首页

> 学术发表知识库

首页 学术发表知识库 问题

扑热息痛合成毕业论文

发布时间:

扑热息痛合成毕业论文

在医疗科学技术飞速发展的今天,不断有新的药品被研制开发。当人们患了某种疾病或缺失某些营养时,常常会在众多的药品前感到无从选择。供人们所服的药品比以前增多了,但大多数人都不知道,有些药品对人体产生的效果都被它对人体的副作用所抵消,而且药品常常会阻止营养的吸收或干扰细胞对这些营养的吸收。药物对营养吸收的影响市面上所卖的感冒药、止痛剂、抗过敏药等实际上会降低血液中维生素A 的含量,维生素A 可以保护和增强鼻、喉、肺等内部的黏膜。缺乏维生素A 时,这些部位的黏膜便成了细菌繁殖的温床。若吃药治疗的话,结果反而延缓了治愈的时间。阿斯匹林不但是神奇的家庭用药,也是神奇的“维生素C 的偷窃者”,只要很少量服用,就能使维生素C 的排出率高达3倍,它还可能引起叶酸和 B族维生素缺乏症,因而导致消化器官的疾病和贫血。肾上腺皮质激素、可的松和强的松与体内锌量的降低有关;巴比妥类药品,与体内钙含量降低有关;服用泻药和胃酸抑制剂,会妨碍钙和磷的代谢;服用过量泻药时,可能会失去大量的钾和维生素A 、维生素D 、维生素E、维生素K;高血压患者服用的利尿剂或抗生素会破坏钾。不可滥用维生素有人把维生素当做补品,滥用维生素,不仅造成浪费,而且对身体也没有好处,会引起过敏反应,甚至出现严重中毒的后果。维生素D 是防治佝偻病的药物,但长烦躁、哭闹、体重下降、厌食、肾脏损害、肝脏肿大、骨骼硬化等病症。大量使用维生素B1 ,会引起头痛、眼花、心律失常、烦躁、浮肿和神经衰弱。过量服用烟酸以后,可引起面部潮红、皮肤瘙痒、肝功能不正常、黄疸、低血压,甚至引起胃溃疡。大量使用维生素C,还可能引起腹痛、腹泻、糖尿病、肾结石,并可降低某些妇女的生育能力。用药要忌口营养药和疗效药这两种叫法,并不是严格意义上的药理分类,但在涉及到药物与营养的时候,我们还是应大致地了解。营养药只是在人体缺失了某些营养素和微量元素时,才选择性地服用,以期达到营养保健的目的。而疗效药是针对某些具体病症所采取的必要的防治手段。营养药不能治病,但只有为自己的身体提供了足够平衡的营养,才能远离疾病,因此在服用营养药时要保证适当、合理。疗效药能治疗,但相当一部分药品有副作用,也有一部分药品的化学成分与某些食物在体内合成后会淡化功效,甚至产生有害物质。以下是用药时的一些禁忌:忌与酒同服的药少量饮酒不碍健康,用酒浸泡中药制成药酒还可以治病。但是,在服用某些西药时则不能饮酒,更不能将西药片投入酒中作药酒,因为酒与西药容易发生化学反应,可能降低疗效,增加毒性反应。据估计,约有百种以上药物在服用期间应该忌酒。如高血压病、冠心病患者在服用利血平、胍乙啶、复方降压片、优降灵、地巴唑、消心痛、速尿等时不能喝酒,因为酒后可能使乙醇的麻醉作用增强,外周血管扩张,加上降压药的协同作用,最容易发生低血压,甚至休克而危及生命。睡眠不佳、多梦、心悸的病人服用鲁米那、速可眠、水合氯醛、利眠宁、安定、泰尔登、安眠酮等中枢抑制药时,若饮酒,可能使神经反应性降低,造成中毒死亡。糖尿病患者饮酒前后服用胰岛素、优降糖、甲磺丁脲、降糖灵等药物,有引起低血糖休克的危险。忌与茶同服的药饮茶会影响一些药物的疗效,服药时必须注意:缺铁性贫血的病人和孕妇在服用硫酸亚铁、富血铁和枸橼酸铁时不能喝茶,因为茶中的鞣酸会与铁剂发生沉淀,影响铁的吸收。服多酶片、胰酶片、胃蛋白酶等酶制剂时不能喝茶,因为这些药物的化学本质属于蛋白质,茶中的鞣酸可以和它们发生作用,生成不溶性沉淀,从而降低药效。盐酸麻黄素、黄连素、磷酸可待因、硫酸阿托品、地高辛、去痛片、优散痛、安痛定等在与茶水合用时也会降低药效,也不宜合服。忌与糖同服的药在内服龙胆酊、健胃散、龙胆大黄合剂等苦味健胃药期间,不能吃糖和甜食,因为苦味健胃药能刺激末梢神经,反射地分泌唾液、胃液等消化液,达到帮助消化、促进食欲的目的。如果在药里放很多糖,完全掩盖了苦味,结果就失去了健胃的功效。在内服扑热息痛、退热净等药物时也不能吃糖,因为糖能抑制此类药物的吸收,影响疗效。忌与果汁同服的药在各种果汁饮料中,大都含有维生素C 和果酸,而酸性的物质容易导致各种药物的提前分解或溶化,不利于药物在小肠吸收,影响药效,有的药物在酸性环境中会增加副作用,对人体产生不利因素。如小儿发热时常用的消炎痛、安乃近、复方阿司匹林等清热止痛剂,对胃黏膜有刺激作用,若在酸性环境中则更易对人体构成危害。忌与牛奶同服的药牛奶含有较多的钙、铁、磷等无机盐类物质,这些物质可与某些药物成分,发生作用而影响药物的吸收,降低药效。如中成药中的黄酮、有机酸等成分,遇到牛奶中的上述成分会相互作用,有碍药物吸收,使疗效下降。化学药物在这方面的例子也很多,如土霉素、四环素等可与钙、铁结合成络合物,使这些药物的吸收受到影响,甚至达不到治疗目的。另外,牛奶中的蛋白质、脂肪等,对某些药物的吸收也有一定影响。忌与盐同服的药风湿病伴有心脏损害的患者,在使用水杨酸钠治疗期间,要限制病人食用大量盐 (氯化钠)。因为钠可促发或加重充血性心力衰竭。使用促肾上腺皮质激素、糖皮质激素治疗的病人,要给予低盐饮食,并补钾。因为此类药物有引起水、钠潴留和排钾的作用,如食用盐过多,则可增加水、钠潴留,而致水肿。服用降压药(如利血平、复方降压素等)时,也不宜大量食用含高盐的饮食,因为盐可增加血压升高的程度,明显降低降压药的疗效

本品用于发热,也可用于缓解轻中度疼痛,如头痛、肌肉痛、关节痛以及神经痛、痛经、癌性痛和手术后止痛等。性状白色结晶性粉末,味微苦而麻;mp.168~170℃;易溶于乙醇和热水,微溶于冷水-扑热息痛的实验室合成-对乙酰氨基苯酚水杨酸:与三氯化铁反应显紫堇色吡罗昔康:与三氯化铁反应显玫瑰红色?鉴别V与三氯化铁呈蓝紫色反应V其稀盐酸液与亚硝酸钠反应后,与碱性β -萘酚呈红色2、实验目的和内容:实验目的掌握扑热息痛的合成和提纯方法了解实验室药物合成的基本过程实验内容合成扑热息痛掌握产品的重结晶精制方法-扑热息痛的实验室合成-3.常用的合成方法3.1以氨基苯磺酸为原料3.2对羟基苯乙酮为原料此路线反应经典,适合大生产,此法是目前我国扑热息痛生产采用的方法。3.3以氯苯为原料4.实验室制法------以对氨基苯酚为原料实验原理反应机理-扑热息痛的实验室合成-带回流冷凝管的干燥250ml圆底烧瓶→依次加入对氨基苯酚25g、醋酐31g、冰醋酸44g、沸石3-4粒→电炉加热回流(110~115℃)反应4h→旋转蒸发仪蒸除醋酸(85-90℃水浴)→残留物倾入等体积冰水中→搅拌结晶→抽滤→冰水洗至近中性→抽干→粗品操作1:对乙酰氨基苯酚的制备(乙酯化) 5、实验操作:粗品用热水溶解(约0.1g/1.5~2ml水)→活性碳脱色(0.1g/g粗品)→热抽滤→滤液冷却结晶→抽滤→滤饼冰水洗→抽干→干燥→计算收率(理论产量34.6g)操作2:对乙酰氨基苯酚的精制6、实验装置:5、实验装置:6、实验要求:注意事项反应瓶应干燥;反应加热应缓慢升温至回流;滤饼洗涤用冰水;热过滤时漏斗和抽滤瓶应充分预热。6、实验要求:实验思考扑息热痛的合成中是否可用乙酰氯代替醋酐,为什么?醋酐∶醋酸酐容易断键,反应较快,醋酐上的碳基被酯健活化有强亲电性,可以和氨基形成酰氨键,一定程度上避免了前面所述副产物的产生,提高某某。乙酰氯:乙酰氯的活性较高但选择性较差。[全文已结束,注意以上仅为全文的文字预览,不包含图片和表格以及排版]

解热镇痛药毕业论文

化学是研究物质的性质、组成、结构、变化和应用的科学。自有人类以来就开始了对化学的探索,因为有了人类就有了对化学的需求。它与我们的生活息息相关,在我们的日常生活中无处不在。下面是我为大家收集关于健康生活与无处不在的化学论文模板,欢迎借鉴参考。

浅谈生活中无处不在的化学

前言:生活中到处都涉及化学,了解化学不仅仅帮我们提高生活质量,而且能提高我们对世界的认识,更好地保护人类的生存环境。

正文:

毫无疑问因为化学而有了很多物质上的创新。因为化学家们的实验工作,我们才有了塑料、玻璃、药物、火药和电子产品等。这些东西又是怎样研制成的呢化学家们先是提出问题再构成假设,假设是任何科学实验的基础,根据假设反复进行科学实验。我们日常生活中不同的烹饪牛排的 方法 和蒸馏上乘的威士忌的方法都是透过实验而得知。化学是我们日常常生活的一部分,不管我们意识到与否,化学渗透到生活的每一方面。烹饪技术高超的家庭主妇从某种好处上说就是一名化学家。怎样将食品中的化学成分调配好是一门艺术。烧烤完全是化学反应,你烧烤的食物好坏在于化学成分的调配。蔗糖受热熔化会转成焦糖。了解这一点,就能做出使人食欲顿开的食物。另一方面烧烤用的苏打和食物是化学在现实生活中应用的典范。我们懂得食用油和酱油会因为氧化反应而变质同时色彩发生变化因此我们能够观察色彩而辨别食用油和酱油是否安全食用。我们用特氟龙锅来油煎食物,用铁锅来做汤,这些全包含化学原理。我们都明白水和空气的基本成分,也明白生活中诸多用化学方法制成的产品如食盐,含氢和氯的酸性物质,还有蔗糖。了解这些能帮忙我们记住元素周期表上化学元素的缩写。这能帮忙我们解除生活中的遇到的许多复杂化学名称。了解物质之间

的阳性反应。能帮忙你处理日常事务,而了解物质间的阴性反应会挽救你的生命,阴性化学反应能造成伤害性的条件,如爆炸、烧伤和有害气体。

某些化合物放在一齐能消除异味。市场上很多产品就是利用这一化学原理来消除异昧的。在医药上,所有的药物都是透过化学反应制成的。还有采用将物质混合起化学反应来杀菌比药物治疗要有效的多,这也是在利用化学原理。很多软膏和消毒剂还有一些肥皂洗涤剂等都是利用这些化学混合物的作用制成的。另外医学上常说的胶化、胶质和悬胶这些术语都是来自化学。化妆品都内含化合物,脱毛剂之所以能脱毛是因为物质之间的化学反应。

化学反应能释放能量,由这一原理燃料发动机得以发明创造并工作。热传导或热传递是热学原理在现实生活的应用。如做饭时要点燃液态天然气带给热能。

我们明白我们呼吸时吸收的是氧气,将氧气与氮气和二氧化碳气体分开,人体需要的是氧气,所以当我们看到烟烟主要包含一氧化碳,而一氧化碳浓度较大的气体对人体有害,甚至会使人窒息而亡)或闻到臭味的东西时如硫化氢气体,我们会屏住呼吸或者捂住鼻子以防止异味气体进入我们的呼吸系统。我们的饮食完全是化学。我们的饮料和食物之间将有化学反应。唾液会感知到食物的酸甜苦辣。之后饮料和食物将和人体消化器官内的酶发生化学反应以获得卡路里,蛋白质、维他命或者是矿物质,这些都是人体的健康所必需的。了解这些我们就不会吃那些对我们的身体有害的东西。热的食物和饮料不能放

在塑料盘子和塑料杯子里。如果放了,塑料物质会溶进饮料和食物当中,而塑料物质对人体是有害的。.

我们在穿衣服时,看衣服的色彩就明白衣服是否发霉。我们的汗液基本上呈酸性,所以当汗液粘在衣服上如果不及时除掉,衣服会变黄。我们佩戴的饰品、穿的鞋同样也是这样。所有这些都包含化学原理。

总而言之,化学在我们身边。我们呼吸的空气,我们吃的食物,我们人体与物质的科学影响着我们的健康。了解化学就是在了解你身边的世界。了解得越多就越能健康的生活。

课程感想:接下来是我的一些关于学习本课程的感想:本课程与其他课程最大的不同点就是大部分课程都在实验室中进行。透过做各种各样的搞笑的实验,我不仅仅锻炼了自己的动手潜力,更是增加了对于学习化学的兴趣。原先化学与我们的生活是如此地接近,原先我们能够利用化学知识做出这么多东西来,这是我在上这门课之前所未曾想到的。尽管在这门课上我们做的实验仅仅是一些很简单很表面的实验,但也正是这些简单的实验才能激发对于化学兴趣,对于研究问题的用心性和探索潜力,这是这门课有别于其他地方的存在,也是最让我印象深刻的地方。

化学需要回归生活

在如今学子遍布的年代我不相信还有人不明白化学,有人把它当作一门课,有人把它当作一门科学,也有人认为它是一种艺术。从两百多年前它被正式确立以来,可谓发展迅速,然而这种迅速并不比数学、物理乃至其他自然科学快步多少,甚至于没有其他自然科学的进步就不会有化学的大发展。举例而言,没有量子理论的建立,就没有现代化学。当多少“砖家”还在高呼“社会离不开化学,让更多的人了解化学”之类高傲言论,人们对化学的兴趣反而减少了。社会离不开化学,但社会也同样离不开其他一切,不至于这些专家脑子里除了化学装不了其他。我难以想象一堆专家对着日常生活的吃喝拉撒去评论它们的组成、结构、性质乃至变化的画面。

化学是普通的,和其他千千万万学科知识一样,都是我们生活的一个组成部分,没有等阶之差,更不该被所谓的魔化。一个熟知化学的人会因为生活中的种种现象能被解释而欣慰,一个不了解化学的人也会因无需关注缘由,自由无虑开怀。何况一个熟悉计算机内部结构的未必使的好计算机,而一个玩的好计算机的人未必熟悉其内部构造。

诚然,化学的发展带给了人类日新月异的生活,小到日常生活随处用到的塑料袋,大到一个国家的石油化工,化学带给了人们前所未有的生活体验。然而带来这些的根本是人类对未知不断探求的结果。第一个吃螃蟹的人是可敬的,然而即使无人吃螃蟹,螃蟹也不会丧失它的美味。化学是人与自然之间的一扇门,这一扇门的有无并不影响自然的存在与否。我们透过这扇门了解自然,我们赞美这扇门,但自然的神奇并非有了这扇门才存在,何况了解自然并非这一道门。

现实中,太多的人关注这扇门的材质纹理,以致忘了门后的自然世界。以化学实验来说,众所周知,化学是实验的科学,化学学科建立之初,人们用实验验证未证实的理论或是发现未知的物质。然而,此刻提起实验人们想到的不是实验目的,而是高大上的实验室和实验设备,甚至是令人眼红的实验经费。为了什么做实验早已被忘得一干二净,仿佛只要有豪华的装置一切实验毫无疑问均可成功,既然一切实验都是成功的,什么目的再关注自然没有好处,连宇宙都能够按照人为意志演化了。

没有高大上的实验配置,实验无法成功,自然无需去做。我在一个地级市上

高中,校园以物资不足为由三年中学生只进三次实验室,一次参观,两次简单地摸摸瓶瓶罐罐,做个酸碱反应之类。至于其他校园,比可观之。

汉弗莱·戴维在十九世纪初用伏打电池发现了钾、钙、镁等金属,是化学发现史上发现元素最多的人。当时的实验条件可想而知,伏打电池作为电池界的老祖宗什么状况大家也很容易想象,如此恶劣的条件下戴维都能发现多种金属可见做实验与实验条件毫无关联。不幸的是太多校园以实验条件不行制约学生的实验操作潜力,连一些老师都以“校园实验室太简陋”为由避开实验课操作。

然而化学实验并没有什么高大上和不可触及,我们经常听到衣服脏了用汽油洗、用食盐洗之类都是化学实验,是生活中的化学实验,是抛弃了豪华外衣的化学实验。事实上,只要你想,随时都可进行实验,进行你所求目的,所解疑问的实验。

多少人从初中学到大学,应对一本比一本厚的化学书,没见到一个日常生活中能够做的实验。上百页的书,上百页的理论,一个又一个名词,一个又一个术语,就是不见一个能做的实验事实。甚至于一本四五百页的有机化学学完,还分不清手里拎的塑料袋到底是聚乙烯还是聚丙烯。偏偏这时一进教室,老师教你的是聚异戊二烯之类。

我不想说我们学了一堆不靠谱的理论,但我们确实学了一堆虚无理论。好比有人问老子何为道,老子回答说:“道可道,十分道。”那么到底什么是道呢?道可道,十分道!

化学是门伟大的科学,但它的基础是实用。多少人看不懂计算机理论书籍,但使用起计算机无比熟练;同样多少人看得懂化学理论,做起实验一个比一个生疏,甚至一个博士后能把实验室和自己一块炸了。计算机几十年发展迅速,因为每一个计算机行家都在实践操作。计算机行业黑客出了无数,写理论书的黑客没有几个;化学行业诺贝尔奖每年一两个,却连初中老师都出版教材。

化学教学需要脱离空无高大上的理论,回到基础的实用性上,至少,回归生活。能把一个学生教到分不清塑料袋是聚乙烯还是聚丙烯的学科,哪怕它是宇宙的终极理论也毫无用处。化学是生活的学科,教会学生天然气是甲烷不是一氧化碳比教会他碳纳米管是什么远要有用。

我在那里无意提一些生活中的化学知识,例如化妆品,酒水饮料,食物之类,

这些网上随处可寻。可就是这些网上随处可寻得知识在大多中学禁止学生上网的禁令下,书上也不教,以致一些到了大学便不再上化学课的学子一生都不明白。当然,生活中的化学并非酒水等能够概全,我们也需要明白一些理论知识,但是立足于可观事实之上的理论,不是你给我说什么链式反应之类,它是真的是假的又如何,我还能去找国家主席申请一个原子弹炸炸试试,就说为了验证链式反应?然后原子弹炸了我说链式反应是真的,万一没炸我说链式反应是假的,或者防止偶然状况,再申请一个继续炸?

我想大家都没有傻到这种地步。

当然,这并不是说高深理论毫无用处。人类是探索型生物,对一切未知都有着无比的好奇心。然而高楼平地起,没有扎实的地基在豪华的大厦也要倾倒。这也正是化学 教育 需要回归生活的好处。

浅谈化学与生活

关键词:化学;生活;人类

摘要:人类的生活大致可分为精神生活和物质生活两个方面,物质生活离不开物质,精神生活也离不开物质。由于化学是以物质的组成、结构、性质和应用为主要研究对象的一门科学,改造原有物质和制造新物质就成了化学的主要研究资料。本文将从:关注营养平衡、促进身心健康、生活中的材料、保护生存环境等四方面来介绍化学对人类生活的影响,进一步证明化学与人类社会密不可分的关系。

一、关注营养平衡

生命本身就是一种奇迹。只要走进大自然,无论是公园、农田、森林、草原还是崇山峻岭,江河湖海,我们都会发现有数不清的动物和植物。生命要为生存而感激太阳,同时也要感谢化学,感谢把能量转化为生命物质的化学过程。

1、糖

糖类是绿色植物光合作用的产物,对于人和大多数动物来说,属于最基本也是最廉价的能量来源。在我国居民的食物构成中,人们每一天摄取的热能中大约有75%来自糖类。糖类是由C、H、O三种元素组成的一类有机化合物,糖类也叫做碳水化合物。糖类中最重要也是最简单的糖是葡萄糖,它在自然界中分布十分广泛,存在于葡萄等带甜味的水果里。淀粉也属于糖类,主要存在于植物的种子或块根里,其中谷类含淀粉较多。例如,大米中淀粉约80%,小麦含淀粉约70%,马铃薯含淀粉约20%。淀粉虽属于糖类,但没有甜味,需要进一步化学反应转成葡萄糖才能够被人吸收。纤维素也是糖类,它不能被人类吸收,但也有重要作用,例如,它能够刺激人体消化。

2、蛋白质

蛋白质是生命的基础,没有蛋白质就没有生命。肌肉,血清,血红蛋白,毛发,指甲等都是有不同的蛋白质构成的,一切重要的生命现象和生理机能都与蛋白质密切相关。大学生每一天需要摄入80~90g蛋白质,才能满足需要,保证身体健康。蛋白质会在人体内被水解成氨基酸,然后被人体吸收。不同的食物中内含的蛋白质数量及成分不同,营养价值也不同,合理搭配各种食物,能够使氨基酸相互补充,提高膳食中蛋白质的吸收与利用。

3、油脂

油脂的主要成分是高级脂肪酸与甘油所生成的酯,叫做甘油三脂。在人体中,油脂主要在小肠中被消化吸收,实质上是脂类被酶催化水解生成高级脂肪酸和甘油,脂肪酸在人体中主要有以下几种功能:(1)供给人体热量;(2)储存能量;(3)合成磷脂、固醇等物质;(4)参与人的生理过程如促进发育等。

4、维生素和微量元素

在20世纪初期,科学家发现,如果用只含糖类,脂肪,蛋白质和水喂养,实验动物不能存活。但加入微量牛奶后,实验动物就能正常生长了,科学家经过反复论证,实验,认为正常膳食中还务必有微量维生素,矿物质等。

二、促进身心健康

“生命在于运动”,这是人们从实际生活中 总结 出的一条真理。合理选取饮食,正确使用药物和培养良好的生活习惯是保障身心健康的重要方面,而这些都离不开化学。

1、合理选取饮食

1)水的重要性

人们每一天都要补充必须量的水分,水是人体的重要组成成分,是人体含量最多的一种物质,约占人体体重的三分之二。人体的水需要不断补充,没人每一天要补充2.5~4L水。能够说,没有水就没有生命。水是一种很好的溶剂。食物中许多物质如糖等要溶于水才能被吸收。水溶液在血管细胞间川流不息,把氧气和营养物质运送到组织细胞,又把代谢废物送到体外。此外,水还有调节体温的作用。

2)食物的酸碱性

在日常生活中,食物的选取与其酸碱性关系很大。食物的酸碱性是按食物在体内代谢最终产物的性质来分类的,有重要的生理好处。因为人体正常的生理过程对所涉及的体液都有较严格的酸碱性要求。例如在正常状况下,人体的pH总持续弱碱性范围(7.35-7.45),否则,就会出现酸中毒或碱中毒。由于人体具有自动缓冲系统,能使血液的pH总持续在正常范围内,到达生理平衡。但这种调控潜力是有限的,还需要透过选取酸性食物或碱性食物来加以控制。

3)食品添加剂

为了改善食物的色、香、味或补充食品在加工过程中失去的营养成分,以及防止食物变质等,我们经常会在食品中加入一些天然的或化学合成的物质即食品添加剂。食品添加剂的品种有许多,主要包括这几种:着色剂、调味剂、防腐剂、营养强化剂等。随着食品工业的发展,食品添加剂已经成为人类生活中不可缺少的物质。但不合理的使用食品添加剂会损害人体健康。

2、正确选取药物

统计数据证明:我国居民的平均估计寿命由1949年时的35岁,提高到2000年的70.8岁;传染病在死亡病因中所占的比率由35%降到5%。其中主要原因是普遍应用了各种新型药物。化学对此做出了重大贡献。

1)人工合成药物

主要包括解热镇痛药、抗生素、抗酸药等等。解热镇痛药如阿司匹林是人们熟知的感冒药,具有镇痛作用。是第一个重要的人工合成药物。阿司匹林的应用开辟了医药化工的全新领域,是至今销量最大的药物。青霉素是最重要的抗生素,即消炎药。青霉素有阻止多种细菌生长的优异功能。抗酸药能够治疗胃痛,能中和胃里过多的胃酸,缓解胃部不适。

2)天然药物

天然药物取自植物、动物和矿物,来源丰富。化学对中药有重要好处。许多中草药的有效成分已经分离。例如具有止咳平喘功能的麻黄碱是从中药麻黄碱中提取的生物碱。

三、生活中的材料

材料是人类赖以生存和发展的重要物质基础。没有半导体材料,就不可能有此刻的计算机技术;没有耐高温、高强度的特殊结构材料,就不可能有这天的宇航技术;没有光导纤维,就不可能有现代的光通信;没有有机高分子材料,人类的生活就不可能像这天这样丰富多彩。化学是材料科学发展的基础。

1、合金

合金是由两种或两种以上的金属(或金属与费金属)熔合而成的具有金属特性的物质。合金与各成分金属相比,具有许多优良的物理、化学或机械的特性。因此,尽管目前已经制得的纯金属只有80多种,但由这些纯金属制得的合金已达数千种,大大拓展了金属材料的适用范围和价值。生活中常用的合金有铁合金、铝合金和铜合金等。

2、玻璃、陶瓷和水泥材料

一般的住宅玻璃是普通玻璃,制造普通玻璃的主要原料是纯碱,石灰石和石英。制造陶瓷的主要原料是粘土。陶瓷具有抗氧化、抗酸碱腐蚀、耐高温、绝缘、易成型等优点。常用的硅酸盐水泥的原料主要是石灰石和粘土。

3、金属的腐蚀和防护

金属的腐蚀现象十分普遍。例如,钢铁生锈,铜器表面生成铜绿等等。腐蚀可使金属的机械性能、色泽和外形等方面发生变化,严重时可使机器设备、仪器和仪表等报废。所以防止金属腐蚀也是亟待解决的问题。金属的腐蚀主要包括电化学腐蚀及化学腐蚀,因此要从这两方面思考来进行金属的防护:金属腐蚀的本质是金属失去电子转成阳离子的过程,越活泼的金属越易被腐蚀,因此想要保护金属,能够在要保护的金属上连接一种比该金属更活泼的金属。此外也能够在金属表面涂漆,烤蓝,加氧化膜,镀金属等等,需要根据不同的状况选取不同的防护方式。

4、塑料、纤维和橡胶材料

合成材料的品种很多,塑料,合成纤维和合成橡胶就是常说的三大合成材料。塑料的品种很多,用途各不相同,主要有:聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、脲醛塑料等等。纤维和橡胶是生活中常用的材料,合成纤维具有优良的性能,如强度高、弹性好等等。而橡胶是制造汽车、飞机和医疗器械等所必需的材料,是重要的战略物资。

四、保护生存环境

20世纪以来,随着科学技术的迅猛发展,人类创造了空前丰富的物质财富。而与此同时,自然资源的过度开发和消耗,污染物的超多排放,导致全球性的资源短缺,环境污染和生态恶化。保护环境,保护地球已成为人类的共同的呼声。

环境问题的最终解决要靠科技进步。在这个过程中,化学是大有可为的。改善大气质量,污水处理和实现垃圾的资源化等都要依靠化学方法,要依靠化学等科学的发展。

1、改善大气质量

大气的污染危害是多方面的,它即危害人体健康,又影响动植物的生长,严重时会影响地球的气候。如构成酸雨、是全球气候变暖和破坏臭氧层等。为了改善大气质量,我们应当减少煤等化石燃料燃烧产生的污染、减少汽车等机动车尾气污染,减少室内空气污染等。lwfree

2、爱护水资源

如前文介绍。水是重要的资源,同时也是宝贵的自然资源。随着工农业生产的迅速发展和人口的急剧增长,水资源日趋紧张。同时,由于废物排放,污染了水资源,加剧了水资源的短缺。水体污染主要包括:重金属污染、植物营养物质污染等等。为改善水质,最根本的 措施 是控制工业废水和生活污水的排放,例如:重复利用废水,回收废水中的有效成分,减少废水的排放量;采用革新工艺,减低废水中的有用成分等。

3、垃圾资源化

垃圾处理要遵循无害化,减量化和资源化的原则,目前常用的方法有卫生填埋,堆肥和焚烧。

五、结语

综上所述,我们能够初步得出化学在当今人类追求高品质的现代化生活中,在各科学追求深入发展和进步的路途中都起着重大的作用。化学世界多姿多彩,在学习和生活实践中多掌握一些化学常识总是能够为我们的生活增加一些亮丽的色彩与更多的便捷。但也要注意化学的使用规则,按照必须的规范要求进行操作。总之,在我们身边化学无处不在,生活离不开化学,化学源于生活。

相关 文章 :

1. 化学与健康生活论文3篇

2. 毕业论文

3. 化学开题报告范文

4. 3000字的论文格式模板

5. 2500字论文格式模板怎样的

■中文名称:阿斯匹林(解热镇痛药)阿司匹林(退热药)■中文别名:醋柳酸、乙酰水杨酸、巴米尔、力爽、塞宁、东青等■英文名称:aspirin■英文别名:Acenterine、Acetard、Acetophen、Acetylsalicylic Acid、Acidum Acetylsalicylicum、Adiro、Albyl、Aluprin、Asadrine、Aspirinetas、Bayaspirina、 Bi-Prin、Codral Junior、Ecotri、Ecotrin、Elsprin、Empirin、Enteretas、Novosprin、Rhonal、 Salitison、Salicylic Acid Acetate等■拉丁名称:Aspirin■化学名称:2-(乙酰氧基)苯甲酸■分子结构式为:C9H8O4■分子相对质量:180.16■阿司匹林简介阿司匹林是历史悠久的解热镇痛药,它诞生于1899年3月6日。早在1853年夏尔,弗雷德里克·热拉尔(Gerhardt)就用水杨酸与醋酐合成了乙酰水杨酸,但没能引起人们的重视;1898年德国化学家菲霍夫曼又进行了合成,并为他父亲治疗风湿关节炎,疗效极好;1899年由德莱塞介绍到临床,并取名为阿司匹林(Aspirin)。到目前为止,阿司匹林已应用百年,成为医药史上三大经典药物之一,至今它仍是世界上应用最广泛的解热、镇痛和抗炎药,也是作为比较和评价其他药物的标准制剂。在体内具有抗血栓的作用,它能抑制血小板的释放反应,抑制血小板的聚集,这与TXA2生成的减少有关。 临床上用于预防心脑血管疾病的发作。根据文献记载,都说阿司匹林的发明人是德国的费利克斯·霍夫曼,但这项发明中,起着非常重要作用的还有一位犹太化学家阿图尔·艾兴格林。阿图尔·艾兴格林的辛酸故事发生在1934年至1949年间。1934年,费利克斯·霍夫曼宣称是他本人发明了阿司匹林。当时的德国正处在纳粹统治的黑暗时期,对犹太人的迫害已经愈演愈烈。在这种情况下,狂妄的纳粹统治者更不愿意承认阿司匹林的发明者有犹太人这个事实,于是便将错就错把发明家的桂冠戴到了费利克斯·霍夫曼一个人的头上,为他们的“大日耳曼民族优越论”贴金。纳粹统治者为了堵住阿图尔·艾兴格林的嘴,还把他关进了集中营。第二次世界大战结束后,大约在1949年前后,阿图尔·艾兴格林又提出这个问题,但不久他就去世了。从此这事便石沉大海。 英国医学家、史学家瓦尔特·斯尼德几经周折获得德国拜尔公司的特许,查阅了拜e公司实验室的全部档案,终于以确凿的事实恢复了这项发明的历史真面目。他指出:在阿司匹林的发明中,阿图尔·艾兴格林功不可没。事实是在1897年,费利克斯·霍夫曼的确第一次合成了构成阿司匹林的主要物质,但他是在他的上司——知名的化学家阿图尔·艾兴格林的指导下,并且完全采用艾兴格林提出的技术路线才获得成功的。【适用病症】本药临床可用于下列情况。■镇痛、解热可缓解轻度或中度的疼痛,如头痛、牙痛、 神经痛、肌肉痛及月经痛,也用于感冒、流感等退热。本品仅能缓解症状,不能治疗引起疼痛、发热的病因,故需同时应用其他药物参因治疗。■消炎、抗风湿阿司匹林为治疗风湿热的首选药物,用药后可解热、减轻炎症,使关节症状好转,血沉下降,但不能去除风湿的基本病理改变,也不能预防心脏损害及其他合并症。如已有明显心肌炎,一般都主张先用肾上腺皮质激素,在风湿症状控制之后、停用激素之前,加用本品治疗,以减少停用激素后引起的反跳现象。■关节炎除风湿性关节炎外, 本品也用于治疗类风湿性关节炎,可改善症状,为进一步治疗创造条件。此外,本品用于骨关节炎、强直性脊椎炎、幼年型关节炎以及其他非风湿性炎症的骨骼肌肉疼痛,也能缓解症状。■抗血栓本品对血小板聚集有抑制作用,阻止血栓形成, 临床可用于预防暂时性脑缺血发作、心肌梗塞、心房颤动、人工心脏瓣膜、动静脉瘘或其他手术后的血栓形成。也可用于治疗不稳定型心绞痛。■皮肤粘膜淋巴结综合症(川崎病)儿科适用。【用法用量】注意:应与食物同服或用水冲服,以减少对胃肠的刺激■成人常用量口服。①解热、镇痛,一次0.3—0.6g,一日3次,必要时每4小时1次②抗风湿,一日3—5g(急性风湿热可用到7~8g),分 4次口服③抑制血小板聚集,尚无明确用量,多数主张应用小剂量,如50—150mg,每24小时 1次④治疗胆道蛔虫病,一次1g,一日2—3次,连用2—3日;阵发性绞疼停止 24小时后停用,然后进行驱虫治疗■小儿常用量口服。①解热、镇痛,每日按体表面积1.5g/平方米,分4~6次口服,或每次按体重5—10mg/kg,或每次每岁60mg,必要时4~6小时1次②抗风湿,每日按体重80~100mg/kg,分3—4次服,如1—2周未获疗效,可根据血药浓度调整用量。有些病例需增至每日130mg/kg。③小儿用于皮肤粘膜淋巴结综合征(川崎病),开始每日按体重80—100mg/kg,分3—4次服,热退2—3天后改为每日30mg/kg,分 2—4次服,连服2月或更久,血小板增多、血液呈高凝状态期间,每日5—10mg/kg,1次顿服。④预防血栓、动脉粥样硬化及心肌梗塞:0.3/次,一日1次;预防暂时性脑缺血,每次0.6g,一日2次。⑤治疗胆道蛔虫:每次1g,一日2-3次,连服2-3日。⑥治疗X线照射或放疗引起的腹泻,每次服0.6-0.9g,一日4次。 (6)治足癣,先用温开水或1:5000高锰酸钾溶液洗涤,然后本品粉末撒布患处,一般2-4次可愈。水杨酸类早晨给药达峰时间长,半衰期长,晚间相反。合理给药应早晨用量略增加。晚间加服一次。■部分疾病患者的用法及最佳用量①在预防瓣脑性心脏病发生全身性动脉栓塞方面,单独应用阿司匹林无效,但与双嘧达莫合用,可加强小剂量双嘧达莫的效果。②避免和糖皮质激素合用;避免与香豆素类抗凝药、降血糖药氨甲蝶呤、巴比妥类、苯胺类等合用。③饭后服。美国胸科医师学会抗栓和溶栓治疗学会(ACCP)的循证指南指出,使用阿司匹林预防心肌梗死、脑卒中和血管性死亡,患者应根据病情,使用最佳剂量。大量的临床试验显示,对大部分病人来说,包括慢性稳定性或不稳定心绞痛患者,阿司匹林75mg/日可有效降低发生急性心肌梗死和死亡的危险。这一剂量也可降低一过性脑缺血发作患者脑卒中和死亡的发生率。欧洲一项脑卒中预防研究显示,既往有一过性脑缺血发作和脑卒中病史的患者使用阿司匹林25mg,每日2 次,即50mg/日可降低脑卒中或死亡的危险。临床实践证明,患者即使服用比表中剂量更高的阿司匹林,疗效不会进一步增加,但副作用的发生却大大增加。因此在治疗各种血栓性疾病中,患者应该使用最小的有效剂量,亦即长期应用50—160mg/日,以达到最大疗效,而毒副作用则减至最小,这才是患者服用阿司匹林的最佳剂量。【不良反应】一般用于解热镇痛的剂量很少引起不良反应。但长期大量用药(如治疗风湿热)、尤其是当药物血浓度>200μg/ml时则较易出现副作用。血浓度愈高,副作用愈明显。◆较常见的有恶心、呕吐、上腹部不适或疼痛(由于本品对胃粘膜直接刺激引起)等胃肠道反应(发生率 3—9%)。◆较少见或很少见的有(发生率<3%);①胃肠道出血或溃疡,表现为血性或柏油样便,胃部剧痛或呕吐血性或咖啡样物,多见于大剂量服药患者;据报道每天服用 4—6g者有 70%每天出血 3—10ml,有溃疡形成者出血量可更多,并可引起失血性贫血;服用肠溶片剂很少有胃肠刺激反应;②支气管痉挛性过敏反应,表现为呼吸短促、呼吸困难或哮喘、胸闷;③皮肤过敏反应,表现为皮疹、荨麻疹、皮肤瘙痒等;④肝、肾功能损害,与剂量大小有关,尤其是剂量过大使血药浓度达 250μg/ml时易发生。损害均是可逆性的,停药后可恢复。■具体分类◆过敏反应特异体质者服用此药后可引起皮疹、血管神经性水肿及哮喘等过敏反应,其发生率约为20%,多见于中年人或鼻炎、鼻息肉患者。哮喘大多严重而持久,可伴有荨麻疹或喉头水肿,用皮质激素有效。这种现象机制还不十分清楚。可能这些人对阿司匹林具有特异的药理反应。◆胃黏膜损伤阿司匹林可引起胃黏膜糜烂、出血及溃疡等。多数患者服中等剂量阿司匹林数天,即见大便隐血试验阳性;长期服用本药者溃疡病发率高。笔者曾遇1例患者因高热口服阿司匹林0.6g/次,每日2次,3日后呕血500ml。除药物的酸性直接致胃黏膜损伤外,注射用药亦可发生。阿司匹林能透过胃黏膜上皮脂蛋白膜层,破坏脂蛋白膜的保护作用,于是胃酸就可逆地弥散到组织中损伤细胞,致毛细血管破损而出血。近来发现前列腺素对于维护胃黏膜具有一定的作用,而阿司匹林已证明能阻止前列腺素的合成,使胃黏膜上皮脱落增加并超过更新速度,加重溃疡的程度,使胃黏液减少。为此,应用阿司匹林时最好饭后服用或与抗酸药同服,溃疡病患者应慎用或不用。◆肝损害阿司匹林所致的肝损害,在国内报道较少,有资料表明:当血清阿司匹林浓度下降后,转氨酶也恢复正常。药物引起肝损害可能与肝细胞中毒或过敏反应有关。◆出血、溶血、造血功能障碍阿司匹林有扩张冠状动脉和脑血管作用,未能抑制凝血酶原在肝脏合成,能抑制环氧酶的活性和减少凝栓质A2的形成,阻止血小板聚集,使其不易放出凝血因子,具有一定的抗凝血作用。为此,有消化道出血或溃疡病者,在临床上有出血倾向或者近期有脑出血病史者不宜服用本药。孕妇服用阿司匹林,在早产儿中常出现脑损害如脑出血等,因此,孕妇在分娩前2~3个月应停用本品。阿司匹林可引起造血功能障碍。笔者曾见1例服用本品引起急性造血功能停滞患者,服用本品4h 后全身发痒,7h后鼻衄、牙龈出血不止,伴全身紫癜,骨髓象示红细胞系明显受抑,经对症治疗,10天后骨髓象恢复正常。阿司匹林偶可引起溶血。◆肾损害临床观察和动物实验证明,长期使用阿司匹林可发生间质性肾炎、肾乳头坏死、肾功能减退。长期大量服用本品可致氧化磷酸化解耦联,钾从肾小管细胞外逸,导致缺钾、尿中尿酸排出过高,较大损害是下段尿中可出现蛋白、细胞、管型等。◆神经精神症状用抗风湿剂量时,在治疗开始的3~4天,有时出现所谓水杨酸反应,症状为头痛、眩晕、耳鸣、视听力减退,用药量过大时,可出现精神错乱、惊厥甚至昏迷等。【禁用慎用】■综括12岁以下儿童可能引起雷耶氏综合症,高尿酸血症,长期使用可引起肝损害。妊娠期妇女避免使用。饮酒者服用治疗量阿司匹林,会引起自发性前房出血,所以创伤性前房出血患者不宜用阿司匹林。剖腹产或流产患者禁用阿司匹林;阿司匹林使6-磷酸葡萄糖脱氢酶缺陷的溶血性贫血患者的溶血恶化;新生儿、幼儿和老年人似对阿司匹林影响出血特别敏感。治疗剂量能使2岁以下儿童发生代谢性酸中毒、发热、过度换气及大脑症状。■交叉过敏反应。对本品过敏时也可能对另一种水杨酸类药过敏。但是对本品过敏者不一定对非乙酰化的水杨酸类药过敏。■本品易于通过胎盘。动物试验在前 3个月应用本品可致畸胎,如脊椎裂、头颅裂、面部裂、腿部畸形,以及中枢神经系统、内脏和骨骼的发育不全。在人类也有报道应用本品后发生胎儿缺陷者。此外在妊娠后期3个月长期大量应用本品可使妊娠期延长,有增加过期产综合征及产前出血的危险。在妊娠最后 2周应用,可增加胎儿出血或新生儿出血的危险。在妊娠晚期长期用药也有可能使胎儿动脉导管收缩或早期闭锁,导致新生儿持续性肺动脉高压及心力衰竭。曾有在妊娠晚期过量应用或滥用增加死胎或新生儿死亡的发生率(可能由于动脉导管闭锁、产前出血或体重过低)的报道,但是应用一般治疗剂量尚未发现上述副作用。■本品可在乳汁中排泄,哺乳期妇女口服 650mg,5—8小时后乳汁中药物浓度可达173—483μg/ml,故长期大剂量用药时婴儿有可能产生不良反应。■老年患者服用本品易出现毒性反应。■小儿患者,尤其是有发热及脱水者,易出现毒性反应。急性发热性疾病,尤其是流感及水痘患儿应用本品,可能与发生瑞氏综合征(Reye’s syndrome)有关,中国尚不多见。■下列情况应禁用:①有出血症状的溃疡病或其他活动性出血时;②血友病或血小板减少症。②溃疡病或腐蚀性胃炎;③葡萄糖6磷酸脱氢酶缺陷者(本品偶见引起溶血性贫血);④痛风(本品可影响其他排尿酸药的作用,小剂量时可能引起尿酸滞留);⑤肝功能减退时可加重肝脏毒性反应,加重出血倾向,肝功能不全和肝硬变患者易出现肾脏不良反应;⑥心功能不全或高血压,大量用药时可能引起心力衰竭或肺水肿;⑦肾功能衰竭时可有加重肾脏毒性的危险。■下列情况时应慎用:①有哮喘及其他过敏性反应时【注意事项】■服药说明◆扁桃体摘除或口腔手术后7日内应整片吞服,以免嚼碎后接触伤口,引起损伤◆外科手术病人,应在术前 5天停用。以免引起凝血障碍◆用于治疗关节炎时,剂量应逐渐增加,直到症状缓解,达有效血药浓度(其时可出现轻度毒性反应如耳鸣、头痛等,在小儿、老年人或耳聋患者中,这些症状不是可靠指标)后开始减量;但用量的调整不宜频繁,一般不超过每周一次,当然如出现了副作用还应迅速减量;水杨酸类药血药浓度达稳态一般需要7天◆有脱水的患者(尤其是小儿)应减少剂量。长期大量用药时应定期检查红细胞压积、肝功能及血清水杨酸含量测定■与其他药物的相互作用◆与其他非甾体抗炎镇痛药与其他非甾体抗炎镇痛药同用时疗效并不加强,而胃肠道副作用(包括溃疡和出血)增加;此外,由于对血小板聚集的抑制作用加强,还可增加其他部位出血的危险。本品与对乙酰氨基酚长期大量同用有引起肾脏病变的可能。◆与任何可引起低凝血酶原血症、血小板减少、血小板聚集功能降低或胃肠道溃疡出血的药物同用时,可有加重凝血障碍,引起出血的危险。◆与抗凝药与抗凝药(双香豆素、肝素等)、溶栓药(链激酶、尿激酶)同用,可增加出血的危险。◆与尿碱化药尿碱化药(碳酸氢钠等)、抗酸药(长期大量应用)可增加本品自尿中排泄,使血药浓度下降。但当本品血药浓度已达稳定状态而停用碱性药物,又可使本品血药浓度升高到毒性水平。碳酸酐酶抑制药可使尿碱化,但可引起代谢性酸中毒,不仅能使血药浓度降低,而且使本品透入脑组织中的量增多,从而增加毒性反应。◆与尿酸化药尿酸化药可减低本品的排泄,使其血药浓度升高。本品血药浓度已达稳定状态的患者加用尿酸化药后可能导致本品血药浓度升高,毒性反应增加。◆与糖皮质激素糖皮质激素(简称激素)可增加水杨酸盐的排泄,同用时为了维持本品的血药浓度,必要时应增加本品的剂量。本品与激素长期同用,尤其是大量应用时,当激素减量或停药时可出现水杨酸反应(salicylism),甚至有增加胃肠溃疡和出血的危险。◆与胰岛素或口服降糖药物胰岛素或口服降糖药物的降糖效果可因与大量本品同用而加强、加速。◆与甲氨蝶呤与甲氨蝶呤(MTX)同用时,可减少甲氨蝶呤与蛋白的结合,减少其从肾脏的排泄,使血浓度升高而毒性反应增加。◆与丙磺舒或磺吡酮丙磺舒或磺吡酮(sulfinpyrazone)的排尿酸作用,可因同时应用本品而降低;当水杨酸盐的血药浓度>50μg/ml时降低即明显,>100—150μg/ml时更甚。此外,丙磺舒可降低水杨酸盐自肾脏的清除率,从而使后者的血药浓度升高。它与其他非激素类消炎药或糖激素类合用,有加强对胃的刺激作用。激素有一些降低水杨酸浓度的作用,二者合用后如停用激素,则血中水杨酸浓度升高而中毒。它有加强甲氨蝶呤、磺胺及丙戊酸的作用。它降低卡托普利的降压作用。用碳酸酐酶抑制剂治疗青光眼时,阿司匹林可促使发生代谢性酸中毒。乙醇可加强阿司匹林所致的出血时间延长及胃出血。它不能与抗凝药物合用。【药物药理】■药物效力动力学①镇痛作用:主要是通过抑制前列腺素及其他能使痛觉对机械性或化学性刺激敏感的物质(如缓激肽、组胺)的合成,属于外周性镇痛药。但不能排除中枢镇痛(可能作用于下视丘)的可能性;②消炎作用;确切的机制尚不清楚,可能由于本品作用于炎症组织,通过抑制前列腺素或其他能引起炎性反应的物质(如组胺)的合成而起消炎作用,抑制溶酶体酶的释放及白细胞活力等也可能与其有关;③解热作用:可能通过作用于下视丘体温调节中枢引起外周血管扩张,皮肤血流增加、出汗、使散热增加而起解热作用,此种中枢性作用可能与前列腺素在下视丘的合成受到抑制有关;④抗风湿作用:本品抗风湿的机制,除解热、镇痛作用外,主要在于消炎作用;⑤对血小板聚集的抑制作用:是通过抑制血小板的前列腺素环氧酶( prostaglandin cyclooxygenase)、从而防止血栓烷A2(thromboxane A2TXA2)的生成而起作用(TXA2可促使血小板聚集)。此作用为不可逆性。■药物代谢动力学口服后吸收迅速、完全。在胃内已开始吸收,在小肠上部可吸收大部分。吸收率与溶解度、胃肠道pH有关。食物可降低吸收速率,但不影响吸收量。肠溶片剂吸收慢。本品与碳酸氢钠同服吸收较快。吸收后分布于各组织,也能渗入关节腔、脑脊液中。阿司匹林的蛋白结合率低,但水解后的水杨酸盐蛋白结合率为 65~90%。血药浓度高时结合率相应地降低。肾功能不良及妊娠时给合率也低。半衰期为15~20小钟; 水杨酸盐的半衰期长短取决于剂量的大小和尿pH, 一次服小剂量时约为2~3小时; 大剂量时可达20小时以上, 反复用药时可达5~18小时。一次口服阿司匹林0.65g后,在乳汁中的水杨酸盐半衰期为3.8~12.5小时。本品在胃肠道、肝及血液内大部分很快水解为水杨酸盐,然后在肝脏代谢。代谢物主要为水杨尿酸(salicyluric acid)及葡糖醛酸结合物, 小部分氧化为龙胆酸(gentisic acid)。一次服药后1~2 小时达血药峰值。镇痛、解热时血药浓度为25~50μg/ml; 抗内湿、消炎时为150~300μg/ml。血药浓度达稳定状态所需的时间随每日剂量及血药浓度的增加而增加,在大剂量用药(如抗风湿)时可长达7天。长期大剂量用药的患者,因药物主要代谢途经已经饱和,剂量微增即可导致血药浓度较大的改变。本品大部分以结合的代谢物、小部分以游离的水杨酸从肾脏排泄。服用量较大时,未经代谢的水杨酸的排泄量增多。个体间可有很大的差别。尿的pH对排泄速度有影响, 在碱性尿中排泄速度加快,而且游离的水杨酸量增多,在酸性尿中则相反。【药物毒理】阿司匹林为一复方解热镇痛药。其中阿司匹林和非那西丁均具有解热镇痛作用,能抑制下丘脑前列腺素的合成和释放,恢复体温调节中枢感受神经元的正常反应性而起退热镇痛作用;阿司匹林还通过抑制外周前列腺素等的合成起镇痛、抗炎和抗风湿作用,阿司匹林还有抑制血小板聚集作用。咖啡因为中枢神经兴奋药,能兴奋大脑皮层,提高对外界的感应性,并有收缩脑血管,加强前两药缓解头痛的效果。急性毒性试验结果:大鼠经口LD50为1500mg/kg;小鼠经口LD50为1100mg/kg。【相关事件】■美国宣称“阿司匹林”可致命退热净导致肝脏损伤,而阿司匹林和另一种叫做其他非甾体消炎药(NSAIDs)产品则有可能导致胃出血。虽然这些情况只会发生在一小部分人群身上,但一旦发生都是致命的。美国食品与药物管理局(FDA)再次发出郑重警告,在药物外包装的显著位置应标注相关提示,希望借此减少因此出现的不良药物反应。■购买止痛片应遵医嘱在美国,每年都有数千万人不通过医生而自己直接购买止痛片,大多数情况下,患者按照说明书服用止痛片不会产生危险。但让专家担忧的是,使用这些药品的患者根本没意识到自己已经属于滥用药物,而且没有意识到药物与其他物品混合时所可能产生的危险。一个被广泛使用的例子是,此前研究证明,每年有16500例死亡与服用其他非甾体消炎药(NSAIDs)有关。60岁以上的人服用NSAIDs导致胃出血的可能性很高。所以,FDA一直以来都要求在药物外包装的显著位置标注相关提示,以此提醒患者注意。【同名电影】■基本信息出品/制片:梅婷领衔主演:梅婷主 演:潘石屹 宋宁 曹俊 李娟友情客串:秦海璐、陶虹编 剧:鄢泼、傅乙轩导 演:鄢泼摄 影:许斌录 音:董旭作 曲:刘思军出 品:北京盛世风华影视文化有限公司■剧情简介:文静(梅婷饰)是个娱乐记者,在采访了一位歌手的后,内心的波澜把自己再次带回往事回忆当中。在文静看来,每一份爱情都有自己的符号系统。她的第一段爱情还没有开始,就莫名其妙的结束了,而这份爱情符号却是那张没有赴约的纸条。而第二个男友,符号是一种名叫 “高乐”的低档凉烟,她称他高乐。文静和他同甘共苦地抽了一年高乐烟后,高乐前女友写了封遗书后自杀未遂,在前女友和文静之间,高乐决定选择前女友。后来文静进了杂志社,加入娱乐记者的大军,除了热爱电影,她开始发现这个行业很适合自己。不久,文静遇到了自己的第三个男朋友小白(宋宁饰),小白十分干净清秀,总是穿着白衬衫,他还有个特殊习惯――喜欢用有着消毒药水味道的药皂,为此他身上总隐隐约约带着一股药皂味儿,这股特殊的味道成了小白留在文静记忆中最深刻的符号。在著名的诺查丹马斯预言中的世界末日的那天,文静和小白相约一起等待传说中的大毁灭。喝掉若干瓶啤酒后,有些醉意小白颓丧地告诉文静他觉得自己就像苍蝇一头撞在玻璃上――有光明,没前途。文静这才惊觉,小白内心的疼痛。世界没有灭亡,可爱情却不能永恒。文静决定让小白出国。小白走后,文静搬了家,换了电话和工作。文静始终没有告诉小白自己其实是多么爱他在一次聚会的餐馆里,文静遇到年届中年,在一家美国投资公司做基金总监的李文卿(潘石屹饰),离婚后,李文卿在爱情中迷茫,那天文静给了李文卿一片可以镇痛的阿司匹林。接下来,在李文卿的强烈攻势下,两个人开始有了关于爱的交集,相互关爱的依恋,让文静开始渐渐找到爱的安逸。直到那一刻,文静最终在成为美国中产的老婆和继续等待爱情之间做出了自己的选择……

合成毕业论文

1 天然产物全合成难毕业。2 因为天然产物是自然界中存在的物质,其结构复杂且含有多种不同的官能团,而全合成需要用到多种有机合成技术和化学反应,难度非常大。另外,天然产物的合成路线较为复杂,需要经过多步反应,每一步反应的条件和副反应都需要严格控制,这也增加了合成的难度。3 此外,天然产物的全合成需要大量的实验室时间和经费投入,而且合成的产率较低,往往需要通过多次优化反应条件才能得到理想的产物。因此,天然产物全合成难度大、耗时长、投入高,这也是为什么难以毕业的原因之一。

·《手性药物右雷佐生合成工艺的改进及质量控制》 ·《硅烷偶联剂及一种新型非依赖性镇痛药物的合成研究》 ·《两类药物目标分子的合成及分析》 ·《两种药物目标分子的合成及分析》 ·《生物数据库搜索和可视化的研究》 ·《金雀异黄素合成工艺优化研究》 ·《阿魏酸及其类似物的合成与抗氧化活性研究》 ·《功能化离子液体的制备及在药物合成中的应用研究》 ·《新的苯茚胺类似物的设计合成及抗抑郁活性研究》 ·《头孢西丁钠的合成》 ·《盐酸他利克索合成工艺研究》 ·《新呋咱氮氧化物类NO供体药物合成及体外NO释放测试》 ·《钌(Ⅱ)-卟啉催化卡宾C-H插入反应的基础研究及其在药物合成中的应用 》 ·《微波辐射在杂环药物合成中应用的研究 》 ·《不对称二羟基化反应中新型可回收和重复使用的手性配体研究》

建议你在封面和正文之间加一个分节符。这个在分隔符这一栏中可以找到。分解符会让前后两页的内容成为两节,并且这两节的格式是完全独立的。不会受到影响。

天然产物全合成难毕业的原因有多方面:1、合成过程比较耗时,需要消耗大量的时间和资源;2、合成过程中可能会出现不可控的失误和失败,因此需要经过多次试验才能达到理想的效果;3、合成过程需要投入大量的精力和费用,而且需要非常专业的技术指导,以确保质量和效果;4、此外,合成过程中还需要考虑到环境因素,以确保产品的安全性和可持续发展性。

全合成毕业论文

天然产物全合成是一项极具挑战性的科学研究,有着极高的技术难度。它要求研究者以极高的精确度模拟天然产物的有机反应网络,将复杂的有机反应网络合成成为有机分子,并达到一定的纯度。这项技术要求研究者拥有较高的有机化学基础知识和实验技能,需要在分子的构建、控制及连接上有着较高的理解能力。所以天然产物全合成毕业论文写作也是一项极具挑战性的任务,需要有充分的准备和良好的准备工作。需要深入研究天然产物全合成的相关科学理论,获取合成反应过程中的重要信息,构建出有机反应网络,完成反应的模拟,并最终将模拟结果应用到实际的合成中去。最后,需要进行大量实验,提高反应的精确度,确保反应的成功率,最终获得高纯度的天然产物的全合成物质。总之,天然产物全合成毕业论文的写作就是一项极具挑战性的任务,需要学生们充分准备,在理论知识、实验技能、技术分析能力上有着扎实的基础,以达到所要求的毕业要求。

天然产物全合成难毕业的原因有多方面:1、合成过程比较耗时,需要消耗大量的时间和资源;2、合成过程中可能会出现不可控的失误和失败,因此需要经过多次试验才能达到理想的效果;3、合成过程需要投入大量的精力和费用,而且需要非常专业的技术指导,以确保质量和效果;4、此外,合成过程中还需要考虑到环境因素,以确保产品的安全性和可持续发展性。

海洋生物来源药物先导化合物的研究进展【摘要】 海洋生物中活性物质丰富,本篇文章对国内外近3年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了归纳,并对其研究趋势进行了展望。这些新发现的萜类化合物广泛分布于海藻、珊瑚、海绵以及一些海洋真菌等海洋生物中,主要以单萜、倍半萜、二萜、三萜结构型式存在;而糖苷类化合物在海藻、海绵、海参、海星等海洋生物中发现大部分以糖苷脂、甾体糖苷、萜类糖苷型式存在。 【关键词】 海洋生物 萜类化合物 糖苷类 生物活性 【Abstract】 Marine organism show some important biological activities. This paper reviews terpenoids and glycosides from marine organism at home and abroad since 2005, and provides scientific evidence for reasonable exploitation and application. Terpenoids are mainly occurred on marine algae, coral, sponge and some fungi by monoterpene, sesquiterpene, diterpene and triterpene. And glycosides with structures of lipid, steroid and terpenoid are distributed to marine algae, sponge, sea cucumber and starfish. 【Key words】 Marine organism; terpenoid; glycoside; bioactivity 海洋是生命之源,由于海洋环境的特殊性,具有高压、低营养、低温(特别是深海)、无光照以及局部高温、高盐等生命极限环境,海洋生物适应了海洋独特的生活环境,必然造就了海洋生物具有独特的代谢途径和遗传背景,必定也会有新的、在许多陆地生物中未曾发现过的新结构类型和特殊生物活性的化合物。 萜类物质是一类天然的烃类物质,其分子中具有异戊二烯(C5H8)的基本单位。故凡由异戊二烯衍生的化合物,其分子式符合(C5H8)n通式的均称萜类化合物(terpenoids)或异戊二烯类化合物(isopenoids)。但有些情况下,在分子合成过程中由于正碳离子引起的甲基迁移或碳架重排以及烷基化、降解等原因,分子的某一片断会不完全遵照异戊二烯规律产生出一些变形碳架,它们仍属于萜类化合物。海洋生物中萜类化合物主要以单萜、倍半萜、二萜、二倍半萜为主,三萜和四萜种类和数量都较少,且大部分以糖苷形式存在。萜类化合物是海洋生物活性物质的重要组成部分,广泛分布于海藻、珊瑚、海绵、软体动物等海洋生物中,具有细胞毒性、抗肿瘤活性、杀菌止痛等活性作用。 糖苷的分类有多种方法,按照在生物体内是原生的还是次生的可将其分为原生糖苷和次生糖苷(从原生糖苷中脱掉一个以上的苷称为次生苷或次级苷);按照糖苷中含有的单糖基的个数可将糖苷分为单糖苷、双糖苷、三糖苷等;按照糖苷的某些特殊化学性质或生理活性可将糖苷分为皂苷、强心苷等;按照苷元化学结构类型可分为黄酮糖苷、蒽醌糖苷、生物碱糖苷、三萜糖苷等,海洋类的糖苷大部分是按照此特点分类的,主要包括鞘脂类糖苷、甾体糖苷、萜类糖苷和大环内酯糖苷等,在很多海洋生物如海藻、珊瑚、海参、海绵等中均发现有糖苷类化合物存在。已有的研究表明海洋糖苷类成分大都具有抗肿瘤、抗病毒、抗炎、抗菌、增强免疫力等生物活性。抗白血病和艾氏癌药物阿糖胞苷Ara-C(D-arabinosyl cytosine) 1、抗病毒药物的Ara - A 2以及Ara-C的N4-C16-19饱和脂肪酰基化衍生物3是海洋糖苷类药物成功开发的典范〔1〕。 本篇文章对国内外自2005年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了总结。 1 萜类化合物 1.1 单萜 2005年M. G. Knott等人〔2〕对从红藻Plocamium corallorhiza中分离得到的三种多卤代单萜化合物plocoralides A-C(1~3)〔3,4〕进行了活性研究,发现化合物Plocaralides B(2), C(3)对食管癌细胞WHCOI具有中等强度的细胞毒作用,这些化合物具有卤素取代基。 1.2 倍半萜 从海泥来源的真菌Emericella variecolor GF10的发酵液中分离得到两个新型的倍半萜化合物6-epi-ophiobolin G(4)和6-epi-ophiobolin N(5),化合物在1~3μM浓度时能使神经癌细胞Neuro 2A凋亡,同时伴随细胞萎缩和染色体聚集〔5〕。这一类ophiobolins是天然的三环或四环的倍半萜化合物,对线虫、真菌、细菌以及肿瘤细胞有着普遍的抑制活性。 Willam Fenical等人从海洋沉积物分离得到一株放线菌CNH-099,在该菌的代谢产物中分离到具有细胞毒作用的新颖的 marinonc 衍生物 neomarinone(6)、isomarinone(7)、hydroxydebromomarinone(8)和methoxydeuromomarinonc(9),它们均是倍半萜萘醌类抗生素。Neomarinone(6)和marinones(7~9)对HCrll6结肠癌细胞显示中等程度的体外细胞毒作用(IC50=8μg/ml),而且,neomarinone(6)对NCI-s60癌细胞也具有中等程度细胞毒作用(IC50=10μg/ml)〔6〕。 化合物花侧柏烯倍半萜(10~12)从希腊北爱情海希俄斯岛采集的红藻 L. microcladia中分离得到〔7〕。红藻 L. microcladia 经有机溶剂CH2Cl2/MeOH (3:1)提取,以Cyclohexane/EtOAc(9:1)为洗脱液进行硅胶柱层析,最后经HPLC纯化得到化合物(10-12)。该试验并对化合物活性进行了研究,发现三种化合物均对肺癌细胞NSCLC-N6 和 A-549有抑制作用,化合物(10):IC50=196.9 μM (NSCLC-N6)和242.8 μM (A-549),化合物(11):IC50 = 73.4μM (NSCLC-N6) 和52.4 μM (A-549) ,化合物(12):IC50= 83.7 μM (NSCLC-N6)和81.0 μM (A-549)。后两个化合物对肺癌细胞毒活性作用明显高于第一个化合物,推测可能由于后两个化合物结构中酚羟基以及五环内双键的存在提高了化合物活性,而化合物中溴原子的存在并没有对其活性构成影响。从中国南京采集的红藻L. okamurai也分离出四种衍生的花侧柏烯倍半萜化合物,分别是Laureperoxide (13), 10-bromoisoaplysin (14), isodebromolaurinterol (15)和10-hydroxyisolaurene (16)〔8〕。5种snyderane倍半萜(17~21)化合物从红藻L. luzonensis中分离得到〔9〕。 从一个软海绵种属Halichondria sp中分离得到四种具有抗微生物活性的含氮桉烷倍半萜化合物halichonadins A-D(22~25)〔10〕。该海绵采集于日本冲绳运天港,2.5 kg样品溶于4L MeOH,所得的115g MeOH提取物分别用1200ml EtOAc和400MlH2O萃取,7.9g EtOAc萃取物经硅胶柱层析后,洗脱液为MeOH/CHCl3(95:5)和石油醚/乙醚(9:1),得到化合物halichonadins A-D(22~25)和已知化合物acanthenes B、C。活性检测实验显示:化合物halichonadins A-D均具有抗细菌活性,同时halichonadins B和C也具有抗真菌活性,化合物halichonadins C对新型隐球菌(Cryptococcus neoformans)的半致死浓度(IC50)达到0.0625μg/ml。三个部分环化的倍半萜(26~28)化合物具有抑制磷酸酶Cdc25B活性,从海绵Thorectandra sp.中分离得到〔11〕。冷冻的海绵样品经4℃去离子水浸泡冷冻干燥后得到的干涸物, 随后用MeOH/CH2Cl2(1:1)和MeOH/H2O(9:1)的有机溶剂提取获得粗提物。采用活性追踪的方式,对粗提物(IC50=8μg/ml)进一步分离,将其溶于100mlMeOH/H2O(9:1)有机溶剂中,得到1.2g的粗提物加入300ml正己烷,获得水相部分溶于MeOH/H2O(7:3)的溶剂中,再用300ml CH2Cl2提取得到的部分经活性测定显示对磷酸酯酶抑制活性最强(IC50=6μg/ml),之后采用反相C-18柱HPLC分离,得到部分环化的倍半萜化合物(26)16-oxo-luffariellolide(12mg, tR=18min),化合物(27) 16-hydroxy-luffariellolide (2.5 mg, tR=19min)以及化合物(28) luffariellolide (4.20mg, tR=38min)。五种属于倍半萜类的化合物hyrtiosins A-E (29~33),从中国海南两个不同地方的海绵Hyrtios erecta种属中分离得到〔12〕。 氧化的倍半萜化合物gibberodione(34), peroxygibberol(35) 和 sinugibberodiol(36)从台湾软珊瑚Sinularia gibberosa分离得到〔13〕,化合物(35)具有较温和的细胞毒性〔14〕。从珊瑚Eunicea sp.中提取的七种倍半萜代谢产物(37~43)〔15〕,含有榄烷,桉烷和吉玛烷骨架结构,研究显示对Eunicea 种属的疟原虫具有轻度的抑制作用。 1.3 二萜 以前很少有从绿藻中分离得到萜类化合物的报道,但是与2004年相比,提取的代谢产物数量有所增加〔16〕。从澳大利亚塔斯马尼亚采集的绿藻Caulerpa brownii中分离出许多新型二萜类化合物,其中化合物(44~48)在没有分支的绿藻中提取得到〔17〕,而类酯萜化合物(49)是从分支的绿藻中获得,该研究同时显示提取的类酯萜化合物对细胞、鱼类、微生物均有不同程度的毒性作用〔18〕。 日本Koyama K等人从褐藻Ishige okamurae来源的未知海洋真菌(MPUC 046)中分离到一种新型的二萜类化合物phomactin H(50)〔19〕。真菌(MPUC 046)经含150g小麦的400ml海水25℃发酵培养31天后,采用CHCl3溶剂提取、硅胶层析及HPLC纯化得到phomactin H。该化合物同已发现的phomactin A-G化合物一样,均属于血小板活化因子(PAF)拮抗剂,能抑制PAF诱导的血小板凝聚,同时推测此活性与化合物的某个特定骨架结构有关。 从法国南部大西洋海滨采集的褐藻Bifurcaria bifurcata中分离得到(51~55)五种新型的极性非环状二萜类化合物〔20〕。该褐藻经CHCl3/MeOH(1:1)提取,硅胶层析(洗脱液为不同比例的Hexane,EtOAc,MeOH),经反相C-18柱HPLC纯化获得十二种化合物,其中五种为新型二萜类化合物。化合物(51~53)在Hexane: EtOAc(2:3)洗脱液中发现,而化合物(54)和(55)则从Hexane: EtOAc(1:4)洗脱液中获得。 6种新型的Dactylomelane二萜类化合物 (56~61)从西班牙特纳里夫南部家那利群岛采集的红藻Laurencia中分离得到〔21〕,其结构具有C-6到C-11环化的单环碳新型结构。采集的红藻经CH2Cl2/MeOH(1:1)有机溶剂提取后,用洗脱液Hexane/CHCl3/MeOH(2:1:1)进行Sephadex LH-20反相色谱分离,结合TLC点样筛选的部分用洗脱液EtOAc/hexane(1:4)进行硅胶柱层析,最后采用硅胶柱进行HPLC纯化得到六种新型的单环碳二萜类化合物Dactylomelans。从红藻L. luzonensis中也分离得到二萜类化合物luzodiol (62)〔9〕。一个溴代二萜类化合物 (63)从日本其他红藻Laurencia物种中分离得到 〔22〕。 Xenicane二萜类化合物(64~71)从台湾珊瑚Xenia blumi分离出来,而化合物xeniolactones A-C (72~74)则是从台湾Xenia florida中分离出来的〔23〕。化合物 (64~67), (69), (70) 和 (72)具有轻微的细胞毒性作用。非Xenicane代谢产物xenibellal (75)对Xenia umbellata也具有轻微的细胞毒性作用〔24〕。化合物Confertdiate (76)是一个四环的二萜类物质,从中国珊瑚Sinularia conferta中分离得到〔25〕。 从史密森尼博物院癌症研究所收集的海葵中分离得到的二萜类化合物actiniarins A-C (77~79)能适度抑制人cdc25B磷酸酶重组〔26〕。 Periconicins A,B (80~81)〔27〕是从内生红树林真菌Periconia sp.分离得到的二萜类的新化合物,能抑制不同微生物的生长活性,诸如bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6358p, Staphylococcus epidermis ATCC 12228等等。 南海真菌2492#是从采自香港红树林植物Phiagmites austrah样品中分离得到的,从2492#菌株的发酵液中分离得到的两种二萜类化合物 (82~83)有很好的生理活性〔28〕,如抗肿瘤、降压、调整心率失常,同时降压调整心率失常的作用在相同的条件下优于临床现用的阳性对照物。 从中国红树林植物Bruguiera gymnorrhiza分离出二萜类化合物 (84~86),化合物(86)对小鼠成纤维细胞具有适当的细胞毒活性〔29〕。也从中国红树林另一物种Bruguiera sexangula var. rhynchopetala分离出三种二萜类化合物 (87~89) 〔30〕。与之结构相似的二萜类化合物 (90~93)从中国Bruguiera gymnorrhiza中分离得到,其中化合物 (92)和 (93)有轻微的细胞毒活性〔31〕。 1.4 二倍半萜 Willam Fenical研究小组从曲霉属Aspergillus海洋真菌(菌株编号CNM-713)分离到一个新的二倍半萜化合物aspergilloxide (94),该化合物为含有25个碳原子的新骨架,对人的结肠癌细胞HCT-116有微弱的细胞毒活性〔32〕。在此之前,Willam Fenical等人从巴哈马的红树林中的漂浮木中也分离到一株真菌Fusarium heterosporum CNC-477, 并从中分离得到一系列多羟基二倍半萜类化合物neomangicols A-C(95~97)〔33〕和mangicols A-G (98~104)〔6〕,它们的结构如下图所示。Neomangicols的骨架为25个碳的二倍半萜,是首次从天然物中分离得到。药理实验显示化合物 (96)具有和庆大霉素大致相当的对革兰阳性细菌的抑制能力,化合物 (98)和 (99)对MPA(phorbol myristate acetate)诱导的鼠类耳朵水肿有抗炎症活性。1.5 三萜 从海洋生物中提取得到的三萜类化合物主要以三萜皂苷、三萜烯类、三萜糖苷等形式存在。四环三萜皂苷类化合物nobilisidenol (105) 和 (106)是从中国黑乳海参Holothuria nobilis分离得到的〔34〕。采集于福建东山的黑乳海参洗净切碎后用85%的EtOH冷浸提取,得到的流浸膏均匀分散于水中,依次用石油醚、二氯甲烷、n-BuOH萃取,研究发现n-BuOH提取物经大孔吸附树脂、正相硅胶层析、反相C-18硅胶柱层析以及反相C-18 柱HPLC分离得到三萜皂苷类化合物nobilisidenol (105)和(106)。易杨华等同时从海参中提取到了其它的三萜糖苷类化合物以及三萜皂苷脱硫衍生物〔35,36〕。三萜烯类化合物intercedensides D-I(107-112)从中国海参Mensamaria intercedens中分离得到,具有细胞毒功能〔37〕。新西兰海参Australostichopus mollis是单硫酸酯三萜糖甙化合物mollisosides A(113), B1(114) 和 B2(115)的来源〔38〕。 具有细胞溶解作用的三萜类化合物sodwanone S (116)是从印度洋多毛岛采集的海绵Axinella weltneri中分离得到的〔39〕。三萜苷类化合物sarasinosides J-M (117-120)分离自印尼苏拉威西岛采集的海绵Melophlus sarassinorum,对B. subtilis和S. cerevisae的细菌具有抗微生物活性作用〔40〕。 2 糖苷类化合物 从中国海南采集的甲藻A. carterae中分离得到一种不饱和的糖基甘油酯化合物(121)〔41〕。甲藻采集于中国海南三亚,经分离筛选得到的A. carterae大规模培养后用甲苯/MeOH(1:3)的有机溶剂提取,所得干涸物分别用甲苯、1N NaCl 水溶液提取。研究发现有机相提取物经硅胶柱(洗脱液为不同比例的MeOH/CHCl3)、反相C-18硅胶柱层析(洗脱液为MeOH/H2O=9:1),最后经反相C-18柱制备型HPLC(流动相为MeOH/H2O =95:5)分离纯化得到25mg不饱和的糖基甘油酯化合物(121)。从多米尼克普次矛斯采集的绿藻Avrainvillea nigricans中可以分离出一个甘油酯avrainvilloside(122),该化合物含有6-脱氧-6-氨基糖苷部分〔42〕。 两个甘油一酯化合物homaxinolin(123)和(124),磷脂酰胆碱homaxinolin(125)以及能抑制细胞生长的脂肪酸(126)是从韩国海绵Homaxinella sp.中分离得到的〔43〕。从红海采集的海绵Erylus lendenfeldi分离得到的两个甾体糖苷类化合物erylosides K(127)和L(128)能选择性的抑制酵母菌株的rad50芽体,rad50能修复协调受损的双链DNA〔44〕。 海参Stichopus japonicus是五种糖苷化合物SJC-1(129),SJC-2(130), SJC-3(131), SJC-4(132) 和 SJC-5(133)的主要来源〔45〕。五种化合物均从弱极性CHCl3/MeOH部分分离出来,其中SJC-1(129), SJC-2(130), SJC-3(131)是典型的鞘甘醇或植物型鞘甘醇葡萄糖脑苷脂类化合物,含有羟基化或非羟基化的脂肪酰基结构。SJC-4(132) 和 SJC-5(133)也含有羟基化的脂肪酰基结构,但是含有独特的鞘甘醇基团,是两种新型的葡萄糖脑苷脂类化合物。Linckiacerebroside A(134)是从日本海星Linckia laevigata分离出的一种新型糖苷脂化合物〔46〕。 甾体糖苷孕甾-5, 20-二烯-3β-醇-3-O-α-L-吡喃岩藻糖苷(135) 和 孕甾-5, 20-二烯-3β-醇-3-O-β-D-吡喃木糖苷(136)从中国短足软珊瑚Cladiella sp.中分离得到〔47〕。将新鲜的软珊瑚干质量 1.6 kg用乙醇在室温下浸泡 3 次, 合并提取液, 减压浓缩后得到深褐色浸膏 166.5g用30%的甲醇溶解后, 依次用石油醚、乙酸乙酯、正丁醇萃取, 石油醚提取液经减压浓缩后得棕黑色胶状物 62.5g,将此提取物硅胶柱减压层析, 用石油醚乙酸乙酯溶剂体系梯度洗脱, 从石油醚/乙酸乙酯(20:80)洗脱液中所得的洗脱部分在反相C-18柱上进行HPLC分离, 用MeOH洗脱得到化合物60mg(135)和3mg(136),该类化合物具有抗早孕和抑制肿瘤细胞生长活性。 四种甾体糖苷化合物(137-140)是从中国珊瑚Junceella juncea EtOH/CH2Cl2提取液中分离得到〔48〕。 3 结语 目前,从海洋生物中发现的萜类和糖苷类天然化合物的数量近几年呈现逐渐增加的趋势,有些化合物的活性确切而且活性作用强烈是很有希望的一些药物先导化合物,但是用于临床研究的化合物还相对较少,因此开发更多新的天然化合物是有必要的。其次,从海洋生物中发现的活性化合物也存在着活性较低或毒性较大等问题,可以通过对其结构进行修饰,使其活性达到最佳效果。此外,从海洋生物中提取的活性化合物含量通常较低,而且化合物在提取过程中受到提取试剂、方法等外界因素的影响,所以采用化学合成的方法进行化合物的半合成或者全合成解决化合物在提取过程中结构易变、试剂耗量大等缺点。例如从海洋真菌中发现的结构新颖,有抗菌、抗癌和神经心血管活性的物质头孢菌素C,就是从海洋真菌中分离得到的,这是一大类半合成的广为人知的抗生素,它已广泛用于临床〔49〕。所以采用合成或半合成的方法解决活性化合物作为药源的大量生产方式是通行的。我们期待着这些药物先导化合物在药物开发方面发挥重要作用。

药学论文题目大全1.地方医科大学生物医学科技竞争力实证研究2.醋酸曲安奈德益康唑乳膏的研究3.N6-烷基-2-烷氧基腺苷化合物的合成及抗血小板凝集活性4.药学干预对2型糖尿病患者的影响研究5.“还脑益聪方”的药学工艺研究及川芎中有效成分的分离6.莪术油微乳制剂的药学研究7.对映异构离子选择性电极的研究8.针对药品生产企业的药品注册管理研究9.聊城市人民医院药品采购流程再造研究10.小切口下胆道镜保胆取石术与腹腔镜胆囊切除术的对比研究11.人参花生药学及炮制配伍研究12.黄连、枳实药对的配伍研究13.灰兜巴提取物及其制剂的研究14.毛茛化学成分HPLC、UPLC/Q-TOF-MS分析15.石松生物碱(-)-8-Deoxyserratinine的全合成16.大马勃生药学及发酵工艺学的研究17.我国临床药学发展及临床药师地位的研究18.立血康软胶囊的药学研究19.刺五加冠心宁胶囊药效学研究20.独行菜生药学研究及利尿部位初步筛选21.疮疡消炎软膏的药学研究22.清热头痛软胶囊生产工艺及质量标准的研究23.当归滴丸的制备工艺及质量标准研究24.氢键复合物光化学性质的理论研究25.L-4-氟苯丙氨酸等6种氨基酸衍生物的生物学作用研究26.复方连萸胶囊的制备工艺及质量标准研究27.药学资源的社会需求与合理配置研究28.“肝毒清滴丸”的药学研究29.纳米药物安全性的法律管制30.吴藿降压滴丸的制备工艺及质量评价研究31.复方抗焦虑胶囊的药学研究32.聚乙二醇化硝基咪唑的合成、羰基锝标记与生物分布研究33.基于果林间种模式的南板蓝(马蓝)栽培研究34.Pd/SiO_2催化还原N-芳烷基化硝基化合物的反应研究35.构建放心药店评价指标体系及应用研究36.县级医疗机构临床用药风险防范研究37.清洁切口手术围手术期预防性应用抗菌药物的干预对照研究38.新型苯甲酰胺类HDAC抑制剂的设计、合成及初步体外抗肿瘤活性评价39.复方马蹄香抗焦虑胶囊药效学研究及机制探讨40.中葡药学石蚕类药物的研究41.地鳖虫纤溶活性先导蛋白抑制肿瘤新生血管形成与作用机制研究42.复方川贝止咳颗粒的药学研究43.《本草经集注序》研究44.我国高等临床药学教育现状及人才培养模式研究45.异氟醚预处理对肠缺血再灌注损伤的影响及作用机制研究46.愈肠宁胃—结肠分释胶囊的药学研究47.黄连—吴茱萸药对配伍比较研究48.李时珍的医学哲学思想研究49.我国建立药品不良反应救济制度的思考

毕业论文痛苦

对他来说是非常严重的一个打击,因为毕业论文一般都是我们写了一个月或者是两个月慢慢的一点一点才写出来的,如果没有保存的话,肯定是需要重写的。

很多学生经历了寒窗苦读10年,就是希望能够在高考的时候一鸣惊人,考取一个理想的学府。相信大家在进入大学4年的学习生活当中,要想能够轻松的毕业也并非一件易事,除了不挂科以外,最重要的就是要经过毕业答辩,从而能够让自己的毕业论文可以顺利通过,这样就可以如愿以偿的拿到毕业证书。

要想能够真正的写好毕业论文也并非是一件易事,期间不但要搜寻大量的资料,而且还需要在指导老师的指引之下进行完成,所以在这中间也是充满着诸多艰辛。甚至有一些学生在写论文的中途当中也会出现一些异常情况,从而也会导致个人的心态崩裂。

贵州的一名大四学生,由于自己努力撰写的毕业论文想通过在电脑上改字体后交给老师,可是电脑突然之间关机,导致写好的论文没有及时的被保存下来,经历一番波折,辛苦所撰写的论文就这样白白的消失了。所以面对这如此突如其来的打击,也让她瞬间控制不住自己的情绪而在宿舍之内崩溃大哭。

即将要过完了大学4年的时间,经过自己的一番费心费力而撰写的毕业论文就遭遇如此流产,所以这位女生无法接受残酷的现实,即便是经过她的宿舍好友一番劝慰以后,她仍然也是绷不住自己的情绪而在宿舍之内仰天痛哭,相信深有同感的人,即便是隔着屏幕都能感受得到女孩此时的无奈与心酸,但是却又显得爱莫能助。

其实对于该名女生如此糟心的经历,想必在她人生的历程当中也必定是刻骨铭心的。电脑关机导致论文保存失败,该女生最起码也浪费了不少的时间与精力,由此也导致他情绪失控而瞬间痛哭,这也是能够理解的。不过既然事实如此,痛哭也并不能解决任何问题,毕竟该面对的终究不能逃避,所以希望她自己能够再度重新调整自己的情绪,保持好的心态,再度去重新撰写论文。不过在此过程当中也希望她能够做到谨慎小心,切莫再发生类似的事件,以免导致功亏一篑。

zhao我啊,我可以帮你的,

我也是 还要答辩麻了。加油吧!再坚持坚持临门一脚了 我们都会上岸。

相关百科

热门百科

首页
发表服务