸收法的工作原理以及样品的情况,对钙、镁测定的影响因素进行了反复实验,从而确定了钙、镁的最佳测定条件。 准确称取在110℃烘干一小时的粉末样品0.1克置于铂皿中,用水润湿并使试样均匀散开,加入10毫升氢氟酸与0.5毫升高氯酸,在低温电炉上加热分解,蒸发近干,再加10毫升氢氟酸与0.5毫升高氯酸,在低温电炉上加热分解,蒸发近干,再加10毫升氢氟酸继续蒸发至大量冒高氯酸浓烟1~2分钟,冷却后,加4毫升盐酸(比重1.19)和10毫升水,加热使残渣溶解,再补加20毫升水,继续加热至溶解完全清澈透明,冷却至室温后,移入100毫升容量瓶中,加5毫升氯化锶(20%)溶液,用水稀释至刻度,摇匀。分别用4%盐酸,1%氯化锶的钙、镁标准系列,直接比较进行原子吸收光谱测定。 试样中各元素、氧化物的百分含量按下式计算: M=C·A·A×10-6/G×100% 式中:M——试样中元素氧化物百分比含量,% C——试样溶液中元素氧化物的浓度,微克/毫升V——溶液的体积,毫升 A——试样溶液的稀释倍数 G——试样重量,克 2、结果与讨论 2.1 仪器条件的选择 ①灵敏度 在上述条件下测得氧化钙的灵敏度为0.06微克/毫升(1%吸收),浓度为2微克的氧化钙标准溶液通常给出0.15左右的吸光度。测得氧化镁的灵敏度为0.0037微克/毫升(1%吸收),浓度为0.2微克/毫升的标准溶液通常给出0.24左右的吸光度。 ②线性范围 标准系列为每毫升含氧化钙0、1、2、4、6、8、10微克,每毫升含氧化镁0、0.2、0.4、0.6、0.8、1.0微克4%盐酸和1%氧化锶的溶液,在上述条件下分别测定其吸光度,其工作曲线如图1。 由图可看出,氧化钙的工作曲线,其线性范围在1~7微克/毫升;氧化镁的工作曲线线性范围在0.1~0.6微克/毫升。③分析线的选择 波长4227、2852是钙、镁最强的吸收线,适宜于(0.1~0.7)%CaO、(0.02~0.06)%MgO含量的样品测定,不需分离,具有操作简便,准确快速等特点。对于分析高浓度度的试样,可选择灵敏度低的谱线,以便得到适度的吸光度,改善曲线的线性范围。CaO在20~60微克,MgO在1~20微克范围内选择波长Ca2399、Mg2796的分析线,具有很好的线性关系,测得石灰石和白云石样品中的CaO、MgO的含量见表2。表2 分析结果比较试样分 析 方 法CaO(%)MgO(%) 石灰石原子吸收法55.660.16化学分析法55.580.17 白云石原子吸收法27.4219.56化学分析法27.5419.56由表2看出,原子吸收法测得的结果与化学分析法测得的结果十分相近。 ④狭缝宽度 光谱通带直接影响测定灵敏度和标准曲线的线性关系,单色器的光谱通带由公式Δλ=D×S决定。 式中:Δλ——光谱通带宽度,Å; D——分光器的倒数线色散率,Å/ 毫米; S——狭缝宽度,毫米 因为对于仪器本身,D是确定的,Δλ仅由S决定。当吸收线附近有干扰与非吸收光存在时,使用较宽的狭缝会导致灵敏呀明显降低。非吸收线的存在也人使工作曲线发生弯曲。合适的狭缝宽度可用实验方法确定。其方法是,将试液喷入火焰中,调节狭缝宽度,测定不同狭缝的吸收值,当狭缝增宽到遣下程度,其他谱线或非吸收线出现在光谱通带内,吸收值立即开始减少,不引起吸收值减少的最大狭缝宽度,确定为最合适的狭缝宽度。WFD-Y2原子吸收光谱仪,狭缝宽度定为0.1毫米,具有比较灵敏的吸收率。 2.2 酸的影响 ①配制每毫升含4微克CaO,0.4微克MgO,4%HCI、HNO3、HCIO4、H2SO3、H3PO4等5种酸的标准溶液,测定CaO、MgO的吸光度,其结果见表3。 从表3中可以看出,H3PO4、H2SO3对MgO的影响不明显,对CaO有明显的影响。主要原因是CaO在火焰中与P2O5、SO3形成了难熔的磷酸盐和硫酸盐,空气 — 乙炔火焰达不到其熔点温度,影响了对钙基态原子的形成,降低了原子的吸收信号。HCIO4、HNO3是氧化性酸,钙、镁的吸收有正效应。HCI是弱还原性酸,在利于溶液中化合物的稳定,又是实验室的通用酸,选用HCI作为测定溶液的介质最为适宜。 ②盐酸浓度的影响 配制每毫升含4微克氧化钙,0.4微克氧化镁,2~12%不同浓度盐酸标准溶液测定其吸光度,结果见图2。 由图2可看出,盐酸浓度对钙、镁的吸光度的影响,在2~8%的盐酸浓度范围内影响不明显。当浓度>8%时,吸光度明显下降,原因是,溶液中盐酸的浓度高时,喷雾效率下降,使得火焰中原子浓度减少,导致吸收强度下降。在一般测定中,溶液的盐酸浓度保持在4%左右,或将试样和标准溶液中的盐酸浓度匹配一致,可减少误差。 2.3 共存离子的影响 配制4%盐酸溶液,每毫升含4微克CaO、0.4微克MgO为标准溶液1,每毫升含标准溶液1相同的元素含量再配入每毫升4微克Fe2O3、20微克Na2O3、30微克K2O为混合离子标准溶液2;每毫升含混合离子标准溶液2的相同元素含量,再配入20%Al2O3为混合标准溶液3,每毫升含混合标准溶液3的相同元素含量,再加入1%的氯化锶为混合标准溶液4.分别测定这4种标准溶液的吸光度,其结果见表4。表4 共存离子的影响 元素 吸 光 度标准溶液1标准溶液2标准溶液3标准溶液4CaO0.350.340.100.34MgO0.510.490.130.50从上表可以看出,标准溶液1和混合标准溶液2的吸光度基本一致,显示出共存离子钾、钠、铁对钙、镁的测定没有影响。在混合标准溶液3中,由于20%Al2O3的存在,吸光度比标准溶液1、2下降3~4倍,对测定钙、镁显示出了明显的干扰。在混合标准溶液4中加入1%的氯化锶,吸光度和标准溶液1、2基本一致,显示了消除了Al2O3对钙、镁的干扰,原因是,在火焰中CaO、MgO与Al2O3形成了高晶格能、高熔点的尖晶石化合物(MgO·Al2O3)、(3CaO·5 Al2O3),空气 — 乙炔火焰达不到他们的熔点温度,影响了这些化合物的解离和基态原子的形成,严重的干扰了钙、镁的测定。在混合标准溶液中加入1%氯化锶,氯化锶和氧化铝形成了稳定的化合物,将钙、镁释放出来而消除了干扰。 根据资料介绍,同一份溶液中锌、镍、铜、锰、铬、铝等元素的存在不干扰钙、镁的测定,各元素间也存在不干扰钙、镁的测定,各元素间也存在相互干扰(共存元素铝、钛的干扰用入氯化锶来消除),所得结果和化学分析方法完全一致。因此,利用原子吸收法具有简便、快速的显著优点,更适用于陶瓷釉料、颜料的元素组成分析,可解决化学分析法中存在金属元素干扰钙、镁测定的难题。 2.4 标准样品的分析结果对比 表5列出了几种原料中CaO、MgO采用不同方法的分析结果。 由表5可以看出用原子吸收法测得的CaO、MgO的含量比化学分析法更接近于标准结果。由此说明,原子吸收法是一种快速、准确测定原料中CaO、MgO含量的行之有效的方法。表5 标准样品测试结果对比原料样品 化学分析法 原子吸收分析法 标准含量名称CaOMgOCaOMgOCaOMgO长 石0.1500.080.040.070.03粘 土0.350.100.150.070.120.05焦宝石0.400.200.350.150.370.14由表5可以看出用原子吸收法测得的CaO、MgO的含量比化学分析法更接近于标准结果。由此说明,原子吸收法是一种快速、准确测定原料中CaO、MgO含量的行之有效的方法。陶瓷原料包括高岭土、粘土、瓷石、瓷土、 着色剂、青花料、石灰釉、石灰碱釉等。 高岭土陶瓷原料,是一种主要由高岭石组成的粘土。因首先发现于江西省景德镇东北的高岭村而得名。它的化学实验式为:Al203·2Si02·2H20,重量的百分比依次为:39.50%、46.54%、13.96%。纯净高岭土为致密或松疏的块状,外观呈白色、浅灰色。被其他杂质污染时,可呈黑褐、粉红、米黄色等,具有滑腻感,易用手捏成粉末,煅烧后颜色洁白,耐火度高,是一种优良的制瓷原料。 粘土陶瓷原料是一种含水铝硅酸盐矿物,由长石类岩石经过长期风化与地质作用而生成。它是多种微细矿物的混合体,主要化学组成为二氧化硅、三氧化二铝和结晶水,同时含有少量碱金属、碱土金属氧化物和着色氧化物等。粘土具有独特的可塑性和结合性,其加水膨润后可捏练成泥团,塑造所需要的形状,经焙烧后变得坚硬致密。这种性能,构成了陶瓷制作的工艺基础。粘土是陶瓷生产的基础原料,在自然界中分布广泛,蕴藏量大,种类繁多,是一种宝贵的天然资源。 瓷石也是制作瓷器的原料,是一种由石英、绢云母组成,并有若干长石,高岭土等的岩石状矿物。呈致密块状,外观为白色、灰白色、黄白色、和灰绿色,有的呈玻璃光泽,有的呈土状光泽,断面常呈贝壳状,无明显纹理。瓷石本身含有构成瓷的多种成分,并具有制瓷工艺与烧成所需要的性能。我国很早就利用瓷石来制作瓷器,尢其是江西、湖南、福建等地的传统细瓷生产中,均以瓷石作为主要原料。 瓷土由高岭土、长石、石英等组成,主要成分为二氧化硅和三氧化二铝,并含有少量氧化铁、氧化钛、氧化钙、氧化镁、氧化钾和氧化钠等。它的可塑性能和结合性能均较高,耐火度高,是被普遍使用的制瓷原料。 着色剂存在于陶瓷器的胎、釉之中,起呈色作用。陶瓷中常见的着色剂有计三氧化二铁、氧化铜、氧化钴、氧化锰、二氧化钛等,分别呈现红、绿、蓝、紫、黄等色。 青花料是绘制青花瓷纹饰的原料,即钴土矿物。我国青花料蕴藏较为丰富,江西的乐平、上高、上饶、丰城、赣州,浙江的江山,云南的宜良,会泽、榕峰、宣威、嵩明以及广西、广东、福建等地均有钴土矿蕴藏。我国古代青花瓷使用的青花料一部分来自国外,大部分属国产。进口料中有苏麻离青、回青;常用的国产料有石子青、平等青,浙料、珠明料等。 石灰釉主要物质是氧化钙(Cao),起助熔作用,特点是高温粘度小,易于流釉,釉的玻璃质感强,透明度高,一般釉层较薄,釉面光泽较强,能清晰地刻划纹饰,南宋以前瓷器大多使用石灰釉。 石灰碱釉主要成分为助熔物质氧化钙以及氧化钾(K2o)、氧化钠(Na20)等碱性金属氧化物。特点是高温粘度大,不易流釉,可以施厚釉。在高温焙烧过程中,釉中的空气不能浮出釉面而在釉中形成许多小气泡,使釉中残存一定数量的未溶石英颗粒,并形成大量的钙长石析晶。这些小气泡、石英颗粒和钙长石析晶使进入釉层的光线发生散射,因而使釉层变得乳浊而不透明,产生一种温润如玉的视觉效果。石灰碱釉的发明与运用,是传统青瓷工艺的巨大进步。石灰碱釉出现于北宋汝窑青瓷中。南宋龙泉窑瓷器大量采用石灰碱釉,使釉色呈现出如青玉般的质感,如粉青、梅子青。可以说南宋龙泉青瓷已达到中国陶瓷史上单色釉器的顶峰。

你还是找来陶瓷、坩埚等的原料分析方法来看看吧,那里边介绍得很详细,也很全面。

第一章烧成温度720-1000℃的低温釉第二章烧成温度980-1120℃的精陶釉第三章烧成温度1100-1200℃的精陶、烧器釉第四章烧成温度1200-1250℃的烧器釉第五章烧成温度1250-1280℃的烧器、瓷器釉第六章烧成温度1280-1450℃的瓷器釉参考文献作者刘属兴任教于景德镇陶瓷学院材料科学与工程学院,其弟子桃李满天下,本书由其弟子们推崇带向陶瓷界,也得益于刘教授在教室的大力宣传及同学们的踊跃购买。

先进陶瓷材料的研究现状论文摘要

【摘要】:陶瓷与书法艺术虽是两门独立艺术,代写论文但两者自古以来就有着深厚的历史渊源,两者具有相通的艺术特征。现代条件下陶瓷与书法艺术亦交相辉映,不同的陶瓷造型可以采用与其风格相协调的书法来加以装饰,使陶瓷艺术获得锦上添花的效果。虽然书法艺术在陶瓷中的运用仅处于辅助地位,但其作用和意义不容忽视,值得从事陶瓷艺术的人们加以关注和应用。 【关键词】:陶瓷,书法,艺术魅力 引言 陶瓷是泥与火的艺术,书法是笔含墨的艺术。艺术都是相通的,陶瓷与书法原本属于独立艺术,然而艺术间不乏契合。陶瓷同书法艺术的契合给欣赏者感觉无疑是锦上添花。对两者成功的驾驭,在于对两门艺术的解读和深掘,而后达到综合艺术的完美和统一。 1陶瓷与书法的历史渊源 中国制陶起源很早。自古相传“神农氏作瓦器”,“昆吾氏作陶”。而汉字起源同样是历史悠久。远在六七千年前的仰韶文化(半坡类型)与四五千年前的大汶口文化以及马家窑文化(马厂类型),陶器上面常见有作为记事的符号,似可视为汉字的滥觞。可见古代陶瓷和文字的起源,从一开始就有着十分密切的关系。春秋战国时期陶器上面多带有篆书雕印文字,陶器上的文字也成为后人研究战国文字和制陶业的宝贵资料。秦兵马俑身上多刻印有工匠的姓名,如“咸阳午”等,字体有的是篆书,有的则近似草隶。三国、两晋时期是青瓷器普及和发展阶段,同时也是陶瓷书法艺术进一步提高与形成典范的过程。唐代楷书、章草、大草、行书等书写体系逐渐完善,这一时期由于饮茶之风盛行。书法装饰便出现在茶壶、酒坛上,有楷、有草,均有大书法家张旭、怀素、颜、柳之风韵。多写名人诗句或“酒”、“茶”文字,酣畅淋漓,圆润遒劲,纯真自然,配以不同的器物造型之上,极具古朴、简约之美感。宋代书法是我国书法发展的一次高峰,书法艺术方面趋于完善和社会文化素质的提高,反映在陶瓷造型中已有“大巧若愚”的自然之韵。陶瓷上的书法装饰在这一时期自然也就成为其明显的特征,且和谐完美地融合在一起,耀州窑用书法装饰的酒具、茶具,其书法亦颇有“苏、黄、米、蔡”之韵。以至元、明、清各代书法装饰陶瓷也成为一种独特的艺术装饰形式和艺术美感,这有其精神上的必然和谐。 2 0世纪6 0年代以后,随着陶瓷艺术的丰富和发展,代写毕业论文随着人们对陶瓷艺术视野的扩展。陶瓷和书法的结合样式也越来越多地出现,表现手法也越来越多样化,艺术品位也越来越有所提高,书法也逐渐地成为陶瓷装饰中所独具魅力的种类。众多陶瓷书法作品,或以笔写,或以刀刻,或以釉上,或以釉下,各具风采盎然。近年来各地陶瓷艺术家利用各地不同的材质和工艺,创作出大量的优秀作品。如广东佛山的现代陶艺、山东淄博的色釉刻瓷,江西景德镇的陶瓷书法刻划和堆字等。这些作品充分利用书法的形式美和陶瓷材质美在文化内涵和形式上的联系,和谐而自然地结合起来,为陶瓷书法艺术的发展开拓了新的境界。 再从陶瓷发展的历史来看,从原始陶器到彩陶、彩绘陶,再到后来陶与瓷的流脉和传派,陶瓷艺术的奥秘既深藏在历代传承的手工模式之中,更神奇地深藏在从配料、拉坏、成形、装饰到烧制的个体经验之中。因此,陶瓷与书法一样,它的原则、法规、模式、风格、内涵也都受到整个中国文化内涵与形态的制约。 简言之,我国自古以来陶瓷工艺与书法艺术的发生和发展,历史悠久,关系密切,是当时文化、艺术及至政治、经济状况的具体反映。 2陶瓷与书法的艺术特征 陶瓷与书法都是中华民族的传统艺术。从其实质来讲,有相通之处,代写硕士论文两者有着许多共同的文化内涵,有着和谐的审美情趣。 首先,两者都是造型艺术。书法是以线条的流动来表现作者的情感心绪和品格修养。陶瓷造型通过各种线型和体面结合变化,空间的虚实、体量大小关系、轮廓的起伏等,构成陶瓷的造型美。 其次,从审美特征来看,两者都是实用性与艺术性相统一、状物与抒情相统一的艺术。书法无色而具有图画的灿烂,无声而有音乐的和谐,来自自然形象而又远离了自然形象。书写者将自己的精神意蕴、生命情丝、审美趣味化为或纵或收、或枯或润、或粗或细、或刚或柔的线条,并通过这些笔墨线条的枯润、浓淡的个性因素,反映出人的审美经验。汉代的杨雄在《法言》中说:“言,心声也;书,心画也。”唐代孙过庭认为书法艺术可以看出书法艺术家的情感,即“达其情性,形其哀乐”。清代刘熙载更是一语道明:“写字者,写志也”、“书法,如其学,如其才,如其志,总之如其人而已。”

第1章 绪论 1.1 材料科学技术——人类文明的基石 1.1.1 材料的发现、产生和发展伴随着人类自身的成长 1.1.2 材料的开发和使用必须考虑环境协调性和可持续发展 1.1.3 未来材料发展的特点——材料设计和分子设计 1.2 古老陶瓷,文明的象征和载体 1.3 艺术陶瓷,美的使者和源泉 1.4 现代陶瓷,科技发展的动力和催化剂 第2章 高新技术的先导——先进陶瓷 2.1 引言 2.1.1 人类、材料和技术的演变 2.1.2 结构材料 2.1.3 功能材料 2.1.4 复合材料和杂化材料 2.2 新型材料——当代新技术革命的先锋 2.2.1 新型材料发展史 2.2.2 材料需求——社会发展的强大动力 2.2.3 新材料的应用 2.2.4 五彩缤纷的材料王国 2.2.5 科学发展与新材料探索相互促进 2.3 从传统陶瓷到先进陶瓷 2.3.1 陶瓷材料的进展 2.3.2 先进陶瓷的由来 2.3.3 先进陶瓷的内涵 2.3.4 先进陶瓷的特点及与传统陶瓷的区别 2.3.5 先进陶瓷的基本类别 2.4 先进陶瓷结构与陶瓷特性 2.4.1 陶瓷材料物质结构相、结合键等 2.4.2 材料成分与组织结构 2.4.3 材料成分?结构?合成与加工?性能?使用效能 2.4.4 特种陶瓷无与伦比的优越性能 2.4.5 陶瓷材料中的晶体缺陷 第3章 先进陶瓷分类概说 3.1 装置陶瓷 3.1.1 高铝陶瓷 3.1.2 镁质陶瓷 3.2 电容器陶瓷 3.2.1 非铁电电容器陶瓷 3.2.2 铁电电容器陶瓷 3.2.3 反铁电电容器陶瓷 3.2.4 半导体电容器陶瓷 3.3 压电陶瓷 3.3.1 压电陶瓷的结构与原理 3.3.2 压电陶瓷的性能参数 3.3.3 压电陶瓷材料 3.3.4 压电陶瓷的应用 3.4 磁性陶瓷 3.4.1 铁氧体的晶体结构 3.4.2 铁氧体的一般生产工艺 3.4.3 软磁铁氧体 3.4.4 其他铁氧体材料 3.5 光学陶瓷 3.5.1 透明氧化物陶瓷 3.5.2 透明铁电陶瓷 3.5.3 透红外陶瓷 3.6 导电陶瓷和超导陶瓷 3.6.1 导电陶瓷 3.6.2 超导陶瓷 3.7 半导体陶瓷 3.7.1 正温度系数热敏陶瓷 3.7.2 负温度系数热敏陶瓷 3.7.3 压敏半导体陶瓷 3.7.4 气敏半导体陶瓷 3.7.5 湿敏半导体陶瓷 3.7.6 光敏半导体陶瓷 3.8 其他功能陶瓷 3.8.1 热学功能陶瓷 3.8.2 化学功能陶瓷 3.8.3 生物功能陶瓷 3.9 高温陶瓷 3.9.1 高熔点氧化物陶瓷 3.9.2 非氧化物高温陶瓷 3.9.3 高温碳化物陶瓷 3.9.4 氮化物耐热陶瓷 3.9.5 其他结构陶瓷 3.10 陶瓷纤维和纤维强化陶瓷基复合材料 3.10.1 无机纤维及其复合材料 3.10.2 几种典型的无机纤维和晶须 3.10.3 主要的纤维强化陶瓷基复合材料体系 3.10.4 陶瓷基复合材料的应用前景 3.10.5 主要的特种无机纤维增强复合材料体系 3.10.6 高温涂层 3.11 金属陶瓷和玻璃陶瓷 3.11.1 金属陶瓷 3.11.2微晶玻璃 3.12 纳米陶瓷 3.12.1 纳米陶瓷的基本概念 3.12.2 纳米技术的基本原理初探 3.12.3 纳米材料的性能初探 3.12.4 纳米材料的制备方法 3.12.5 纳米机器人 3.12.6 纳米管及其对材料科学的意义 3.12.7 纳米材料的应用 3.12.8 纳米材料的前景展望 第4章 先进陶瓷在高新技术中的应用 4.1 先进陶瓷无与伦比的优异性能 4.1.1 威力无比的先进结构陶瓷 4.1.2 奇妙无穷的功能陶瓷 4.1.3 陶瓷基复合材料 4.2 先进陶瓷与电子工业和信息工业 4.3 先进陶瓷与化学工业 4.4 先进陶瓷与汽车工业 4.5 先进陶瓷与生物工程和医学科学 4.6 先进陶瓷与机械加工 第5章 先进陶瓷的评价 5.1 先进陶瓷评价的内容 5.1.1 组成评价 5.1.2 结构评价 5.1.3 性能评价 5.1.4 应用评价 5.2 先进陶瓷的评价手段 5.2.1 先进陶瓷组成研究方法 5.2.2 先进陶瓷结构研究方法 5.2.3 先进陶瓷性能研究方法 第6章 先进陶瓷未来发展展望 6.1 先进陶瓷未来发展的技术展望 6.1.1 材料加工 6.1.2 材料合成 6.1.3 陶瓷增韧 6.1.4 材料的成分和组织结构检测 6.1.5 材料研究由炒菜式到材料设计和分子设计 6.1.6 材料功能设计原理和方法 6.1.7 绿色材料 6.1.8 陶瓷在工程应用中应注意几个问题 6.2 先进陶瓷环境协调性与可持续发展 6.2.1 材料环 6.2.2 材料、能源与环境 6.2.3 环境对材料的影响——结构材料的失效 6.2.4 组织?性能?加工工艺之间的关系也受材料所处环境的影响 6.2.5 材料对环境的影响 6.2.6材料的可持续发展:环境材料等 6.2.7陶瓷材料与环境协调性 6.3 先进陶瓷未来的研究展望 6.3.1 未来材料的发展 6.3.2 材料产业化 6.3.3 脆性攻坚战 6.3.4 材料复合化:金属陶瓷等 6.3.5 功能陶瓷工业发展趋势 6.3.6 功能材料与纳米技术 6.4 研究先进陶瓷的意义 6.4.1 先进陶瓷的发展现状及对今后的展望 6.4.2 研究先进陶瓷的意义和前景 参考文献

一般可以研究还能在里面添加一些什么东西,让它的性能更好。

陶瓷纳米散热材料的研究现状论文

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。“纳米复合聚氨酯合成革材料的功能化”和“纳米材料在真空绝热板材中的应用”2项合作项目取得较大进展。具有负离子释放功能且释放量可达2000以上的聚氨酯合成革符合生态环保合成革战略升级方向,日前正待开展中试放大研究。该产品的成功研发及进一步产业化将可辐射带动300多家同行企业的产品升级换代。联盟制备出的纳米复合绝热芯材导热系数可控制为低达4.4mW/mK。该产品已经在企业实现了中试生产,正在建设规模化生产线。联盟将重点研究开发阻燃型高效真空绝热板及其在建筑外墙保温领域的应用研发和产业化,该技术的开发将进一步促进我国建筑节能环保技术水平的提升,带动安徽纳米材料产业进入高速发展期。复合氧化物一维和零维单晶纳米材料从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=1000毫米,1毫米=1000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的稀土纳米材料现状 纳米技术基础理论研究和新材料开发等应用研究都得到了快速的发展,并且在传统材料、医疗器材、电子设备、涂料等行业得到了广泛的应用。在产业化发展方面,除了纳米粉体材料在美国、日本、中国等少数几个国家初步实现规模生产外,纳米生物材料、纳米电子器件材料、纳米医疗诊断材料等产品仍处于开发研制阶段。2010年全球纳米新材料市场规模达22.3亿美元,年增长率为14.8%。今后几年,随着各国对纳米技术应用研究投入的加大,纳米新材料产业化进程将大大加快,市场规模将有放量增长。纳米粉体材料中的纳米碳酸钙、纳米氧化锌、纳米氧化硅等几个产品已形成一定的市场规模;纳米粉体应用广泛的纳米陶瓷材料、纳米纺织材料、纳米改性涂料等材料也已开发成功,并初步实现了产业化生产,纳米粉体颗粒在医疗诊断制剂、微电子领域的应用正加紧由实验研究成果向产品产业化生产方向转移。光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。纳米粒子的粒径(10纳米~100纳米)小于光波的长,因此将与入射光产生复杂的交互作用。金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成高反射率光泽面成强烈对比。纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。真正有意识的研究纳米粒子可追溯到20世纪30年代的日本的为了军事需要而开展的“沉烟试验”,但受到当时试验水平和条件限制,虽用真空蒸发法制成了世界第一批超微铅粉,但光吸收性能很不稳定。到了20世纪60年代人们开始对分立的纳米粒子进行研究。1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience&Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段:第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。应用范围1、 天然纳米材料海龟在美国佛罗里达州的海边产卵,但出生后的幼小海龟为了寻找食物,却要游到英国附近的海域,才能得以生存和长大。最后,长大的海龟还要再回到佛罗里达州的海边产卵。如此来回约需5~6年,为什么海龟能够进行几万千米的长途跋涉呢?它们依靠的是头部内的纳米磁性材料,为它们准确无误地导航。生物学家在研究鸽子、海豚、蝴蝶、蜜蜂等生物为什么从来不会迷失方向时,也发现这些生物体内同样存在着纳米材料为它们导航。2、 纳米磁性材料在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。3、 纳米陶瓷材料传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。4、纳米传感器纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。5、 纳米倾斜功能材料在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,最终便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。6、纳米半导体材料将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,最终生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能催化分解无机物和有机物。7、纳米催化材料纳米粒子是一种极好的催化剂,这是由于纳米粒子尺寸小、表面的体积分数较大、表面的化学键状态和电子态与颗粒内部不同、表面原子配位不全,导致表面的活性位置增加,使它具备了作为催化剂的基本条件。镍或铜锌化合物的纳米粒子对某些有机物的氢化反应是极好的催化剂,可替代昂贵的铂或钯催化剂。纳米铂黑催化剂可以使乙烯的氧化反应的温度从600 ℃降低到室温。8、 医疗上的应用血液中红血球的大小为6 000~9 000 nm,而纳米粒子只有几个纳米大小,实际上比红血球小得多,因此它可以在血液中自由活动。如果把各种有治疗作用的纳米粒子注入到人体各个部位,便可以检查病变和进行治疗,其作用要比传统的打针、吃药的效果好。碳材料的血液相溶性非常好,21世纪的人工心瓣都是在材料基底上沉积一层热解碳或类金刚石碳。但是这种沉积工艺比较复杂,而且一般只适用于制备硬材料。介入性气囊和导管一般是用高弹性的聚氨酯材料制备,通过把具有高长径比和纯碳原子组成的碳纳米管材料引入到高弹性的聚氨酯中,我们可以使这种聚合物材料一方面保持其优异的力学性质和容易加工成型的特性,一方面获得更好的血液相溶性。实验结果显示,这种纳米复合材料引起血液溶血的程度会降低,激活血小板的程度也会降低。使用纳米技术能使药品生产过程越来越精细,并在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品。纳米材料粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA诊断出各种疾病。通过纳米粒子的特殊性能在纳米粒子表面进行修饰形成一些具有靶向,可控释放,便于检测的药物传输载体,为身体的局部病变的治疗提供新的方法,为药物开发开辟了新的方向。9、纳米计算机世界上第一台电子计算机诞生于1945年,它是由美国的大学和陆军部共同研制成功的,一共用了18 000个电子管,总重量30 t,占地面积约170 ㎡,可以算得上一个庞然大物了,可是,它在1 s内只能完成5 000次运算。经过了半个世纪,由于集成电路技术、微电子学、信息存储技术、计算机语言和编程技术的发展,使计算机技术有了飞速的发展。今天的计算机小巧玲珑,可以摆在一张电脑桌上,它的重量只有老祖宗的万分之一,但运算速度却远远超过了第一代电子计算机。如果采用纳米技术来构筑电子计算机的器件,那么这种未来的计算机将是一种“分子计算机”,其袖珍的程度又远非今天的计算机可比,而且在节约材料和能源上也将给社会带来十分可观的效益。可以从阅读硬盘上读卡机以及存储容量为芯片上千倍的纳米材料级存储器芯片都已投入生产。计算机在普遍采用纳米材料后,可以缩小成为“掌上电脑”。10、纳米碳管1991年,日本的专家制备出了一种称为“纳米碳管”的材料,它是由许多六边形的环状碳原子组合而成的一种管状物,也可以是由同轴的几根管状物套在一起组成的。这种单层和多层的管状物的两端常常都是封死的,如图所示。这种由碳原子组成的管状物的直径和管长的尺寸都是纳米量级的,因此被称为纳米碳管。它的抗张强度比钢高出100倍,导电率比铜还要高。在空气中将纳米碳管加热到700 ℃左右,使管子顶部封口处的碳原子因被氧化而破坏,成了开口的纳米碳管。然后用电子束将低熔点金属(如铅)蒸发后凝聚在开口的纳米碳管上,由于虹吸作用,金属便进入纳米碳管中空的芯部。由于纳米碳管的直径极小,因此管内形成的金属丝也特别细,被称为纳米丝,它产生的尺寸效应是具有超导性。因此,纳米碳管加上纳米丝可能成为新型的超导体。纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。11、家电用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用为作电冰箱、空调外壳里的抗菌除味塑料。12、环境保护环境科学领域将出现功能独特的纳米膜。这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。13、纺织工业在合成纤维树脂中添加纳米SiO2、纳米ZnO、纳米SiO2复配粉体材料,经抽丝、织布,可制成杀菌、防霉、除臭和抗紫外线辐射的内衣和服装,可用于制造抗菌内衣、用品,可制得满足国防工业要求的抗紫外线辐射的功能纤维。14、机械工业采用纳米材料技术对机械关键零部件进行金属表面纳米粉涂层处理,可以提高机械设备的耐磨性、硬度和使用寿命。 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。应用领域英特尔cpu当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。1、纳米是一种几何尺寸的度量单位,1纳米=百万分之一毫米。2、纳米技术带动了技术革命。3、利用纳米技术制作的药物可以阻断毛细血管,“饿死”癌细胞。4、如果在卫星上用纳米集成器件,卫星将更小,更容易发射。5、纳米技术是多科学综合,有些目标需要长时间的努力才会实现。6、纳米技术和信息科学技术、生命科学技术是当前的科学发展主流,它们的发展将使人类社会、生存环境和科学技术本身变得更美好。7、纳米技术可以观察病人身体中的癌细胞病变及情况,可让医生对症下药。和生物技术一样,纳米科技也有很多环境和安全问题(比如尺寸小是否会避开生物的自然防御系统,还有是否能生物降解、毒性副作用如何等等)。社会危害纳米颗粒的危害纳米材料(包含有纳米颗粒的材料)本身的存在并不是一种危害。只有它的一些方面具有危害性,特别是他们的移动性和增强的反应性。只有某些纳米粒子的某些方面对生物或环境有害,我们才面临一个真的危害。要讨论纳米材料对健康和环境的影响,我们必须区分两类纳米结构:纳米尺寸的粒子被组装在一个基体、材料或器件上的纳米合成物、纳米表面结构或纳米组份(电子,光学传感器等),又称为固定纳米粒子。“自由”纳米粒子,不管在生产的某些步骤中存还是直接使用单独的纳米粒子。这些自由纳米粒子可能是纳米尺寸的单元素,化合物,或是复杂的混合物,比如在一种元素上镀上另外一张物质的“镀膜”纳米粒子或叫做“核壳”纳米粒子。现代,公认的观点是,虽然我们需要关注有固定纳米粒子的材料,自由纳米粒子是最紧迫关心的。因为,纳米粒子同它们日常的对应物实在是区别太大了,它们的有害效应不能从已知毒性推演而来。这样讨论自由纳米粒子的健康和环境影响具有很重要的意义。更加复杂的是,当我们讨论纳米粒子的时候,我们必须知道含有的纳米粒子的粉末或液体几乎从来不会单分散化,而是具有一定范围内许多不同尺寸。这会使实验分析更加复杂,因为大的纳米粒子可能和小的有不同的性质。而且,纳米粒子具有聚合的趋势,而聚合的纳米粒子具有同单个纳米粒子不同的行为。健康问题纳米颗粒进入人体有四种途径:吸入,吞咽,从皮肤吸收或在医疗过程中被有意的注入(或由植入体释放)。一旦进入人体,它们具有高度的可移动性。在一些个例中,它们甚至能穿越血脑屏障。纳米粒子在器官中的行为仍然是需要研究的一个大课题。基本上,纳米颗粒的行为取决于它们的大小,形状和同周围组织的相互作用活动性。它们可能引起噬菌细胞(吞咽并消灭外来物质的细胞)的“过载”,从而引发防御性的发烧和降低机体免疫力。它们可能因为无法降解或降解缓慢,而在器官里集聚。还有一个顾虑是它们同人体中一些生物过程发生反应的潜在危险。由于极大的表面积,暴露在组织和液体中的纳米粒子会立即吸附他们遇到的大分子。这样会影响到例如酶和其他蛋白的调整机制。环境问题主要担心纳米颗粒可能会造成未知的危害。社会风险纳米技术的使用也存在社会学风险。在仪器的层面,也包括在军事领域使用纳米技术的可能性。(例如,在MIT士兵纳米技术研究所[1]研究的装备士兵的植入体或其他手段,同时还有通过纳米探测器增强的监视手段。在结构层面,纳米技术的批评家们指出纳米技术打开了一个由产权和公司控制的新世界。他们指出,就象生物技术的操控基因的能力伴随着生命的专利化一样,纳米技术操控分子的技术带来的是物质的专利化。过去的几年里,获得纳米尺度的专利像一股淘金热。2003年,超过800纳米相关的专利权获得批准,这个数字每年都在增长。大公司已经垄断了纳米尺度发明与发现的广泛的专利。例如,NEC和IBM这两家大公司持有碳纳米管这一纳米科技基石之一的基础专利。碳纳米管具有广泛的运用,并被看好对从电子和计算机、到强化材料、到药物释放和诊断的许多工业领域都有关键的作用。碳纳米管很可能成为取代传统原材料的主要工业交易材料。但是,当它们的用途扩张时,任何想要制造或出售碳纳米管的人,不管应用是什么,都要先向NEC或者IBM购买许可证。发展趋势 高级纳米技术,有时被称为分子制造,用于描述分子尺度上的纳米工程系统(纳米机器)。无数例子证明,亿万年的进化能够产生复杂的、随机优化的生物机器。在纳米领域中,我们希望使用仿生学的方法找到制造纳米机器的捷径。然而,K Eric Drexler和其他研究者提出:高级纳米技术虽然最初会使用仿生学辅助手段,最终可能会建立在机械工程的原理上。美国美国国家科学委员会(National Science Board)于西元2003年底批准“国家纳米科技基础结构网络计划”(National Science Board Approves Award for a National Nanotechnology Infrastructure Network,简称NNIN),将由美国13所大学共同建构支持全国纳米科技与教育的网络体系。该计划为期5年,于公元2004年一月开始执行,将提供整体性的全国性使用技能以支持纳米尺度科学工程与技术的研究与教育工作。预估5年间至少投资700亿美元的研究经费。计划目的不仅在提供美国研究人员顶尖的实验仪器与设备,并能训练出一批专精于最先进纳米科技的研究人员。1.美国发展最新纳米细胞制造技术纳米技术可制造出粒子小于人类血管大小的物体,美国国家标准与科技协会(NIST)指出已研究出一种生产一致的,且能够自行组合的纳米细胞(Nanocells)的方法,以应用在封装压缩药物的治疗工作上。这种技术当前可被运用在药物的包装技术上,可以更精确地确保药物的用量,未来将运用在癌症化学治疗的相关技术上作更进一步的研究。纳米计划是公元2005年联邦跨部会研发预算的主轴,达9.8亿美元。2.DNA检测芯片的进展公元2004年一月,美国HP正式对外发表其用来快速进行DNA检测的纳米级芯片。2004年在DNA检测上采以光学原理为基础的“基因微芯片法”(DNA microarrays)繁复的检测步骤,HP团队改由将此繁复步骤交由电路芯片处理;制作上,DNA检测芯片的传感元件是一条利用电子束蚀刻法(electron-beam lithography)与反应性离子蚀刻法(reactive-ion etching)所制成粗细约50纳米的纳米线。然就商业上考量,成果却过于高昂,因此研究团队正发展利用较便宜的光学蚀刻法(optical lithography)以制成DNA检测芯片元件的技术。3.地下水污染改善之研究地下水污染是现代被广泛讨论的一项重大议题,现代,美国发表了一种纳米微粒(nanoparticles)技术,在此微粒中心为铁芯(iron)而其外则由多层聚合物加以包覆,其中,内层是由防水性极佳的复合甲基丙烯酸甲脂(poly methl methacrylate;PMMA)包覆,而外层则由亲水的sulphonated polystyrene进行包覆。由于亲水性外层使纳米微粒溶于水,内层防水层则能吸引污染源三氯乙烯(trichloroethylene)。纳米微粒中的铁芯使得三氯乙烯产生分裂,进而使得此项污染源逐渐分裂成无毒的物质。4.启动癌症纳米科技计划为广泛将纳米科技、癌症研究与分子生物医学相互结合,美国国家癌症中心(NCI)提出了癌症纳米科技计划(Cancer Nanotechnology Plan),并将透过院外计划、院内计划与纳米科技标准实验室等三方面进行跨领域工作。计划设定了六个挑战:预防与控制癌症:发展能投递抗癌药物及多重抗癌疫苗的纳米级设备。早期发现与蛋白质学:发展植入式早期侦测癌症生物标记的设备,并发展能收集大量生物标记进行大量分析的平台性装置。影像诊断:发展可提高分辨率到可辨识单独癌细胞的影像装置,以及将一个肿瘤内部不同组织来源的细胞加以区分的纳米装置。多功能治疗设备:开发兼具诊断与治疗的纳米装置。癌症照护与生活品质提升:开发改善慢性癌症所引发的疼痛、沮丧、恶心等症状,并提供理想性投药装置。跨领域训练:训练熟悉癌症生物学与纳米科技的新一代研究人员。

品 名:超导陶瓷拼音:chao1dao3tao2ci2英文名称:superconductivity ceramics说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。奇异的超导陶瓷1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为0.012K,锌为0.75K,铝为1.196K,铅为7.193K。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我整理的纳米材料科技论文,希望你能从中得到感悟!

纳米材料综述

【摘要】 本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。

【关键词】 纳米、纳米技术、纳米材料、纳米结构

1 引言

著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]

2 纳米技术

纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

3 纳米材料

3.1纳米材料的概念

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

3.2纳米材料的分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

(1)纳米粉末

纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

(2)纳米纤维

纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。

(3)纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

(4)纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

4 纳米材料的应用

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

5 纳米材料的前景

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。

6 结束语

纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。

参考文献

[1]孙红庆.科技天地―计划与市场探索[M],2001/05

[2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,43~50.

[3]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.

纳米材料与应用

摘要 :简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。

关键词 :纳米材料 性能 应用

纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。

按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。

悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约1.5倍,这对提高冶金工业的热效率有重要意义。纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。

纳米颗粒在电学性能方面也出现了许多独特性。例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。

纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。

来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。

通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。

应用纳米TiO2泡沫镍金属滤网及甲醛、氨、TVOC吸附改性活性炭等新材料,以及采用惯流风扇取代传统的离心风扇结构,提高空气净化器的性能。光催化泡沫镍金属滤网的特性;镍金属网是用特殊的工艺方式将金属镍制作成具有三维网状结构的金属滤网。它具有:空隙加大,一般大于96%;通透性好,流体通过阻力小;其实际面积比表观面积大很多倍的特性。镍金属网是将纳米级的TiO2以特殊工艺镶嵌在泡沫状镍金属网上,从而将光催化材料的杀菌、除臭、分解有机物的功能和镍的超稳定性很好的结合在一起。它有效的解决了其他光催化材料在使用中存在的有效受光面积小、流体和光催化材料接触面积小、气阻大以及因光催化材料在光催化作用下的强氧化性致使其附着基材易老化和光催化易脱落而使其寿命短的缺陷。活性炭改性工艺及增强性能;活性炭是一种多孔性的含碳物质,它具有高度发达的空隙构造,是一种优良的空气中异味吸附剂。

纳米TiO2具有巨大的比表面积,与废水中有机物更充分地接触,可将有机物最大限度地吸附在它的表面具有更强的紫外光吸收能力,因而具有更强的光催化降解能力可快速降息夫在其表面的有机物分解。此外,在汽车尾气催化的性能方面以及在空气净化中广泛应用。

常规陶瓷由于气孔、缺陷的影响,存在着低温脆性的缺点,它的弹性模量远高于人骨,力学相容性欠佳,容易发生断裂破坏,强度和韧性都还不能满足临床上的高要求,使它的应用受到一定的限制。而纳米陶瓷由于晶粒很小,使材料中的内在气孔或缺陷尺寸大大减少,材料不易造成穿晶断裂,有利于提高材料的断裂韧性;而晶粒的细化又同时使晶界数量大大增加,有助于晶粒间的滑移,使纳米陶瓷表现出独特的超塑性。许多纳米陶瓷在室温下或较低温度下就可以发生塑性变形。纳米陶瓷的超塑性是其最引入注目的成果。传统的氧化物陶瓷是一类重要的生物医学材料,在临床上已有多方面应用,主要用于制造人工骨、人工足关节、肘关节、肩关节、骨螺钉、人工齿,以及牙种植体、耳听骨修复体等等。

由碳元素组成的碳纳米材料统称为纳米碳材料。在纳米碳材料中主要包括纳米碳纤维、碳纳米管、类金刚石碳等;纳米碳纤维除了具有微米级碳纤维的低密度、高比模量、比强度、高导电性之外,还具有缺陷数量极少、比表面积大、结构致密等特点,这些超常特性和良好的生物相容性,使它在医学领域中有广泛的应用前景,包括使人工器官、人工骨、人工齿、人工肌腱在强度、硬度、韧性等多方面的性能显著提高;此外,利用纳米碳材料的高效吸附特性,还可以将它用于血液的净化系统,清除某些特定的病毒或成份。

目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体、及介入性诊疗等许多方面。免疫分析作为一种常规的分析方法,在蛋白质、抗原、抗体乃至整个细胞的定量分析上发挥着巨大的作用。在特定的载体上,以共价结合的方式固定对应于分析对象的免疫亲和分子标识物,将含有分析对象的溶液与载体温育,通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。纳米聚合物粒子,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。

近年来,组织工程成为一个崭新的研究领域,吸引了众多学科研究者的关注。在工程化的方法培养组织、器官的过程中,用于细胞种植、生长的支架材料是一个关键的因素,能否使种植的细胞保持活性和增殖能力,是支架材料应用的重要条件。据报道,将甲壳素按一定的比例加入到胶原蛋白中可以制成一种纳米结构的复合材料,与以往的胶原蛋白支架相比,其力学强度得到增强,孔径尺寸增大,表明这种具有纳米结构的复合材料作为细胞生长的三维支架,在力学、生物学方面有很大的优越性和应用潜力。在硬组织修复与替换的研究中,纳米复合材料也开始逐步显示出其优异的性能。用肽分子和两亲化合物的自组装可以得到一种类似细胞外基质的纤维状支架,这种纳米纤维可以引导羟基磷灰石的矿化,形成纳米结构的复合材料,研究发现,这种纳米复合材料内部的微观结构与自然骨中胶原蛋白/羟基磷灰石晶粒的排列结构一致。

参考文献:

[1] 陈飞. 浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)

[2] 张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16)

相关百科

热门百科

首页
发表服务