首页

> 学术发表知识库

首页 学术发表知识库 问题

数学文化研究综述论文格式模板

发布时间:

数学文化研究综述论文格式模板

第部:题题含标题标题要求直接、具体、醒目、简明扼要(25字内)3号宋体加粗居编排第二部:提要提要部含摘要、关键词等别【摘要】、【关键词】(4号楷体加粗)内文用5号楷体各空2字格编排摘要论文内容高度概要加注释评论简短陈述具独立性自含性其内容应说明论文主要研究内容、研究、研究结论等论文文摘要般3-5行宜关键词3-5应能反映全文主题、主要内容、主要思想、主要观点等关键词间号隔关键词结束用标点符号第三部:文文论文核内容含引言与本论引言或称引要简要说明论文题缘起、价值与意义、研究等直接引入本论本论主体部内容须观点明确、论据充、论证严密、逻辑清晰、层明、语言流畅、结构严谨文应按照内容层节编号要层明用5号宋体各种标题要求:1.级标题:阿拉伯数字排序标号数字用英文句号.:1.…级标题标号与标题采用3号黑体单独行居左顶格编排2.二级标题:用阿拉伯数字级标号增第二层标号顺序标注两层标号间用英文句号.割第二层标号使用任何符号:2.3…二级标题标号与标题采用4号黑体单独行居左顶格编排3.三级标题:用阿拉伯数字二级标号增第三层标号顺序标注各层标号间用英文句号.割第三层标号使用任何符号:1.2.4…三级标题标号与标题采用4号黑体单独行居左顶格编排各级标题字数均超1行限标题结束处使用任何标点符号4.定义:定义各级标题顺序标号比第1节第二定义定义1.25.结论与说明:定理、引理、推论、注记等结论与说明各级标题按顺序统标号比第2节第3述定理、引理、推论或注记引理则标注引理2.3推论则标注推论2.36.教案例示例:各种举例各级标题按顺序统标号比第2节第3例应标注例2.3定义、定理、引理、推论、注记、示例等均空2格编排各字(推论2.3、引理2.3等)4号黑体其空字格其内容采用5号楷体7.公式:独立数公式要居排列各级标题右边按顺序标号并用括弧括住比第2节第5公式标注(2.5)行公式各行应按照第行第等号齐各行应该等号或其运算符号第四部:参考文献参考文献指论文研究写作参考或引证主要文献资料【参考文献】作标题(4号楷体加粗单独行居左顶格编排)文献等用5号楷体列于论文末尾所列参考文献要求:(1)所列参考文献应式版物便读者考证(2)所列举参考文献要标明序号、著作或文章标题、作者、版物信息参考文献标注式按《GB7714-87文参考文献著录规则》进行文献期刊、著作书写格式别:[1]作者(甲乙).篇名.杂志[J]卷(期):起始页(P28.30).[2]作者(甲乙).书名[M].点:版社.

有关数学史的论文学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。 日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。 同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征。这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的。 二、 学习数学史有利于培养学生正确的数学思维方式 现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁。为了保持了知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题、猜想、论证、检验、完善,一步一步成熟起来的。影响了学生正确数学思维方式的形成。 数学史的学习有利于缓解这个矛盾。通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式。这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对“无穷小”的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充、完善下,经过几十年才逐步成熟起来的。 数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想、方法代表着该内容相对于以往内容的实质性进步。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式。 三、 学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机 动机是激励人、推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心、求知欲、兴趣、爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机。兴趣是最好的动机。在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会、家长、学校的压力下获得的。中国的情况如何呢?尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:“我不喜欢数学,但为了高考,我必须学好数学”的学生占被调查者的比例高达62.21%,而对数学“很感兴趣”的只有23.12%。可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果。但这并不是因为数学本身无趣,而是它被我们的教学所忽视了。在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向。 数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒、幻方、商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果。二是一些历史上的数学名题,例如七桥问题、哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣。还有一些著名数学家的生平、轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁。还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名。如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了。 四、学习数学史为德育教育提供了舞台 在《标准》的要求下,德育教育已经不是像以前那样主要是政治、语文、历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下。 首先,学习数学史可以对学生进行爱国主义教育。现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。《标准》中“数学史选讲”专题3就是“中国古代数学瑰宝”,提到《九章算术》、“孙子定理”这些有代表意义的中国古代数学成就。 然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。《标准》中“数学史选讲”专题11—— “中国现代数学的发展”也提到要介绍“现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程”。在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就,虚心的学习,“洋为中用”。 其次,学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的努力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理”。欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。 最后,学习数学史可以提高学生的美学修养。数学是美的,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇、印度国王Bhaskara、美国第20任总统Carfield等都给出过它的证明。1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。

数学论文一般都有专门的课题,不知你要哪方面的,网上有很多这方面的资料,你在百度搜索出输入:数学论文或者某课题的数学论文,注意下面的相关搜索及更多相关搜索,你就会看到的。

数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!

浅谈数学文化建设

摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。

关键词 小学数学教学;数学文化;数学文化建设

数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。

一、小学数学教师数学文化素养

数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。

1.强化数学文化意识

数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。

2.加强数学文化学习研究

小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。

学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德(R.wilder)的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。

二、小学数学教材数学文化建设

除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。

1.教材数学文化建设研究

在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。

2.教材数学文化校本化建设

鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。

三、小学数学教学数学文化渗透

为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。

1.校园数学文化渗透

数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。

2.课堂数学文化渗透

传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。

数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。

参考文献:

[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.

[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.

浅析数学教育中渗透数学文化

摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。

中关键词:数学文化 价值 精神 兴趣

古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。

很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。

数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?

数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。

没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。

数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。

数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。

数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。

其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。

这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。

数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。

当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。

没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。

年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。

总结

我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。

参考文献:

[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.

[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).

[3]天津教育.2007,(1).

数学文化研究综述论文格式

数学类论文感想类的比较好写,巴巴适适论文吧 全博士专业论文辅导团队,提供课程论文、毕业论文、硕士论文、博士论文,数学论文发表、数学教学论文发表

去论文拼凑一个吧 这类的论文比较少,主要是学的人比较少。

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性1.数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。2.数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。3.数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。1.数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。2.数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。3.数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。1.数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。2.数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友.数学文化[M].长沙:湖南教育出版社,1991.[2]张维忠.数学文化与数学课程[M].上海:上海教育出版社,1999.[3]郑毓信.数学文化学[M].成都:四川教育出版社,2001.[4]李文林.数学史教程[M].高教出版社.

数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!

浅谈数学文化建设

摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。

关键词 小学数学教学;数学文化;数学文化建设

数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。

一、小学数学教师数学文化素养

数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。

1.强化数学文化意识

数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。

2.加强数学文化学习研究

小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。

学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德(R.wilder)的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。

二、小学数学教材数学文化建设

除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。

1.教材数学文化建设研究

在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。

2.教材数学文化校本化建设

鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。

三、小学数学教学数学文化渗透

为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。

1.校园数学文化渗透

数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。

2.课堂数学文化渗透

传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。

数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。

参考文献:

[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.

[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.

浅析数学教育中渗透数学文化

摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。

中关键词:数学文化 价值 精神 兴趣

古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。

很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。

数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?

数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。

没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。

数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。

数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。

数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。

其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。

这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。

数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。

当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。

没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。

年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。

总结

我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。

参考文献:

[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.

[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).

[3]天津教育.2007,(1).

研究生医学综述论文格式模板

医学综述论文的格式及写法

医学综述,是查阅医学某一专题在一段时期内的相当数量的文献资料,经过分析研究,选取有关情报信息,进行归纳整理,作出综合性描述的文章。下面为大家总结了医学综述论文的格式及一些写法,以供大家参考。

综述一般都包括题名、著者、摘要、关键词、正文、参考文献几部分。其中正文部分又由前言、主体和总结组成。

前言。用200~300字的篇幅,提出问题,包括写作目的、意义和作用,综述问题的历史、资料来源、现状和发展动态,有关概念和定义,选择这一专题的目的和动机、应用价值和实践意义,如果属于争论性课题,要指明争论的焦点所在。

主体主要包括论据和论证。通过提出问题、分析问题和解决问题,比较各种观点的异同点及其理论根据,从而反映作者的'见解。为把问题说得明白透彻,可分为若干个小标题分述。这部分应包括历史发展、现状分析和趋向预测几个方面的内容。

①历史发展:要按时间顺序,简要说明这一课题的提出及各历史阶段的发展状况,体现各阶段的研究水平。

② 现状分析:介绍国内外对本课题的研究现状及各派观点,包括作者本人的观点。将归纳、整理的科学事实和资料进行排列和必要的分析。对有创造性和发展前途的理论或假说要详细介绍,并引出论据;对有争论的问题要介绍各家观点或学说,进行比较,指问题的焦点和可能的发展趋势,并提出自己的看法。对陈旧的、过时的或已被否定的观点可从简。对一般读者熟知的问题只要提及即可。

③趋向预测:在纵横对比中肯定所综述课题的研究水平、存在问题和不同观点,提出展望性意见。这部分内容要写得客观、准确,不但要指明方向,而且要提示捷径,为有志于攀登新高峰者指明方向,搭梯铺路。主体部分没有固定的格式,有的按问题年代顺序介绍,也有按问题的现状加以阐述的。不论采用哪种方式,都应比较各家学说及论据,阐明有关问题的历史背景、现状和发展方向。主体部分的写法有下列几种:

(1) 纵式写法。 “纵”是“历史发展纵观”。它主要围绕某一专题,按时间先后顺序或专题本身发展层次,对其历史演变、目前状况、趋向预测作纵向描述,从而勾划出某一专题的来龙去脉和发展轨迹。纵式写法要脉络分明,即对某一专题在各个阶段的发展动态作扼要描述,已经解决了哪些问题,取得了什么成果,还存在哪些问题,今后发展趋向如何,对这些内容要把发展层次交代清楚,文字描述要紧密衔接。书写综述不要孤立地按时间顺序罗列事实,把它写成了“大事记”或“编年体”。纵式写法还要突出一个“创”字。有些专题时间跨度大,科研成果多,在描述时就要抓住具有创造性、突破性的成果作详细介绍,而对一般性、重复性的资料就从简从略。这样既突出了重点,又做到了详略得当。纵式写法适合于动态性综述。这种综述描述专题的发展动向明显,层次清楚。

(2) 横式写法。 “横”是“国际国内横览”。它就是对某一专题在国际和国内的各个方面,如各派观点、各家之言、各种方法、各自成就等加以描述和比较。通过横向对比,既可以分辨出各种观点、见解、方法、成果的优劣利弊,又可以看出国际水平、国内水平和本单位水平,从而找到了差距。

(3) 纵横结合式写法在同一篇综述中,同时采用纵式与横式写法。 例如,写历史背景采用纵式写法,写目前状况采用横式写法。通过“纵”、“横”描述,才能广泛地综合文献资料,全面系统地认识某一专题及其发展方向,作出比较可靠的趋向预测,为新的研究工作选择突破口或提供参考依据。无论是纵式、横式或是纵横结合式写法,都要求做到:一要全面系统地搜集资料,客观公正地如实反映;二要分析透彻,综合恰当;三要层次分明,条理清楚;四要语言简练,详略得当。

综述是一种较为独特的论文形式,我们需要围绕某一专题,收集大量相关原始文献,进行分析和综合,阐明其研究进展,揭示其发展趋势,才能把论文写得更好。

医学论文的格式一般是:文题,作者,摘要,引言,资料与方法,结果,讨论,代号与缩写,参考文献其实你去投某一个期刊,期刊上都会对格式要求有注明,而且也非常详细,2216859613你自己看下就好。优助医学希望能够帮助到你。

医学论文写作格式

一。 题目 题目是文章最重要和最先看到的部分, 应能吸引读者, 并给人以最简明的提示。

1.应尽量做到简洁明了并紧扣文章的主题,要突出论文中特别有独创性、有特色的内容,使之起到画龙点睛, 启迪读者兴趣的作用。

2.字数不应太多, 一般不宜超过20个字。

3.应尽量避免使用化学结构式、数学公式或不太为同行所熟悉的符号、简称、缩写以及商品名称等。题目中尽量不要用标点符号。

4.必要时可用副标题来做补充说明,副标题应在正题下加括号或破折号另行书写。

5.若文章属于“资助课题”项目, 可在题目的右上角加注释角号(如 ※、#等), 并在脚注处(该文左下角以横线分隔开)书写此角号及其加注内容。

6.为了便于对外交流, 应附有英文题名, 所有字母均用大写,放在中文摘要与关键词的下面。

二。 作者 署名是论文的必要组成部分, 要能反映实际情况。

1.作者应是论文的撰写者, 是指直接参与了全部或部分主要工作, 对该项研究作出实质性贡献, 并能对论文的内容和学术问题负责者。

2.研究工作主要由个别人设计完成的, 署以个别人的姓名; 合写论文的署名应按论文工作贡献的多少顺序排列; 学生的毕业论文应注明指导老师的姓名和职称。作者的姓名应给出全名。

3.作者的下一行要写明所在的工作单位(应写全称),并注上邮政编码。

4.为了便于了解与交流, 论文的最后应附有通迅作者的详细通讯地址、电话、传真以及电子信箱地址。

三。 摘要 摘要是科研论文主要内容的简短、扼要而连贯的重述,必须将论文本身新的、最具特色的内容表达出来(重点是结果和结论)。

1.具体写法有“结构式摘要” 和“非结构式摘要”两种,前者一般分成目的、方法、结果和结论四个栏目,规定250字左右;后者不分栏目, 规定不超过150个字,目前国内大多数的医学、药学期刊都采用“结构式摘要”。

2.摘要具有独立性和完整性,结果要求列出主要数据及统计学显著性。

3.一般以第三人称的语气写,避免用“本文”、“我们”、“本研究”等作为文摘的开头。

四。关键词 关键词也叫索引词, 主要为了图书情报工作者编写索引, 也为了读者通过关键词查阅需要的论文。

1.关键词是从论文中选出来用以表示全文主题内容的单词或术语,要求尽量使用《医学主题词表》(MeSH) 中所列的规范性词(称叙词或主题词)。

2.关键词一般选取3~8个词, 并标注与中文一一相对应的英文关键词。每个词之间应留有空格以区别之。

3.关键词通常位于摘要之后,引言之前。

五。引言 引言(导言、序言)作为论文的开端, 起纲领的作用,主要回答“为什么研究”这个课题。

1.引言的内容主要介绍论文的研究背景、目的、范围, 简要说明研究课题的意义以及前人的主张和学术观点, 已经取得的成果以及作者的意图与分析依据,包括论文拟解决的问题、研究范围和技术方案等。

2.引言应言简意赅, 不要等同于文摘或成为文摘的注释。如果在正文中采用比较专业化的术语或缩写词时, 最好先在引言中定义说明。

3.字数一般在300字以内。

六。 正文 正文是科研论文的主体, 包括材料、方法、结果、讨论四部分内容, 其中某些部分(特别是方法和结果)还需列出小标题, 以使层次更加清晰。

1.材料 材料是科学研究的物质基础, 需要详细说明研究的对象、药品试剂、仪器设备等。

(1)如属动物实验研究, 材料中需说明实验动物的名称、种类、品系、分级、数量、性别、年(月)龄、体重、健康状态、分组方法、每组的例数等;如属用药的临床观察, 应说明观察对象的例数、性别、年龄、职业、病例种类、症状体征、诊断标准、分组方法、治疗措施、临床观察指标及疗效判定标准(如痊愈、显效、好转、无效的标准)等。

(2)说明受试药的来源、批号、配制方法等,中药应注明学名、来源,粗提物应标明有效部位或成分的含量和初步的质量标准,若是作者本实验室自行提取的应简述提取过程。

(3)标明主要仪器设备的生产单位、名称、型号、主要参数与精密度等。

(4)标明主要药品、试剂的名称(尽量用国际通用的化学名, 不用商品名)、成分、批号、纯度、用量、生产单位、出厂日期及配制方法等。

2.方法

(1)采用已有报道的方法只要注明文献的出处即可,不必详述其过程;若为有创意的方法, 要详细介绍创新之处,便于读者依此重复验证;若是对常规方法作出改进的, 应具体描述改进部分及改进的理由, 同时也要注明原法的文献出处。

(2)对于实验条件可变因素的控制方法(如放射免疫法的质量控制)要加以详细说明, 以显示本文结果的可靠性和准确性。

(3)实验研究论文要设立阴性对照组和阳性药物对照组,前者一般采用溶剂作为对照,后者选用被公认的、确有疗效的药物,以验证实验方法的可靠性。

(4)在进行药效学和毒理学研究时,通常要设高、中、低三个剂量组,以体现出药物的量-效关系。

(5)实验设计时应考虑到每组有足够的样本数以满足统计学处理的需要,一般地说,小动物(如大、小鼠)每组至少8~10只,大动物(如狗)每组至少4~6只。同时应说明数据处理的统计学方法,统计学处理结果一般用P>0.05、P<0.05、P<0.01三档表示。

3.结果 试验结果是论文的核心部分, 这一部分要求将研究中所得到的各种数据进行分析、归纳, 并将经统计学处理后的结果用文字或图表的形式予以表达。

(1)表格

①表格设计要清晰、简练、规范。每个表格除有栏头、表身外,还要有表序(如表1、表2、表3……)和表题, 表题与表序居中写, 中间空一格将两者分开。在正文中要明确提及见表×。

②表随文放, 一般应列在“见表×”文字的自然段落的下面。

③表格一般采用三线表。

④表题应有自明性。若表中数据均用“均数±标准差”表示,则在表题的后面注上( ±S);若表中各组的例数相等,则在表题后面统一注上(n=X),若例数不等应另加一列,分别注上各组的例数;表中计量单位若一致, 可写在表题的后面,若不一致应分别写在每个栏头之下, 不加括号。

⑤表内阿拉伯数字上下各行的个位数对齐, 未发现的数据用“-”表示, 未测或无此项用空白表示, 实测结果为零用“0”表示。

(2)插图

①图包括示意图、曲线图、照片图等。

②图要求大小比例适中, 粗细均匀, 数字清晰, 照片黑白对比分明。与表一样图也要随文字放, 先见文字, 后见图。

③每幅图都要有图序和图题, 通常写在图的下方。图题要有自明性。

(3)结果处理时要尊重事实, 要求结果中的数据精确完整、可靠无误,同时要注意不应忽视偶然发生的现象和数据。

(4)药物的临床疗效研究结果,要注意交待与药物有关的全部信息, 如疗效、毒副作用及注意事项等。

4.讨论 讨论是结果的逻辑延伸,是全文的综合、判断、推理, 从感性提升到理性认识的过程, 也是作者充分运用自已对该领域所掌握的.知识, 联系本课题的实践, 提出新见解、阐明新观点之处。

(1)讨论应从结果出发, 紧扣题目, 不宜离题发挥。具体地说应对本实验所观察到的结果, 分析其理论和实践意义, 能否证实有关假说的正确性, 找出结果中的内在规律, 与自己过去的或其他作者的结果及其理论解释进行比较, 分析异同及其可能原因, 根据自己的或参考别人的材料提出新见解。

(2)讨论中应该运用一分为二的观点,正确地分析和评价自己工作中可能存在的不足之处和教训, 例如本研究所用方法是否有局限性等; 提出今后研究方向及本结果可能的推广应用的设想, 这往往对读者的思路有所启发。

(3)篇幅较长的讨论, 应分项目编写, 每个项目应集中论述一个中心内容,并冠以序码。讨论的中心内容应与正文各部分, 特别是结果部分相呼应。讨论中不应过细重复以上各部分的数据。

(4)为体现讨论的客观性, 写作时一般采用第三人称语气。

(5)讨论切忌写成文献综述,更不应简单地重复实验结果,而是从理论上有选择地对研究结果进行分析、比较、解释、推理, 对主要问题, 特别是本研究创新、独到之处加以充分发挥,提出新的假说, 揭示有待进一步研究的问题及今后的研究方向。

七。致谢 凡不具备前述作者资格, 但对本研究作过指导、帮助的人或机构,均应加以感谢,但必须得到被致谢人的同意后才能署其姓名。致谢一般单独成段,放在正文的后面。

八。参考文献 参考文献要求引用作者亲自阅读过的、最主要的文献, 包括公开发表的出版物、专利及其他有关档案资料, 内部讲义及未发表的著作不宜作为参考文献著录。

1.论文所列参考文献一般不超过10条, 综述不超过30条。

2.文内标注法: 著录时按文中引用文献出现的先后顺序用阿拉伯数字连续编号, 直接引用作者全文的, 文献序号置于作者姓氏右上角方括号内。

3.文献序号作正文叙述的直接补语时, 应与正文同号的数字并排, 不用上角码标注。如: 实验方法见文献〔2〕或据文献〔2〕报道。

常用文体的写作格式目前医学论文基本上都按温哥华格式撰写,其正文部分的基本结构已形成相对固定的格式,但是这种模式并非一成不变,写作时可根据文章的内容和性质、体裁或类型作适当调整和变通,使其结构更趋合理,使编者或被读者更乐于接受。常用文体的格式有:①实验研究类:由标题、作者、摘要、关键词、引言、材料与方法、结果、讨论、致谢、参考文献等组成;②临床研究类:由标题、作者、摘要、关键词、引言、临床资料、结果、讨论、参考文献等组成;③病例(理)报告类:由标题、作者、关键词、引言、病例摘要、病例(理)分析或讨论、病理报告、总结、参考文献等组成;④专科护理类:由标题、作者、引言、临床资料、观察与结果、讨论(体会)等组成;⑤个案护理类:由标题、作者、引言、病例介绍、护理问题和措施、讨论(体会)组成;⑥文献综述类:主要有叙述性综述和评述性综述等两大类,一般由标题、作者、摘要、关键词、引言、正文、结语或总结、参考文献的组成。

研究生综述性论文格式模板

一、学位论文的一般格式和顺序 紧接英文页面之后的学位论文独创性声明和使用授权声明(见附件一)需要由研究生本人亲笔签名,学位论文需要提交电子版以便于数据库管理和网上查阅。有保密要求不宜公开的论文由导师申请,院系审核,经校保密工作委员会审查后,提交研究生学位办公室批准后同意保密,保密期后自动承认使用授权声明,并予以公开。 硕士学位论文一般在三万字以上,博士学位论文一般在五万字以上。文字采用中文简体;除艺术、古籍等个别经研究生院特许的情况外不得采用繁体字。鼓励采用中英文双语写作,但上交国家及校图书馆的论文必须用中文。 本格式主要适用于理、工、医、管学科的学位论文和一般的文科论文,特殊情况经研究生院批准后执行。(一)论文题目 论文题目是论文全貌的集中体现,应能概括整个论文最重要的内容,命题必须确切、简明,题目应力求简单,也不应宽泛笼统,应能看出论文的实质性内容和工作重心。中文题名一般不超过20个汉字,必要时可加副题名。副题名可另起一行,用破折号与主题名隔开。题名中应避免使用非公知公用的缩略语、字符、代号以及结构式和公式。 可公开交流的学位论文应有英文题名。英文题名另起一页,排印在英文授予单位前,其间用“a dissertation submitted to”(硕士学位论文用“a thesis submitted to”)作为标志,后面注明学位类别、研究生姓名、导师姓名、日期等。英文题名格式见研究生院主页下载区→研究生学位→英文页面格式。 (二)论文摘要(提要) 论文摘要包括题名、硕士(博士)研究生姓名、导师姓名、学校名称、正文、关键词。中文约500字左右,英文约200~300词左右,二者应基本对应。它是论文内容的高度概括,应说明研究目的、研究方法、成果和结论,要突出本论文的创造性成果或新的见解、用语简洁、准确,并在论文摘要后注明本文的关键词3至8个。关键词应为公知公用的词和学术术语,不可采用自造字词和略写、符号等,词组不宜过长。 英文摘要采用第三人称单数语气介绍该学位论文内容,目的是便于其他文摘摘录,因此在写作英文文摘时不宜用第一人称的语气陈述。叙述的基本时态为一般现在时,确实需要强调过去的事情或者已经完成的行为才使用过去时、完成时等其他时态。可以多采用被动语态,但要避免出现用“this paper”作为主语代替作者完成某些研究行为。中国姓名译为英文时用汉语拼音,按照姓前名后的原则,姓、名均用全名,不宜用缩写。姓全用大写,名的第一个字母大写,名用双中文字时两个字的拼音之间可以不用短划线,但容易引起歧义时必须用短划线。例如“冯长根”译为“feng changgen”或“feng chang-gen”,而“冯长安”则必须译为“feng chang-an”。论文英文封面上的署名也遵守此规定。 (三)目录 目录是论文的大纲,它反映论文的梗概。论文目录要求层次清楚,应将论文的章节按顺序编好页码,页码居页面的右侧并排列整齐。 (四)本论文专用术语(符号、变量、缩略词等)的注释表(任选) 如果有必要可以设置此注释表。此部分内容可根据论文中采用的符号、变量、缩略词等专用术语加以定义和注释,以便于论文阅读和迅速查出某符号的明确含义。 (五)正文 正文是学位论文的主体。内容可因研究课题的性质不同而有所变化。一般可包括:文献综述、理论基础、计算方法、实验方法、经过整理加工的实验结果的分析讨论、见解和结论。 正文一律用阿拉伯数字编排页码,页码在底部居中。正文之前的摘要、目录等内容单独编排罗马数字页码。 1.绪论(前言) 本研究课题国内外已有的重要文献的扼要概括,阐明研究此课题的目的、意义,研究的主要内容和所要解决的问题。本研究工作在国民经济建设和社会发展中的理论意义与实用价值。 2.文献综述 在查阅国内外文献和了解国内外有关科技情况的基础上,围绕课题涉及的问题,综述前人工作情况,达到承前启后的目的。要求:(1)总结课题方向至少2017年以来的国内外动态;(2)明确前人的工作水平;(3)介绍目前尚存在的问题;(4)说明本课题的主攻方向。文献总结应达到可独立成为一篇综述文章的要求。 3.理论分析、数值计算或统计分析 利用研究生本人所掌握的理论知识对所选课题进行科学地、严密地理论分析、数值计算或统计分析,剖析课题,提出自己的见解。 4.实验原理、实验方法及实验装置 学位论文要求对实验原理、方法、装置、步骤和有关参数有较详细的阐述,以便评阅人及答辩委员会审核实验的可靠性,并能对试验进行重复以便验证结果的可靠性,也为以后的研究者提供一个较完整的研究方法。 5.实验结果及讨论分析 列出数据的图或表,并对数据结果进行讨论,对比分析、结果推论要严格准确,避免采用模棱两可的评定语言。对反常的数据要保留并做解释或者说明,不可随意剔除数据做出有违科学公正的行为。 (一)、本科生毕业论文文献综述模板 (二)、人力资源管理论文开题报告范文 (三)、大学生毕业论文开题报告范文(两篇) (四)、市场营销专业论文开题报告范文(三篇) (五)、大学生个人职业规划论文结束语(十篇) (六)、大学生个人职业规划论文范文(三篇) (七)、大学生职业规划论文3000字(四篇) (八)、大学生形势与政策论文4000字 (九)、北京工业大学经济与管理学院祝合良教授在《人民日报》发表理论文章 (十)、大学生毕业论文通用谢辞范文(十篇) ;

文献综述格式模板如下:

1、标题

文献综述的标题一般多是在设计(论文)选题的标题后加“文献综述”字样。

2、提要或前言

此部分一般不用专设标题,而是直接作为整个文献综述的开篇部分。内容是简要介绍本课题研究的意义;将要解决的主要问题;如果本课题涉及到较前沿的理论,还应对该理论进行简要介绍;最后要介绍研究者搜集的资料范围及资料来源。

3、正文

这是论文文献综述的核心部分。应在归类整理的基础上,对自己搜集到的有用资料进行系统介绍。

撰写此部分时还应注意以下两点:

其一、对已有成果要分类介绍,各类之间用小标题区分。

其二、既要有概括的介绍,又要有重点介绍。根据自己的分类,对各类研究先做概括介绍,然后对此类研究中具有代表性的成果进行重点介绍。

4、总结

对上述研究成果的主要特点、研究趋势及价值进行概括与评价。此部分应着重点明本课题已有的研究基础(已有成果为自己的研究奠定了怎样的基础或从中受到怎样的启发)与尚存的研究空间(本课题已有研究中存在的空白或薄弱环节)。

5、参考文献

要求列出的参考文献不少于15篇,且外文文献不少于3篇,并按论文中的参考文献的格式将作者名、文献名、文献出处、时间等信息全面标示出来。

论文综述格式如下:

硕士论文文献综述正文参考格式(以下为字体字号示例)

前言:宋体小四,字数300-400字

1. 一级标题(一级标题,宋体小四,加粗,左顶格,仅一级标题加粗)

内容为宋体小四内容为宋体小四内容为宋体小四。

1.1 二级标题(二级标题,宋体小四,左顶格)

内容为宋体小四内容为宋体小四内容为宋体小四。

1.1.1 三级标题(三级标题,宋体小四,左顶格)

内容为宋体小四内容为宋体小四内容为宋体小四。

1.1.2 三级标题(三级标题,宋体小四,左顶格)

内容为宋体小四内容为宋体小四内容为宋体小四。

2. 一级标题(一级标题,宋体小四,左顶格,仅一级标题加粗)

2.1 二级标题(二级标题,宋体小四,左顶格)

2.1.1 三级标题(三级标题,宋体小四,左顶格)

2.1.2 三级标题(三级节标题,宋体小四,不加粗,左顶格)

2.2 二级标题(二级标题,宋体小四,左顶格)

2.2.1 三级标题(三级节标题,宋体小四,不加粗,左顶格)

2.2.2 三级标题(三级节标题,宋体小四,不加粗,左顶格)

3. 一级标题

3.1 二级标题

3.2 二级标题

4. 结语(一级标题,宋体小四,加粗,左顶格)

内容为宋体小四。

研究生论文文献综述模板格式

论文综述格式如下:

硕士论文文献综述正文参考格式(以下为字体字号示例)

前言:宋体小四,字数300-400字

1. 一级标题(一级标题,宋体小四,加粗,左顶格,仅一级标题加粗)

内容为宋体小四内容为宋体小四内容为宋体小四。

1.1 二级标题(二级标题,宋体小四,左顶格)

内容为宋体小四内容为宋体小四内容为宋体小四。

1.1.1 三级标题(三级标题,宋体小四,左顶格)

内容为宋体小四内容为宋体小四内容为宋体小四。

1.1.2 三级标题(三级标题,宋体小四,左顶格)

内容为宋体小四内容为宋体小四内容为宋体小四。

2. 一级标题(一级标题,宋体小四,左顶格,仅一级标题加粗)

2.1 二级标题(二级标题,宋体小四,左顶格)

2.1.1 三级标题(三级标题,宋体小四,左顶格)

2.1.2 三级标题(三级节标题,宋体小四,不加粗,左顶格)

2.2 二级标题(二级标题,宋体小四,左顶格)

2.2.1 三级标题(三级节标题,宋体小四,不加粗,左顶格)

2.2.2 三级标题(三级节标题,宋体小四,不加粗,左顶格)

3. 一级标题

3.1 二级标题

3.2 二级标题

4. 结语(一级标题,宋体小四,加粗,左顶格)

内容为宋体小四。

文献综述在不同的地方会有不同的要求,比如写项目基金申请书中的文献综述和毕业论文中的文献综述会有区别;内容侧重点不同,格式要求也不同。如下给出的模板是一般文献综述中应该包含的部分和基本的格式要求。读者在实际的写作过程中可视情况而选择恰当的方式。1、文献综述(论文标题,小二号,黑体,居中)2、摘要:(“摘要:”两个字要求是黑体小四,顶格写;摘要的内容要求是楷体小四。字数要求200-300.)3、关键词: ; ; ;(关键词要顶格写,有3-5个,格式要求黑体小四,词与词间用分号隔开)4、正文 (要求:正文的标题是宋体小四,要加粗,顶格写;正文内容是首行空两格,字体小四,不加粗;标题之间的标号统一)一、前言说明写作目的意义介绍有关的概念提供必要的背景材料描述课题的研究现状有关主题争论的焦点及发展趋势(核心主题)交待综述讨论的范围(引用文献起止年份学科范围)二、正文理论发展阶段性成果理论意义实践意义成熟可靠新近的权威可信百花齐放百家争鸣(一)历史发展:采用纵向对比的方法,要按时间顺序,简要说明某一课题的提出及各历史阶段的发展状况,体现各阶段的研究水平,说明目前达到的水平。(二)现状分析:介绍国外研究现状、国内研究现状,对比研究差距,来阐述国内研究与国外研究相比还有哪些空白点没有涉及,找到未来发展趋势,提出自己的想法和观点:首先将整理和归纳出来的资料进行排列和必要的分析;其次讲解有创造性和发展前途的理论或假说,并引出论据;第三介绍有争议的相关专家观点或学说,对其进行分析比较,指出各种的发展趋势和问题焦点,并提出自己的观点;第四,简要的介绍陈旧、过时的或被否定的观点,这样使文章更系统全面,而且这些资料也可以起到对比反衬的作用。(三)趋向预测:在纵横对比中肯定所综述课题的研究水平、存在问题和不同意见、提出展望性意见。这一部分主要是给读者以启示,使从事这一课题的工作者能看到未来课题研究的发展方向。这部分的内容要客观,不仅要指明方向,而且要指出捷径,为有志于攀登新高峰者指明方向,搭梯铺路。三、总结与展望高度概括主题内容提出观点意见主张展望发展前景简明扼要地指出目前研究中尚需解决的问题及研究成果的意义和价值,在写作中应注意给出一个较为明确的阶段性结论。一篇好的综述总结,可以发人深思,具有导向意义。参考文献(格式要求:黑体小四)[1]作者,作者.文献名称[J].期刊名称,年份,卷号,起止页码.(宋体五号)(附录:学术论文参考文献的著录格式:1.专著: [序号]作者.书名[M].版本(第1版不著录).出版地:出版者,出版年.起止页码.2.期刊: [序号]作者.题名[J].刊名,年,卷(期):起止页码.3.会议论文集(或汇编):[序号]作者.题名[A].编者.论文集名[C].出版地:出版者,出版年.起止页码.4.学位论文: [序号]作者. 题名[D]. 学位授予地址:学位授予单位,年份.5.专利: [序号]专利申请者. 专利题名[P].专利国别(或地区):专利号, 出版日期.6.科技报告: [序号]著者. 报告题名[R].编号,出版地:出版者,出版年.起止页码.7.标准: [序号] 标准编号,标准名称[S].颁布日期.8.报纸文章 : [序号] 作者. 题名[N]. 报纸名,年-月-日(版次).9.电子文献: [序号] 主要责任者.电子文献题名[电子文献及载体类型标识].电子文献的出处或可获得地址,发表或更新日期/引用日期(任选).10.各种未定义类型的文献:[序号]主要责任者.文献题名[Z]. 出版地:出版者,出版年.)

相关百科

热门百科

首页
发表服务