SCI文章里会显示作者邮箱。一般的论文的页面下面或者后面有作者的简介,作者简介里面有作者的联系方式。问:怎么在知网找作者邮箱答:1、在搜索引擎中搜索网站。2、点击进入首页。3、在文献检索右边选择作者检索,输入作者姓名搜索就可以了。4、点击文献后边的阅读按钮,进入阅读视图。我们阅读到论文的末尾,就可以看到有作者简介,后边一般都会有导师的邮箱。问:科技论文发表收稿日期由谁来写,还有发稿的时候作者简介要写在哪里?答:收稿日期由编辑部的人来确定,如果你的稿件被录用了,收稿日期就是正式被录用的那天。发稿时,作者简介写在文章最后。一般的格式是:某某某,某年某月生,某某公司某某部门某某岗位(如果是学校,就写某某学校某某教研室或系或学院),某某学位,主要研究方向:某某某。答:科技类的文章可以发在《科技创新导报》或《科技资讯》《中国高新技术企业》《硅谷》这些都是比较权威的国家级期刊。作者简介附在文章最下端就行。答:收稿日期是要看您发什么杂志的,每个杂志收费也都不一样的额!! caibian@邮箱是济南天之信采编部秦编辑邮箱,在百度上都能收到的!问:老师要我写论文然后发到他的邮箱上,请问我该写在哪里呢,是直接写在邮箱上还是?答:不会吧!当然是写在word里面,附件方式发给他啦!答:最好是以附件的形式发到老师的邮箱,问:通讯作者的邮箱可以随便写吗答:通讯作者邮箱写自己的完全可以!不用跟编辑说,我得文章开始写的老板的,老板很忙,根本来不及给我说,导致缴费慢,审稿慢,前提是你的和老板沟通挣得他的同意,在征得导师同意的前提下,投稿时通讯作者的联系邮箱可以写自己的,这样联系比较方便。但是在上传论文中的通讯作者邮箱还是用导师的为好。
首先我们要搞清,所谓通讯作者,就是跟期刊“通讯(通信联络)”的那个人,文章中有什么学术不端,或者说要撤稿之类的,期刊都是要找这个通讯作者,而不是第一作者。也就是说,投稿是通讯作者的权利,甚至也可以说是义务。但在实际操作过程中,我们知道有很多学生在进行投稿。接下来我们就把投稿可以分为两大步骤,帮大家细致的梳理一下:1. 填写各种信息,上传文件。对于这一步,很多导师(通讯作者)都是让学生(第一作者)来操作,但这时要注意,学生应该使用导师的投稿账户来投稿,如果学生自己注册一个投稿账户来投稿,系统会默认学生的注册邮箱是通讯邮箱,这就很容易造成通讯作者信息混乱(因为在文章中,我们已经注明的通讯邮箱是老师的邮箱)。2. 第二步,也是最后一步,就是投稿系统一般要给通讯作者邮箱发一个最后的确认邮件,通讯作者必须登录自己的邮箱进行确认,才算是彻底完成投稿。所以这一步一般都是要老师亲自完成。如果老师很放心,可以把自己的邮箱和密码告诉学生,让学生登录老师的邮箱来进行确认。总结:学生可以投稿,但切忌使用任何自己的信息,跟投稿有关的所有邮箱和投稿账户都应该是老师(通讯作者)的信息
导师投论文用学生邮箱的原因是为了让论文投稿者和期刊或会议组织者之间形成信赖关系。因此,用学生的邮箱可以更好地证明论文的作者,从而保障论文投递的正确性和可行性。
老师的邮箱。论文题目还是比较正式的一个东西,建议邮件发送给导师审核。可以QQ告诉老师已发送TA邮件。给导师发邮件的主题中必须要包含自己的名字,这样可以方便导师日后查看。在主题中写上这封邮件的目的,可以使导师对邮件的主要内容有基本了解,可以用“关于......”的形式来描述这封邮件的目的和主要内容。邮件主题是一封邮件最直接呈现出来的东西,可以看做是一封邮件的标题。邮件主题可以帮助导师判断事情的重要程度,如果有很紧急的事情也可以在主题中体现出来。邮件主题需要简洁明了。
可以。sci投稿将邮箱都写自己是可以的,投稿将邮箱都建议使用单位邮箱进行投稿,因为这代表着对你单位背景信息的确认,使用个人邮箱无法确认投稿人单位是否真实。SCI论文简单说可以算是国际学术界的顶尖论文论文,SCI代表的是ScientificCitationIndex,《科学引文索引》。它可以代表本专业在全球的最先进技术。
一般都是一年1-2篇,最少1~2篇,当然越多越好
有的学校只要求毕业论文,有的要求加一篇小论文,有的要求发表在核心期刊上发表,有的则不作要求~
学姐终于论文发表了,离毕业资格总算是近了一步
每个学校应该有规定 有要求
本科生发文还是有些难度,所以要高端的杂志也难,除非前面挂个您的导师,文章也保证有些水平。建议发《数学学习与研究》吧,还是不错的,应该也能认可。另外,可以发表在一些高职高专的学报上,偶尔也是可以发本科生的文章的。我一直认为,学报上的文章学术性还是比一般的杂志要强。可能对对更有用处。祝您好运。
你自己有没有想好具体些什么题目的论文 ?先确定好你自己的题目呀,是在没思路你就参看范文,(理论数学)等上面的题目你看下,找到你自己想写的方向~
高数论文什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
数学教学论文论文一:初中数学教学论文:分类思想在初中教学中的渗透 推行素质教育,培养面向新世纪的合格人才,使学生具有创新意识,在创造中学会学习,教育应更多的的关注学生的学习方法和策略。数学家乔治。波利亚所说:“完善的思想方法犹如北极星,许多人通过它而找到正确的道路” .随着课程改革的深入, "应试教育“向”素质教育“转变的过程中,对学生的考察,不仅考查基础知识,基本技能,更为重视考查能力的培养。如基本知识概念、法则、性质、公式、公理、定理的学习和探索过程中所反映出来的数学思想和方法;要求学生会观察、比较、分析、综合、抽象和概括;会阐述自己的思想和观点。从而提高学生的数学素养,对学生进行思想观念层次上的数学教育。 数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。 数学分类思想,就是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想。它既是一种重要的数学思想,又是一种重要的数学逻辑方法。 所谓数学分类讨论方法,就是将数学对象分成几类,分别进行讨论来解决问题的一种数学方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。 分类讨论思想,贯穿于整个中学数学的全部内容中。需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的;②运用的数学定理、公式或运算性质、法则是分类给出的;③求解的数学问题的结论有多种情况或多种可能;④数学问题中含有参变量,这些参变量的取值会导致不同结果的。应用分类讨论,往往能使复杂的问题简单化。分类的过程,可培养学生思考的周密性,条理性,而分类讨论,又促进学生研究问题,探索规律的能力。 分类思想不象一般数学知识那样,通过几节课的教学就可掌握。它根据学生的年龄特征,学生在学习的各阶段的认识水平和知识特点,逐步渗透,螺旋上升,不断的丰富自身的内涵。 教学中可以从以下几个方面,让学生在数学学习过程中,通过类比、观察、分析、综合、抽象和概括,形成对分类思想的主动应用。 一、 渗透分类思想,养成分类的意识 每个学生在日常中都具有一定的分类知识,如人群的分类、文具的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。如数的分类,绝对值的意义,不等式的性质等,都是渗透分类思想的很好机会。 整数、 分数 正有理数 零 负有理数 教授完负数、有理数的概念后,及时引导学生对有理数进行分类,让学生了解到对不同的标准,有理数有不同的分类方法,如分为: 有理数 有理数 为下一步分类讨论奠定基础。 认识数a可表示任意数后,让学生对数a 进行分类,得出正数、零、负数三类。 讲解绝对值的意义时,引导学生得到如下分类: 通过对正数、零、负数的绝对值的认识,了解如何用分类讨论的方法学习理解数学概念。 又如,两个有理数的比较大小,可分为:正数和正数、正数和零、正数和负数、负数和零、负数和负数几类情况来比较,而负数和负数的大小比较是新的知识点,这就突出了学习的重点。 结合“有理数”这一章的教学,反复渗透,强化数学分类思想,使学生逐步形成数学学习中的分类的意识。并能在分类讨论的时候注意一些基本原则,如分类的对象是确定的,标准是统一的,如若不然,对象混杂,标准不一,就会出现遗漏、重复等错误。如把有理数分为:正数、负数、整数,就是犯分类标准不一的错误。在确定对象和标准之后,还要注意分清层次,不越级讨论。 二、 学习分类方法,增强思维的缜密性 在教学中渗透分类思想时,应让学生了解,所谓分类就是选取适当的标准,根据对象的属性,不重复、不遗漏地划分为若干类,而后对每一子类的问题加以解答。掌握合理的分类方法,就成为解决问题的关键所在。 分类的方法常有以下几种: 1、根据数学的概念进行分类 有些数学概念是分类给出的,解答此类题,一般按概念的分类形式进行分类。 例1,化简解: 这是按绝对值的意义进行分类。 例2、比较 与 易得 的错误,导致错误在于没有注意到数 可表示不同类的数。而对数 进行分类讨论,既可得到正确的解答: 〉0 时 ,= 0 时 ,< 0 时 ,2、根据数学的法则、性质或特殊规定进行分类 学习一元二次方程 , 根的判别式时,对于变形后的方程 用两边开平方求解,需要分类研究 大于0,等于0,小于0这三种情况对应方程解的情况。而此题 的符号决定能否开平方,是分类的依据。从而得到一元二次方程 的根的三种情况。 例3、解关于x的不等式:ax+3>2x+a 分析通过移项不等式化为(a-2)x>a-3的形式,然后根据不等式的性质可分为a-2>0,a-2=0,和a-2<0三种情况分别解不等式。 当a-2>0,即a>2时,不等式的解是x> 当,a-2=0,即a=2时,不等式的左边=0,不等式的右边=-1 因为01-1,所以不等式的解是一切实数。 当a-2<0,即a<2时,不等式的解是x< 3、根据图形的特征或相互间的关系进行分类 如三角形按角分类,有锐角三角形、直角三角形、钝角三角形,直线和圆根据直线与圆的交点个数可分为:直线与圆相离、直线与圆相切、直线与圆相交。 例如 等腰三角形一腰上的高与另一腰的夹角为30°,底边长为a,则其腰上的高是 分析:本题根据图形的特征,把等腰三角形分为锐角三角形和钝角三角形两类作高CD,如图,可得腰上的高是 或从几何图形的点和线出现不同的位置进行分类 在证明圆周角定理时。由于圆心的位置有在角的边上、角的内部,角的外部三种不同的情况,因此分三种不同情况分别讨论证明。先证明圆心在圆周角的一条边上,这种最容易解决的情况,然后通过作过圆周角顶点的直径,利用先证明(圆心在圆周角的一条边上)的这种情况来分别解决圆心在圆周角的内部、圆心在圆周角的外部这两种情况。这是一种从定理的证明过程中反映出来的分类讨论的思想和方法。它是根据几何图形点和线出现不同位置的情况逐一解决的方法。教材中在证明弦切角定理:弦切角等于它所夹的弧所对的圆周角。也是如此分圆心在弦切角的一条边上,弦切角的内部、弦切角的外部三种不同情况解决的。 三、引导分类讨论,提高合理解题的能力 初中课本中有不少定理、法则、公式、习题,都需要分类讨论,在教授这些内容时,应不断强化学生分类讨论的意识,让学生认识到这些问题,只有通过分类讨论后,得到的结论才是完整的、正确的,如不分类讨论,就很容易出现错误。在解题教学中,通过分类讨论还有利于帮助学生概括,总结出规律性的东西,从而加强学生思维的条理性,缜密性。 一般来讲,利用分类讨论思想和方法解决的问题有两大类:;其一是涉及代数式或函数或方程中,根据字母不同的取值情况,分别在不同的取值范围内讨论解决问题。其二是根据几何图形的点和线出现不同位置的情况,逐一讨论解决问题 例4、已知函救y=(m-1)x2+(m-2)x-1(m是实数)。如果函数的图象和x轴只有一个交点,求m的值。 分析:这里从函数分类的角度讨论,分 m-1=0 和 m-110 两种情况来研究解决问题。 解:当m=l 时函数就是一个一次函数y=-x-1,它与x轴只有一个交点(-1,0)。 当 m11 时,函数就是一个二次函数y=(m-1)x2+(m-2)x-1 当△=(m-2)2+4(m-1)=0,得 m=0. 抛物线 y=-x2-2x-1,的顶点(-1,0)在x轴上 例5、 函数 y = x6 – x5 + x4- x3 + x2 – x +1,求证:y 的值恒为正数。 分析:将y的表达式分解因式,虽可证得结论但较难。分析可发现,若将变量x在实数范围内适当分类,则问题容易解决。 证明:⑴ 当x ≤0时 ∵ x5 - x3 - x ≥0 ,∴ y≥1恒成立; ⑵ 当0 < x <1时 y = x6 + ( x4 – x5 ) + ( x2 – x3 ) + ( x – 1) ∵x4 > x5 , x2 > x3 , 1> x ∴ y > 0 成立; ⑶ 当x = 1 时, y = 1 > 0 成立; ⑷ 当x >1时 y = ( x6 – x5 ) + ( x4 – x3 ) + ( x2 – x ) + 1 ∵ x6 > x5 , x4 > x3 , x2 > x ∴ y > 1成立 综上可知,y > 0 成立。 例6、已知△ABC是边长为2的等边三角形,△ACD是含30°角的直角三角形。△ABC和△ACD拼成一个凸四边形ABCD.(1)画出四边形ABCD;(2)求四边形ABCD的面积。 分析含30°角的直角三角形ACD中我们可以把AC作为斜边、AC作为直角边二类情况来研究。如图1是以AC为斜边和等边三角形ABC拼成的四边形ABCD(DDAC=30°和DDAC=60°这两种图形算出的四边形ABCD面积相同的,故归纳为同一类)。AC为直角边又可分为二种不同情况如图2和3.从图1,S四边形ABCD=;从图2,可算得S四边形ABCD=;可算得S四边形ABCD=3 由以上的几个例子,我们可以看出分类讨论往往能使一些错综复杂的问题变得异常简单,解题思路非常的清晰,步骤非常的明了。另一方面在讨论当中,可以激发学生学习数学的兴趣。 利用现有教材,教学中着意渗透并力求帮助学生初步掌握分类的思想方法,结合其它数学思想方法的学习,注意几种思想方法的综合使用,给学生提供足够的材料和时间,启发学生积极思维。相信会使学生在认识层次上得到极大的提高,收到事半功倍的教学成效。论文二:初中数学教学论文:教会学生解初中数学会考中的难题 内容提要: 使学生巩固基础知识,有一定的解题技能,并对学生进行必要的分析综合联想等能力的训练,培养学生的直觉思维,使学生能迅速把握数学问题所涉及的基础知识,是使学生能解出初中数学会考中的难题的关键。 关键词: 解题技能 联想 把握问题实质 每年初中数学会考,一般都把试题分为容易题(基础题),中档题以及难题。近年初中数学会考中,难题一般都占全卷总分的四分之一强,难题不突破学生是很难取得会考好成绩的。 初中数学会考中的难题主要有以下几种:1,思维要求有一定深度或技巧性较强的题目。2,题意新或解题思路新的题目。3,探究性或开放性的数学题。 针对不同题型要有不同的教学策略,无论解那种题型的数学题,都要求学生有一定的数学基础知识和基本的解题技能(对数学概念的较好理解,对定理公式的理解,对定理公式的证明的理解;能很熟练迅速地解答出直接运用定理公式的基础题),所以对学生进行 “双基”训练是很必要的。当然,初三毕业复习第一阶段都是进行 “双基”训练,但要使学生对数学知识把握得深化和基本技能得到强化,复习效果才好。 有些老师认为,对全班进行面上的复习只要复习到中等题就行,不必进行难题的复习,那些智力好的学生你不帮他们复习他们也会做,那些智力差的学生你教他们也白白浪费时间。其实,学生有一定的数学知识和基本的解题技能也不一定能解出难题,这是因为从数学基础知识出发到达初中会考中的难题的答案,或者思维深度要求较高——学生思维深度不够,或者思路很新——学生从来没有接触过。但,很多有经验的初三毕业班的老师的多年的实践证明,针对难题进行专题复习是很有必要的,只要复习得好,对中等以上学生解难题的能力的提高作用是较大的。对此,我们在第二阶段复习中要对学生针对难题进行思维能力的训练和思路拓宽的训练。当然,这种训练也要针对学生的 “双基”情况和数学题型,这种训练要注意题目的选择,不只针对会考,也要针对学生思维的不足,一定量的训练是必要的,但要给出足够的时间给学生进行解题方法和思路的反思和总结,只有多反思总结,学生的解题能力才能提高。老师要注重引导,不能以自己的思路代替学生的思路,因为每个人解决问题的方法是不一定相同的。 过去,有些初三毕业班的老师,在会考复习中,找来各地各区的模拟题对学生进行一轮轮的训练,练完讲,讲完练,师生都很辛苦,但效果却不很理想,这是因为这种题海战术式的复习方法没有做到因材施教,老师的教学对学生的知识技能及思维能力和对数学题型的针对性都不足。学生没有体现学习的主体性,也没有足够的时间进行总结和反思。因此,学生的解题技能和思维能力没有真正得到提高。 有些老师觉得,会考难题难度大,考试题型新而难以捉摸。对难题的专题复习就是把今年会考难题以及当年各地各区的模拟考试题中的难题讲练一次。这种以题论题的复习也难以使学生解难题的能力有实质性的提高。 初中数学会考试题的命题者的命题目的是考查我们初中毕业的学生对初中数学基础知识的掌握情况,试题当然都离不开初中的基础知识。所谓难题,只是笼上几层面纱,使我们不容易看到它的真面目。我们老师的任务就是教会我们的学生去揭开那些看起来神秘的面纱,把握它的真面目。程咬金用三道板斧能在战场上取胜,我们的学生已经掌握了所有初中数学的基础知识,有一定的解题技能,只要我们对学生的引导和训练得当,我们的学生一定能在考场上取胜。 关键是,我们对学生的复习训练能使学生对知识融会贯通并强化学生的解题技能,同时,我们老师的得当的引导,学生训练后的反思总结,对知识的自主构建,从而把握各类数学难题的实质——跟初中数学基础知识的联系。 对难题进行分类专题复习时,应该把重点放在对学生进行对数学难题跟基础知识的联系的把握能力的训练以及引导学生迅速正确分析出解题思路这一点上,并从中培养学生解题的直觉思维。应当先把难题进行分类。然后进行分类训练。在课堂上不必每题都要学生详细写出解题过程,一类题目写一两题就行了,其他只要求学生能较快地写出解题思路,回去再写出详细的解题过程。 我认为可以将初中会考中的难题分以下几类进行专题复习: 第一类: 与一到两个知识点联系紧密的难题: 例1 如图,在⊙O中,C是弧AB的中点,D是弧AC上的任一点(与 D C 点A,C不重合),则( ) A (A)AC+CB=AD+DB (B)AC+CB
在找工作的时候是没有多大用处的,但是如果是上档次的论文,比如核心期刊的,EI的,SCI的,能多发就多发,对于应聘当老师是有帮助的,但是评职称的话,学校是看你以所在工作的学校为单位名下的论文数,如果你在北京大学读研期间发了一篇SCI收录论文,而你在南京大学评职称,此论文是不算在内的,不过如果你以南大名义发的论文越多质量越好,你晋升的就越快
是的。 一定要发表的论文,否则到时候不毕业的啊。
看学校毕业规定,有的不需要
航空研究所要论文的。学位论文是表明作者从事科学研究取得创造性结果或有新的见解,并以此为内容撰写而成,作为提出申请授予相应学位时评审用的学术论文。硕士学位论文应能表明作者确已在本门学科上掌握了坚实的基础理论和系统的专门知识,并对所研究课题有新的见解,具备从事科学研究工作或独力担负专门技术工作的能力。 博士学位论文应能表明作者确已在本门学科上掌握了坚实宽广的基础理论和系统深入的专门知识,并具备独立从事科学研究工作的能力,在科学或专门技术上做出了创造性的成果。论文内容应由申请者本人独立完成,对于合作完成的项目,论文内容应侧重于本人的研究工作。