首页

> 学术发表知识库

首页 学术发表知识库 问题

概率毕业论文

发布时间:

概率毕业论文

数学期望是随机变量最重要的特征数之一,它是消除随机性的主要手段.本文通过对数学期望的概念、性质以及应用性的举例,下面是我为你整理的数学期望应用毕业论文,一起来看看吧。

摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章列举了一些现实生活实例,阐述了数学期望在经济和实际问题中颇有价值的应用。

关键词:随机变量,数学期望,概率,统计

数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。

1.决策方案问题

决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。

1.1投资方案

假设某人用10万元进行为期一年的投资,有两种投资方案:一是购买股票;二是存入银行获取利息。买股票的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为8%,可得利息8000元,又设经济形势好、中、差的概率分别为30%、50%、20%。试问应选择哪一种方案可使投资的效益较大?

[摘 要] 离散型随机变量数学期望是概率论和数理统计的重要概念之一,是用概率论和数理统计来反映随机变量取值分布的特征数。通过探讨数学期望在经济和实际问题中的一些简单应用,以期让学生了解数学期望的理论知识与人类实践紧密联系,它们是不可分割、紧密联系的。

[关键词] 数学期望;离散型随机变量

一、离散型随机变量数学期望的内涵

在概率论和统计学中,离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为数学期望(设级数绝对收敛),记为E(x)。数学期望又称期望或均值,其含义实际上是随机变量的平均值,是随机变量最基本的数学特征之一。但期望的严格定义是∑xi*pi绝对收敛,注意是绝对,也就是说这和平常理解的平均值是有区别的。一个随机变量可以有平均值或中位数,但其期望不一定存在。

二、离散型随机变量数学期望的作用

期望表示随机变量在随机试验中取值的平均值,它是概率意义下的平均值,不同于相应数值的算术平均数。是简单算术平均的一种推广,类似加权平均。在解决实际问题时,作为一个重要的参数,对市场预测,经济统计,风险与决策,体育比赛等领域有着重要的指导作用,为今后学习高等数学、数学分析及相关学科产生深远的影响,打下良好的基础。作为数学基础理论中统计学上的数字特征,广泛应用于工程技术、经济社会领域。其意义是解决实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析提供准确的理论依据。

三、离散型随机变量的数学期望的求法

离散型随机变量数学期望的求法常常分四个步骤:

1.确定离散型随机变量可能取值;

2.计算离散型随机变量每一个可能值相应的概率;

3.写出分布列,并检查分布列的正确与否;

4.求出期望。

四、数学期望应用

(一)数学期望在经济方面的应用

例1: 假设小刘用20万元进行投资,有两种投资方案,方案一:是用于购买房子进行投资;方案二:存入银行获取利息。买房子的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为5.1%,可得利息11000元,又设经济形势好、中、差的概率分别为40%、40%、20%。试问应选择哪一种方案可使投资的效益较大?

第一种投资方案:

购买房子的获利期望是:E(X)=4×0.4+1×0.4+(--2)×0.2=1.6(万元)

第二种投资方案:

银行的获利期望是E(X)=1.1(万元),

由于:E(X)>E(X),

从上面两种投资方案可以得出:购买房子的期望收益比存入银行的期望收益大,应采用购买房子的方案。在这里,投资方案有两种,但经济形势是一个不确定因素,做出选择的依据是数学期望的高低。

(二)数学期望在公司需求方面的应用

例2:某小公司预计市场的需求将会增长。公司的员工目前都满负荷地工作。为满足市场需求提高产量,公司考虑两种方案 :第一种方案:让员工超时工作;第二种方案:添置设备。

假设公司预测市场需求量增加的概率为P,当然可能市场需求会下降的概率是1―P,若将已知的相关数据列于下表:

市场需求减(1-p) 市场需求增加(p)

维持现状(X)

20万 24万

员工加班(X)

19万 32万

耀加设备(X)

15万 34万

由条件可知,在市场需求增加的情况下,使员工超时工作或添加设备都是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的期望大小。用期望值判断:

E(X)=20(1-p)+24p,E(X)=19(1-p)+32p,E(X)=15(1-p)+34p

分两种情况来考察:

(1)当p=0.8,则E(X)=23.2(万),E(X)=29.4(万),E(X)=30.2(万),于是公司可以决定更新设备,扩大生产;

(2)当p=O.5,则E(X)=22(万),E(X)=25.5(万),E(X)=24.5(万),此时公司可决定采取员工超时工作的应急措施扩大生产。

由此可见,从上面两种情况可以得出:如果p=0.8时,公司可以决定更新设备,扩大生产。如果p=O.5时,公司可决定采取员工超时工作的应急措施。因此,只要市场需求增长可能性在50%以上,公司就应采取一定的措施,以期利润的增长。

(三)数学期望在体育比赛的应用

乒乓球是我们得国球,全国人民特别爱好,我们在这项运动中具有绝对的优势。现就乒乓球比赛的赛制安排提出两种方案:

第一种方案是双方各出3人,三局两胜制,第二种方案是双方各出5人,五局三胜制。对于这两种方案, 哪一种方案对中国队更有利?不妨我们来看一个实例:

假设中国队每一位队员对美国队的每一位队员的胜率都为55%。根据前面的分析,下面我们只需比较两队的数学期望值的大小即可。

在五局三胜制中,中国队若要取得胜利,获胜的场数有3、4、5三种结果。我们应用二项式定律、概率方面的知识,计算出三种结果所对应的概率,恰好获得三场对应的概率:0.33465;恰好获得四场对应的概率:0.2512;五场全胜得概率:0.07576.

设随机变量X为该赛制下中国队在比赛中获胜的场数,则可建立X的分布律: X 3 4 5

P 0.33465 0.2512 0.07576

计算随机变量X的数学期望:

E(X)=3×0.33465+4×0.2512+5×0.07576=2.04651

在三局两胜制中,中国队取得胜利,获胜的场数有2、3两种结果。对应的概率为=0.412;三场全胜的概率为=0.206。

设随机变量Y为该赛制下中国队在比赛中获胜的场数,则可建立Y的分布律:

X 2 3

Y 0.412 0.206

计算随机变量Y的数学期望:

E(Y)=2×0.412+3×0.206=1.2

比较两个期望值的大小,即有E(X)>E(Y),因此我们可以得出结论,五局三胜制中国队更有利。

因此,我们在这样的比赛中,五局三胜制对中国队更有利。在体育比赛中,要看具体的细节,具体情形,把握好比赛赛制,用我们所学习的知识来实现期望值的最大化,做到知己知彼,百战百胜。

(四)数学期望对企业利润的评估

在市场经济活动中,厂家的生产或是商家的销售.总是追求最大的利润。在生产过程中供大于求或供不应求都不利于获得最大利润来扩大再生产。但在市场经济中,总是瞬息万变,往往供应量和需求量无法确定。而厂家或商家在一般情况下根据过去的数据,再结合现在的具体情况,具体对象,常常用数学期望的方法结合微积分的有关知识,制定最佳的生产活动或销售策略。

假定某公司计划开发一种新产品市场,并试图确定其产量。估计出售一件产品,公司可获利A元,而积压一件产品,可导致损失B元。另外,该公司预测产品的销售量x为一个随机变量,其分布为P(x),那么,产品的产量该如何制定,才能获得最大利润。

假设该公司每年生产该产品x件,尽管x是确定的.但由于需求量(销售量)是一个随机变量,所以收益Y是一个随机变量,它是x的函数:

当xy时,y=Ax;

当xy时,y=Ay--B(x-y)。

于是期望收益为问题转化为:

当x为何值时,期望收益可以达到最大值。运用微积分的知识,不难求得。

这个问题的解决,就是求目标函数期望的最大最小值。

(五)数学期望在保险中问题

一个家庭在一年中五万元或五万元以上的贵重物品被盗的概率是0.005,保险公司开办一年期五万元或五万元以上家庭财产保险,参加者需缴保险费200元,若在一年之内, 五万元或五万元以上财产被盗,保险公司赔偿a元(a>200),试问a如何确定,才能使保险公司期望获利?

设X表示保险公司对任一参保家庭的收益,则X的取值为 200或 200�a,其分布列为:

X 200 200-a

p 0.995 0.005

E(x)=200×0.9958+(200-a)×0.005=200-0.005a>0,解得a<40000,又a>100,所以a∈(200,40000)时,保险公司才能期望获得利润。

从上面的日常生活中,我们不难发现:利用所学的离散型随机变量数学期望方面的知识解决了生活中的一些具有的,实实在在的问题有大大的帮助。

因此我们在实际生活中,利用所学的离散型随机变量数学期望方面的知识,面对当今信息时代的要求,我们应当思维活跃,敢于创新,既要学习数学理认方面知识,更应该重视对所学知识的实践应用,做到理认联系实际,学以致用。当然只是实际生活中遇到的数学期望应用中的一部分而已,还有更多的应用等待我们去思考,去发现,去探索,为我们伟大的时代创造出更多的有价值的东西和财富。

概率论与数理统计课程的改革与实践论文

摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。

Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.

关键词: 概率论与数理统计;改革;实践

Key words: probability and mathematical statistics; reform; practice

概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。

1 概率论与数理统计课程教学改革的必要性与重要性

教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。

现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。

信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。

但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。

从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。

《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。

2 概率论与数理统计课程教学改革的思路与原则

通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。

因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。

在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。

3 概率论与数理统计课程教学改革的内容与措施

首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。

为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。

为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。

为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。

为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。

为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。

为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。

由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。

为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。

4 概率论与数理统计课程教学改革与实践的效果

通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。

随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文

此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。

参考文献:

[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).

[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).

[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).

概率论毕业论文题

1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功半的结果。2、选择感兴趣的题目做论文是原创性的工作,因此,考生对某个方面感兴趣,会促使自己积极主动地探讨这方面的问题,强烈的成就动机将是做一篇优秀论文的基础。3、学术类文献综述类题目尽量不要选对所有参加自学考试的考生来讲,做学术论文是一件极具挑战性的工作,绝不是想象中那样轻松。自考过程中,考生可以通过强化复习通过考试,但做研究是完全不同的过程。只有在考生花费精力查阅大量文献后,才能知道可以做什么课题,还需要考生自己去收集数据,分析数据,撰写报告。综述性论文需要查阅大量的参考文献,从选题到提交论文,一般仅有3个月时间,真正码字可能就一两个星期的时间,在这么短的时间内要查阅到写综述的参考文献,难度相当大。时间短难度大,很少考生能将这些类型的论文写得好和有一定深度。不过,如果你实力很强,那也是可以的。当然,每次没能通过论文答辩的考生,绝大部分都是选择了这些雷区类型题目,希望大家吸取教训。

概率论与数理统计硕士毕业论文新课改背景下的师专“概率论与数理统计”教学研究 基于概率论及数理统计对间歇式能源功率平滑输出的研究 信息技术与本科概率统计课程整合的实验研究 本科概率论试验课程设计初探基于随机模拟试验的稳健优化设计方法研究 随机变量序列部分和乘积的几乎处处中心极限定理 AQSI序列的强极限定理几类相依混合随机变量列的大数律和L~r收敛性 现代经济计量学建立简史 任意随机变量序列的相关定理新建电气化铁路电能质量影响预测研究 鞅差与相依随机变量序列部分和精确渐近性 ND序列若干收敛性质的研究证券组合投资决策的均匀试验设计优化研究 相依随机变量序列部分和收敛速度行为两两NQD随机变量阵列加权和的收敛性 数值计算的统计确认研究与初步应用 基于证据理论的足球比赛结果预测方法 城市工业用地集约利用评价与潜力挖掘 节理化岩体边坡稳定性研究 随机变分不等式及其应用基于模糊综合评价的靶场实时光测数据质量评估基于路径的加权地域通信网可靠性研究 LNQD样本近邻估计的大样本性质 20CrMoH齿轮弯曲疲劳强度研究我国股票市场与宏观经济之间的协整分析 一类Copula函数及其相关问题研究 乐透型彩票N选M中奖号码的概率分析 协整理论在汽车发动机系统故障诊断中的应用 2010年上海世博会会展中断风险分析和保险建议 贝儿康有限公司激励设计研究 云模型在系统可靠性中的应用研究离散更新模型破产概率及赤字的上下界估计 输电线微风振动与疲劳寿命电器产品模糊可靠性分析中模糊可靠度的研究 变分不等式及变分包含解的存在性与算法 隧道测量误差控制方案的研究 塔式起重机臂架可靠性分析软件开发分布式认证跳表及其在P2P分布式存储系统中的应用 房地产行业企业所得税纳税评估实证研究 具有预测能力的呼叫中心系统的设计与实现 PVAR模型在研究经济增长与能源消费关系中的应用 基于有限元的深基坑组合型围护结构可靠度分析 一些带有偏序结构的完全码

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

概率论与数理统计课程的改革与实践论文

摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。

Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.

关键词: 概率论与数理统计;改革;实践

Key words: probability and mathematical statistics; reform; practice

概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。

1 概率论与数理统计课程教学改革的必要性与重要性

教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。

现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。

信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。

但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。

从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。

《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。

2 概率论与数理统计课程教学改革的思路与原则

通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。

因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。

在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。

3 概率论与数理统计课程教学改革的内容与措施

首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。

为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。

为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。

为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。

为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。

为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。

为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。

由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。

为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。

4 概率论与数理统计课程教学改革与实践的效果

通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。

随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文。

此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。

参考文献:

[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).

[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).

[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).

毕业论文借鉴概率

近年来,学校越来越重视学生论文的原创性,其要求是学生毕业论文的查重率。毕业论文的查重率是多少?不同学位对毕业论文重复率的要求是否一致?paperfree小编给大家讲解。 一、毕业论文查重复率是多少? 1.一般来说,高校对学生毕业论文的重复率可能在具体要求上有所不同,但总体上是一致的!如果本科毕业论文的重复率一般为30%,而重复率低于15%,一般可以申请优秀毕业论文。 2.研究生毕业论文的重复率一般要求为20%。如果学校审核时重复率高于20%,低于40%,则需要在规定时间内修改并再次提交。如果再次检测仍不合格,将推迟答辩。 3.博士毕业论文的要求会更严格,一般要求在10%以内,重复率在10%到20%之间,很有可能要推迟半年甚至一年才能参加论文答辩。 4.通过以上介绍,不难发现学位越高,对论文重复率的要求就越严格。如果重复率过高,不仅需要重新修改论文,还会直接影响你能否如期毕业。 二、如何降低论文的重复率? 1.图文转换:将原文内容转换为图片,然后插入论文。 2.双重翻译:先用软件将中文翻译成英文,再自己翻译成中文。 3.同义替换:用同意的词句替换原词句,也能降低查重率。

引用内容超过论文总内容的百分之三十,则会判定为抄袭。要注意:学校采用的论文查重系统不同,得到的论文查重报告也是有区别的。

这是因为每个系统查找范围不同,也就是说他们的数据库收录的资源是有区别的,如果你采用的论文查重软件刚好收录了你参考的文献,那么你的重复率结果查出来自然就比没被收录的系统要高。所以在选用系统前,先看看学校的是采用哪家系统,才好对症下药。

论文怎样降重

1、比对查重报告,在论文中对重复部分进行标红。该操作过程中不能偷工减料,查重报告哪里标红,原文就要对应标红。需要耐心和细心。

2、降重原则:论文降重改写,改变语言表述,不改变句意;这个应该不必多说,论文降重改写应当基于原文本意的前提下将语言重新组织。不然降重没有意义;以半句、整句、多句为一个降重改写单位。

3、专业词语转变表述。像化学、医学等专业词语较多的,要转化专业词语的表述。

认定方法

划清侵犯著作权罪与非罪行为的界限,主要根据以下两点:

一是行为人实施了侵犯著作权的行为,但违法所得数额未达较大或者不具有其他严重情节的,按一般的侵权行为追究其民事责任,而不以侵犯著作权罪论处。只有当侵权行为违法所得数额较大时或具有其他严重情节时才成立犯罪。

二是行为人在客观上虽有侵犯著作权的行为,但主观上不具有营利目的的,不构成犯罪,应按《中华人民共和国著作权法》规定的法律责任处理。

1、论文格式

论文检测基本都是整篇文章上传,上传后,论文检测软件首先进行部分划分,上交的最终稿件格式对抄袭率有很大影响。不同段落的划分可能造成几十个字的小段落检测不出来。因此,我们可以通过划分多的小段落来降低抄袭率。

2、数据库

论文检测,多半是针对已发表的毕业论文,期刊文章,还有会议论文进行匹配的,有的数据库也包含了网络的一些文章。这里给大家透露下,很多书籍是没有包含在检测数据库中的。之前朋友从一本研究性的著作中摘抄了大量文字,也没被查出来。就能看出,这个方法还是有效果的。

3、章节变换

很多同学改变了章节的顺序,或者从不同的文章中抽取不同的章节拼接而成的文章,对抄袭检测的结果影响几乎为零。所以论文抄袭检测大师建议大家不要以为抄袭了几篇文章,或者几十篇文章就能过关。

4、参考文献

参考别人的文章和抄袭别人的文章在检测软件中是如何界定的。其实很简单,我们的论文中加了参考文献的引用符号,但是在抄袭检测软件中。都是统一看待,软件的阀值一般设定为1%,例如一篇文章有5000字,文章的1%就是50字,如果抄袭了多于50,即使加了参考文献,也会被判定为抄袭。

5、字数匹配

论文抄袭检测系统相对比较严格,只要多于20单位的字数匹配一致,就被认定为抄袭,但是前提是满足第4点,参考文献的标注。

扩展资料

《刑法》第217条规定,个人犯侵犯著作权罪,处3年以下有期徒刑或者拘役,并处或者单处罚金;违法所得数额巨大或者有其他特别严重情节的,处3年以上7年以下有期徒刑,并处罚金。“违法所得数额巨大”和“有其他特别严重情节,见《关于办理侵犯知识产权刑事案件具体应用法律若干问题的解释》第5条第2款的规定。

《刑法》第220条规定,单位犯侵犯著作权罪,对单位判处罚金,并对其直接负责的主管人员和其他直接责任人员,依照个人犯该罪的规定处罚。按《关于办理侵犯知识产权刑事案件具体应用法律若干问题的解释》第15条之规定,单位犯本罪的按相应个人犯罪的定罪量刑标准的3倍定罪量刑。

本科毕业论文查重率标准:

1、查重率≦30%,毕业论文合格,可以申请毕业论文答辩;

2、查重率﹤10%,可以申请评定校级优秀论文;

3、查重率﹤15%,可以申请评定院级优秀论文;

4、30%﹤查重率﹤50%,查重检测不合格,给予修改时间至少为一周,修改后查重率﹤30%为通过,可申请答辩,若仍未通过,则取消答辩资格;

5、查重率≧50%,查重检测不合格,由学校组织专家对论文进行学术不端行为的评定,若认定存在严重抄袭行为,则取消答辩资格。

完毕!

毕业论文通过概率

写的好肯定高啊

本科论文答辩最后的通过率还是很高的,只要你不是态度恶劣,认真写的,基本都能通过。

写毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,使学生得到从事本专业工作和进行相关的基本训练。

毕业论文应反映出作者能够准确地掌握所学的专业基础知识,基本学会综合运用所学知识进行科学研究的方法,对所研究的题目有一定的心得体会,论文题目的范围不宜过宽,一般选择本学科某一重要问题的一个侧面。

扩展资料:

毕业论文的意义

提高大学生的写作水平是社会主义物质文明和精神文明建设的需要。在新的历史时期,无论是提高全族的科学文化水平,掌握现代科技知识和科学管理方法,还是培养社会主义新人,都要求我们的干部具有较高的写作能力。

在经济建设中,作为领导人员和机关的办事人员,要写指示、通知、总结、调查报告等应用文;要写说明书、广告、解说词等说明文;还要写科学论文、经济评论等议论文。在当今信息社会中,信息对于加快经济发展速度,取得良好的经济效益发挥着愈来愈大的作用。

写作是以语言文字为信号,是传达信息的方式。信息的来源、信息的收集、信息的储存、整理、传播等等都离不开写作。

参考资料来源:百度百科-毕业论文

大学毕业论文通过率还是很高的,只要认真准备,基本上是都会通过的。

俺本人亲身体验外加同学交流,本科论文答辩通过率基本在97%以上,但是优秀毕业论文的话在5%。剩下的3%基本都是自己放弃,或者实在是一塌糊涂。在论文形成的过程,基本都有导师定期的指点,不用过于担心......

毕业论文外审概率

初审通过概率高。根据查询中文社会科学引文索引官网显示初审主要是对文章的基本质量和主题相关性进行初步审核,通过概率大约是70%-80%。而外审则是对文章的学术价值和贡献进行深入评估,通过概率大约是60%。

根据《企业会计准则》,外审抽查的比例一般以企业的规模和普遍情况为准,大致可以分为5%-20%左右。

外审抽查比例。对于毕业论文来说。抽查数量,每个专业按10%比例抽取毕业生论文设计,四舍五入。

相关百科

热门百科

首页
发表服务