生活中的数学 其实我们生活中处处都有数学,比如说奇妙的圆圆是生活中最常见的图形,人们几乎无处不在应用圆。在车上,在路上,在家里,甚至在空中,你总是能见到圆的踪迹。圆有一个很大的好处,就是它们没有棱角。汽车为什么可以使汽车运行得快速,而又使坐在车里的人感到不颠簸?就是因为汽车的轮子是圆的。你在玩保龄球的时候,为什么保龄球是球体而不是正方体或长方体的?就是因为球体与地面的摩擦力最小,速度慢下来的时间最长,且速度并不容易改变。正因为没有棱角,人们才把圆形和球体称之为最美观的平面图形和最美观的立体图形。圆是公认的最经济的图形。大家都知道,周长相同时,圆的面积比其他任何形状都要大。依据这个道理,人们设计出了圆形的窨井盖,因为圆形的窨井盖在与地面垂直放在窨井上时,不会像正方形或长方形窨井盖那样掉进窨井里,而是稳稳地卡在上面。这么可爱的图形,怎么能不受到人们的青睐呢?除了圆,还有一些和圆相关的,诸如圆柱体和球体之类的立体图形也有着举足轻重的作用呢!在材料面积相同的情况下,圆柱体的容积是最大的,同样,它的支撑力也是最大的。树干,竹子,水桶等东西,无不应用了圆柱体。 还有小数点,数学,在我们生活中无处不在。高斯求积、植树问题……这一个个奇妙的数学定律令我们惊奇。下面让我们去寻找奇妙的数字之旅吧! 小数点不论在体重、价格上无处不有。无处不在它向右移动代表扩大,向左移动代表缩小,这个神奇的小数点揭开了我们今天的数字之旅。 在我们测量和计算中有时得不到整数,小数点就在这里登场了。小数点拥有巨大的“权利”它右边是小数部分,左边是整数部分。它在数字界拥有很大的威望,因为:它的移动就改变了数字的大小。它有两种方法改变数字的大小:1、数字调换位置,2、移动小数点。 在生活中,小数点变化多端一转身变成了单名数,一转身变成了复名数,小数点不仅移动小数点来改变数字的大小,还用乘除法改变数字的大小,乘表示向右移动,移动一位扩大10倍;除表示向左移动,移动一位缩小10倍。 小数点真神奇,在生活中还有很多神奇的定律,让我们一起探寻吧!
魅力无比的定理证明——勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA’ ≌△AA’’ C。过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD ? BA, ①由△CAD∽△BAC可得AC2=AD ? AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。【附录】一、【《周髀算经》简介】《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。《周髀算经》使用了相当繁复的分数算法和开平方法。二、【伽菲尔德证明勾股定理的故事】1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。转引自:中“数学的发现”栏目。图无法转贴,请查看原文。魅力无比的定理证明——勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA’ ≌△AA’’ C。过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD ? BA, ①由△CAD∽△BAC可得AC2=AD ? AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。【附录】一、【《周髀算经》简介】《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。《周髀算经》使用了相当繁复的分数算法和开平方法。二、【伽菲尔德证明勾股定理的故事】1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。回答者:zhang_1118 - 江湖新秀 五级 2-19 17:47中“数学的发现”栏目。图无法转贴,请查看原文。补充回答:这又详细证法,还有图,自己看看
在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。本文是我为大家整理的初二的数学教学论文内容,欢迎查看!
一、注重概念教学理念的创新
(一)以适学情境的构建激发学生学习兴趣
在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。具体实践中可引入相关的数学 故事 或数学趣闻等。如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的 事迹 等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。
(二)注重对概念教学“形式”与“实质”关系的处理
教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进行解答。另外,在其他内容教学中如平行线判定或方程教学中也需注意“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。
二、对概念教学内容的创新
现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具体创新策略主要表现在以下两方面。
(一)把握教材整体内容与概念层次特征
初中数学教材中的概念内容本身具有螺旋式上升特点,无法一次为学生所理解,需要教师对教材的相关概念进行整体把握,并注重各部分概念能够层层推进。以初中数学教学中的绝对值概念为例,教材中对其定义为正数绝对值为其本身,负数绝对值为其相反数,而零的绝对值仍为零。若单纯依靠此定义,学生很难理解,所以在教材内容中又对绝对值概念提出其主要为原点与此时数的点的距离,学生能够初步认识绝对值概念。而在二次根式教学内容时,教学内容又涉及到绝对值概念,学生可将开平方运算联系到绝对值,领会概念的实质。因此,实际概念教学过程中教师需在掌握教学内容整体的基础上按照概念层次性特点进行教学。
(二)概念知识与实际应用的结合
数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,促进实践动手能力的提高。然而大多数学教师为防止信息丢失,对所有的概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成良好的知识体系。因此,要求教师在概念知识教学中应在保证不脱离教材的前提下,对教材内容适当取舍,使学生能够边学边用。
三、注重 教学 方法 的创新
素质 教育 的推行更强调对学生创新意识的培养。以往教学中过于陈旧的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定的问题情境以调动学生参与课堂积极性。
(一)对数学概念本质的揭示
概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造成数学概念内容失去自身的层次性特征与连续性特征。以函数的概念为例,若从字面概念定义,可引入x,y两个变量,在一定范围中y都存在与x值相对应的确定值,此时y为x的函数,而x为自变量。此时,教师可将生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。
(二)对数学教学信息的概括
数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定函数关系,且保持相互对应。通过学生对摩天轮旋转特征的描述,找出与时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。因此,概念教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够自然掌握数学概念。
四、注重教学手段的创新
信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数学教学效果。
(一)充分发挥多媒体教学设备的作用
在教育心理学内容中,提出学生 抽象思维 能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。
(二)课堂演示与实践过程的结合
多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。
作者:陈建芳 单位:昆山市周庄中学
一、问题探究教学模式的基本涵义与基本原则
要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.
二、在初中数学教学中有效运用问题探究教学模式的策略
初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.
1.准确把握学生实际的认知水平
任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.
2.注重培养学生课堂教学中的问题意识
培养学生课堂教学中的问题意识是整个问题探索教学模式的核心内容,也是该教学模式能否成功的关键因素.因此,在初中数学教学中运用问题探究教学模式时,教师一定要认真研究,并运用多种方式,将要教授的学习内容转化为数学问题思维情境,让学生在问题思维模式下自主学习,真正遵循初中数学教学中“提出问题—建构数学—解决问题”的探究过程.例如,在讲“相似形”时,教师可以设计这样一个问题情境:用多媒体播放埃及的金字塔,让学生观察大小金字塔的外形之间有什么相似之处,之间有什么联系.根据这个问题情境,教师可以设置如下两个问题:(1)根据相似形能否测出大金字塔的高度?(2)相似形各边比例是否相等?各个对应的角是否相等?为什么?让学生自己去寻求解答.通过教师创设的这种问题情境,再由学生自主去探索,这种让学生亲身去经历提出问题、解决问题、应用 反思 的过程,就能使学生切实感受到在探索中学习的快乐,而且这种模式也能使教师课堂教学的知识目标、能力目标都得到较好的落实.
3.探索课堂师生之间的情感体验模式
初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.
作者:李权 单位:江苏沭阳县马厂中学
晕,初中就写论文了?还是数学的,有什么用啊
生活中的数学 其实我们生活中处处都有数学,比如说奇妙的圆圆是生活中最常见的图形,人们几乎无处不在应用圆。在车上,在路上,在家里,甚至在空中,你总是能见到圆的踪迹。圆有一个很大的好处,就是它们没有棱角。汽车为什么可以使汽车运行得快速,而又使坐在车里的人感到不颠簸?就是因为汽车的轮子是圆的。你在玩保龄球的时候,为什么保龄球是球体而不是正方体或长方体的?就是因为球体与地面的摩擦力最小,速度慢下来的时间最长,且速度并不容易改变。正因为没有棱角,人们才把圆形和球体称之为最美观的平面图形和最美观的立体图形。圆是公认的最经济的图形。大家都知道,周长相同时,圆的面积比其他任何形状都要大。依据这个道理,人们设计出了圆形的窨井盖,因为圆形的窨井盖在与地面垂直放在窨井上时,不会像正方形或长方形窨井盖那样掉进窨井里,而是稳稳地卡在上面。这么可爱的图形,怎么能不受到人们的青睐呢?除了圆,还有一些和圆相关的,诸如圆柱体和球体之类的立体图形也有着举足轻重的作用呢!在材料面积相同的情况下,圆柱体的容积是最大的,同样,它的支撑力也是最大的。树干,竹子,水桶等东西,无不应用了圆柱体。 还有小数点,数学,在我们生活中无处不在。高斯求积、植树问题……这一个个奇妙的数学定律令我们惊奇。下面让我们去寻找奇妙的数字之旅吧! 小数点不论在体重、价格上无处不有。无处不在它向右移动代表扩大,向左移动代表缩小,这个神奇的小数点揭开了我们今天的数字之旅。 在我们测量和计算中有时得不到整数,小数点就在这里登场了。小数点拥有巨大的“权利”它右边是小数部分,左边是整数部分。它在数字界拥有很大的威望,因为:它的移动就改变了数字的大小。它有两种方法改变数字的大小:1、数字调换位置,2、移动小数点。 在生活中,小数点变化多端一转身变成了单名数,一转身变成了复名数,小数点不仅移动小数点来改变数字的大小,还用乘除法改变数字的大小,乘表示向右移动,移动一位扩大10倍;除表示向左移动,移动一位缩小10倍。 小数点真神奇,在生活中还有很多神奇的定律,让我们一起探寻吧!
魅力无比的定理证明——勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA’ ≌△AA’’ C。过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD ? BA, ①由△CAD∽△BAC可得AC2=AD ? AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。【附录】一、【《周髀算经》简介】《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。《周髀算经》使用了相当繁复的分数算法和开平方法。二、【伽菲尔德证明勾股定理的故事】1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。转引自:中“数学的发现”栏目。图无法转贴,请查看原文。魅力无比的定理证明——勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA’ ≌△AA’’ C。过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD ? BA, ①由△CAD∽△BAC可得AC2=AD ? AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。【附录】一、【《周髀算经》简介】《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。《周髀算经》使用了相当繁复的分数算法和开平方法。二、【伽菲尔德证明勾股定理的故事】1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。回答者:zhang_1118 - 江湖新秀 五级 2-19 17:47中“数学的发现”栏目。图无法转贴,请查看原文。补充回答:这又详细证法,还有图,自己看看
在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。本文是我为大家整理的初二的数学教学论文内容,欢迎查看!
一、注重概念教学理念的创新
(一)以适学情境的构建激发学生学习兴趣
在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。具体实践中可引入相关的数学 故事 或数学趣闻等。如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的 事迹 等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。
(二)注重对概念教学“形式”与“实质”关系的处理
教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进行解答。另外,在其他内容教学中如平行线判定或方程教学中也需注意“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。
二、对概念教学内容的创新
现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具体创新策略主要表现在以下两方面。
(一)把握教材整体内容与概念层次特征
初中数学教材中的概念内容本身具有螺旋式上升特点,无法一次为学生所理解,需要教师对教材的相关概念进行整体把握,并注重各部分概念能够层层推进。以初中数学教学中的绝对值概念为例,教材中对其定义为正数绝对值为其本身,负数绝对值为其相反数,而零的绝对值仍为零。若单纯依靠此定义,学生很难理解,所以在教材内容中又对绝对值概念提出其主要为原点与此时数的点的距离,学生能够初步认识绝对值概念。而在二次根式教学内容时,教学内容又涉及到绝对值概念,学生可将开平方运算联系到绝对值,领会概念的实质。因此,实际概念教学过程中教师需在掌握教学内容整体的基础上按照概念层次性特点进行教学。
(二)概念知识与实际应用的结合
数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,促进实践动手能力的提高。然而大多数学教师为防止信息丢失,对所有的概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成良好的知识体系。因此,要求教师在概念知识教学中应在保证不脱离教材的前提下,对教材内容适当取舍,使学生能够边学边用。
三、注重 教学 方法 的创新
素质 教育 的推行更强调对学生创新意识的培养。以往教学中过于陈旧的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定的问题情境以调动学生参与课堂积极性。
(一)对数学概念本质的揭示
概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造成数学概念内容失去自身的层次性特征与连续性特征。以函数的概念为例,若从字面概念定义,可引入x,y两个变量,在一定范围中y都存在与x值相对应的确定值,此时y为x的函数,而x为自变量。此时,教师可将生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。
(二)对数学教学信息的概括
数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定函数关系,且保持相互对应。通过学生对摩天轮旋转特征的描述,找出与时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。因此,概念教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够自然掌握数学概念。
四、注重教学手段的创新
信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数学教学效果。
(一)充分发挥多媒体教学设备的作用
在教育心理学内容中,提出学生 抽象思维 能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。
(二)课堂演示与实践过程的结合
多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。
作者:陈建芳 单位:昆山市周庄中学
一、问题探究教学模式的基本涵义与基本原则
要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.
二、在初中数学教学中有效运用问题探究教学模式的策略
初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.
1.准确把握学生实际的认知水平
任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.
2.注重培养学生课堂教学中的问题意识
培养学生课堂教学中的问题意识是整个问题探索教学模式的核心内容,也是该教学模式能否成功的关键因素.因此,在初中数学教学中运用问题探究教学模式时,教师一定要认真研究,并运用多种方式,将要教授的学习内容转化为数学问题思维情境,让学生在问题思维模式下自主学习,真正遵循初中数学教学中“提出问题—建构数学—解决问题”的探究过程.例如,在讲“相似形”时,教师可以设计这样一个问题情境:用多媒体播放埃及的金字塔,让学生观察大小金字塔的外形之间有什么相似之处,之间有什么联系.根据这个问题情境,教师可以设置如下两个问题:(1)根据相似形能否测出大金字塔的高度?(2)相似形各边比例是否相等?各个对应的角是否相等?为什么?让学生自己去寻求解答.通过教师创设的这种问题情境,再由学生自主去探索,这种让学生亲身去经历提出问题、解决问题、应用 反思 的过程,就能使学生切实感受到在探索中学习的快乐,而且这种模式也能使教师课堂教学的知识目标、能力目标都得到较好的落实.
3.探索课堂师生之间的情感体验模式
初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.
作者:李权 单位:江苏沭阳县马厂中学
晕,初中就写论文了?还是数学的,有什么用啊
"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题2、善于反思与反求
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
教初中的老师们都常半开玩笑地说这样一句话:“初一是基础,初二是关键,要不然初三就完蛋!”初中的数学知识也不例外,初中数学是一个完整的体系.其中,初中二年级的难点最多,初中三年级的考点最多,而初一年级的数学知识点虽然很多,但相对而言都比较简单.因此,很多同学在刚刚进入初中数学的学习时,常常感觉比较简单,甚至觉得和小学没有什么区别,因而并没有感到压力.这些同学往往对初一的数学知识不够重视,与此同时也慢慢积累了很多小问题,而这些问题在学生进入初二年级,遇到很多综合题或复杂的题目时,就会很快凸显出来.这时,学生会感到跟不上老师的进度,感觉学习数学越来越吃力.究其根源,还是因为这部分同学对初中一年级的数学知识不够重视,没有打下坚实的基础. 下面我先具体列举一下初一年级同学在数学学习中主要存在的问题: 1.不能端正学习态度,没有兴趣,甚至存在害怕数学的心理,缺乏主动积极学习的意向. 2.没有养成良好的学习习惯(预习、认真听讲、记录笔记、归纳总结、复习等). 3.在知识上,对数学定义、概念等基本知识点的理解不够准确,只停留在一知半解的层次,特别是对特殊情况等的把握十分含糊. 4.数学能力(审题能力、计算能力、分析方法、数学思想等)或多或少总存在欠缺,导致各种小错误,不能完整的完成题目. 5.在实践做题中,不能领会出题者的意思,简单的说,不能把握题目的关键,找不到正确的解题思路. 6.平时做题速度较慢,考试时不能在规定时间内完成试卷. 以上这些问题如果不能在学生初一阶段得到改善,将会直接导致学生在初二两极分化的阶段出现数学成绩大幅滑坡,甚至导致在初三年级的学习中存在更大的障碍.相反的,如果学生能够在初一的学习过程中打好基础,那么初二的学习只是在知识点上的增多和加深,而在学习习惯和学习方法上,学生是很容易适应的. 那么,针对以上学生容易存在的问题,怎样才能帮助学生打好初一年级的数学基础呢? 我认为有以下几点值得注意: 1)端正学习态度. 任何一个学科都有其各自的学科特点,数学也不例外.只要养成良好的学习习惯,掌握科学正确的方法方法,就一定能够学好数学.但是,数学学习不能投机取巧,数学学习没有捷径可走,要明白保证做题的数量和质量是学好数学的必经之路. 2)养成良好的学习习惯. 课前预习,带着问题听课.看两遍书:第一遍大概了解下一讲或下一章的内容、知识枝干以及重难点等.第二遍对重要的概念、性质、判定、公式等反复阅读,思考其内在联系及其因果关系,并在不明白的地方作上记号,带着问题去听课,也便于求教老师. 课上认真听讲,会记笔记.初一的学生往往对课程的增多、课堂学习量的加大感到不适应,顾此失彼,很大一部分学生觉得数学没有笔记可记,有笔记的学生也记得不够合理,认为教师在黑板上所写的都记下来就是认真听讲,盲目的用记笔记代替听讲与思考,进而导致了听课效果下降.在听课的过程中应该注意做到:听知识的引入和形成过程;听懂教学中的重、难点,尤其是预习中不明白或有疑问的地方;听题目关键部分的提示(突破口)及数学思想方法;听课后小结.记录笔记时应注意:有选择的进行记录,主要记录知识要点、自己的疑点、课本上没有的教师补充的内容、解题的思路、数学思想方法、课堂小结等. 课后认真复习,及时归纳总结.课后要及时温故老师所讲内容,特别是经典例题,分析、归纳、总结,以内化成自己的知识体系,完善认知结构. 此外,学习应有整体计划,学会管理自己的时间. 3)细心、认真地学透课本. 有一部分学生认为课本上的内容很简单,而考试都是难题.其实,这是由于学生没有真正学透课本,考试的内容究其实质,都是课本上的基本概念、基本模型.因此,在初一这一打基础的重要阶段,更要对数学定义、概念等基本知识的十分准确把握,不能只停留在一知半解的层次.对于课本上的基本概念、基本模型的学习,我认为应该注意:重点理解基本概念、基本模型的特殊情况(特例),要抓住定义、概念的本质,全面举例、不重不漏的明确概念、定义等.对概念和公式不能死记硬背,而缺乏与实际题目的联系,在理解的基础上进行记忆可以有效地促进数学的学习.切记:理解和记忆数学的基础知识是学好数学的前提. 4)学会归纳总结复习. 复习总结的工作,不仅仅是老师的事,学生一定要学会自己去做.当你会总结题目,会对所学内容、所做的题目进行分类,了解每一知识点的基本题型,熟悉对应每一题型的解题方法等时,你才真正的做到了知识的内化.归纳总结这个问题如果解决不好,在进入高年级的学习时,同学们会发现,天天做题,成绩却不升反降.究其原因,天天都在做重复的题目,很多相似的题目反复在做,而需要解决的问题却没有专心解决.久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学整体系统的把握,弄的一团糟.总结归纳是把书读薄的过程,题目应该越做越少. 5)建立“改错本”. 建立错题本是一种非常高效率且针对性较强的学习方法,主要用来收集自己的错误和不会的题目.容易犯的错误可能有有审题不细心,计算马虎,书写格式不规范,对概念、公式等理解似是而非,对隐含条件分不清等等.不会的题目往往因为没有思路、思路不清晰或找不到突破口等等.针对前一类错题,我们应该 首先进行独立思考,及时进行反思,弄清产生错误的原因,加以重视.而对于不会的题目,我们要参考教师或答案的讲解,注意体会其思路、思想、悟其道理并总结方法规律,找相关习题进一步巩固.建立一本错解本,可以达到错一次而加深十倍认识的效果. 6)不懂就问,积极讨论. 爱因斯坦说过:“提出问题比解决问题更重要.”遇到不懂的问题,要积极及时的与同学讨论,向老师求教.在提问时,不仅要问其然,还要问其所以然,这对建立良好的数学知识体系非常有好处.这里我想说的是,讨论是一种非常好的学习方法.经过与同学讨论,你可能会获得不同的灵感,从对方那里学到好方法和技巧.值得注意的是,讨论的对象最好是与自己水平相当的同学,这样更有利于大家相互学习. 7)注重实战. 平时每天保证1小时左右的练习时间,自己平时做作业可以给自己限定时间,以提高做题的速度.在实际考试中,也要考虑每部分的完成时间,避免出现慌乱,同时注意调整好心态,把“做作业”当成考试,把“考试”当成做作业.当然,经历大型考试也是必要的锻炼途径. 以上内容是我针对初一年级学生数学学习中常见问题提出的我个人的一些建议,希望对同学们有所帮助.最后我想说的是,每个同学的学习方法都会对根据自己的情况不同而有些许差别,适合你的最有效的方法就是最好的.
初中600字?这么少么,有要求发表在什么期刊上吗?
警惕全球变暖 石室初中 2015级最近这几年,我们大家都会觉得天气忽然变热了,原本凉爽的秋天现在几乎要到10月下旬才开始,8月份最热的天竟然会达到了40°或40°以上。这些都是为什么呢?原来,是人类自己惹的祸。 随着人类高科技发展进程的越发加快,科学随之产生的副作用便逐步展现在我们的面前——全球变暖就是一个例子。天气炎热,在酷暑里泡空调成为了一项新的“业余爱好”,但人们可曾想过,空调会带给我们什么的负面影响呢?答案当然是毫无质疑的,空调排放的气体中含有大量的甲烷(wán) ,输送到外面,甲烷也是导致全球变暖的气体。同时,空调还会浪费掉不少的电量,所以要尽量避免用空调,适当即可。 而另一个原因就是:二氧化碳!汽车尾气与工厂废气中含有大量二氧化碳,而二氧化碳最可能导致温室效应(即全球变暖)现在汽车逐渐增多,据有关方面统计——“至21世纪,汽车在全世界已有7亿辆,大量的尾气严重影响着我们,咳嗽,喉咙发炎…最重要的是全球变暖”。有人统计:“美国人均二氧化碳排放量已达到了20吨一年!中国每年的二氧化碳排放量人均排放量也有2.51吨一年!”我们周围的环境在恶劣地变化。 更重要的原因就是:森林锐减,水资源破坏,生态链严重被破坏,大量土地贫瘠,水污染严重,据统计全世界10%的河水被污染,新鲜的淡水供应成了问题,同时由于矿物质被大量使用,燃烧出的二氧化碳 导致了大气污染,同时臭氧层被严重破环,南北极出现臭氧层洞,加剧了环境的恶化。这样恶性循环的话,最终会导致人们的生活被严重影响。 这样一来的悲剧是什么呢?当然是显而易见了!天气加热,海平面上涨,南北极冰川融化,海滨城市,岛国被淹。这一切,都严重影响了人类的生存,实验证明,以后300年,海平面将上涨半米多,这还是最乐观的数据。再过7年,全球变暖将会无可逆转地持续。更可怕的是,由于北极冰融化,降雨量加强,大量淡水汇入北大西洋,破坏了墨西哥暖流,一旦墨西哥暖流被切断后,欧洲西北部温度将会下降5—8度之多,从而造成的影响,很可能引发新的冰河时期!想必大家一定看过《后天》这部电影,剧中的情景正是几百年后对我们地球的一个真实写照:龙卷风,冰层断裂,温度急剧下降,冰风暴,冻雨,地震,洪水,海啸……这并不是疯狂的幻想,如果人类不停止毁坏环境的话,这将成为现实!全球变暖不仅仅是天气变热,更会牵连出许多负面影响! 地震、海啸、泥石流、天坑、山体滑坡等这些所谓的天灾,其实很多都是人类破坏环境所导致成的恶果。作为自然界的一份子,作为一位爱地球母亲的孩子,我在此呼吁大家要保护自然生态的平衡!
学术堂整理了一篇600字的初中科技小论文,供大家进行参考:星期天早上,我打开冰箱拿鸡蛋,准备煎一个荷包蛋。我猛地一拉,发现横卧的几只鸡蛋经不住猛烈的摇晃,流出了鲜艳的蛋黄和透明的蛋液。而竖卧的鸡蛋却完好无损。这是为什么呢?我跑去问正在看报纸的爸爸,爸爸说:“你自己做个实验就明白了。是这样做的...”我为了探个究竟,照爸爸说的做了一个小实验:我拿了一大团橡皮泥,分成四小团。上面竖直放上四只鸡蛋和一块木板,再放上《新华字典》和《小学生作文》两本书。让我惊讶的是,结果鸡蛋毫发未损!我想如果鸡蛋是横放又是什么结果呢?动脑不如动手,我就在橡皮泥上横放了四只鸡蛋。哎!让我没想到的是:刚放上一本《新华字典》,鸡蛋就四分五裂了!是不是这几只鸡蛋的壳刚好是薄的呢?不如换别的蛋试试看!但结果还是一样。我再想:一边放竖的蛋,一边放横的蛋,在横放的鸡蛋下垫点橡皮泥,让这两只鸡蛋一样高,结果又是怎么样呢?我又做了个小实验,结果放上一只铅笔盒,原封不动,又放上一只瓷盘,横放的鸡蛋“啪”地一声就碎了。这是为什么呢?我仔细思考:这蛋是不是都是两端壳硬,中间壳软呢?我这想法是对还是错呢?如果是对的,为什么是两端壳硬、中间壳软呢..我一下子想出了好多问题。后来,我翻翻科学书,查了查资料,又问了问老师,得出了一个结论:我的想法是错的。正确的答案应该是:把鸡蛋横放,一压就破了,如果把它竖起来,就不易破,这说明同样的材料的强度大小,决定于形状的不同。这就像拱桥和平桥,两者所能承受的重量就不同,拱桥能承受更大的重量。经过做这个实验,我养成了遇见问题就要仔细思考,争取弄懂的好习惯。
人或动物的生存与植物的关系不久前,我们家搬入了现在的新房子。刚搬完家,叔叔阿姨们就送来了好几盆花和几株树。门口、客厅里、房间里和阳台上都摆上了盆景。我对爸爸说:“我们家都有成植物园了,摆那么多的植物干吗?”爸爸笑着说:“植物能制造气氛,净化空气,人和动物谁都离不开它们,离开了它们都有不能生存。”人或动物离开植物后不能生存?为什么人或动物离开植物后不能生存?我将信将疑。决定做几个小实验来证明这个问题。星期天,我从车库里抓来两只老鼠。这两只可怜的小老鼠即将成为我的实验品。它们不停地挣扎着,圆溜溜的小眼睛瞪着我。我把第一只小巧玲珑的老鼠放在一个大鱼缸里,用一次性薄膜桌布把玻璃瓶封得严严实实的,生怕瓶里的空气与外界的空气相通。我仔细地观察着,只见小老鼠沿缸着壁,绕着缸底快速地向前窜。咦,小老鼠不是活得好好的吗?难道爸爸说的不是真的?可是,没过几分钟,只见小老鼠绕圈的速度越来越慢,直到停滞不前,奄奄一息的样子。顿时,我把一次性薄膜桌布轻轻拿开,捉出第一保小老鼠,放进第二只小老鼠,又搬入了四盆枝繁叶茂的植物。然后轻轻盖上一次性薄膜桌布。我不停地拍打鱼缸,只见小老鼠惊慌地乱窜。过了好久也没要咽气的样子。这个实验证明了植物可以输送动物所需要的氧气。为了进一步证明人类和动物对植物的依赖性。我来到我们老家附近一个饲料加工厂。那儿的空气里到处弥漫着一股浓浓的灰尘味,熏得我直咳嗽。我感到十分难受。然后,我又跑向我们家屋后的一片竹林里,那是一个空气新鲜的地方,我感觉极为清爽。这个实验证明植物可以净化空气。使人呼吸顺畅。这两个实验证明,人类和动物的生存与植物有密切的关系。这其中到底有多大的科学道理呢?我们科技小队来到图书馆去查阅了许多的科技书籍,并且上网查询,总结出以下几点: ① 人必须依靠植物提供氧气,只有植物才能制造氧气。如果说一个人几天不吃饭、几天不喝水且有一息尚存的话,若氧气立刻消失,那人几分钟就可能性命难保,氧气可是人生命活动的第一需要呀!一个成年人每天呼吸约2万多次,吸入氧气0.75千克,呼出二氧化碳0.9千克。 ② 动物与植物的呼吸,物质的燃烧,也都要消耗氧气,释放二氧化碳。这样一来,空气中的氧气不就一天天增加么?不!天地间之所以没有产生过这种危机,就是因为植物既是天然氧气“制造厂”,又是二氧化碳的“广阔市场”。 ③ 有人做过统计,1公顷阔叶林,在生长季节每天能制造氧气750千克,吃掉二氧化碳1000千克。所以算起来,只要有10万平方米的林木,就可以供给一个人氧气的需要量,并把呼出的二氧化碳吸收掉。因为有植物源源不断地补充氧气,空气中的氧气才能保持基本恒定。相反,如果没有植物,地球上的氧气只要500年左右的时间就可以用完。所以,人类和动物能够维持生命,活动时所需要的氧气,必须归功于绿色植物。植物与我们人类和动物的生命有着相当密切的关系。在此,我们繁华中学9班全体同学呼吁全社会的人们不要再砍伐植物,让植物成为我们最好的朋友。
科技小论文 ——警惕全球变暖 最近这几年,大家觉得天气一下子就变热了,原本凉爽的秋天现在几乎要到10月下旬才开始,8月份最热的天居然达到了40度以上。这是为什么呢?原来,是人类自己惹的祸。 随着人类高科技发展进程越来越快,科学随之产生的副作用逐渐体现出来,全球变暖就是一个例子。天气炎热,在酷暑里泡空调成为了一项新的“业余爱好”,但人们可曾想过,空调会带来什么负面影响呢?答案当然是肯定的,空调排放的气体中含有大量的甲烷,输送到外面,甲烷也是导致全球变暖的气体。同时,空调还会浪费掉许多电,所以要尽量避免用空调,适当即可。 而另一个原因就是:二氧化碳!汽车尾气与工厂废气中含有大量二氧化碳,而二氧化碳最可能导致温室效应(即全球变暖)现在汽车逐渐增多,据有关方面统计,到21世纪,汽车在全世界已有7亿辆,大量的尾气严重影响着我们,咳嗽,喉咙发炎……最重要的是全球变暖。有人统计,美国人均二氧化碳排放量已达到了20吨一年!中国每年的二氧化碳排放量人均排放量也有2.51吨一年!我们周围的环境在恶劣地变化。 更重要的原因就是:森林锐减,水资源破坏,生态链严重被破坏,大量土地贫瘠,水污染严重,据统计全世界10%的河水被污染,新鲜的淡水供应成了问题,同时由于矿物质被大量使用,燃烧出的CO2气体导致了大气污染,同时臭氧层被严重破环,南北极出现臭氧层洞,加剧了环境的恶化。这样恶性循环的话,最终会导致人们的生活被严重影响。 这样一来的悲剧是什么呢?当然是显而易见了!天气加热,海平面上涨,南北极冰川融化,海滨城市,岛国被淹。这一切,都严重影响了人类的生存,实验证明,以后300年,海平面将上涨半米多,这还是最乐观的数据。再过7年,全球变暖将会无可逆转地持续。更可怕的是,由于北极冰融化,降雨量加强,大量淡水汇入北大西洋,破坏了墨西哥暖流,一旦墨西哥暖流被切断后,欧洲西北部温度将会下降5—8度之多,从而造成的影响,很可能引发新的冰河时期!想必大家一定看过《后天》这部电影,剧中的情景正是几百年后对我们地球的一个真实写照:龙卷风,冰层断裂,温度急剧下降,冰风暴,冻雨,地震,洪水,海啸……这并不是疯狂的幻想,如果人类不停止毁坏环境的话,这将成为现实!全球变暖不仅仅是天气变热,更会牵连出许多负面影响!
捏鸡蛋不知大家有没有尝试过捏鸡蛋,可能有的人会觉得这没有意义,因为谁都知道鸡蛋薄薄的壳,一碰就碎,有多少人知道这其中鲜为人知的奥秘。那时我在家上网查资料,看到了一个有趣的故事,上面说:“一个大力士能徒手打碎一块砖,可是有个人叫他把鸡蛋捏破,大力士拿起鸡蛋使劲捏了半天,却怎么也捏不破。”我看了半信半疑,决定找个机会试验一下。这天,妈妈答应中午给我做我最爱吃又最有营养的番茄炒蛋,想到那甜甜的番茄,滑滑的鸡蛋,我便口水直流。到了中午,我主动请缨要去帮妈妈,妈妈答应了,让我去打两个鸡蛋。我先从冰箱里拿了两个鸡蛋,然后拿了一个大碗,看着鸡蛋,我心想:试验的好机会来了。第一个鸡蛋,我按平常的方法打到碗里去,一敲就破的鸡蛋让我对那个故事产生了更多怀疑。第二个鸡蛋,为了防止捏碎鸡蛋时蛋黄洒一地,我刻意把鸡蛋对准碗中心.这时,我的心“砰砰”直跳,手心都冒出了汗。鸡蛋破碎那一幕仿佛出现在我的眼前,我双眼一闭,然后等待鸡蛋破裂的声音响起。但令我吃惊的是,当我睁开眼睛,鸡蛋竟然没破。第一回合的“失利”没有让我气馁,我准备进行第二回合.第二回合,我吸取了“教训”,我这次用两只手把鸡蛋紧紧握在手里,然后咬紧牙关,瞪大眼睛,使出全身力量去捏鸡蛋.尽管我使出了九牛二虎之力,可在我认为这回鸡蛋“必死无疑”的时候,它却安然无恙地在我手中.这让我又懊恼又惊奇,我只好去问在旁边的妈妈.妈妈听了我的话后,语重心长的对我说:“孩子,这其实是一个科学原理。鸡蛋壳虽然很薄,但它是一个椭圆形,当你去捏它时,它就会把你使出的力量全部均匀的分布在鸡蛋各个地方,所以它能承受很大的力量,一些建筑物就是运用这个原理建成的。”听了妈妈的话,我恍然大悟。其实这个世界真的非常奇妙,我相信只要大家爱发现,爱观察,爱劳动,就能与科学邂逅。当今社会可以说已经离不开科学了,相信我们明亮的眼睛能发现许多奇妙的事物。
我们的脚下的土地无时不刻发生着天翻地覆的变化,这一切都源于科技!
——题记
一千年前,人们过着简单、艰辛的生活。那时候。人们并不知道什么是精神的世界,只求平平安安、吃饱喝足,维持正常的生活,为此人们烧香拜佛,祈祷平安。马车应该是唯一的交通工具了,但是价格昂贵,老百姓只得选择徒步。从上海到北京需跋山涉水,若是患上肺炎,便是无药可医,因此人们的寿命很短。
如今,有人发明了手机,缓解了身处异地的人们的相思愁绪;有人发明了飞机,舍去了在外奔波的人们的漫漫路途;有人发明了麻醉剂,避免了被病魔折磨着的人们又一层的痛苦。正是科技使我们的这个地球变小,变小。现在的我们已经不再满足于物质的享受,更多的则是精神上的安逸。烧香拜佛依旧存在,不存在的是人们愚笨的观念罢了。
发展至今的医疗技术,几乎可以将生活中所有常见的疾病通通治愈,被延长了寿命的人们,拥有更多的时间去拓展生命、享受生命。生物、化学等自然学科技术发展的突飞猛进,给原本好奇心强烈的人们带去了丰富多彩的精神食粮。人类在探索与发明的同时给自我价值以肯定,人们在享受科技带来的福祉的同时也收获了快乐。
曾经,人们惊异于漫天的星斗;如今,我们已经能够将卫星送到太空。
曾经,人们思索着如何在这弱肉强食的世界中立足;如今,我们思索着如何在这明争暗斗的世界里生存。
…………
科技改造者这个社会,我们需正视科技的力量,从而使我们的生活更美好!
专家点评:
本文小作者,构思大胆新颖、有独创性,特别是词语用得好,层层深入,有节奏感,采用了顺叙,突出了中心思想,表达了感情,引起了读者的思考和阅读的兴趣。
在人类的历史长河中,科技发展无疑是促进人类发展的最好工具。然而,随着现代科技的发展,科技发展弊的那一面已经展露无遗,并且逐渐超过了科技的利处。不信请继续向下看。
美国洛杉矶,一个多么富饶的小城,然而就是在这个城市,科技却让所有人头疼。该市三面环山,且科技发展极快,几乎家家都有汽车,但汽车尾气排放出来的尾气中含有大量的石油、一氧化碳、灰尘和数不尽的氮氧合物,是该市患病率一直居高不下。且石油具有腐蚀作用,长期下来该市的雕像有明显的缩小,主犯就是石油!由于该城市电器较多,所放射的辐射会严重降低人的寿命,使该城市的死亡率极其之高!最有名的就是1952年12月份的一次光学污染事件,死亡人数高达近一千人!
再举一个离我们近一些的例子,北京,雾霾之都,雾霾为什么这么严重?因为北京是祖国的心脏。且人口密度大,发展速度快,工业污染严重,长期下来使北京的空气污染程度居世界首位!
我这里还有一些数据:因为臭氧层的破坏,北极熊的生存环境将在二十年内迁往丛林;因为人类的发展越来越快,森林越来也少,都被吞没了,都被无情吞没了!因为森林的消失,世界上数十万的大猩猩将无家可归!
其实这样的例子还有很多,我只想对你们说,醒悟吧,执迷不悟的人们!
专家点评:
结构不完整,语言平淡,中心不突出
每个人都会有一个科技梦,想象自己是一个科学家,发明了许多方便快捷的东西,例如:不用去学校,就可以用微电脑上课;不用伸手就可以让智能机器人给你喂饭;不用出门,在家里坐着,就会把你想要的东西给送来。但你们想过吗?有这样的东西可能使人类灭绝!!!为什么呢?那我就讲给你们听吧。。如果人人都这样,哪还有谁会用脚去走路?有的人心里或许会想:反正买东西、卖东西都不用出门,我为什么要出去,坐在家里,玩玩电脑,看看视屏,吃一点零食,多么好呀。就这样,每个人都不使用双脚,有可能使人的双脚退化。呆在家里,什么问题不知道就去电脑上查,什么问题的答案都有,就不用脑袋去想了,敲一敲键盘,作业里的问题不用想了。如果有人懒得动,可是肚子又饿了,怎么办呢?叫智能机器人,这样,就不用自己吃饭了,既可以一边看视屏一边吃饭,又可以一边玩游戏一边吃饭,那么,为什么要自己动手吃饭呢?。说得严重点,第一个——微电脑——可能使人的双脚退化。第二个——把你想要的东西送过来——使人类起贪婪的欲望。第三个——智能机器人——使人类不用手就可以吃饭,生起依赖性。第四个——电脑问答——使人不用思考就可以知道答案。总之我就劝人类一句话“不要太依赖高科技,有时候也要适当的运动和思考。”
专家点评:
论据(数量、内容)不当,(道理、事实)论据陈旧,论证手法单一,论述语言无感染力,论述不深刻
上学时,同学们的书包有大有小,小的轻而易举能放进书桌里去,而大的呢?可怎么也放不进去,我想:要是能让书桌活动起来,那该多好啊!
一天晚上,我想到了一个好办法:把书桌两边掏空,然后把书面两边的木板削成“I”形,这样的话,书桌就可以活动了。
于是,我从楼下找来一些小木板,从小卖部里买回一把小刀,在家里找些以前装修房子时剩下的钉子,开始计划起来,先做上部分,接着做中间部分,然后完成下部分,最后整理。经过一番思索后,就开始动手了。
做上部分是时,我先切下一块长方形木块,然后在它的两侧粘上两个条形木板,再剪下一块小的长方形木板,粘在条形木板的下面,做成“I”形。
做中部分是,我又切下一块长方形的木板,再在两侧各粘一块类似直角形的木板,然后再把上部分放进去,就在这时,遇到难题了:怎样才能把上部分放进去呢?我想啊想,想了好久才想出了一个绝妙的办法:把直角形木板上端的一小块木板去掉,那不就成了正规的条形了吗?这样就能放进去了。最后,在把切下来的那一块小木板用定子钉上去,这样问题就解决了。
在做下部分的时,就把四根条形的木板粘在下面做成四条“腿”。这样,活动课桌就大功告成了。
我想:生活中有很多给人带来不便的东西,而它们需要我们去改善,如果认真去观察、思考,就能发现其中的奥妙,找到解决的办法。
专家点评:
中心不突出
影响正常工作和生活的声音统称噪声,不一定分贝高了就是噪声,分贝低了就一定不是噪声。比如你在电影院里看电影,音响声音分贝值很高,经常超过90分贝,但对于看电影的人来说不能称之是噪声。但是,电影院如果隔音效果不好,声音传到旁边的住宅楼里,经过衰减,也许只有50分贝,但对于住宅里的人来说就是噪声,因为这个声音引起人的不适。
下面的是人的听觉承受能力参考值:44分贝-属于可以接受的程度;55分贝-感觉到有点烦;60分贝-没有睡意;70分贝-令人精神紧张;85分贝-让人无法接受而捂住耳朵;100分贝-可让你的耳朵暂时失去听觉;120分贝-可以瞬间刺穿你的耳膜;160分贝-碎玻璃;200分贝-导致死亡。分贝值在60以下为无害区,60-110为过渡区,110以上是有害区。由此可见噪音对人体是有多大的危害呀!
而噪音污染主要来源于:汽车鸣笛、工业噪音、建筑施工、音乐厅、高音喇叭、大声说话等,大多数都是人为的。所以,只要人人都文明一点,有些噪音是可以减少的,比如:汽车鸣笛声、大声说话、工业噪音……
正所谓“上有‘噪音’,下有‘消音’。”聪明的人们也想出了许多应对的方法,比如:发明了隔音玻璃、在室内多养花草,实在不行也可以在耳朵上“装”一个“保护层”——耳塞……对付噪音的方法非常之多。
当然,最好的方法就是“去根”,这样才能永久、有效的排除噪音。
专家点评:
语言平淡,中心不突出
科技发展是利大于弊还是弊大于利呢?我认为科技发展弊大于利。如今,许多高科技产品不断涌现,他们给我们的生活带来了很多的便利,但是在这便利的背后,也存在着很多弊端.
例如,我们今天出门有便利的交通工具,但是这些交通工具会令我们变懒惰,交通工具的飞速发展导致石油过渡的开采,造成能源危机,还造成了环境的污染,灰霾天气的增加、物种的灭绝,引起了大多数人的呼吸道疾病。不仅这样,还有摩托车的突突声、飞机的巨大轰鸣声、汽车的喇叭声……都会给我们安宁的生活带来困扰。
例如,军事科技的高速发展,各种新式武器应运而生,其杀伤力和破坏性也越来越强大,当今核武器是一个国家实力的代表,但是它夺去了多少人的性命!造成了多大的伤害!假若没有这些军事科技的高速发展,人人必定会平安许多。
又例如,医学的快速发展,虽然药物可以治很多病,但是随着药物的增强,病毒细菌也在不断增强,促使人类制造了抗生素,大量使用抗生素无疑是对致病菌抗药能力的“锻炼” ,“超级细菌”很大程度上就是抗菌药物滥用催生出来的。如果这种情况继续恶化下去,使人类面临感染时无药可用的境地。 还有些人利用药物,制造出一些对人类有极大伤害的毒品,非法出售……
除了这些危害,还有不少对人类的危害来自科技的发展。综上所述,我认为科技的发展是弊大于利的。
专家点评:
选材欠妥,详略不当
今天与外婆在体育馆锻炼身体,锻炼完了该走了。忽然外婆遇见了老朋友,叫我在旁边稍等片刻。我的脚东走走西走走,我便走出大门,欣赏荷叶。
在我身旁的小弟弟把水倒在荷叶上,那瓶用来装饮料了。我把头往那荷叶一瞧,水不见了,是被吸了还是咋了?难道是流出来了,不不不可能,那荷叶就像是我们吃饭时使用的碗不可能流出来的,这其中一定有奥秘。于是我就回家寻找着其中的奥秘,问妈妈,妈妈肯定不会,问爸爸,爸爸他说不知道。只能靠自己了。
我走进新华书店去寻找这其中奥秘,我翻开所有关于科学的书,但里面始终没有关于荷叶的任何资料。呀,我怎么没想到呢!电脑呀。
我急忙回家打开电脑来查询这个奥秘,啊终于找到了原来荷叶的也叶面上布满一个紧挨着一个的“小山包”,“山包”上长满了绒毛,好像山上密密的植被。“山包”的顶上长出了馒头似的“碉堡”凸,。因此,在“山包:的凹陷处充满了空气,这样就在紧贴的叶面上形成一层极薄的只有纳米级的空气层。由于雨水和灰尘对于荷叶上叶面的这些微结构来说,无异于庞然大物,正是具有这些微小的双重结构,使荷叶表面与水珠儿或尘埃的接触面非常有限。因此,便产生了水珠子在叶面上滚动并能带走灰尘的现象。
经过了这次调查,使我懂得了这个道理,并且告诉我们了生活类似的现象有很多,需要我们去动脑筋,去了解,去观察,去发现。奇幻的奥秘等着你来发现。
专家点评:
语言平淡,不会描写
对于科技这个词语,大家都很熟悉。简单说来,科技就是科学技术。从广义的角度来看,它是指自然科学技术和社会科学技术的总和。
改革开放以来,随着时间的推移,科技如雨后春笋,正在祖国大地迅猛地发展。环顾生活,科技是无处不在的,科技就在我身边!
夜晚走在路上,有电灯给我们照明;给朋友打个电话,随手可以掏出手机;回到家里,打开电视看看新闻,开启电脑,可以和朋友聊天;妈妈用电饭煲蒸好了饭;开开电暖器;一家人围坐在一起,欣赏着妈妈用电炒锅调制出来的美味佳肴……你看,随时随地,我们能离开科技吗?
科技的用处可是大了去啦!比如说:如果没有电动车,我们就不便和远方的亲朋好友交往;如果没有动车组,人们到各地旅游就很难实现朝发夕至;如果没有航天飞机,人们进入太空将是一句空话;如果没有破冰船,我们就很难到南极考察;如果没有航天器具,人们登月将只能是幻想……
相反,有了科技,我们的生活将变得更加美好——有了传真,我们的文件,瞬间可以轻松地传出!有了机器人,它可以置身人们难以到达的空间;运用激光,可以制成健身器材;有了空调,即使是炎热的夏日,也可以让人们舒适如春……
不难看出:这一切,人们享用的都是科技的成果!
由此可知:科技,帮助我们创造了优越的生活环境;科技,提高了我们的生活质量;科技,是全世界人们智慧的结晶!
我们身处科技中,要不断学习新的科技!
科技就在我们身边,我们还要大力发展科技!
专家点评:
结构不完整,语言平淡,中心不突出
蚂蚁,相信大家都很熟悉。那又有谁能真正地了解蚂蚁呢?蚂蚁为什么不会迷路呢? 带着这个问题,我查阅了一些书籍。书上说,蚂蚁从蚁穴出发到达目的地后,沿途会留下一些气味,返回蚁穴。用触角相互碰一下,通知其他的蚂蚁。科学家曾经就这个问题作了一个试验。科学家先确定一只蚂蚁,将他沿途到达目的地的地方用力擦干净。当这只蚂蚁返回时,在被擦去气味的地方突然间停了下来。原地边转圈边寻找着什么。从而得到蚂蚁是靠气味来辨别方向的。 我为了证实这个结论,我做了个试验。我首先准备了一个十厘米左右的细小树枝,在树枝的一头放上一个诱饵——小糖果。我把这个装置放在一个蚁穴附近。不一会儿,有一只蚂蚁出来探路了。我把他引上木棍后,他到达了糖果的地方,仿佛在闻一闻、嗅一嗅。我趁此机会将木棍的中断部分截下一厘米的木棍。当这只蚂蚁返回的时候,就在被截去的地方左转右转,就是找不到回家的路。 过了一会儿,我又重复了上面的试验,蚂蚁仍然没有找到回家的路。 通过这两次实验,我终于知道蚂蚁为什么不会迷路的秘密了。原来蚂蚁是根据气味来辨别方向的。 知道了蚂蚁的这一秘密后,我在想:是否我们可以制作一种蚂蚁报警器呢?当蚂蚁走到报警器附近时,报警器就能“闻”出蚂蚁的气味,然后发出鸣叫声,让我们知道蚂蚁跑到橱柜里了或其他地方。