首页

> 学术发表知识库

首页 学术发表知识库 问题

神经调节最新研究进展论文

发布时间:

神经调节最新研究进展论文

①记忆具有短暂性的最直观原因是为新记忆腾地方。②然而,大脑有很多的神经元和突触,似乎能存储的记忆比一个人实际能存储的要多很多。据估计,人类大脑中大约有800-900亿个神经元(Azevedo et al., 2009).,如果只为特定事件的记忆保留十分之一的容量,那么根据对自联想网络容量的计算估计,一个人可以可靠地存储大约10亿个人的记忆 (Amit et al., 1985)。 此外,当我们考虑稀疏编码的记忆时,这个数字可以增加几个数量级 (Amari, 1989)。③显然,记忆的容量比实际上要的多,那为什么进化却让人的大脑不能如实记忆信息?换言之,既然记忆的持久性有看似明显的好处,那记忆的短暂性是否有其他好处?①我们认为,在这一个既变化又嘈杂的世界中,记忆短暂性是必需的。在不断变化的环境中,遗忘是适应性的,因为它允许更灵活的行为;在嘈杂的世界中,遗忘是适应性的,因为它防止了对特殊事件的过度拟合。②基于这一观点,记忆的永久性并不总是有用的,例如,对于世界上短暂或不常见的方面,记忆的持久性将是有害的,因为它可能导致不灵活的行为、不正确的预测;而只有在保持经验的那些相对稳定、预测新经验的方面时,持久性才是有用的。③因此,只有通过持久性和短暂性的相互作用,记忆才能表现出真正的目的:利用过去智能指导决策(Dudai and Carruthers,2005; Schacter et al., 2007).④下面,我们回顾了使用短暂性来增加行为灵活性和促进泛化的计算案例。此外,我们还确定了短暂性在计算上的使用方式和它在大脑中的实现方式之间的相似性。 神经网络: 对于使用分布式表示的神经网络,新的学习是一个重大的挑战(French,1999;Lewandowsky and Li, 1995; McCloskey and Cohen, 1989; Ratcliff,1990)。挑战有两个方面:新的学习可能会覆盖以前的记忆(即灾难性干扰);新的学习又会受到已有记忆的阻碍(即积极主动的相互干扰) (Burgess et al., 1991; McCloskey and Cohen, 1989; Palm, 2013; Siegle and Hasselmo, 2002)。这是神经网络中的“稳定性与可塑性”困境(Abraham and Robins, 2005; Carpenter and Grossberg, 1987)。根据传统的观点,记忆的持久性与行为的灵活性是不相容的,因为一个善于保持持久记忆的网络将很难学习新的信息,特别是如果它与以前的经验相冲突的话。 然而,最近使用外部记忆设备或突触的神经网络模型在多个时间尺度上变化,挑战了这种困境的普遍性 (Graves et al., 2016; Kirkpatrick et al., 2017; Santoro et al., 2016)。此外,大脑可以用来解决这个难题的另一个策略是使用正交表示,对经验进行稀疏编码,这可能是由模式分离过程引起的(Yassa and Stark, 2011)。记忆的语境依赖性就是这种策略的一个例子:通过保持正交模式,在特定语境中编码的记忆更可能在该语境中表达,而不是在其他语境中 (Maren et al.,2013)。这种策略最大限度地增加了可以在不受干扰的情况下可以存储在神经网络中的模式数量(Amari, 1989).。 大脑: 然而,在动态环境中,无论容量有何限制,丢弃过时的信息也很重要 (Kraemer and Golding, 1997)。如果环境改变了,但我们的记忆没有改变,那么我们可能会坚持旧记忆,损害我们自己。因此,短暂性可以通过消除过时的信息来促进决策,从而使有机体能够更有效地应对其环境的变化。 最近的研究提供了证据,证明遗忘是动态环境中灵活行为所必需的(Dong et al., 2016; Epp et al., 2016; Shuai et al., 2010)。Shuai和他的同事训练苍蝇辨别两种气味(A和B),并发现抑制Rac1能减缓遗忘。抑制RAC1的苍蝇组表现出逆转学习(A-或B+)受损,说明保留的记忆影响了新的学习;激活RAC1的苍蝇组结果相反,旧记忆的遗忘促进了逆转学习。这种模式的结果扩展到五种不同的苍蝇,它们被设计来表达与自闭症谱系障碍相关的突变,而自闭症谱系障碍也会干扰Rac的活动,所有这些Rac功能受损的苍蝇都表现出遗忘受损,而这反过来又损害了反向学习(Shuai et al., 2010) 别的研究也表明了相同的结果。Epp and colleagues (2016)研究了遗忘(由神经发生介导)后的逆转学习,实验中,他们训练老鼠在水迷宫中找到位置固定的平台,随后在同一个迷宫中对小鼠进行再训练,但平台被移到相反的位置。结果是,海马神经发生水平增强的小鼠能更有效地找到新的平台位置(海马神经发生的增加将会导致最初位置的遗忘);而海马神经发生水平降低的小鼠时,观察到相反的模式,因为神经发生的抑制维持了最初位置的记忆,干扰了新位置的学习。 在情境-气味配对任务中也观察到类似的结果 (Epp et al., 2016)。训练后,神经发生的增加会导致已学的成对关联的遗忘,但有助于随后的反向学习。但是,这种促进并不是在任何学习中都适用,只有在与原始学习有明显冲突的情况下,才能观察到新学习的益处,比如,神经发生增加的小鼠若接受的是一种新的环境-气味配对训练时,没有表现出益处。这些发现表明,成人海马神经发生促进遗忘,遗忘通过去除或削弱过时信息增强行为灵活性。研究神经发生和灵活性之间关系的相关论文有:Burghardt et al. (2012); Garthe et al. (2009), (2016); Luu et al. (2012); Swan et al. (2014); and Winocur et al. (2012).引用文献: Azevedo et al., 2009:我们发现成年男性大脑中平均含有861±81亿个神经细胞(神经元)和846±98亿个神经细胞(非神经元)。就神经元和非神经元细胞的数量而言,人类大脑是一个等距放大的灵长类大脑。Amari, 1989:当要存储的编码模式的大部分组件是0,只有一小部分组件的比率是1时,编码方案被称为稀疏的。详细分析了稀疏编码联想存储器的存储容量和信息容量,证明了其与神经元数目n logn的比例关系,与一般的非稀疏编码方案(约0.15n)相比,该比例关系非常大。Dudai and Carruthers,2005:研究表明记忆可能是过去的印记,对未来的认知过程至关重要。Schacter et al., 2007:想象未来在很大程度上依赖于可以记忆过去的神经机制。这些发现引出了前瞻性大脑的概念,即大脑的一个关键功能是利用存储的信息来想象、模拟和预测未来可能发生的事件。根据这个想法,我们认为,像记忆这样的过程可以有效地重新概念化。French,1999:本文研究了神经网络中灾难性遗忘问题的产生原因、后果及多种解决方法。这篇综述将考虑大脑是如何克服这个问题的,同时也将探讨这个解决方案对分布式连接网络的影响McCloskey and Cohen, 1989:本文讨论连接主义网络中的灾难性干扰。当网络按顺序训练时,新的学习可能会对旧的学习产生灾难性的干扰。对干扰原因的分析表明,当新的学习可能改变表示旧学习所涉及的权值时,至少会发生一些干扰,仿真结果仅表明在某些特定的网络中,干扰是灾难性的。Ratcliff,1990:利用反向传播学习规则对基于编码器模型的多层存储器连接模型进行了评价。这些模型被应用到标准的识别记忆过程中,在这些过程中,项目被依次研究,然后测试其保留率。这些模型中的顺序学习导致两个主要问题。首先,学得好的信息会随着新信息的学习而迅速被遗忘。第二,学习项目和新项目之间的区别要么随着学习的进行而减少,要么是非单调的。为了解决这些问题,我们研究了多层模型中的网络操作和多层模型的几种变体,包括一个带有预学习内存的模型和一个上下文模型,但是没有一个解决了这些问题。所讨论的问题对应用于人类记忆和任务的连接主义模型提供了限制,在这些任务中,要学习的信息在学习过程中并不全部可用。Burgess et al., 1991:建立了一个神经网络模型,该模型能将人类记忆实验的结果记录在学习项目表上。综述了学习列表的心理学实验。Hopfield-Parisi型神经网络被用来模拟序列回忆中顺序效应的许多简单特征。用模拟的方法研究了项目的召回率与其数量、在列表中的位置和相似度的函数关系。更复杂的实验涉及不同类别的项目,使用相关的活动模式进行建模。通过考虑权重分布和信噪比参数,了解模型的工作原理。 Palm, 2013:介绍了近40年来神经联想记忆的理论、实践和技术发展。指出了关联记忆模式稀疏编码的重要性。文中还提到了联想记忆网络在大规模脑建模中的应用。Siegle and Hasselmo, 2002:连接主义模型被认为是理解心理障碍的本质和指导其评估的有希望的工具。具体来说,连接主义模型可以指导评估过程的以下方面:了解哪些结构与评估相关,设计评估这些结构的方法,以及了解评估数据中的个体差异。Abraham and Robins, 2005:记忆维持被广泛认为涉及在学习过程中在相关神经回路中设置的突触重量的长期保留。然而,尽管最近出现了令人兴奋的技术进步,但还无法通过实验证实这一直观的吸引人的假设。人工神经网络提供了一种可供选择的方法,因为它们允许在学习和保持过程中连续监测单个连接权重。在这种模型中,如果网络要在学习新信息的同时保留先前存储的材料,则需要不断改变连接权重。因此,突触变化的持续时间并不一定定义记忆的持久性;相反,很可能需要调节突触稳定性和突触可塑性的平衡,才能在真实的神经元回路中获得最佳的记忆保持。Carpenter and Grossberg, 1987:自适应共振结构是一种神经网络,它能实时地自组织稳定的模式识别码,以响应任意的输入模式序列。本文介绍了ART2,一类自适应共振结构,ART2体系结构体现了许多设计原则的解决方案,例如稳定性-可塑性权衡、搜索-直接访问权衡和匹配-重置权衡。Graves et al., 2016:人工神经网络在感觉处理、序列学习和强化学习方面有着显著的优势,但由于缺乏外部记忆,它在表示变量和数据结构以及长时间存储数据方面的能力有限。这里我们介绍了一个机器学习模型,称为可微神经计算机(DNC),它由一个可以读写外部存储器矩阵的神经网络组成,类似于传统计算机中的随机存取存储器。像传统的计算机一样,它可以使用内存来表示和操作复杂的数据结构,但是,像神经网络一样,它可以从数据中学习这样做。结果表明,DNC有能力解决没有外部读写存储器的神经网络无法完成的复杂、结构化任务。Kirkpatrick et al., 2017:以顺序方式学习任务的能力对人工智能的发展至关重要。到目前为止,神经网络还不能做到这一点。我们表明,有可能克服这一限制,并培训网络,使其能够保持对长期没有经历的任务的专门知识,我们通过有选择地减缓对那些任务重要的权重的学习来记住旧任务结果,证明了我们的方法是可伸缩和有效的。Santoro et al., 2016:在系统整合的过程中,有一个从依赖于详细的情节记忆到普遍的示意记忆的转变。这种转换有时被称为“记忆转换”,这里我们展示了记忆转换以前未被重视的优点,即它在动态环境中增强强化学习的能力。我们开发了一个神经网络,它被训练在奖赏地点不断变化的觅食任务中寻找奖赏。该网络可以使用特定位置的存储器(情节存储器)和位置的统计模式(示意存储器)来指导其搜索。我们的工作重新提出了为什么会发生记忆转换的理论问题,将焦点从避免记忆干扰转移到跨多个时间尺度加强强化学习Yassa and Stark, 2011:区分相似经历的能力是情景记忆的一个重要特征。这种能力长期以来被假设需要海马体,计算模型表明它依赖于模式分离。然而,关于海马体在模式分离中的作用的经验数据直到最近才有,本文综述了几类数据。我们讨论了老化和成年神经发生对模式分离的影响,同时也强调了跨物种和跨途径连接的几个挑战,并提出了未来的研究方向。Maren et al.,2013:语境围绕着事件并赋予事件以意义;它们对于回忆过去、解释现在和预测未来至关重要。事实上,大脑将信息语境化的能力允许巨大的认知和行为灵活性。对啮齿动物和人类的巴甫洛夫恐惧调节和消失的研究表明,包括海马体、杏仁核和内侧前额叶皮层在内的神经回路参与了学习和记忆过程,从而使情境依赖行为得以实现。Kraemer and Golding, 1997:本文综述了人类适应性遗忘的研究现状,并提出了动物适应性遗忘的观点。讨论内容包括关于遗忘的理论预设,对动物适应性遗忘的选择性现象的回顾,对这种遗忘的可能机制(可恢复性)的描述,以及这一分析对记忆的心理和神经生物学方法的影响处理。Dong et al., 2016:在这项研究中,我们使用反向学习任务来测量果蝇的行为灵活性,并确定果蝇中多个自闭症风险基因同源物功能缺失突变的影响。5个具有不同分子功能的孤独症危险基因的突变都导致了类似的行为不灵活表型,表现为逆转学习障碍。这些逆转学习缺陷是由于无法遗忘,或者更确切地说,是由于无法激活Rac1(Ras相关的C3肉毒毒素底物1)依赖性遗忘。因此,行为诱发的Rac1依赖性遗忘激活对孤独症风险基因具有聚合功能。Epp et al., 2016:通过控制海马神经发生的水平,我们发现神经发生调节这种形式的主动干预。海马神经发生的增加削弱了现有的记忆,从而促进了新的、相互冲突的信息在小鼠中的编码。相反,神经发生的减少稳定了现有的记忆,并阻碍了新的、相互冲突的信息的编码。这些结果表明,减少主动干扰是神经发生诱发遗忘的适应性益处。Shuai et al., 2010:最初获得的记忆如果不巩固就会迅速消失。这种记忆衰退被认为是由于新获得的记忆固有的不稳定性,或者是由于随后获得的信息的干扰。本文报道果蝇G蛋白Rac依赖性遗忘机制在被动记忆衰退和干扰性遗忘中的作用。Rac活性的抑制导致早期记忆衰退的减慢,从几个小时延长到一天以上,并阻断干扰引起的遗忘。相反,蘑菇体神经元Rac活性的升高会加速记忆衰退。这种遗忘机制不影响记忆获得,独立于Rutabaga腺苷酸环化酶介导的记忆形成机制。内源性Rac激活在不同时间尺度上被诱发,在被动衰退中逐渐丧失记忆,在逆转学习中急性记忆消失。我们认为Rac在肌动蛋白细胞骨架重塑中的作用可能与记忆丧失有关Burghardt et al. (2012):海马体参与分离记忆,这是一种利用模式分离的神经过程并允许认知灵活性的能力。我们使用主动回避任务的变体和两种独立的方法,即切除成年出生的神经元、海马局部X射线照射和胶质纤维酸性蛋白阳性神经前体细胞的基因消融,评估了成年海马神经发生在认知灵活性中的作用。结果证明,当成人的神经发生需要改变对刺激诱发记忆的学习反应时,它有助于认知灵活性Garthe et al. (2009):尽管在过去的几年里取得了巨大的进展,新生颗粒细胞对成年海马功能的具体贡献仍不清楚。我们假设为了解决这个问题,必须特别注意学习测试的具体设计、分析和解释。因此,我们设计了一个行为实验,根据计算模型得出的假设,预测新的神经元可能与学习条件特别相关,在学习条件中,新的方面在熟悉的情况下出现,从而对水迷宫的参考记忆版本中的(再)学习的质量方面提出了很高的要求替莫唑胺(TMZ)对成人神经发生的任务抑制引起高度特异性的学习障碍。小鼠在隐藏平台版的Morris水迷宫中进行测试(每天6次,持续5天,第4天平台位置反转)。在四个治疗周期结束后4周进行测试,以尽量减少测试时潜在可招募的新神经元数量。神经发生的减少并没有改变CA3和齿状回的长时程增强,但消除了齿状回LTP中属于新生神经元的部分。TMZ在测试时没有任何明显的副作用,并且治疗组和对照组都学会了寻找隐藏的平台。然而,对搜索策略的定性分析显示,治疗组小鼠并没有向空间精确的搜索策略前进,特别是在学习改变的目标位置(逆转)时。因此,齿状回中的新神经元似乎对于增加海马依赖性学习质量参数的灵活性是必要的。我们发现,缺乏成年颗粒细胞特别导致动物无法精确定位隐藏目标,这也与齿状回的特殊作用有关在生成一个度量而不仅仅是一个环境的结构图。由于成年海马神经发生受到抑制而发现高度特异性的行为缺陷,因此可以将细胞海马可塑性与理论模型中定义明确的假设联系起来。Garthe et al. (2016):我们在此证明,生活在刺激丰富的环境(ENR)中,可以改善水迷宫学习的特定关键指标,这些指标在先前的功能丧失实验中已被证明依赖于成人海马神经发生。通过分析小鼠在水迷宫中寻找隐藏平台的策略,发现ENR通过增加使用有效搜索策略的概率来促进任务的获取。当逃生平台移到新的位置时,ENR也增强了动物的行为灵活性。替莫唑胺可以减少成年神经发生,它可以消除ENR对获得性和灵活性的影响,同时不影响水迷宫学习的其他方面。这些特征性效应和相互依赖性在第二种神经源性行为刺激——自愿性车轮转动(RUN)的平行实验中没有发现。由于成人神经发生的组织学评估必然是一个终点测量,因此只能推断整个实验过程中的神经发生水平,本研究将行为参数作为分析终点。尽管体力活动与前体细胞增殖、学习和新神经元存活之间的关系已经很好地建立起来,但这里描述的特定功能效应与干细胞生态位的动态变化之间的关系仍有待解决。然而,我们的研究结果支持这样一个假设:成人神经发生是一个关键的机制,是领导一个积极生活、丰富经验的有益影响的基础Luu et al. (2012:海马齿状回成体神经发生在学习记忆中起重要作用。然而,新神经元对海马功能的确切贡献仍然存在争议。新的证据表明,当相似的项目必须在不同的时间学习时,神经发生对于模式分离和减轻干扰是重要的。在本研究中,我们使用最近开发的具有这些特定特征的嗅觉记忆任务来直接测试这种预测。在这项任务中,老鼠学习两个高度干扰的气味对列表,一个接一个,在相同或不同的环境中。与我们的假设一致,局灶性颅骨照射导致齿状回内的神经发生选择性减少,显著削弱了学习第二个列表期间克服干扰的能力。学习单一气味清单的能力没有受到影响。我们还发现,在海马依赖性空间交替任务中,辐射对学习没有影响。尽管这两项任务都涉及到学习干扰反应,但学习干扰项目的时间过程有所不同。学习干扰气味列表是在几个会话过程中顺序进行的,而学习干扰空间位置是在每个会话中同时进行的。因此,新神经元的逐渐增加可能为嗅觉任务而不是迷宫任务提供了模式分离机制。这些发现证明了神经发生在解决干扰中的作用,并且它们与模型一致,表明神经发生在模式分离中的关键作用。Winocur et al. (2012):在高干扰或低干扰条件下,给予低剂量辐射抑制海马神经发生或假治疗的大鼠视觉辨别任务。一半的老鼠从事跑步活动,另一半没有。在非跑步者中,照射对学习没有影响,在低干扰条件下也没有记忆辨别反应,但照射治疗增加了他们对干扰的易感性,导致先前学习辨别的记忆丧失。参与跑步活动的受照大鼠表现出神经生长增强和对记忆损伤的保护。研究结果表明,成年期海马细胞在区分冲突性、语境依赖性记忆方面发挥了作用,进一步证明了神经发生在海马敏感记忆任务中的重要性。这一结果与海马功能的计算模型一致,海马功能的计算模型明确了神经发生在学习和记忆过程中干扰影响的调节中的中心作用

从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。

2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。

在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。

2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。

CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所

“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”

除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”

此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。

Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”

该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。

3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )

A.质粒示意图;B.N2a细胞中 Pten 的下调;C.Western检测PTEN及AKT的表达; D.CasRx与shRNA脱靶比较;E.尾静脉注射质粒示意图;F.G.H.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达

图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )

A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;E.F.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。

图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)

A.小鼠和人序列比较以及sgRNA示意图;B.C.在293T和N2a细胞中敲低 Vegfa ;D.VEGFA蛋白的表达;E.AAV病毒质粒示意图;F.实验流程图;G.CasRx的mRNA表达水平;H.I.激光烧伤之前或之后7天的 Vegfa mRNA水平;J.CNV诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;L.M.CNV面积统计。

2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。

该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。

人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。

在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。

作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。

帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。

该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。

大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。

研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。

为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。

在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。

需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。

(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。

(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。

(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。

RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.

Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.

Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.

Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.

The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).

Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.

One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.

Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.

Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.

The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.

References

Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272

Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514

\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors

\2. CRISPR genetic editing takes another big step forward, targeting RNA

\3. How Editing RNA—Not DNA—Could Cure Disease in the Future

[ https://www.obiosh.com/kyfw/zl/aav/209.html](

神经领域最新研究进展论文

动物神经疾病研究一直是一个活跃的研究领域,最近的研究集中在治疗神经疾病的新方法和技术,以及改善动物的神经系统功能的新疗法。研究人员正在研究新的药物,以改善动物的神经系统功能,并使用新的技术来诊断和治疗神经疾病。此外,研究人员还在研究如何使用基因治疗来治疗动物神经疾病,以及如何使用药物和其他技术来改善动物的神经系统功能。

目前,动物神经疾病的研究取得了一定的进展。主要的研究领域包括神经发育紊乱、神经系统炎症、神经退行性疾病以及神经精神疾病。首先,神经发育紊乱是一类复杂的神经疾病,它们可能与遗传因素、环境因素、感染病毒有关。目前,研究者正在进行大量的研究,以深入了解这些疾病的发病机制,以及可能的治疗方法。其次,神经系统炎症是一类常见的神经疾病,它们可能是由于病毒感染、免疫系统失调、神经细胞损伤等因素引起的。研究者正在努力找到有效的治疗方法,以缓解症状和改善病情。

调查近年来,动物神经疾病的研究受到了很多关注,如脊髓小脑萎缩症(SMA)、脊髓性肌萎缩症(ALS)、多动症等等。国内外学者经过大量研究,多次取得重大进展。一方面,基于基因编辑技术,研究者可以模拟各种疾病的突变,研究各种疾病的生物学机制。例如,研究者可以通过基因编辑将脊髓发育不良的基因抑制,模拟脊髓小脑萎缩的病变;通过基因编辑将神经退行性疾病,如阿尔茨海默病、帕金森病相关的基因抑制,可以模拟出神经退行性疾病的病理特征。另一方面,研究者结合大数据等新技术,通过功能基因组学分析,对疾病发生率、致病基因、疾病诊断及靶向治疗的可能性进行预测及研究,分析动物模型中的突变基因及其他重要物质,为人类神经疾病的在诊断和治疗提供策略性思路。此外,研究人员还利用神经疾病动物模型研究药物作用,探索新药、新技术及新疗法,为疾病的治疗和预防提供理论依据。例如,一些研究者利用ALS动物模型,探索可能的ALS治疗药物,并根据治疗效果进行临床试验,研发出新型ALS治疗药物。总而言之,从动物模型的研究来看,目前国内外的动物神经疾病研究取得了显著的进展。此外,基因编辑技术、大数据及其他新技术的应用大大促进了疾病的研究,帮助我们更好地理解动物神经疾病的病理生理机制,并为人类神经疾病的诊断和治疗提供新的思路和方法正在显现。

神经元的最新研究进展论文

“灵魂出窍”的生物学解释 20201227很久以前,老何在大学读书的时候就学习了关于脑电波的一些基本知识,2015年,老何在一个自我催眠学习班上有缘了解到人在睡眠过程中各种状态下的脑电波变化,如精神紧张和情绪激动亢奋时14~30Hz的β波;人在清醒、安静并闭眼时8~13Hz(平均数为10Hz)的α波;也了解到人在婴儿期或智力发育不成熟、成年人在极度疲劳和昏睡或麻醉状态下,可在颞叶和顶叶记录到的,频率为1~3Hz的δ波。 最近,老何在王立铭老师的《巡山报告》中了解到一个生命科学的新发现:关于“灵魂出窍”的生物学解释。联想起多年以前读过的史蒂芬·科特勒/杰米·威尔《盗火:硅谷、海豹突击队和疯狂科学家如何变革我们的工作和生活》和王立铭老师解读关于镜像神经元的生物学研究进展,确实令人脑洞大开,非常值得对脑神经科学和静坐冥想有兴趣的朋友学习和思考!“灵魂出窍”的生物学解释“灵魂出窍”这个词,我们日常也会用,一般就是用来描述很爽、很嗨、很过瘾的情绪而已。但有意思的是,实际上有人真的能体验到这种感觉。 比如说,有一类叫作“解离型精神障碍”的疾病,患者就会出现类似灵魂出窍、灵魂和身体分离的感觉。还有某种精神类的药品,服用下去也有类似的效果。据说,它们会让人感觉自己的灵魂慢慢飞升、离开身体,甚至能回过头静静观察自己的四肢如何摆放、自己的脑子出现了什么想法。有时候,还会产生各种真实场景里没有的幻觉,比如看到小人跳舞、空间扭曲,听到五颜六色的声音等。至少根据当事人的描述,这种灵肉分离、灵魂出窍的感觉是实实在在的。因此,这类精神类药物也被称为“解离型药物” 每年,新闻上都有人吃了云南山里的蘑菇,出现各种奇奇怪怪的幻觉。在不少传统宗教里,巫师们会用各种植物和蘑菇做成药物,诱导信徒体验灵魂出窍的感觉。可以想象,一般人哪里扛得住这种经历,很容易就臣服在某种宗教教义的解释之下了。 当然,在现代科学的框架下,人的智慧不管再神奇,也无非是大脑中几百亿个神经细胞活动的结果而已,我们当然不相信人的脑袋里真的住着一个能够独立存在的灵魂,更不相信这东西在特殊条件下能够离开身体到处漂浮,还长了眼睛能回头观察自己的身体。但是不相信归不相信,这种体验的生物学解释又是什么呢? 你可能觉得这个问题有点太科幻,科幻到不属于我们这个时代。但2020年9月16日,美国斯坦福大学的科学家们在《自然》杂志发表了一篇论文,居然真的为灵魂出窍找到了一个看起来很靠谱的解释[9] 。 这项研究的逻辑其实挺容易理解的。既然这种解离型药物能够引起灵魂出窍的体验,科学家们为了科研需要,就给小鼠注射这种解离型药物,然后通过显微镜观察小鼠大脑不同区域的神经电活动有没有什么变化。结果他们发现,在整个大脑皮层区域,只有一个叫作“压后皮层”的区域,在注射该解离型药物以后,很快出现了频率很低、只有1-3赫兹的规律脑电波活动,有点像一个小灯泡以每秒钟亮1-3次的频率闪烁。等过了45分钟,也就是该精神类药物渐渐失效的时候,这种规律闪烁就停止了。 这个压后皮层的区域大概在小鼠大脑中间偏后的位置,可能和学习记忆这些功能有关,本来根本没有人觉得,它会和灵魂出窍这种玄乎的东西有关。因此,看到这个现象,科学家们自然需要进一步确认。结果他们发现,除了该种解离型药物之外,别的解离型药物对压后皮层的活动也有类似的调节作用,而别的药品,麻醉剂也好,致幻剂也好,抗焦虑药物也好,都没用。 难道说灵魂出窍的体验,就是这个压后皮层区域的这种规律性活动导致的? 为了回答这个问题,科学家们利用微型电极对数以百计的大脑神经细胞进行了更精细的活动记录,结果发现了一个更有意思的变化—— 在服用这种解离型药物之后,压后皮层的神经细胞的活动和大脑其他区域的神经细胞,出现了明显的脱节。具体来说,在正常状态下,因为大脑神经细胞之间存在大量直接或者间接的联系,它们的活动总是或多或少会步调一致,一起开启,一起关闭,因此就产生了我们熟悉的脑电波。但该种解离型药物注射下去,别的神经细胞还好,压后皮层的神经细胞却开始自作主张了,它们自己内部还仍然会步调一致,产生1-3赫兹的规律活动,但是这种活动和大脑其他区域脱节了。当然必须强调一句,这里所有注射该解离型药物的操作,都是为了科研中实验的需要。 这就很有意思了。我们刚刚描述了灵魂出窍的体验,听起来就是一种灵魂离开身体,还能回头观察自己的身体和思想的过程对吧?这个状态和压后皮层的神经细胞活动脱节,似乎有那么点像? 小鼠不会说话,当然无法描述自己的精神体验。但是,科学家们用了一个很有意思的办法,来测试这种灵魂出窍的感觉在小鼠体内到底存在不存在。 正常情况下,如果让小老鼠的前爪触碰一块很热的金属板,小老鼠挨了烫,会快速收回前爪,同时忍不住去舔舔爪子。你要是养过小狗、小猫、小孩子,可能会知道我在说什么。这两种反应听起来好像差不多,但性质有点不同——缩爪子,是遇到危险的本能逃避反应;而舔爪子,则带了那么点儿受伤以后自我安慰的感情色彩。 科学家们发现,注射该种解离型药物以后,小老鼠遇热缩爪子的反应没变,但是却不怎么舔爪子了。对此,研究者的解释是,小老鼠可能进入了灵魂出窍的状态,身体基本的防御反应还在,但是飞升的灵魂却感觉不到痛苦悲伤了,只是冷静地做个旁观者,因此就不再疗伤了。 当然,这个解释肯定是有点牵强的。毕竟老鼠不乐意舔爪子可以有各种各样的解释,说不定人家就是不喜欢这个动作了呢,扯不到灵魂出窍上。 不过比较幸运的是,这群科学家恰好找到了一个正在接受治疗的癫痫患者,他时不时就会出现灵魂出窍的体验。 在这位患者大脑里,科学家们居然发现了一模一样的现象。在患者说自己正体验灵肉分离、白日飞升、大脑里分出了几个小人彼此聊天的时候,他大脑里的压后皮层区域也出现了非常类似的现象——频率在3赫兹左右的规律神经活动。尽管只有一个人类患者的数据,但还是让科学家们更坚信自己找到了灵魂出窍的生物学解释。 但是请注意,截止到现在,所有的数据都仅仅还是相关性数据——老鼠或者人,在出现灵魂出窍的体验的时候,大脑压后皮层的神经细胞会出现规律活动,并且和其他大脑区域的活动脱节。这本身不说明两者有因果关系。 想要证明因果关系,我们就得人工操纵压后皮层的神经电活动,模拟出那种1-3赫兹的规律活动,然后看看老鼠或者人是不是真的灵魂出窍了。神经科学的技术进步,使这件事已经不是问题了。在这篇论文里,科学家们先是用了一种叫作“光遗传学”的办法,在小鼠脑袋里利用蓝光和黄光交替闪烁,刺激小鼠的压后皮层神经细胞,人为创造出2赫兹的规律性神经活动,果然就发现,小老鼠遇热也不太愿意舔爪子了。然后他们又用微电极,在那位人类患者脑袋里激发了类似的电活动,那位患者确实立马体会到了灵魂离体的感觉。 这样一来,数据就形成了闭环。灵魂离体的时候,大脑一个特殊区域的神经细胞出现了一种特殊的电活动;而如果人为诱发这种电活动,也能够人为诱导出灵魂出窍的体验。 不知道听到这儿你有什么想法,我反正读论文的时候是很兴奋的。灵魂出窍可能是人脑出现的最神奇的一种体验,原本我很难想象,居然能在有生之年看到对它的生物学解释。但是没想到,就在刚刚过去的这个月,我竟然有机会看到这样一个很简单但是合乎逻辑的科学解释。做科学研究的快乐可能正在于此吧,在走向未知世界的道路上,天知道你每天都会碰到什么。 当然,和所有重要的发现一样,这项研究在解决了一些问题的同时,提出了更多的新问题。 为啥压后皮层这么特别呢?这个区域为啥会出现这种1-3赫兹的规律性活动?这种活动意味着啥?和人类的自我意识有什么关系?为什么当这个压后皮层和其他大脑区域活动脱节,人就会出现灵魂出窍的体验?是不是说压后皮层本来就扮演了一个大脑其他区域观察者和指挥者的角色,负责监督其他大脑区域的活动?还有,为啥该种精神类药物会专门干扰这个地方的活动?人类的多重人格障碍和这个区域有没有关系…… 我甚至觉得,这些问题的背后,其实隐藏着人类智慧的关键秘密,特别是咱们人类如何产生自我意识,如何建立起独一无二的身份认知,如何形成复杂的社会并展开合作和交流。但这些,我们只能等待后续的研究进展了。附阅读推荐:《盗火:硅谷、海豹突击队和疯狂科学家如何变革我们的工作和生活》——[美]史蒂芬·科特勒 杰米·威尔这是本刚出版的新书,书名《盗火》源于古希腊神话人物普罗米修斯的故事,他为人类从天上盗来火种,使人成为万物之灵。因此触怒了宙斯,被锁链缚在高加索山脉的一块岩石上,每天被恶鹰啄食内脏,而他的内脏又总是重新长出来。本书所探讨的“火种”便是类似于心理学家所说的“心流”的状态,也称之为“出神”。一种让人能够全身心投入一项活动,忘记自己,忘记时间,毫不费力,发挥特别好还充满愉悦的感觉。在这种状态下的人仿佛获取了天神的力量,对别人构成一个非常不公平的竞争优势。而现在在美国,从特种部队到很多高科技公司则将大量人力、物力、财力投入到这个项目的研究中,并取得了一定成果。海豹突击队员曾经利用这一技术成功地完成了许多看似无法完成的任务,而他们所运用的则是一种随时关闭自我与集体融合,进行意识切换,做出战略调整来取得战争的胜利的被称之为“集体心流”的“出神”状态。从生理学角度分心,当人们体验一次完整的心流状态时,大脑会分泌六种愉悦感激素(多巴胺、去甲肾上腺素、大麻素、血清素、内啡肽及催产素),这也是大脑能产生的全部愉悦感激素。这意味着,如果我们进入心流状态,在工作中也能体会到兴奋和快乐。在这一状态下,大脑前额叶皮层的广泛活动没有了,取而代之的是这块区域某些特定的部分要么亮起来、异常活跃,要么就暗下去、活动减弱。与此同时,脑电波从活跃的β波,慢慢降低到平和的α波,进入到类似白日梦的状态,以及更深度的类似催眠状态的θ波。在神经化学物质上,像去甲肾上腺素和皮质醇这样的重力化学物质被能够加强表现、产生愉悦感的类似于多巴胺、内啡肽、大麻素、血清素和催产素等化合物替代。 从这一机制来看,“出神”状态其实可以通过三种途径进入。 第一种是用药物(吸食或注射刺激性药物)来激发这种状态。比如在人类历史上,某些宗教或团体就曾经在举行某一仪式前要求参加者摄入含有兴奋药成分的食物。比如如果能成功激发人体催产素的分泌,参与者就会感受到前所未有的仪式感,进而影响其一生。 第二种,也是最古老的神秘的一种,就是通过冥想等方式进入。但这种状态很难达到,据说西藏密教的某些得到高僧才能随意控制这种状态。而我们普通人如果想利用冥想来持续性地形成一种自我消失的状态,没有几十年的时间是达不到的。 第三种是经过科学训练,并借助某些现代科学手段和仪器来实现“出神”,这也是之前所提到的美国各大公司和军方正在着力研究的项目。据说现在已经有一种头戴式的仪器,戴上它之后可以有效地控制你的大脑活动,从而让人更专注于一件事,大幅提升办事效率,并能产生强烈的愉悦感。 本书通过数据、实例,以及当代心理学,神经生物学,工程技术和药理学几个领域的最新研究成果,将我们带入了一个全新的领域,标志着人类对自身的了解越来越深入。但我们也应该清醒的认识到,“出神”体验也有很大的副作用,比如:出神体验带来的多巴胺能让我们产生极端的自我意识,这时我们会认为再大的事业也可以一蹴而就(类似传销的体验),从而决心去做,这样可能会产生悲剧;在出神状态下,我们很难平衡好“放纵”和“克制”的关系,做不到收放自如,这样,便无法做到真正的“自由”;有些出神状态的进入可以通过之前提到的吸毒,或者从事剧烈的、危险的运动来实现,而这样很可能会给我们带来难以预料的危害。附:脑电波(Electroencephalogram,EEG)是一种使用电生理指标记录大脑活动的方法,大脑在活动时,大量神经元同步发生的突触后电位经总和后形成的。它记录大脑活动时的电波变化,是脑神经细胞的电生理活动在大脑皮层或头皮表面的总体反映。[1] 脑电波来源于锥体细胞顶端树突的突触后电位。脑电波同步节律的形成还与皮层丘脑非特异性投射系统的活动有关。脑电波是脑科学的基础理论研究,脑电波监测广泛运用于其临床实践应用中。[1] 2020年3月30日,美国加州大学旧金山分校的科研团队把人的脑电波转译成英文句子,最低平均错误率只有3%,发表在《自然·神经科学》杂志上。[2] 概念 人的大脑是由数以万计的神经元组成的,脑电波就是这些神经元之间的活动产生的电信号,这些神经元之间的连接有的是兴奋的,有的是抑制的;思维活动就是反应这些神经元之间的联系,大脑中的神经元会接收来自其他神经元的信号,当这I些信号的能量积累量超过一定的阐值时,就会产生脑电波,为了检测到脑电波,人’们通常将电极放置在人的头皮上来检测脑电波信号,再应用相关的设备进行脑波的收集与处理。[4] 脑电波中单导联脑电信号确定性较差、随机性强,非线性研究受到一定的限制,识别结果较差;而多导联脑电信号包含着更多的脑活动的信息,它更能反映脑活动的整体信息。[1]波段划分 现代科学研究表明,人脑工作时会产生自发性电生理活动,该活动可通过专用的脑电记录仪以脑电波的形式表现出,在脑电研究中,至少存在有四个重要的波段。[5] 脑电波是一些自发的有节律的神经电活动,其频率变动范围在每秒1-30次之间的,可划分为四个波段,即δ(1-3Hz)、θ(4-7Hz)、α(8-13Hz)、β(14-30Hz)。除此之外,在觉醒并专注于某一事时,常可见一种频率较β波更高的γ波,其频率为30~80Hz,波幅范围不定;而在睡眠时还可出现另一些波形较为特殊的正常脑电波,如驼峰波、σ波、λ波、κ-复合波、μ波等。[5] δ波 频率为1~3Hz,幅度为20~200μV。当人在婴儿期或智力发育不成熟、成年人在极度疲劳和昏睡或麻醉状态下,可在颞叶和顶叶记录到这种波段。[5] θ波 频率为4~7Hz,幅度为5~20μV。在成年人意愿受挫或者抑郁以及精神病患者中这种波极为显著。但此波为少年(10-17岁)的脑电图中的主要成分。[5] α波 频率为8~13Hz(平均数为10Hz),幅度为20~100μV。它是正常人脑电波的基本节律,如果没有外加的刺激,其频率是相当恒定的。人在清醒、安静并闭眼时该节律最为明显,睁开眼睛(受到光刺激)或接受其它刺激时,α波即刻消失。[5] β波 频率为14~30Hz,幅度为100~150μV。当精神紧张和情绪激动或亢奋时出现此波,当人从噩梦中惊醒时,原来的慢波节律可立即被该节律所替代。[5] 在人心情愉悦或静思冥想时,一直兴奋的β波、δ波或θ波此刻弱了下来,α波相对来说得到了强化。因为这种波形最接近右脑的脑电生物节律,于是人的灵感状态就出现了。[5]

从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。

2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。

在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。

2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。

CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所

“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”

除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”

此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。

Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”

该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。

3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )

A.质粒示意图;B.N2a细胞中 Pten 的下调;C.Western检测PTEN及AKT的表达; D.CasRx与shRNA脱靶比较;E.尾静脉注射质粒示意图;F.G.H.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达

图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )

A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;E.F.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。

图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)

A.小鼠和人序列比较以及sgRNA示意图;B.C.在293T和N2a细胞中敲低 Vegfa ;D.VEGFA蛋白的表达;E.AAV病毒质粒示意图;F.实验流程图;G.CasRx的mRNA表达水平;H.I.激光烧伤之前或之后7天的 Vegfa mRNA水平;J.CNV诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;L.M.CNV面积统计。

2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。

该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。

人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。

在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。

作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。

帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。

该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。

大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。

研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。

为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。

在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。

需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。

(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。

(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。

(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。

RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.

Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.

Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.

Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.

The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).

Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.

One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.

Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.

Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.

The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.

References

Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272

Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514

\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors

\2. CRISPR genetic editing takes another big step forward, targeting RNA

\3. How Editing RNA—Not DNA—Could Cure Disease in the Future

[ https://www.obiosh.com/kyfw/zl/aav/209.html](

脊髓神经研究最新进展论文

兰州一985本科生鲁同学发表31篇论文,他肯定不是科研奇才,但他绝对是找到了学术密码的奇才。

按照兰州大学公众号的展示,鲁同学是2016级临床医学本科生,但就短短的本科时间,他却发表了31篇论文,其中6篇是一作身份的SCI,而且还有3篇是中文核心。就这么辉煌的成绩,无论如何也是令人惊讶的,不管鲁同学研究的方向或者研究的深度有多深,这么好的简历是普通人拿不出来的,这不禁让人感叹这位鲁同学是否有一位好朋友。我们从兰州大学介绍鲁同学的研究方向以及鲁同学发表论文所涉及的领域来看,鲁同学无论如何都不算是一个科研奇才,他充其量也就算是掌握了学术密码的奇才。

他不是科研奇才

鲁同学不是科研奇才而是掌握了学术密码的奇才。按照兰州大学公示,鲁同学从事脊髓损伤后神经功能重建研究,然而他的论文却遍及了新冠病毒、静脉血栓栓塞、改革开放调研等领域,再加上他的文章大多数都是综述类型的文章,只需要将他人的拿过来重新用自己的话再说一遍便能够成功发出,这就是妥妥的流量密码啊。在坚固写这么多篇论文的同时,更夸张的是鲁同学是一名医学生,平时他的课程安排以及考试课业任务是很重的,然而他竟然能够兼顾自己的平时学习成绩以及科研研究成果,这简直就只能用天才来形容。用鲁同学本身的高位来看,这么出色的一个人应该去清华北大而不是中山大学。

研究方向广而散

研究方向比较广,而且零散是很多人质疑他是否为科研奇才的关键点。一个人如果真想在某个领域上有一点研究,那么深究下来写个七八篇论文也不是什么奇怪的事情,但如果能够普遍开花,这可就不是一般人能够达到的成果了。现在鲁同学能够在多个领域有所涉足并且发刊,除了我有一个好爸爸的假设能够成立,我真的没有办法想到有什么其他的途径能够实现。

兰州大学本科生发表31篇论文引发关注,这些论文的涉猎非常广泛,从医学到城市发展都可以看到他的论文。这位学生所学的专业是临床医学,很多人在看到他写的论文时,都感觉非常的震惊。在本科期间,竟然可以做这么多科研。

这位学生发表的论文成功的爆火,而内容包括中医药治新冠肺炎、骨科手术后静脉血栓栓塞、肺癌等等多个方面。在这些论文当中,很多都是作为第一作者存在的。同时在网络上竟然还看到了一篇研究改革开放40周年的辉煌成就为题的论文,这一篇论文和自己的本科专业没有任何的交叉性。但是也是这个作者写的,也让人很纳闷到底是请人代笔,还是真的做了这么多研究。

在知网上,可以看到这位学生写过的论文。有17篇是英文论文,在这些英文论文当中,和自己的师兄合作的机会很多,两个人都跟着一位导师学习。在本科5年期间,这位学生以第一作者发表了SCI论文9篇,在中文核心期刊上发表了三篇论文,并且以自己的身份申请了两项专利。现在已经成功的直博,保送到中山大学。通过这位学生得的奖项,可以看出学生的生活异常的丰富多彩。除了热衷于做科研之外,也积极的参加学校的创新创业大赛。

因为这个本科生了31篇论文之间的跨度很大,而且在本科期间基本上接不到比较大型的科研项目。所以遭受到了很多人的质疑,关于这件事情,学生本人也做出了回应。表示清者自清,有相关的证据可以去表明自己的清白,学校方面也会积极的展开调查。学生觉得并不像大家所说的那么优秀,只是一个非常普通的医学生而已。

他是一个科研奇才,他只是一个本科生就发表了31篇论文,而且每一个论文都是有理有据的,并且他也特别的有才华,他的身体已经远远超过了一个本科生应该有的知识储备。

是关于医学方面的研究,关于脊髓损伤后神经功能重建方面的研究,目前已经发表了多项论文,取得了非常不错的效果。

免疫调节最新研究进展论文范文

英文名:Cholecalciferol, Vitamin D, Calciferol, 1,25-Dihydroxycholecalciferol, and ergocalciferol 维生素D是一类具有环戊氢烯菲环结构的化合物,由类固醇衍生而来。维生素D至少有五种形式,但最具有生物学意义的只有两种,即胆钙化醇(D3)和麦角钙化醇(D2)。两者对人体的作用和作用机制完全一致,VD2在人体内还需转化为VD3,由于VD2生产更为便宜,一般的强化食物中含的是VD2。 胆钙化醇是人类必须的一种脂溶性维生素。1936年人们确定了化学结构。 胆固醇脱氢后生成的7-脱氢胆固醇经紫外线照射即可形成胆钙化醇,因此也就是说胆钙化醇的维生素D原是7-脱氢胆固醇。胆钙化醇在肝脏中经羟化酶系作用形成25-羟胆钙化醇,再在肾脏中被羟化为1,25-二羟胆钙化醇,这种物质的活性较胆钙化醇高50%,被证明是维生素D在体内的真正活性形式。且1,25-二羟胆钙化醇属于肾脏分泌的一种激素,因此实际上胆钙化醇也是一种激素原[1][8]。 近年来大量研究表明维生素D对骨骼具有健康效应,还可以参与组织的分化、增殖和活性调节,对机体免疫功能具有调节作用[1][3][4]。 维生素D3吸收后必须进行代谢活化后才能发挥其生物学功能。在肝脏中,胆钙化醇经25-羟基化形成25-羟胆钙化醇[25-(OH)-D3],随后在肾脏中发生1-α羟基化生成1,25-二羟胆钙化醇[1,25-(OH)2-D3]。肾脏是产生活性维生素D[1,25-(OH)2-D3]的关键脏器。 血液循环中的25OHD和1, 25(OH) 2 D大约有85%~88%与维生素D结合蛋白(vitamin D binding protein, DBP)结合,12%~15%与白蛋白相结合,大约不到1%为游离形式。DBP主要由肝脏合成,在其他组织器官如肾脏、睾丸和脂肪中也有产生。在调节方面与其他性激素结合蛋白相似,口服避孕药和妊娠会增加DBP的合成。在体外,糖皮质激素和一些细胞因子如表皮生长因子(epidermal growth factor, EGF)、白介素6(interleukin-6,IL-6)、转移生长因子(transforming growth factor β,TGF-β)等刺激DBP的合成,而TGF-β则抑制DBP的合成[2][3][8]。 任何干扰人体皮肤产生维生素D的因素,包括肝肾病变,可导致维生素D缺乏。如: 妨碍常规日晒的慢性疾病或残疾 冬季生活在北纬37度以上或南纬37度以下的地区,但是这还有争议 深肤色的人和老年人维生素D的产生量较少[20] 成骨细胞(Osteoblast, OB)与破骨细胞(Osteoclast, OC) 维生素D既能控制和调节Ca的吸收与平衡,又是调节骨代谢的重要体液因子。破骨细胞和成骨细胞的分化与增殖都受维生素D的调节。 充足的摄入钙和维生素D可以调节和降低骨转换,即抑制甲状旁腺激素(PTH)的分泌,阻止PTH增加破骨细胞的活性和数量。[2][3][14] 1,25二羟胆钙化醇可直接作用于成骨细胞的VDR降低RANKL/OPG通路的比例以减少破骨细胞的骨再吸收,并且促进成骨细胞分化和增殖,增加转化生长因子β(TGF-β,有较强的成骨和成软骨作用)的合成及胰岛样生长因子1(IGF-1)受体的数量,同时通过I型胶原和基质蛋白相应基因的启动,转录而增加合成,不仅保证了骨组织胶原纤维的矿化,而且使维持骨质量所必须的成分增多。[2][15] 过量的1,25二羟胆钙化醇则会作用于未成熟的成骨细胞VDR致使RANKL/OPG增加,刺激破骨细胞的骨再吸收。大量1,25二羟胆钙化醇还会作用于成骨细胞和骨细胞VDR使骨矿化抑制因子增多,使骨骼去矿化,最终导致软骨病[9][21]。 骨峰值基本在三十岁定型,由基因,生活方式,营养和体力活动决定。骨流失一般从40岁开始。晚年的骨骼相关疾病与成年时的骨峰值和骨量的维持有关。如果维生素D长期摄入不足则会导致骨去矿物质化,VD的缺乏会导致Ca吸收下降,骨钙需要释放以维持血钙浓度。连续的骨转化和再吸收会影响骨骼的结构进而通过继发性甲状旁腺功能亢进增加骨折的风险,最终导致骨软化和骨质疏松。充足的维生素D的摄入可有效的降低骨折的风险并增强骨矿物质密度(BMD)[21]。 维生素D还可增加肠钙吸收,肠钙吸收能力即肠壁运载钙的能力受1,25二羟胆钙化醇控制,其通过控制基因和非基因途径刺激肠壁细胞钙主动转运系统。肠壁细胞的主动吸收钙离子通道为瞬时性受体电位通道香草酸受体5/6,在十二指肠和近端空肠分布非常丰富,对1,25二羟胆钙化醇反应敏感,是肠钙吸收效率最高的部位。[2][4] 维生素D和PTH共同调节钙磷平衡,当血钙血磷低时,PTH分泌增加,刺激肾脏产生1,25-(OH)2-D3,促进钙在肾小管的重吸收,增强小肠钙磷吸收;使未成熟的破骨细胞前体变为成熟的破骨细胞,促进骨钙释放。当血钙过高时,促进甲状旁腺产生降钙素,阻止钙从骨骼中动员,增加钙磷从尿中排出。 1,25二羟胆钙化醇的生物效应是通过核受体(nVDR)和细胞受体(mVDR)介导的,其中nVDR是主要受体。1,25二羟胆钙化醇与nVDR结合,作为配体依赖性转录因子发挥作用。nVDR在人体中的30个靶细胞包括经典的小肠上皮细胞、甲状腺细胞、骨细胞、肾细胞以外还包括T淋巴细胞、B淋巴细胞、抗原呈递细胞等,表明1,25二羟胆钙化醇除调节钙磷代谢外还有调节免疫的功能。[5][6] 1,25二羟胆钙化醇可直接作用于T细胞,抑制抗原特异性T细胞的增殖和相应细胞因子的产生。其中CD4+ T细胞是其作用的直接靶点。CD4+T细胞在功能上可分为两个子集Th1和Th2。Th1细胞介导细胞免疫,诱导免疫排斥,Th2细胞介导体液免疫,诱导免疫耐受。Th1和Th2互为抑制性T细胞。当VD缺乏或VDR传递信号减弱时,Th1活动增强,Th2和调节型T细胞活动减弱,由此可以诱导出Th1优势免疫应答。1,25二羟胆钙化醇能直接抑制Th1分泌的细胞因子,即1,25二羟胆钙化醇能调节Th1/Th2免疫偏移。[5][7][8] 1,25二羟胆钙化醇还可抑制T细胞的凋亡。1,25二羟胆钙化醇激活VDR后抑制FasL的启动子活性,减少FasL的mRNA表达,抑制激活诱导的细胞死亡。[5][6] 脂肪细胞和成骨细胞来源于相同的祖细胞——间充质干细胞(MSC),因为脂肪细胞和成骨细胞分化之间存在着此消彼长的关系。骨髓间充质干细胞向脂肪细胞分化过程中C/EBPs和PPARγ等转录因子起了关键性作用,其中PPARγ的作用尤为显著。PPARγ被激活后可以抑制Runx2和Osterix等成骨细胞特异性转录因子表达, 因而成骨细胞分化减弱而脂肪细胞分化加强。1,25二羟胆钙化醇可以增强Runx2,Osterix等表达使成骨细胞分化增强,同时使PPARγ和C/EBPα的mRNA表达显著减少,表明1,25二羟胆钙化醇可强烈阻断脂肪细胞的生成[10][12][13] 上述方式一般适用于青少年这类脂肪细胞数量未定的人群[22] 高脂高糖的环境下,1,25二羟胆钙化醇已经失去对前脂肪细胞脂肪合成的抑制作用[11] 维生素D有两种形式,D2(麦角钙化醇)和D3(胆钙化醇),它们在化学结构和代谢作用上很相似。两种形式都可以有效地增加血清维生素D水平,但研究表明维生素D3具有更强功效,比补充后维生素D2后维持健康维生素D水平的周期更长。考虑到这些因素,维生素D3是治疗维生素D缺乏的首选方案。 橘袋维生素D还额外添加了维生素K2以辅助维生素D3功效,维生素K AI为80mcg/day,暂无UL。美国实验19-30女性人群367mcg/d未观察到任何副作用。 维生素K2的作用机制与K1相似,可辅助γ-谷氨酰羧化酶将谷氨酸(Glu)转化为γ-羧化谷氨酸(Gla)。这过程对生成Gla-蛋白质(含有Gla-的蛋白质)有帮助,如骨钙素(Osteocalcin),它属于非胶原酸性糖蛋白,是一种维生素K依赖性钙结合蛋白。它主要由成骨细胞、成牙质细胞合成,还有一些由增生的软骨细胞合成,在调节骨钙代谢中起重要作用,能够促进成骨细胞,抑制破骨细胞从而促进骨骼钙化[19]。 作为补充生理剂量的维生素D,在25mcg/day以内一般很安全。如使用推荐剂量出现高血钙,应考虑已患有原发性甲状旁腺功能亢进,长期使用要注意可能出现的高血钙症。[2] 根据各国推荐摄入量以及摄入上限量,本品25mcg/d安全合理。 中国营养学会 RNI 10mcg/d、UL 50mcg/d 美国 15mcg/d 欧洲 20mcg/d 法国 25mcg/d。 儿童维生素D缺乏表现为佝偻病, 佝偻病主要的特征是生长着的长骨干骺端软骨板和骨组织钙化不全,维生素D不足使成熟骨钙化不全。 成人维生素D缺乏表现为软骨病和骨质疏松。骨质疏松是由于多种原因导致的骨密度和骨质量下降,骨微结构破坏,造成骨脆性增加,从而容易发生骨折的全身性骨病。 副作用:超大剂量(100mcg/day)摄入后会出现恶心,呕吐,食欲不佳,便秘,虚弱,意识模糊,肾损伤等问题[17]。 禁忌症:高钙血症、维生素D增多症、高磷血症、肾功能减退、肾结石者、甲状旁腺功能亢进请咨询医师[16]。 References [1] Blomberg Jensen, Martin. “Vitamin D Metabolism, Sex Hormones, and Male Reproductive Function.” REPRODUCTION, vol. 144, no. 2, 2012, pp. 135–52. Crossref, doi:10.1530/rep-12-0064. [2] 朱汉民.钙、维生素D和骨质疏松症防治[J].药品评价,2012,9(07):21-27. [3] 丁霏,陈彦丽,廖静,罗薇,李贵星.甲状旁腺素、25-羟维生素D及血清钙磷与原发性骨质疏松症的相关性分析[J].国际检验医学杂志,2020,41(06):648-651. [4] 杨卫红,周建烈.补充钙和维生素D预防骨质疏松性骨折疗效述评[J].中国骨质疏松杂志,2008(11):797-802+826. [5] 叶琨,龚智峰.1,25-二羟维生素D3的免疫调节机理及其应用进展[J].中国临床新医学,2011,4(03):285-288. [6] 赖兰敏,彭桉平,陈曲波.1,25二羟维生素D3的免疫调节及其在自身免疫性疾病中的研究进展[J].中国免疫学杂志,2019,35(17):2169-2173. [7] 孔菲菲,厉小梅.1,25-二羟维生素D3的免疫调节作用新进展[J].细胞与分子免疫学杂志,2013,29(05):553-555. [8] 刁飞,陈玉霞,刘宇健.1,25-二羟维生素D3的生物学效应[J].生命的化学,2005,25(4):275-278. [9] 王峰, 林珠, 李永明,等. 1,25-二羟维生素D3对骨髓破骨细胞形成和破骨细胞分化因子mRNA表达的影响[J]. 牙体牙髓牙周病学杂志 2004年14卷4期, 183-185页, ISTIC CA, 2004, 14(4):183-185. [10] 关晓慧, 王君, 郭菲,等. 1,25-二羟基维生素D,抑制脂肪细胞分化作用的研究[J]. 天津医药, 2013. [11] 张力翔,缪珩.高糖高脂肪酸环境下维生素D对分化后前脂肪细胞脂肪合成的影响[J].山东医药,2013,53(35):21-23,后插3. [12] 张力翔,缪珩.维生素D及其受体对3T3-L1前脂肪细胞分化影响的分子机制[J].医学综述,2012,18(03):336-338. [13] 韩桂艳.维生素D与代谢综合征的关系及其对前脂肪细胞增殖分化的影响[D].北京协和医学院;中国医学科学院,2010:1-86. [14] Holick, Michael F. “Vitamin D and Bone Health.” The Journal of Nutrition, vol. 126, no. suppl_4, 1996, pp. 1159S-1164S. Crossref, doi:10.1093/jn/126.suppl_4.1159s. [15] Bikle, Daniel D. “Vitamin D and Bone.” Current Osteoporosis Reports, vol. 10, no. 2, 2012, pp. 151–59. Crossref, doi:10.1007/s11914-012-0098-z. [16] “Common and Rare Side Effects for Cholecalciferol (Vitamin D3) Oral.” WebMD, www.webmd.com/drugs/2/drug-6152/cholecalciferol-vitamin-d3-oral/details/list-contraindications. Accessed 18 Sept. 2021. [17] “Vitamin D.” Mayo Clinic, 9 Feb. 2021, www.mayoclinic.org/drugs-supplements-vitamin-d/art-20363792. [18] Laird, Eamon et al. “Vitamin D and bone health: potential mechanisms.” Nutrients vol. 2,7 (2010): 693-724. doi:10.3390/nu2070693 [19]Shearer, Martin J, and Paul Newman. “Metabolism and cell biology of vitamin K.” Thrombosis and haemostasis vol. 100,4 (2008): 530-47. [20] Fookes, Carmen. “Vitiamin D" Drugs.Com, www.drugs.com/vitamin-d.html. Accessed 18 Sept. 2021. [21] Goltzman, D. Functions of vitamin D in bone. Histochem Cell Biol 149, 305–312 (2018). [22] 中国超重/肥胖医学营养治疗专家共识 (2016 年版)

免疫学的发展是人们在实践中不断探索、不断总结和不断创新的结果。下面我给大家分享一些免疫学技术论文,大家快来跟我一起欣赏吧。

心理神经免疫学研究

摘要心理神经免疫学(Psychoneuroimmunology)是一门探索人类心身健康奥秘的新型边缘学科。它研究神经系统如何将心理因素转换为可以影响健康的生理状态的机制,特别是脑和行为如何影响免疫系统,又如何受到免疫系统的影响的。免疫系统和神经系统之间是否真正存在联系一直有争论,我们实验室围绕高级神经活动对免疫系统的作用开展了研究。工作包括:条件反射性免疫抑制和增强、情绪应激与免疫、心理行为干预与癌症等。这些工作不仅证实了心理调控,比如信号刺激、情绪和意念想象等,确实可以影响免疫系统的功能,而且对有关机制进行了探讨。

关键词心理神经免疫学,条件反射性免疫,情绪应激,心理行为干预。

分类号B845

有人统计,人类疾病有2/3与心理刺激、生活境遇有关,其中心身疾病占1/3。实际上,心理因素可以影响生理因素的观点是各国文化群体都普遍认可的。也就是说,精神和躯体之间是互相联系的。然而心理因素如何影响健康和疾病却一直是个谜。随着科学的发展,一门新兴交叉型边缘学科,心理神经免疫学(Psychoneuro- immunology)诞生了。它融合了心理学、生物化学、免疫学、行为学、解剖学、分子生物学和临床医学等多种学科,研究神经系统如何将心理因素转换为可以影响健康的生理状态的机制,特别是脑和行为如何影响免疫系统,又如何受到免疫系统的影响的。这些研究对认识精神活动在健康和疾病中的作用打开了科学之窗。人们看到了免疫系统,这一保护机体免受传染病和肿瘤侵袭的防御系统,是精神和躯体之间的桥梁[1,2]。但是,尽管已经有很多研究表明神经系统可以影响免疫系统,依然有不少生理学家认为免疫系统是独立的自我调节系统。实际上这涉及一个由来已久的争议问题,即心身分离还是心身交互作用的问题。本文的目的就是依据我们自己的工作,阐明心理行为因素在调节免疫功能中的作用及其相应的机制。这些工作包括了条件反射性免疫抑制和增强、情绪应激的免疫效应、心理行为干预与癌症等。

1心理神经免疫调节的研究

1.1条件反射性免疫抑制和增强

条件反射性免疫是中枢神经系统调节免疫系统的重要证据。自从Ader和Cohen在1975年第一次发表关于条件反射性免疫抑制(conditioned immunosuppression, CIS)的工作以来,这一实验范式得到了广泛的关注。在这种实验范式中,一种对于实验动物来说在味觉上新异的溶液,比如糖精水,被用作条件刺激(conditioned stimulus, CS),而免疫抑制剂如环磷酰胺、环孢霉素A等具胃肠道毒副效应的药物作为非条件刺激(unconditioned stimulus, UCS),二者配对呈现。随后再次给与条件刺激,则发现实验对象出现了条件性味觉厌恶的行为现象,而且免疫功能也受到了显著的抑制。针对这一现象的解释是有争议的。有的认为这是条件反射性的调节作用,是中枢神经系统调控免疫功能的重要证据之一。另一些则认为可能是应激的作用。动物对糖精水的厌恶行为也即味觉厌恶性条件反射的建立不能排除某种程度的应激的存在,而应激则会引起肾上腺皮质激素的升高,从而抑制免疫功能[3]。为弄清条件性免疫抑制的实质,我们分别采用一次性和两次性的CS-UCS结合训练方式,并在不同时程呈现条件刺激,观察由条件刺激引起的味觉厌恶性行为与条件反射性免疫抑制的关系,发现两者的表现方式和表现程度并不同步,条件反射性免疫抑制并非是厌恶行为反应或情绪应激的伴随产物 [3,4]。并进一步发现不具明显毒性作用的生物免疫抑制剂作为UCS时,也能建立条件性的免疫抑制效应[5]。条件刺激不仅可诱发动物的细胞免疫抑制反应而且可诱发体液免疫反应的抑制作用,并且随着强化水平的增加,条件反射性免疫抑制效应增强[6]。这些实验证明条件反射性免疫抑制是条件刺激的作用,而不是应激效应。对CIS的合理的解释是脑中CS―UCS的联想学习过程,中枢神经系统储存了对条件刺激(CS)的知觉信息,该条件刺激与UCS的免疫抑制反应相偶联,CS再次呈现时就产生一个直接信号激活免疫系统引起反应。

利用联想学习原理,条件反射性免疫调节应该是双向的。也就是说,条件刺激可以产生免疫抑制效应,也就可以产生免疫增强效应。建立起条件反射性免疫增强(conditioned immuno-enhancement, CIE)的模式将更有利于证明条件反射性免疫调节是中枢神经系统调控免疫系统的结果。而且由于CIE所用药物的免疫效应与CIS有所不同,CIE模式将为脑和免疫系统相互作用的研究提供新视角。为次,我们在国际上首次尝试以卵清白蛋白(ovalbumin, OVA)抗原作为非条件刺激,糖精水作为条件刺激,经过一次配对,在初次抗体反应曲线的上升阶段再次单独呈现条件刺激时,诱导出条件反射性抗OVA抗体生成的增加[7]。虽然该条件性抗体增强的幅度较低,但从统计学上看,条件反射组和非条件反射组之间有了临界值差异。但该模式最初没有得到完全成功的验证[8]。为重复检验条件性抗体增强效应,再次分别用糖精水和电针作为条件刺激,进一步观察和分析条件性抗体增强的动态反应,对条件反射性抗体增强的发生发展过程做一完整的描述。

在用糖精水作为条件刺激的重复实验中[9],不同于先前工作的是,再次单独呈现条件刺激的时间是放在初次抗体反应的下降段,而不是放在初次抗体反应曲线的上升段。这是考虑到在基础抗体值比较低时,条件反射本身的效应可能得到充分体现。而实验结果也证实了这一点。统计学数据表明,抗体水平在条件反射组和其他控制组之间的差异均达到了p<0.01甚至0.001的水平。

我们还发现,条件刺激诱发的抗体生成曲线在动力学上与抗原再次进入体内引起的二次抗体反应曲线很相似。单独给予条件刺激后约15天左右出现明显的抗OVA抗体水平增高,20、25天左右达到峰值,以后明显下降并逐渐接近正常水平[10]。这一结果不仅仅证明了联想学习可以调节免疫功能,而且发现了条件反射性免疫过程与抗原引发免疫应答过程的基本规律是类似的。这些工作从免疫增强的方向论证了信号刺激的免疫调节作用,建立了稳定可靠的CIE模型。

从临床角度出发,条件反射性免疫增强的重要意义在于通过脑的调控提高免疫力,增强机体对疾病的抵抗力。考虑到CIE模式在人类临床应用的可能性,寻找合适的条件刺激很重要。因为甜味饮料是人类日常生活中经常会遇到的,从新异性的角度考虑,糖精水或甜味饮料都不太适用于人类。因此尝试将一种躯体感觉信号――外周电针刺激――作为条件刺激,考察它能否诱发特异性抗体增强反应。 电刺激信号是通过两支刺入肌肉5mm的细钢针发送的。为了减少实验误差,选择传统医学中的穴位足三里作为针刺的位置,因此这种条件刺激物也可以称为电针。在这个研究中我们选择的电压强度分别为2伏特和4伏特[11]。

在本研究中,先是将电针刺激和腹腔注射OVA进行一次配对。经过一段时间的间隔,再次对动物实施电针。然后分别在第二次电针后的第10,17,24和31天经尾静脉取血,检测抗体值。结果发现,不管是2伏特还是4伏特的电针,均能显著提高抗体浓度,在第10和第17天时最为明显。研究还发现,甚至在麻醉状态下,电针和卵清白蛋白也可以实现配对,也就是说,在条件反射训练时麻醉的动物也出现了反射性抗体生成增加。没有发现电针本身对抗体生成有任何影响。这些结果进一步证实,仅需经过条件刺激和非条件刺激的一次配对,再次呈现的条件刺激即可诱发出条件反射性免疫反应。验证了条件反射性抗体增强的客观存在性和普遍性。而且,电针被用作为一个有效的条件刺激物,将为把条件反射性免疫调节在临床上得到应用提供了一种可能性。

1.2条件反射性免疫调节的神经机制

条件反射性免疫抑制效应和免疫增强效应都表明与免疫无关的信号刺激能转变为具有触发免疫反应的非条件刺激的性质,这种转换必然发生在脑内,因而可以说这是脑对免疫系统调控的直接证据,但脑内究竟发生了什么并不清楚,条件反射性免疫调节的相关神经回路和脑机制还远远没有弄清[2]。为了直接洞察脑的变化,探讨脑内中枢整合机理,找寻直接观察脑内活动的指标是必要的。

C-fos蛋白是神经元激活的一个标志物。它通常处于不活动或表达很低的状态,但在受刺激时能作出短暂而迅速的反应,可成为神经元兴奋水平的客观指标。利用免疫组化技术,我们发现,再次单独呈现条件刺激可以导致包括脑干,边缘系统和大脑皮质在内的区域大量c-fos蛋白的表达。其中有一些脑区尤为重要。不论是条件性抑制范式还是条件性增强范式,再次单独呈现条件刺激都可以引起岛叶皮质、杏仁中央核和下丘脑室旁核c-fos蛋白的大量表达。这些结果表明,条件性免疫反应是和大脑的活动相关联的[10,12,13]。

但是必须指出的是,在我们和其他作者报道的关于脑机制的研究中,所采用的条件刺激物都是糖精水。我们的实验已经证实,以电针作为条件刺激也可以很好地诱发出条件性免疫改变,而电针和糖精水所激活的脑区是大不相同的,因此在今后的研究中阐明以电针为条件刺激所激活的大脑区域将有助于进一步确定与条件反射性免疫调节有关的共同脑机制,排除刺激引起的非特异性相关。

目前关于条件反射性免疫的神经化学机制研究也很缺乏。由于中枢胆碱能系统被认为与学习记忆有很密切的关系,该系统的这些功能主要是由毒蕈样受体(muscarinic receptor, M受体)介导的。为再次验证条件反射性免疫与学习过程有关,实验采用对M受体具有阻断作用的药物东莨菪碱作为工具药,考察整个M受体系统在条件反射性免疫调节中的作用。结果发现在以电针为条件刺激的条件反射性抗体增强模式的学习阶段是中枢胆碱能M受体依赖的,但在条件反射的唤起阶段是非胆碱能受体依赖的。在条件反射训练前阻断M受体,条件反射性免疫不再发生。但在条件反射训练完成后再抑制乙酰胆碱的合成,则不会影响条件刺激诱发的免疫反应。这些结果表明中枢乙酰胆碱参与了学习阶段的记忆形成过程,但不影响已经形成的记忆的再提取。这从神经生化的角度论证了条件反射性抗体生成的增加与学习记忆有关[14]。

2情绪应激与免疫

除条件反射性免疫的研究外,应激与免疫的研究是进行精神行为因素对免疫功能作用研究的另一热点[2]。已经有很多证据表明,应激可以导致免疫功能改变。但是,相关的动物研究大多采用电击或束缚的方式来引起应激效应。尽管这些模型也含有心理应激的成分,但其主要成分是生理性的。为了考察情绪应激对行为、神经内分泌和免疫功能的影响,研究采用两种情绪应激的动物模型:一种是传统的,以电击装置为信号刺激诱发曾有过电击经历大鼠的情绪应激。另一种是本实验室新建的,用空瓶刺激诱发定时喂水大鼠的情绪应激。这两种类型情绪应激源激活的脑区有许多共同点[15]。

在传统的电击信号刺激模式中[16],动物分成4组:电击组、情绪应激组、装置对照组A1和装置对照组A2。电击组动物用OVA免疫后2周内无规律给予10分钟/日,共6日的足电击,其余时间内无处置;情绪应激组动物除给予电击组动物电击的当天同样强度和频率的足电击外,在2周内的其余时间将其每天置于电击装置内10分钟而无电击(恐惧的情绪应激);对照组A1动物仅在给予电击组动物电击的当天被置于电击装置中10分钟而无电击;对照组A2的动物则每天被置于电击装置中10分钟而无电击。结果发现情绪应激组动物的呆滞行为和排泄行为显著增加;去甲肾上腺素、肾上腺素及皮质酮水平均显著提高。在抗OVA 抗体水平和脾脏指数上, 情绪应激组动物较装置对照组A2动物显著降低,而其余各组间无显著差异。并发现脾脏指数分别与肾上腺素含量和去甲肾上腺素含量呈显著负相关。

在空瓶刺激诱发的情绪应激模式中[17],动物先进行一周2次/日的定时饮水训练,然后腹腔注射OVA抗原以激发特异性抗体反应。此后动物被分成3组:分别为情绪应激组、生理应激组、和对照组。情绪应激组的动物每天只有一次饮水的机会,而另一次则给予一只空的饮水瓶,持续14天,以产生情绪应激。生理应激组的动物也是只有一次饮水的机会,但并不另外再给一次空瓶的刺激。这种设置的目的是控制缺水本身可能造成的生理应激的影响。对照组保持每天两次饮水不变。结果发现情绪应激产生了很显著的行为改变,即攻击行为和探究行为显著增加;血浆皮质酮、肾上腺素和去甲肾上腺素的水平显著提高;白细胞计数和抗OVA抗体浓度显著下降。抗体水平和脾脏的重量与儿茶酚胺水平之间均存在显著的负相关。但情绪应激的时间作用点和时程对应激的免疫效应有影响 。与此相对的是,缺水导致的生理应激只能诱发探究行为,升高皮质酮水平,降低白细胞计数。但它不诱发攻击行为,不影响抗体水平和脾脏指数,也不激活交感神经系统。这些结果进行了反复的验证 [18~20]。

上述两种模式的研究结果都证明,情绪应激对免疫功能产生了抑制效应,激活了下丘脑-垂体-肾上腺轴(HPA)和交感神经系统(sympathetic nervous system, SNS)。由于抗体水平和脾脏指数与儿茶酚胺水平存在显著的负相关,而与皮质酮水平无关,提示交感神经系统的激活可能及情绪应激对体液免疫功能调节的中介机制。而皮质酮水平可能只是应激的一种反应。

为了进一步澄清HPA轴与SNS在情绪应激免疫调节中的作用 ,我们分别采用糖皮质激素合成抑制剂美替拉酮阻断HPA轴,外周交感神经末梢的6-OHDA损毁SNS的活动。结果发现,对SNS的阻断能消除情绪应激对体液免疫功能的抑制。而HPA轴的阻断没有这种作用。这些实验证明是交感神经系统介导了情绪应激所致的体液免疫抑制。进一步的证据是,非选择性β-肾上腺素能受体(β-adrenergic receptor, β-ADR)拮抗剂心得安可以逆转情绪应激诱发的体液免疫抑制作用,表明SNS是通过b-ADR介导情绪应激导致的体液免疫功能的抑制。在此基础上,进一步发现参与的受体亚型是选择性的b2-ADR而非b1-ADR[21,22]。

尽管以往大多数研究者认为,应激引起的免疫功能抑制主要是因为应激可以导致肾上腺皮质激素的释放,从而导致免疫功能下降。换句话说,免疫功能的抑制与应激激活的HPA轴有关。但采用我们的情绪应激模型,发现情绪应激引起的体液免疫功能抑制主要是由交感神经系统β-肾上腺素能受体介导的。这为阐明情绪应激的免疫抑制效应的机理提供了新资料。

3心理行为干预与癌症

正如上述研究发现的,心理因素比如情绪或者条件性学习可以引起动物的行为和免疫功能的改变。我们考虑是否可以通过心理行为干预手段来影响癌症病人的免疫功能。虽然有研究报道,癌症可以通过将心理、情绪等多种因素整合起来影响病人的整个机体,但研究结果并不一致[23]。为此,我们打算通过两个研究来考察行为干预对于癌症病人的作用。纳入第一个研究的是40个正在接受放疗的乳腺癌患者,根据年龄、教育程度、癌症分期和接受治疗的状况,她们被随机而匹配地分成两个组:一组接受为期一个月的心理行为干预,另一组作为对照。首先指导干预组病人学会渐进性肌肉放松,然后对她们进行想象训练。想象自己漫步在海滩上,初升的太阳照在脸上,海水轻柔地漫过脚面等等。然后想象免疫细胞如何杀死癌细胞,被杀死的癌细胞又是如何被海水冲刷掉。在干预的前后,分别采取病人的唾液和血液,测定NK细胞的活性。结果发现心理―行为干预可以显著提高NK细胞活性。而且需通过服药来克服放疗引起的白细胞计数降低的副作用的患者比例显著下降[24]。该研究表明,心理行为干预对免疫功能的改善和恢复具有非常显著的作用。

第二个研究纳入120名正在接受放化疗的癌症患者。同样的,依据匹配原则他们被分为一个干预组和一个控制组。除了干预的时间延长到3个月以外,其他的实验条件与上述研究基本相同。所测定的指标包括白细胞计数、NK细胞活性和免疫球蛋白(IgG,IgM,IgA)等。结果发现,干预组在所有免疫功能参数上都得到了不同程度的提高,其中NK细胞活性显著提高[25],生活质量也都得到明显的改善,治疗引起的副作用在很大程度上也得到了缓解。不论是乳腺癌还是肺癌患者,不论是放疗患者还是化疗患者,干预组的生活质量评分,包括躯体功能、角色功能、情绪功能、认知功能和社会功能上都显著高于控制组。同时干预组的症状评分,包括疲劳、呕吐、疼痛和食欲不振等都有显著下降[26~28]。而且,通过行为干预,患者学会运用更为积极的认知方式来应对癌症,摒弃原先的逃避心理,从而使得情绪状态、身体机能和生活质量都得到很好的改善[29,30]。成长策略和社会支持有助于提高癌症生存者的生活质量,增加正性情感[31]。这些结果反复证明了,NK细胞的活性对认知行为干预的作用相当敏感,心理行为干预确实改善了癌症患者及其生存者的生活质量。免疫功能的提高, 特别是NK细胞活性的增强可能在心理行为干预中起着重要的中介作用。

4结语

中枢神经系统和免疫系统之间存在着相互作用。上述三个方面的工作证明某些心理过程,比如联想性学习、情绪、行为想象、和认知策略等确实可以对免疫功能产生影响。也即高级神经精神活动能调节免疫功能。但免疫系统的变化也能影响高级神经精神活动的功能。免疫系统的紊乱不仅导致疾病,也与衰老、性格和行为变化有关。如抑郁症或“病态行为”就与细胞因子如白细胞介素-1有关[32,33]。但这方面的研究尚需深入展开。随着中枢神经系统和免疫系统之间相互作用研究的深入,在人类健康的维护和疾病的防治上将会有新的前景。

致谢:作者感谢曾对本文的研究工作做出重要贡献的博士后、博士生、硕士生和研究助手,他们是王建平、李杰、邵枫、黄景新、陈极寰、王玮雯、刘艳、郑丽、李波、吕倩、卫星、郭友军。

参考文献

[1] 林文娟. 精神与免疫.见:21世纪初科学发展趋势课题组编.《21世纪100个科学难题》吉林出版社,1998. 693~701

[2] 林文娟. 心理神经免疫学的研究及其思路问题. 心理学报,1997, 3: 301~305

[3] 林文娟,卫星, 郭友军,汤慈美,刘艳. 味觉厌恶性条件反射与条件反射性免疫抑制的研究. 心理学报,1998,30(4): 418~422

[4] 李杰, 林文娟,李波,卫星. 条件反射性细胞免疫抑制及其作用时程的实验研究. 中国行为医学科学, 2003, 12(5): 481~483

[5] 林文娟, 陈极寰, Husband A J. 以兔抗鼠淋巴细胞血清为非条件刺激的条件性免疫抑制. 心理学报, 2002, 34 (2): 259~300

[6] 郑丽,林文娟, 邵枫, 王玮雯. 对体液免疫反应的条件反射性调节. 心理科学, 2002, 25(1):27~30

[7] Lin Wenjuan, King M, Husband A. Conditioned behavioral learning activated antibody response to ovalbumin: New evidence for the communication between CNS and immunity. Proceedings of the Second Afro-Asian Psychological Congress, 1993, 788~793

[8] 李波, 林文娟,卫星,汤慈美,郭友军. 以抗原作为非条件刺激的条件反射性免疫调节的研究. 心理学报,1997, 29(sup):34~38

[9] 陈极寰,林文娟, 王玮雯,杨杰,邵枫. 条件反射性抗体反应增强的动态分析――以OVA为非条件刺激物. 心理学报,2003, 35(2): 261~265

[10] Chen Jihuan, Lin Wenjuan, Wan Weiwen, Shao Feng, Yang Jie, Wang Bairen, Kuang Fang, Duan Xiaoli and Ju Gong. Enhancement of antibody production and expression of c-Fos in the insular cotex in response to a conditioned stimulus after a single-trial learning paradigm. Behavioral Brain Research, 2004, 154 (2): 557~565.

[11] Huang Jingxin, Lin Wenjuan, Chen Jihuan. Antibody response can be conditioned using electroacupuncture as conditioned stimulus. Neuroreport, 2004, 15(9): 1475~1478

[12] Lin Wenjuan, Li Jie, Zheng Li, Wang Weiwen, Chen Jihuan. Expression of c-fos in amygdala and conditioned immunosuppression. Acta Psychologica Sinica, 2004, 36(4): 500~505

[13] 李杰, 林文娟,郑丽,李波. 条件反射性免疫抑制激活过程中下丘脑核团c-fos的表达. 心理学报, 2004, 36: 201~207

[14] 黄景新. 电针信号诱发的条件性免疫调节作用及其神经机制. 博士学位论文, 中国科学院心理研究所,2003

[15] 邵枫,林文娟,王玮雯,陈极寰. 情绪应激对不同脑区c-Fos表达的影响. 心理学报,2003, 35(5): 685~689

[16] 邵枫,林文娟,王玮雯, 郑丽. 电击信号对大鼠体液免疫及内分泌功能的影响. 心理学报,2000, 32(4): 428~432

[17] 林文娟,王玮文,邵枫. 慢性情绪应激对大鼠行为,神经内分泌和免疫反应的影响:一个新的情绪应激模型.科学通报,2003, 48(9): 926~929

[18] 邵枫, 林文娟, Washington Welton Craig, 王玮雯. 心理应激的免疫抑制作用及其与神经内分泌反应的相关性.心理学报, 2001, 33(1): 43~47

[19] 邵枫,林文娟. 情绪应激体液免疫调节作用的影响因素研究. 心理学报, 2001, 33(6): 543~547

[20] Shao Feng, Lin Wenjuan, Weiwen Wang, Washinton Jr WC and Zheng Li. The effect of emotional stress on the primary humoral immunity of rats. Journal of Psychopharmacology, 2003, 17 ( 2 ) : 153~157

[21] 邵枫,林文娟. 外周交感神经系统在情绪应激体液免疫调节中的作用. 中国行为医学科学, 2001, 10: 401~404

[22] 王玮雯.交感神经系统在情绪应激所致体液免疫功能改变中的作用. 博士学位论文, 中国科学院心理研究所,2003

[23] 刘艳,林文娟. 肿瘤与心理神经免疫. 美国中华心身医学杂志,1998, 2(1): 21~22

[24] 刘艳, 林文娟, 刘新帆, 张冀岗. 心理行为干预对乳腺癌患者情绪反应及免疫功能的影响. 心理学报, 2001, 33: 437~441

[25] 王建平,林文娟, 梁耀坚, 秀云.心理干预对癌症患者免疫功能的影响. 中国肿瘤临床, 2002, 29(12): 841~844

[26] 王建平, 林文娟, 崔俊南. 心理干预在放患者中的应用.应用心理学,2001, 7(3): 13~17

[27] 王建平, 林文娟, 陈仲庚. 心理干预在化患者中的应用. 心理科学, 2002, 25(5): 517~519

[28] 王建平, 林文娟, 孙宏伟. 中国癌症患者心理干预研究. 中国肿瘤临床, 2002, 29(3): 305~309

[29] 王建平, 林文娟, 孙宏伟. 癌症病人心理干预的效果及其影响因素. 心理学报, 2002, 34(2): 200~204

[30] 王建平,林文娟, 梁耀坚, 秀云. 应对策略在癌症患者心理干预中的中介作用. 中国临床心理学杂志, 2003, 11(1): 1~4

[31] Lu Q, Lin W, Ziltzer L. Quality of life and coping resources among Chinese cancer survivors. Psycho- oncology, 2003, 12 (4): 197~197

[32] 杨宏宇, 林文娟. 白细胞介素-1在病态行为中的作用及其机理. 心理科学进展, 2004, 12(2): 290~295

[33] 迟松,林文娟. 抑郁症神经内分泌免疫学研究进展及心理治疗的作用. 中国临床心理学杂志, 2003, 11(1): 77~80

点击下页还有更多>>>免疫学技术论文

相关百科

热门百科

首页
发表服务