首页

> 学术发表知识库

首页 学术发表知识库 问题

关于云计算大数据的论文参考文献

发布时间:

关于云计算大数据的论文参考文献

知网有很多,不知道让贴不 [1]张戈. 云安全找回渠道价值[N]. 电脑商报,2010-03-08(027). [2]本报记者 那罡. Web风险让用户重新思考终端安全[N]. 中国计算机报,2009-08-03(040). [3]张戈周雪. 云安全改变商业模式[N]. 电脑商报,2008-09-15(033). [4]瑞星系统架构师 钟伟. 云安全——巨大的互联网软件[N]. 中国计算机报,2008-11-24(C03). [5]本报记者 那罡. 从云安全到安全云[N]. 中国计算机报,2010-08-02(036). [6]小谢. 云安全和安全云[N]. 电脑报,2010-09-27(I01). [7]电脑商报记者 张戈. “云安全”是趋势[N]. 电脑商报,2009-03-16(027). [8]本报记者 胡英. 博弈还在继续[N]. 计算机世界,2009-09-28(049). [9]电脑商报记者 张戈. 云安全降低终端压力[N]. 电脑商报,2010-03-15(026). [10]王春雁. 云计算首获安全防护,“安全云”横空出世——趋势科技正式发布云安全3.0[J]. 中国教育信息化,2010,(15). [11]李铁军. 云安全网民能得到什么 金山毒霸2009云安全试用[J]. 电脑迷,2009,(3). [12]善用佳软. IT风“云”录 云计算、云安全、云道德[J]. 新电脑,2008,(9). [13]网御星云安全专家畅谈网络安全之一:说说网络安全中“最熟悉的陌生人”[J]. 信息安全与通信保密,2011,(5). [14]说说网络安全中“最熟悉的陌生人”——网御星云安全专家畅谈网络安全之一[J]. 计算机安全,2011,(5). [15]孙泠. 云的安全和云安全[J]. IT经理世界,2010,(7). [16]褚诚云. 云安全:云计算的安全风险、模型和策略[J]. 程序员,2010,(5). [17]趋势“云安全”为电力用户提供从内到外的安全——趋势科技全方位、多层次的防护方案使网络更加稳定、更加安全[J]. 电力信息化,2009,(3). [18] 如何保障“企业私有云“系统? 云管理与云安全[N]. 计算机世界,2011-07-25(014). [19]电脑商报记者 张戈. 从云安全到安全云[N]. 电脑商报,2011-02-28(026). [20]小谢. 云系统、云平台和云安全是焦点[N]. 电脑报,2010-01-11(001). [21] 如何保障“企业私有云”系统?云管理与云安全[N]. 计算机世界,2011-07-25(014). [22]本报记者 邹大斌. 建立立体的安全防护网[N]. 计算机世界,2009-12-07(B26). [23]本报记者 郑燃. 从云安全到安全云[N]. 政府采购信息报,2010-08-09(008). [24]王汝林. 发展“云计算”必须高度重视“云安全”[J]. 中国信息界,2011,(1). [25]阿呆. 广东电信:云安全保障网络安全[J]. 通讯世界,2011,(1). [26]马晓亭,陈臣. 云安全2.0技术体系下数字图书馆信息资源安全威胁与对策研究[J]. 现代情报,2011,(3). [27]祝国辉. 云安全:从“杀毒”向“安全防御”转型[J]. 中国制造业信息化,2010,(24). [28]王汝林:发展云计算必须高度重视“云安全”[J]. 信息系统工程,2011,(3). [29]袁伟伟. “云安全”为数字化校园网络信息安全保驾护航[J]. 信息与电脑(理论版),2011,(3). [30]徐刚. 云计算与云安全[J]. 信息安全与技术,2011,(Z1). [31]知己知彼,固网御安——网御星云安全专家畅谈网络安全之二[J]. 计算机安全,2011,(6). [32]网御星云安全专家畅谈网络安全之二:知己知彼,固网御安[J]. 信息安全与通信保密,2011,(6). [33]聂利颖,孙胜耀,王芳. 将BP神经用于云安全客户端安全评定[J]. 福建电脑,2011,(5). [34]瑞星建立国内首个“云安全网站联盟”为百万网站提供安全预警[J]. 计算机与网络,2009,(17). [35]“云安全”推动安全行业改变[J]. 计算机与网络,2009,(14). [36]李新苗. 大云计划即将推出新版 云安全仍是最大落地障碍[J]. 通信世界,2010,(14). [37]陈运红. 软件与服务行业:云安全,无处不在的信息安全[J]. 股市动态分析,2010,(16). [38]张春红,王军,肖庆,赵庆明. 云安全对图书馆网络信息系统安全的影响[J]. 四川图书馆学报,2010,(3). [39]张艾斌. 云计算模式与云安全问题研究[J]. 科协论坛(下半月),2010,(6). [40]黄海峰. 云安全两方面保障企业内网安全[J]. 通信世界,2010,(31). [41]江民打造“云安全”+“沙盒”双重安全保障体系[J]. 电脑编程技巧与维护,2009,(1). [42]李伟,李成坤. 透过“云安全”看公安信息网安全管理[J]. 硅谷,2009,(3). [43]从云计算到云安全[J]. 信息系统工程,2009,(1). [44]“云安全”真的安全吗[J]. 中国传媒科技,2009,(2). [45]王盘岗. 互联网安全危机下的云安全[J]. 社科纵横(新理论版),2009,(2). [46]李祥明. 云安全不一定安全[J]. 信息安全与通信保密,2009,(5). [47]瑞星“云安全”系统成功运行一周年,推动安全行业改变[J]. 计算机安全,2009,(8). [48]游向峰. 打造安全的网络环境之“云安全”[J]. 电脑编程技巧与维护,2009,(16). [49]李雪. 重新思考你的终端安全——趋势科技云安全2.0正式发布[J]. 信息安全与通信保密,2009,(9). [50]马宁. “云安全”推动安全行业变革[J]. 中国金融电脑,2009,(9).

同学,你好!正如百科里写的,这段话是NIST给出的云计算的定义,原文为英文,内容为“Cloud computing is a model for enabling ubiquitous,convenient, on-demand network access to a shared poolof configurable computing resources (e.g. networks, servers,storage, applications and services) that can be rapidlyprovisioned and released with minimal management effortor service provider interaction.”相关参考文献为The NIST Definition of Cloud Computing. Peter Mell,Timothy Grance. Sep 2011.

有关大数据云计算的论文参考文献

不能具体点吗?比如说云计算的定义,服务模式,优势劣势,关键技术还是案例啊? 1.云计算的概念1.1 NIST云计算定义草案美国标准局(NIST)专家于2009年4月24日给出了一个云计算定义草案,概括了云计算的五大特点、三大服务模式、四大部署模式。1.1.1 云计算定义 云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。云计算模式提高了可用性。云计算模式由五个主要特点、三个服务模式、四个部署模式构成。1.1.2 主要特点(1)按需自助服务。消费者可以单方面按需部署处理能力,如服务器时间和网络存储,而不需要与每个服务供应商进行人工交互。 (2)通过网络访问。可以通过互联网获取各种能力, 并可以通过标准方式访问,以通过众多瘦客户端或富客户端推广使用(例如移动电话,笔记本电脑,PDA等)。 (3)与地点无关的资源池。供应商的计算资源被集中,以便以多用户租用模式服务所有客户,同时不同的物理和虚拟资源可根据客户需求动态分配和重新分配。客户一般无法控制或知道资源的确切位置。这些资源包括存储、处理器、内存、网络带宽和虚拟机器。 (4)快速伸缩性。可以迅速、弹性地提供能力,能快速扩展,也可以快速释放实现快速缩小。对客户来说,可以租用的资源看起来似乎是无限的,并且可在任何时间购买任何数量的资源。 (5)按使用付费。能力的收费是基于计量的一次一付,或基于广告的收费模式,以促进资源的优化利用。比如计量存储,带宽和计算资源的消耗,按月根据用户实际使用收费。在一个组织内的云可以在部门之间计算费用,但不一定使用真实货币。注:云计算软件服务着重于无国界、低耦合、模块化和语义互操作性,充分利用云计算模式的优势。 1.1.3 服务模式(1)云计算软件即服务。提供给客户的能力是服务商运行在云计算基础设施上的应用程序,可以在各种客户端设备上通过瘦客户端界面访问,比如浏览器。消费者不需要管理或控制的底层云计算基础设施、网络、服务器、操作系统、存储,甚至单个应用程序的功能,可能的例外就是一些有限的客户可定制的应用软件配置设置。 (2)云计算平台即服务。提供给消费者的能力是把客户利用供应商提供的开发语言和工具(例如Java,python, .Net)创建的应用程序部署到云计算基础设施上去。客户不需要管理或控制底层的云基础设施、网络、服务器、操作系统、存储,但消费者能控制部署的应用程序,也可能控制应用的托管环境配置。 (3)云基础设施即服务。提供给消费者的能力是出租处理能力、存储、网络和其它基本的计算资源,用户能够依此部署和运行任意软件,包括操作系统和应用程序。消费者不管理或控制底层的云计算基础设施,但能控制操作系统、储存、部署的应用,也有可能选择网络组件(例如,防火墙,负载均衡器)。四、部署模式(1)私有云。云基础设施被某单一组织拥有或租用,该基础设施只为该组织运行。(2)社区云。基础设施被一些组织共享,并为一个有共同关注点的社区服务(例如,任务,安全要求,政策和准则等等)。 (3)公共云。基础设施是被一个销售云计算服务的组织所拥有,该组织将云计算服务销售给一般大众或广泛的工业群体。 (4)混合云。基础设施是由两种或两种以上的云(内部云,社区云或公共云)组成,每种云仍然保持独立,但用标准的或专有的技术将它们组合起来,具有数据和应用程序的可移植性(例如,可以用来处理突发负载)。1.2云计算领域现状的特点是:(1)当前市场上主要的云计算厂商都是一些IT巨头,都处在攻城略地阶段。(2)标准尚未形成。在标准问题上基本各说各的。目前,市场上的云计算产品与服务千差万别,用户在选择时也不知道该如何下手。

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

大数据云计算关系论文参考文献

浅谈基于大数据时代的机遇与挑战论文推荐

在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。

浅谈基于大数据时代的机遇与挑战论文

1、大数据的基本概况

大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。

2、大数据的时代影响

大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:

(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。

(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。

(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。

另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。

3、大数据的应对策略

3.1 布局关键技术研发创新。

目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。

3.2 提高软件产品发展水平。

一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。

3.3 加速推进大数据示范应用。

大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。

3.4 优化完善大数据发展环境。

信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。

做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。

大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。

结构

论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。

1、论文题目

要求准确、简练、醒目、新颖。

2、目录

目录是论文中主要段落的'简表。(短篇论文不必列目录)

3、内容提要

是文章主要内容的摘录,要求短、精、完整。

4、关键词定义

关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。

5、论文正文

(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:

a.提出问题-论点;

b.分析问题-论据和论证;

c.解决问题-论证方法与步骤;

d.结论。

6、参考文献

一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。

7、论文装订

论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。

大数据下的计算机信息处理技术研究论文

摘要: 现如今,随着科学技术的快速发展,计算机技术已经融入到人们的生活之中,想想10年前的计算机技术和现如今的计算机技术,真的是天壤之别,发生了翻天覆地的变化。同时,大数据的应用也越来越广泛,带来了丰厚的利润,各种“云”层出不断,对大数据的背景下,计算机信息处理的技术提出更高的竞争和要求。本文首先介绍大数据的概念,阐述基于大数据背景下的各种计算机信息处理技术,并对技术进行分析研究,最后对大数据未来的发展的机会做出分析。

关键词: 大数据;计算机信息;技术研究

随着科技的迅猛发展,大数据的应用愈来愈广,随之产生的数据系统总量大,十分庞大,这就对大数据时代下的计算机信息处理技术提出了更高的要求,如何将大数据处理的井然有序,有条不紊,值得每一位考研人员进行探讨。

一、大数据的概念

什么是大数据?大数据,另一种叫法称之为巨型资料,是一个十分复杂密集的数据集,这样的数据集在一定的时间内,依靠于传统普通的数据加工软件无法最终实现管理、抓取及处理的功能,需要进行创新,用新的处理模式才能够实现。大数据具有虚拟化、按需服务、低成本等等特点。在每一个消费者的角度来看,大数据中的计算技术资源服务可以帮助每一个大数据用户完成想要的资源信息,用户只需进行付费就可以直接使用,根本不需要到处搜寻资料,跑来派去的打听。这从根本上改变了人们对信息资源的需求方式,为用户提供一种超大规模的网络资源共享。同时,面对海量的大数据库资源,如何对大数据资源进行处理,得到用户们想要的信息资源,需要计算机信息技术不断的进行挖掘。

二、大数据下的计算机信息处理技术

总体的来说,基于大数据背景下的计算机信息处理技术总共可以分成以下3个方面:信息的获取及加工技术、信息的存储技术和信息安全方面的技术。下面就针对这三种技术,进行研究分析。1)信息的获取及加工技术。信息的获取及加工技术是实现信息化的第一步,是最基础的工作内容,只有完成了信息数据的搜集工作,才能进行下面的计算机信息技术的处理。因此,如若进行信息的采集工作,需要首先明确信息的目标源,对信息数据进行监控,时刻把握信息的流向及动态,然后将采集的信息数据输入至计算机数据库中,实现了信息的获取采集工作。接下来是第二步,信息的加工及处理工作,所有的加工和处理技术的核心在于用户的指引,完全由用户导向,设定信息的筛选范围,确定信息的丰富度等等。最后是依照于用户的要求,将信息资源传输到用户手中。这样就实现了整个信息从采集到处理,再从处理到传送工作的整个流程。2)信息的存储技术。在大数据的背景下,对于整个计算机信息的处理,信息技术的存储是十分关键的环节,可以将处理加工的数据得以保存,更方便用户对于数据的调取和应用。而且,现如今的信息数据总量大、更新速度快,合理的运用存储方面的技术,可以快速的实现信息的存储工作,提高工效效率,将复杂变简单。在目前的时代下,应用最广泛的是分布式数据存储技术,应用十分方便,能够实现快速大量的数据存储。3)信息安全方面的技术。大数据在方便用户使用和享受的同时,信息数据资源的安全性也是不容忽略的,而且随着社会的发展,数据资源的安全性和隐私性逐渐受到关注,如何实现数据库的安全是个十分值得研究的课题。首先最主要的是建立计算机安全体系,充分引进更多的人才。其次需要加强安全技术的研发速度,由于大数据发展及更新速度快,需要快速的更新原有的安全体系,尽快的适应大数据时代的更新速度。除此之外,加强对信息的监测是十分必要的,避免不法之人进行数据的盗取,在信息数据庞大的体量下,依然能够提供稳定有效的安全体系。

三、大数据下的计算机信息技术的发展前景

1)云技术的发展是必然趋势。云计算网络技术是越来越得到大的发展,一方面由于计算机硬件系统的数据处理技术有限,云技术可以完全的将弊端破除,同时,它能够利用最新的数据资源和处理技术,不依赖于计算机硬件系统。因此,随着庞大的数据越来越复杂,传统的数据处理方式已经不能够适应,未来将计算机信息处理必将朝着云计算发展。2)计算机网络不再受限于计算机硬件。未来,计算机网络技术将会不再受制于计算机硬件的限制,网络的传输技术更加趋向于开放化,计算机网络和计算机硬件将会分隔开,重新定义新的网络架构。3)计算机技术和网络相互融合。传统的计算机技术需要运用计算机的硬件系统才能够实现信息的处理、加工及存储工作,未来新的.计算技术将脱离于计算机硬件配备,可以仅仅用计算机网络就可以实现数据的加工和处理。同时,二者也将会相互融合、相互发展真正的满足由于大数据时代的更新所带来的困扰,这是未来大数据背景下计算机技术发展的又一个方向。

四、大数据下的计算机信息技术面临的机遇和挑战

在大数据背景下,计算机信息技术的机遇和挑战并存,首先,病毒及网站的恶意攻击是少不了的,这些问题是站在计算机信息技术面前的巨大挑战,同时,近些年,网络不断,社会关注度逐渐提高,网络的安全问题也是不同忽视,再者,信息之间的传送速度也有限,需要对传送技术进行创新,以适应更高的用户需求。最后,随着大数据库的不断丰富,越来越庞大的数据资源进行加工和处理,对数据的存储又有了新的要求,如何适应不断庞大的数据信息量,实现更加便捷的、满足用户需求的调取也是一个巨大的挑战。与此同时,也存在着许多的机遇。首先,大数据对信息安全的要求越来越大,一定程度上带动了信息安全的发展,其次,大数据在应用方面,对企业及用户带来了巨大的便利,同时也丰富了产业资源,未来用户及企业面前的竞争可能会转化为大数据信息资源的竞争。最后,大数据时代的来临,构造了以信息安全、云计算和物联网为主要核心的新形势。

五、结论

通过一番研究,目前在大数据时代下,计算机信息技术确实存在着一定的弊端,需要不断的进行创新和发展,相信未来的云计算会越来越先进,越来越融入到人们的生活及工作当中,计算机信息技术面临的巨大的挑战和机遇,面对挑战,抓住机遇,相信未来我国的计算机技术会越来越好,必将超过世界领先水平!

参考文献:

[1]王秀苏.计算机信息处理技术在办公自动化上的应用[J].科技经济市场,2010(03).

[2]张连杰.企业管理中计算机技术的应用[J].电脑知识与技术,2011(26).

[3]陈静.浅谈计算机处理技术[J].科技与企业,2012(11).

[4]赵春雷,乔治纳汉."大数据"时代的计算机信息处理技术[J].世界科学,2012.

[5]庄晏冬.智能信息处理技术应用与发展[J].黑龙江科技信息,2011.

[6]艾伯特拉斯洛,巴拉巴西,著.马慧,译.爆发:大数据时代预见未来的新思维[M].北京:中国人民大学出版社,2012.河南省高等学校重点科研项目计划(16A520008)

有关大数据与云计算论文参考文献

浅谈基于大数据时代的机遇与挑战论文推荐

在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。

浅谈基于大数据时代的机遇与挑战论文

1、大数据的基本概况

大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。

2、大数据的时代影响

大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:

(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。

(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。

(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。

另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。

3、大数据的应对策略

3.1 布局关键技术研发创新。

目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。

3.2 提高软件产品发展水平。

一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。

3.3 加速推进大数据示范应用。

大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。

3.4 优化完善大数据发展环境。

信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。

做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。

大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。

结构

论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。

1、论文题目

要求准确、简练、醒目、新颖。

2、目录

目录是论文中主要段落的'简表。(短篇论文不必列目录)

3、内容提要

是文章主要内容的摘录,要求短、精、完整。

4、关键词定义

关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。

5、论文正文

(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:

a.提出问题-论点;

b.分析问题-论据和论证;

c.解决问题-论证方法与步骤;

d.结论。

6、参考文献

一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。

7、论文装订

论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本2.0系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 2.1 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 2.2 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: 3.1 Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 3.2 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 3.3 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 3.4 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 3.5 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 1.1影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 1.2影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 2.1数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 2.2公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 2.3审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文

云计算与大数据相关论文参考文献

一、什么是云计算 二、什么是大数据 三、云计算与大数据、人工智能关系 四、参考文章 云计算(Cloud Computing),是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。典型的云计算提供商往往提供通用的网络业务应用,可以通过浏览器等软件或者其他Web服务来访问,而软件和数据都存储在服务器上。云计算服务通常提供通用的通过浏览器访问的在线商业应用,软件和数据可存储在数据中心。 狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源; 广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务,它意味着计算能力也可作为一种商品通过互联网进行流通。对云计算的定义有多种说法,“云计算是通过网络提供可伸缩的廉价的分布式计算能力”。 数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产,“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。 现在的云计算只是在硬件基础上用软件开发的方式完成云部署,大数据这是为了云计算而提供的一种分布式的框架,既基于云计算又为云计算服务

知网有很多,不知道让贴不 [1]张戈. 云安全找回渠道价值[N]. 电脑商报,2010-03-08(027). [2]本报记者 那罡. Web风险让用户重新思考终端安全[N]. 中国计算机报,2009-08-03(040). [3]张戈周雪. 云安全改变商业模式[N]. 电脑商报,2008-09-15(033). [4]瑞星系统架构师 钟伟. 云安全——巨大的互联网软件[N]. 中国计算机报,2008-11-24(C03). [5]本报记者 那罡. 从云安全到安全云[N]. 中国计算机报,2010-08-02(036). [6]小谢. 云安全和安全云[N]. 电脑报,2010-09-27(I01). [7]电脑商报记者 张戈. “云安全”是趋势[N]. 电脑商报,2009-03-16(027). [8]本报记者 胡英. 博弈还在继续[N]. 计算机世界,2009-09-28(049). [9]电脑商报记者 张戈. 云安全降低终端压力[N]. 电脑商报,2010-03-15(026). [10]王春雁. 云计算首获安全防护,“安全云”横空出世——趋势科技正式发布云安全3.0[J]. 中国教育信息化,2010,(15). [11]李铁军. 云安全网民能得到什么 金山毒霸2009云安全试用[J]. 电脑迷,2009,(3). [12]善用佳软. IT风“云”录 云计算、云安全、云道德[J]. 新电脑,2008,(9). [13]网御星云安全专家畅谈网络安全之一:说说网络安全中“最熟悉的陌生人”[J]. 信息安全与通信保密,2011,(5). [14]说说网络安全中“最熟悉的陌生人”——网御星云安全专家畅谈网络安全之一[J]. 计算机安全,2011,(5). [15]孙泠. 云的安全和云安全[J]. IT经理世界,2010,(7). [16]褚诚云. 云安全:云计算的安全风险、模型和策略[J]. 程序员,2010,(5). [17]趋势“云安全”为电力用户提供从内到外的安全——趋势科技全方位、多层次的防护方案使网络更加稳定、更加安全[J]. 电力信息化,2009,(3). [18] 如何保障“企业私有云“系统? 云管理与云安全[N]. 计算机世界,2011-07-25(014). [19]电脑商报记者 张戈. 从云安全到安全云[N]. 电脑商报,2011-02-28(026). [20]小谢. 云系统、云平台和云安全是焦点[N]. 电脑报,2010-01-11(001). [21] 如何保障“企业私有云”系统?云管理与云安全[N]. 计算机世界,2011-07-25(014). [22]本报记者 邹大斌. 建立立体的安全防护网[N]. 计算机世界,2009-12-07(B26). [23]本报记者 郑燃. 从云安全到安全云[N]. 政府采购信息报,2010-08-09(008). [24]王汝林. 发展“云计算”必须高度重视“云安全”[J]. 中国信息界,2011,(1). [25]阿呆. 广东电信:云安全保障网络安全[J]. 通讯世界,2011,(1). [26]马晓亭,陈臣. 云安全2.0技术体系下数字图书馆信息资源安全威胁与对策研究[J]. 现代情报,2011,(3). [27]祝国辉. 云安全:从“杀毒”向“安全防御”转型[J]. 中国制造业信息化,2010,(24). [28]王汝林:发展云计算必须高度重视“云安全”[J]. 信息系统工程,2011,(3). [29]袁伟伟. “云安全”为数字化校园网络信息安全保驾护航[J]. 信息与电脑(理论版),2011,(3). [30]徐刚. 云计算与云安全[J]. 信息安全与技术,2011,(Z1). [31]知己知彼,固网御安——网御星云安全专家畅谈网络安全之二[J]. 计算机安全,2011,(6). [32]网御星云安全专家畅谈网络安全之二:知己知彼,固网御安[J]. 信息安全与通信保密,2011,(6). [33]聂利颖,孙胜耀,王芳. 将BP神经用于云安全客户端安全评定[J]. 福建电脑,2011,(5). [34]瑞星建立国内首个“云安全网站联盟”为百万网站提供安全预警[J]. 计算机与网络,2009,(17). [35]“云安全”推动安全行业改变[J]. 计算机与网络,2009,(14). [36]李新苗. 大云计划即将推出新版 云安全仍是最大落地障碍[J]. 通信世界,2010,(14). [37]陈运红. 软件与服务行业:云安全,无处不在的信息安全[J]. 股市动态分析,2010,(16). [38]张春红,王军,肖庆,赵庆明. 云安全对图书馆网络信息系统安全的影响[J]. 四川图书馆学报,2010,(3). [39]张艾斌. 云计算模式与云安全问题研究[J]. 科协论坛(下半月),2010,(6). [40]黄海峰. 云安全两方面保障企业内网安全[J]. 通信世界,2010,(31). [41]江民打造“云安全”+“沙盒”双重安全保障体系[J]. 电脑编程技巧与维护,2009,(1). [42]李伟,李成坤. 透过“云安全”看公安信息网安全管理[J]. 硅谷,2009,(3). [43]从云计算到云安全[J]. 信息系统工程,2009,(1). [44]“云安全”真的安全吗[J]. 中国传媒科技,2009,(2). [45]王盘岗. 互联网安全危机下的云安全[J]. 社科纵横(新理论版),2009,(2). [46]李祥明. 云安全不一定安全[J]. 信息安全与通信保密,2009,(5). [47]瑞星“云安全”系统成功运行一周年,推动安全行业改变[J]. 计算机安全,2009,(8). [48]游向峰. 打造安全的网络环境之“云安全”[J]. 电脑编程技巧与维护,2009,(16). [49]李雪. 重新思考你的终端安全——趋势科技云安全2.0正式发布[J]. 信息安全与通信保密,2009,(9). [50]马宁. “云安全”推动安全行业变革[J]. 中国金融电脑,2009,(9).

云计算与大数据概述云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:1、集成度更高。一个标准机箱最大限度完成特定任务。2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。3、整体能耗更低。同等计算任务,能耗最低。4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。5、管理维护费用低。数据藏的常规管理全部集成。6、可规划和预见的系统扩容、升级路线图。云计算与大数据的关系简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化后在进行分配使用。可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。

大数据论文参考文献回答于2018-09-14现今人们的生活到处充斥着大数据给我们带来的便利,那么大数据论文参考文献有哪些呢?小编为方便大家特意搜集了一些大数据论文参考文献,希望能帮助到大家。大数据论文参考文献一:[1] 陈杰. 本地文件系统数据更新模式研究[D]. 华中科技大学 2014[2] 刘洋. 层次混合存储系统中缓存和预取技术研究[D]. 华中科技大学 2013[3] 李怀阳. 进化存储系统数据组织模式研究[D]. 华中科技大学 2006[4] 邓勇强,朱光喜,刘文明. LDPC码的低复杂度译码算法研究[J]. 计算机科学. 2006(07)[5] 陆承涛. 存储系统性能管理问题的研究[D]. 华中科技大学 2010[6] 罗东健. 大规模存储系统高可靠性关键技术研究[D]. 华中科技大学 2011[7] 王健宗. 云存储服务质量的若干关键问题研究[D]. 华中科技大学 2012[8] 余雪里. 金属氧化物pn异质结对光电响应与气体敏感特性的作用[D]. 华中科技大学 2014[9] 王玮. 基于内容关联密钥的视频版权保护技术研究[D]. 华中科技大学 2014[10] 韩林. 云存储移动终端的固态缓存系统研究[D]. 华中科技大学 2014[11] 田宽. 宫内节育器用Cu/LDPE复合材料的表面改性研究[D]. 华中科技大学 2013[12] 聂雪军. 内容感知存储系统中信息生命周期管理关键技术研究[D]. 华中科技大学 2010[13] 王鹏. 低密度奇偶校验码应用于存储系统的关键技术研究[D]. 华中科技大学 2013[14] 刁莹. 用数学建模方法评价存储系统性能[D]. 哈尔滨工程大学 2013[15] 符青云. 面向大规模流媒体服务的高性能存储系统研究[D]. 电子科技大学 2009[16] 王玉林. 多节点容错存储系统的数据与缓存组织研究

相关百科

热门百科

首页
发表服务