首页

> 学术发表知识库

首页 学术发表知识库 问题

毕业论文换章要换叶吗

发布时间:

毕业论文换章要换叶吗

是另起一页。如果是毕业的学位论文,那么就需要单独写一页了,因为学位论文有格式要求,每一章节都应该另起一页。参考文献作为单独得一个章节,也应该单独一页。

傅里叶变换毕业论文

我来帮你搞定

我也是这个专业毕业的,我建议你个课题,我当时毕业设计就是这么做的,不过我的老硬盘坏了,不然可以直接把论文和程序源代码发你。我做的课题是数字图像处理的数字水印技术的研究,属于数字图像处理的。你到百度搜索“数字水印源代码”可以搜索出不少程序,而且不少论文都带有算法的详细研究,你把几种方案整理一下,多搜几个,我当时的论文在毕业答辩时候拿了87分,就是靠整合这些材料的,不过你要会对Protel这个软件会使用一点。这里我提个方向,实现数字水印有三种方法,每种方法都不是特别困难,为了增加论文的内容,你可以从快速傅里叶变换,离散余弦变换等三种方案来实现,然后你可以比较三种方案的优劣,一般论文都会对自己的算法有个评测,不用担心不会写。大体结构可以真么写:先是背景发展方向等等杂七杂八的废话写4页左右,然后是常见算法研究,大概可以两到三页,然后是你的几种算法以及程序实现,这个是主体,最后是各种算法实现的效果评比,最最后是对自己的方案提出可能的改进措施。再加个结束语就好了。这种结构很符合老师的要求。

有n维傅里叶变换,n取3即可。百*度傅里叶变换,有论文可以参考。

傅里叶变换性质毕业论文

有n维傅里叶变换,n取3即可。百*度傅里叶变换,有论文可以参考。

傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅里叶是对的。用正弦曲线来代替原来的曲线而不用方波或三角波来表示的原因在于,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。 为什么偏偏选择三角函数而不用其他函数进行分解?我们从物理系统的特征信号角度来解释。我们知道:大自然中很多现象可以抽象成一个线性时不变系统来研究,无论你用微分方程还是传递函数或者状态空间描述。线性时不变系统可以这样理解:输入输出信号满足线性关系,而且系统参数不随时间变换。对于大自然界的很多系统,一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。也就是说正弦信号是系统的特征向量!当然,指数信号也是系统的特征向量,表示能量的衰减或积聚。自然界的衰减或者扩散现象大多是指数形式的,或者既有波动又有指数衰减(复指数 形式),因此具有特征的基函数就由三角函数变成复指数函数。但是,如果输入是方波、三角波或者其他什么波形,那输出就不一定是什么样子了。所以,除了指数信号和正弦信号以外的其他波形都不是线性系统的特征信号。用正弦曲线来代替原来的曲线而不用方波或三角波或者其他什么函数来表示的原因在于:正弦信号恰好是很多线性时不变系统的特征向量。于是就有了傅里叶变换。对于更一般的线性时不变系统,复指数信号(表示耗散或衰减)是系统的“特征向量”。于是就有了拉普拉斯变换。z变换也是同样的道理,这时是离散系统的“特征向量”。这里没有区分特征函数和特征向量的概念,主要想表达二者的思想是相同的,只不过一个是有限维向量,一个是无限维函数。傅里叶级数和傅里叶变换其实就是我们之前讨论的特征值与特征向量的问题。分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。这样,用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。且只有正弦曲线才拥有这样的性质。这也解释了为什么我们一碰到信号就想方设法的把它表示成正弦量或者复指数量的形式;为什么方波或者三角波如此“简单”,我们非要展开的如此“麻烦”;为什么对于一个没有什么规律的“非周期”信号,我们都绞尽脑汁的用正弦量展开。就因为正弦量(或复指数)是特征向量。 什么是时域?从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。什么是频域?频域(frequency domain)是描述信号在频率方面特性时用到的一种坐标系。用线性代数的语言就是装着正弦函数的空间。频域最重要的性质是:它不是真实的,而是一个数学构造。频域是一个遵循特定规则的数学范畴。正弦波是频域中唯一存在的波形,这是频域中最重要的规则,即正弦波是对频域的描述,因为时域中的任何波形都可用正弦波合成。对于一个信号来说,信号强度随时间的变化规律就是时域特性,信号是由哪些单一频率的信号合成的就是频域特性。 时域分析与频域分析是对信号的两个观察面。时域分析是以时间轴为坐标表示动态信号的关系;频域分析是把信号变为以频率轴为坐标表示出来。一般来说,时域的表示较为形象与直观,频域分析则更为简练,剖析问题更为深刻和方便。目前,信号分析的趋势是从时域向频域发展。然而,它们是互相联系,缺一不可,相辅相成的。贯穿时域与频域的方法之一,就是传说中的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation)。 根据原信号的不同类型,我们可以把傅里叶变换分为四种类别:1非周期性连续信号傅里叶变换(Fourier Transform)2周期性连续信号傅里叶级数(Fourier Series)3非周期性离散信号离散时域傅里叶变换(Discrete Time Fourier Transform)4周期性离散信号离散傅里叶变换(Discrete Fourier Transform)下图是四种原信号图例:这四种傅里叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅里叶变换呢?没有。因为正余弦波被定义成从负无穷大到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。面对这种困难,方法是把长度有限的信号表示成长度无限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离解信号,我们就可以用到离散时域傅里叶变换的方法。还有,也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离散信号,这时我们就可以用离散傅里叶变换方法进行变换。这里我们要学的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅里叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。每种傅里叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅里叶变换(real DFT),再去理解复数傅里叶就更容易了,所以我们先把复数的傅里叶放到一边去,先来理解实数傅里叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅里叶变换的基础上再来理解复数傅里叶变换。如 上图所示,实信号四种变换在时域和频域的表现形式。还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅里叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。 傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。和傅里叶变换算法对应的是反傅里叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅里叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅里叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。图像傅里叶变换图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅里叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅里叶变换就表示f的谱。从纯粹的数学意义上看,傅里叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅里叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅里叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅里叶逆变换是将图像的频率分布函数变换为灰度分布函数。傅里叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅里叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅里叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅里叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。另外说明以下几点:1、图像经过二维傅里叶变换后,其变换系数矩阵表明:若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅里叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅里叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。 将其发展延伸,构造出了其他形式的积分变换: 从数学的角度理解积分变换就是通过积分运算,把一个函数变成另一个函数。也可以理解成是算内积,然后就变成一个函数向另一个函数的投影:K(s,t)积分变换的核(Kernel)。当选取不同的积分域和变换核时,就得到不同名称的积分变换。学术一点的说法是:向核空间投影,将原问题转化到核空间。所谓核空间,就是这个空间里面装的是核函数。下表列出常见的变换及其核函数: 当然,选取什么样的核主要看你面对的问题有什么特征。不同问题的特征不同,就会对应特定的核函数。把核函数作为基函数。将现在的坐标投影到核空间里面去,问题就会得到简化。之所以叫核,是因为这是最核心的地方。为什么其他变换你都没怎么听说过而只熟悉傅里叶变换和拉普拉斯变换呢?因为复指数信号才是描述这个世界的特征函数!

傅里叶变换的线性,是指两函数的线性组合的傅里叶变换,等于这两个函数分别做傅里叶变换后再进行线性组合的结果。具体而言,假设函数 和 的傅里叶变换 和 都存在, 和 为任意常系数,则有 若函数 的傅里叶变换为 ,则对任意的非零实数 ,函数 的傅里叶变换 存在,且等于 对于 的情形,上式表明,若将 的图像沿横轴方向压缩 倍,则其傅里叶变换的图像将沿横轴方向展宽 倍,同时高度变为原来的 。对于 的情形,还会使得傅里叶变换的图像关于纵轴做镜像对称。 若函数 的傅里叶变换为 ,则存在 若函数 的傅里叶变换为 ,则对任意实数 ,函数 也存在傅里叶变换,且其傅里叶变换 等于 也就是说, 可由 向右平移 得到。 若函数 的傅里叶变换为 ,且其导函数 的傅里叶变换存在,则有 即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 。更一般地,若 的 阶导数 的傅里叶变换存在,则 即 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子 。 若函数 以及 都在 上绝对可积,则卷积函数 的傅里叶变换存在,且 若 的傅里叶变换为 , 的傅里叶变换为 ,则有 若函数 以及 平方可积,二者的傅里叶变换分别为 与 ,则有 上式被称为Parseval定理。特别地,对于平方可积函数 ,有 上式被称为Plancherel定理。这两个定理表明,傅里叶变换是平方可积空间 上的一个运算符(若不考虑因子 )。

你应该去图书馆去找找的,或者网上看看

毕业论文可以换文章吗参考文献

可以,但是要注意以下几点:1、一定要注明出处,即引用文献的作者、文献名称、出版社、年限等信息;引用的章节也最好给予注明;引用文献一般放在论文最后的参考文献加以列示;2、引用论文内容时,一定要注意不可以大段大段地抄袭下来,最好只引用作者的观点、或者有论证的论据,以及图表、研究数据等;3、除非是学校有特殊要求外,一般不建议引用本年段或者未经发表的本校的其他的师生的论文,因为无法公开查询,会导致“抄袭”嫌疑。

来不及我可以帮助你。但是这样显然是不行的,至少要很多篇才行。

不可以,要按照学校要求来。

major revision 99%等于accept,因为审稿人愿意给你修改机会,基本上证明你的论文没有特别重大的问题。尤其对于我们社科类的学科,本来就没有统一的标准,也没有实验要求,只要能够自圆其说就行。除非自己太作,不回应审稿人的意见。我是找北京译顶科技,那边做的还不错߅

毕业论文题目能换吗

一般情况下,在专家评阅论文后修改标题可能不是一个好主意,因为您的论文已经被提交和评审。如果您确实需要更改标题,请在提前征得论文提交机构或相关编辑的同意后进行修改,并重新提交论文。另外,您还应该仔细考虑更改标题的必要性并确保新标题能够准确地反映您研究的内容和贡献。希望这些信息对您有所帮助!

问:论文题目可以改的吗?答:你好,可以改的,前提是要先找导师协商,导师同意才能改。参看paperfree论文检测。问:知网论文选题后可以换吗答:知网论文的选题,有一个允许变更的时期,只要是在允许变更论题的时间段内,你是可以放弃原来所选择的题目,换成另一个新题目的,不过,必须及时报告组委会。问:在毕业论文还没开始写的时候能换题目吗答:能换的。甚至有些临近答辩了,结果导师说题目不可以换了的都有。学院一般都会跟学生反复确认论文题目,期间换了都是可以的。就是注意,一定要跟导师沟通你换的题目,争取他的意见,看你的新题目是否没有问题,而且一旦论文题目换了,要重新跟指导老师或者其他方式重新进行一次开题报告。你的开题报告肯定要跟你改的题目一致。答:可以换。只要开题报告没有上交,并且和导师沟通之后就可以。问:中途是否能更改论文写作题目?答:一般的院校是不允许学生在中途中更改论文题目的,因为更改论文题目就意味着需要重新构思和查找资料,这样会浪费很多时间,所以尽量在写论文前就确定好题目。当然有一种情况可以排除:就是指导教师根据论文框架和内容,建议学术根据自己的论文,更换为更贴切的论文题目。问:毕业论文题目可以改吗答:可以改的,前提是要先找导师协商,导师同意才能改。答:可以,但需要您导师同意,答:可以改的,前提是要先找导师协商,导师同意才能改。参看paperfree论文检测

相关百科

热门百科

首页
发表服务