石墨烯是一种由碳原子以 sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料.石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达530OW/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Q·cm;比铜或银更低,为世上电阻率最小的材料.因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管. 石墨烯的问世引起了全世界的研究热潮.它不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快.石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学才能描绘,同时,石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况.石墨烯中各碳原子之间的连接非常柔切,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定. 石墨烯的微观结构呈现微观的二维结构,二维层状材料因其独特的层内原子连接方式,表现出显着的电子离域行为,由此带来了出众的物理和化学性质.团簇具有确定的原子数与明确的结构,是一类介于原子/分子与纳米晶体之间的凝聚态物质,团簇的亚纳米尺寸使得单分子级别的作用力即可主导其自组装行为,可作为"超级原子"构建全新的亚纳米尺度低维材料体系.团簇电子结构、化学性质与原子/分子有类似性,团簇组装体作为一类"超级分子",其中电子可能被多个团簇所共享,对于高度有序的二维团簇组装体,电子在具有相同化学环境的团簇间的离域行为,可能带来异乎寻常的电子结构和催化性质.基于此,清华大学化学系王训课题组首次报道了一类基于多金属氧簇(POM)的新型类石墨烯材料——"团簇类烯".与以往二维材料体系以原子、分子为结构基元不同,该团簇类烯以亚纳米尺度的团簇为结构基元,构筑了一类新型的亚纳米二维材料体系.团簇类烯对于烯烃催化环氧化反应,在催化活性和稳定性方面均显示出极大的提升,其转换频率(TOF)是未组装团簇基元的76.5倍.离散傅里叶变换(DFT)计算结果显示,团簇间的电子离域行为有效的降低了材料参与氧化还原反应的活化能,从而造成了催化活性的显着提升.13种不同元素取代的Keggin型团簇均可用于团簇类烯的构建.本研究揭示了团簇类烯材料独特的电子结构、出众的催化性质和良好的结构普适性,有望启发基于团簇的新材料的设计与合成. 石墨烯和强激光组合打开了极高能离子加速的大门,对激光驱动的离子加速的研究是为了开发一种紧凑和高效的基于等离子体的加速器,它适用于癌症治疗、核聚变和高能物理.大阪大学的研究人员与日本国家量子科学技术研究所(QST)、神户大学和台湾中央大学的研究人员合作,报告了在日本QST的关西光子科学研究所用超强的J-KAREN激光器照射世界上ZUI薄和ZUI强的石墨烯靶材而直接进行高能离子加速.他们的研究结果发表在《Springer Nature》的《科学报告》上. 在激光离子加速理论中,更薄的靶材需要更高的离子能量.然而,由于强激光的噪声成分在到达激光脉冲的主峰之前就破坏了目标,所以一直很难直接用极薄的靶体来加速离子.在这种状况下有必要使用等离子体反射镜,它可以消除噪声成分,以实现强激光的有效离子加速. (a) 实验示意图.通过用超强的J-KAREN激光照射大面积的悬浮石墨烯目标(LSG),产生高能离子.(b)和(c)分别显示了石墨烯的拉曼光谱和显微镜图像.(d)和(e)分别显示了使用固态路径跟踪器和汤姆逊抛物线光谱仪(TPS)的堆栈检测器的示意图.(g)和(f)分别显示了TPS和堆栈的典型数据. 因此,研究人员开发了大面积悬浮石墨烯(LSG)作为激光离子加速的目标.石墨烯被称为世界上ZUI薄和ZUI强的二维材料,它适合于激光驱动的离子源.原子级薄的石墨烯是透明的,高度导电和导热,而且重量轻,同时也是最强的材料,到目前为止,石墨烯已经得到了各种的应用,包括在交通、医药、电子和能源等方面.同时我们也展示了石墨烯在激光-离子加速领域的另一个颠覆性应用,其中石墨烯的独特功能发挥了不可或缺的作用. 石墨烯的应用 1、电子信息领域 电子信息领域是石墨烯最重要的应用领域.该领域的产业化决定着石墨烯的真正价值和无可替代性.目前研究热点在石墨烯传感器、石墨烯柔性电子器件、石墨烯逻辑电路等. 01、石墨烯传感器 在电子技术中,电信号一般更容易处理.传感器可以将气体、光、力等各种信号转换成电信号.石墨烯独特的能带结构具有优异的电学性质.石墨烯原子裸露在表面上,其电子态很容易受到外界信号的改变而改变,从而导致电学性质的变化,通过电信号来体现.这种特性使石墨烯在传感器领域能发挥巨大的作用. 02、 石墨烯柔性电子器件 当下电子设备,尤其是智能手机,未来的发展方向都是是折叠和卷曲.石墨烯作为超薄柔性的二维材料,具有优异的力学性质,同时兼具超高载流子迁移率和透光性,是一种理想的柔性透明导电薄膜材料,可以用作新一代柔性触控屏. 03、 石墨烯逻辑电路 逻辑电路是计算机、数字控制、自动化等诸多领域的基础,利用二进制运算规则,实现逻辑运算.简单来说,我们需要利用电路的开和关来控制计算机实现不同的功能.计算机运算的快慢决定于电路材料的载流子迁移率.石墨烯具有极高的载流子迁移率,有希望用来制造下一代超快集成电路. 2、储能领域 01、 石墨烯锂离子电池 锂离子电池通过锂离子在电池的正负极之间来回移动来实现电能的存储和释放.理论上,石墨烯可以作为活性材料来直接储存锂离子,也可以作为导电材料来辅助电池的性能.实际中,石墨烯直接储存锂离子的能力不能达到实际使用需求.所以更多的是作为导电剂来提高电化学效率. 02、石墨烯超级电容器 超级电容器和锂离子电池一样,也可以储存和释放电能.超级电容器的储存单位电量较少,但可以瞬间提供大量的电量,所以可以满足需要瞬间大功率放电的需求.石墨烯/金属氧化物复合材料利用石墨烯作为金属氧化物的载体,使其在纳米尺度分散,可用于赝电容器中的电极活性材料.导电性、机械稳定性、和电化学性能都得到了提高. 03、 石墨烯固态储氢 传统的氢气储运主要通过高压气态法或低温液态法实现,高压气态法对容器质量要求高、容易造成氢气的泄露,安全性低.低温液态法需要将氢气冷却至-200 以下,成本昂贵,经济性差导致适用范围小.同时这两种方法都必须使用笨重的罐体来承压或保温,造成了巨大的有效质量损失,导致总储氢密度大幅降低.石墨烯界面纳米阀固态储氢材料,以高活性轻金属氢化物为原材料,在不同组分界面建立石墨烯界面纳米阀结构,通过界面纳米阀非催化动力学调控机制实现储氢材料安全、可控、低温稳定释氢. 3、复合材料领域 石墨烯是目前力学强度最高的材料,其弹性模量高达1TPa,拉伸强度高达180GPa,被认为是增强材料力学性能的理想添加剂.仅仅较小的石墨烯添加量,材料的韧性、强度、和刚度等力学性能得到显着的提升. 01 、石墨烯/高分子聚合物复合材料 02、 石墨烯/无机非金属复合材料 无机非金属材料本身已经具有较高的刚性和强度,石墨烯主要起到增韧性或组织裂纹增长的作用.之前的研究主要集中在石墨烯陶瓷复合增强材料和石墨烯碳纤维复合增强材料.现在已经向建筑行业逐渐转变,出现石墨烯增强水泥、石墨烯增强玻璃等.
国内以北京大学、清华大学、浙江大学,中国科学院沈阳金属所、中国科学院宁波材料所等为代表的高校、科研单位开展了大量的基础研究和应用研发,并涌现出一大批相关企业,石墨烯产业化发展正在全国范围内进行。2013年7月,中国石墨烯产业技术创新战略联盟成立。同时,江苏、浙江、深圳、上海、山东、福建、辽宁、重庆、黑龙江与中科院等机构以多种形式协同创新,纷纷建立了产业技术联盟,促进了创新资源优化组合和创新产业化进程。2013年底,中国石墨烯标准化委员会宣告成立,中国石墨烯研究及检测公共服务平台同时启动,该服务平台主要为中国石墨烯产业技术创新战略联盟相关单位提供专业的石墨烯性能检测与结构表征服务。2014年4月,青岛科技大学与美国密苏里州立大学和美国劳伦斯-伯克利国家实验室合作,联合开发石墨烯基太阳能电池,成本比传统的要降低一半多。2014年3月,清华大学化工系张强、魏飞教授研究组成功制备出一种具有自分散、不堆叠特性的柱撑石墨烯。课题组通过催化气相生长调变石墨烯的拓扑结构,获得了具有突起结构的石墨烯。该柱撑石墨烯用于锂硫电池正极时,其材料的能量密度、功率密度显著优于商用锂离子电池所用正极材料,在电动汽车、个人电子产品、以及大规模储能中具有潜在的应用前景。2014年3月,中科院宁波材料技术与工程研究所在实现石墨烯产业化制备的基础上,进一步开展石墨烯/高分子复合体系相关研究,揭示石墨烯与高分子基体之间的非共价建结合机理,由此提出非化学法改善高分子与石墨烯间界面粘结的新方法。2013年12月,无锡市政府发布了《无锡石墨烯产业发展规划纲要》,提出在惠山经济开发区建设无锡石墨烯产业发展核心区“一区二中心”,力争用5-7年的时间,打造国际一流、国内领先、具有鲜明特色的无锡石墨烯产业集群。在12月,全球首款双层多点石墨烯触控手机在无锡推出,从生产石墨烯粉体材料和石墨烯薄膜的第六元素和格非电子,到生产薄膜下游产品石墨烯触摸屏的力合光电,再到将石墨烯触摸屏集成为手机的爱维特信息,无锡已初步形成从原材料到最终产品的产业链。2013年6月,中国内蒙古石墨烯材料研究院成立,是我国首个石墨烯材料的综合型研究机构和技术开发中心,主要从事石墨烯材料的新品种、新工艺、新装备、新技术的研究开发、产品标准制订及质量监督检测。2013年中科院重庆研究所用化学气相沉积法成功制备出国内首片15英寸的单层石墨烯,并成功地将石墨烯透明电极应用于电阻触摸屏上,制备出7英寸石墨烯触摸屏。中科院金属研究所在石墨烯透明导电薄膜方面完成CVD反应装置与其他设备的采购、安装和调试,能够实现石墨烯透明导电薄膜的实验室制备,制备出4英寸石墨烯透明导电薄膜。此外,金属研究所研制具有三维连通网络结构的石墨烯泡沫体材料,并已经取得实验室样品。而在动力电池用石墨烯基电极材料研发方面,已基本确立石墨烯使用的种类和添加量,并且结合电池材料制备过程和实验结果,初步建立石墨烯的使用标准。
除了手语,还有能让聋哑人顺利交流的方法吗?答案是:当然有!想象一下,未来,聋哑人只需要将一个大小约1平方厘米的石墨烯贴片贴在喉咙处,这个贴片就能辅助聋哑人“开口说话”了,是不是很神奇呢?石墨烯材料似乎一直都带着“光环”,发现石墨烯材料的两位科学家在2010年获得诺贝尔物理学奖之后,这种材料好像在一夜之间就成为“网红”,石墨烯材料具有优异的力学、光学、热学特性,能帮助人类实现新的发明。清华大学微电子所任天令教授课题组就成功研制出基于石墨烯的智能人工喉,论文《具有声音感知能力的智能石墨烯人工喉》(“An Intelligent Artificial Throat with Sound-Sensing Ability Based on Laser Induced Graphene”)发表在国际顶级刊物《自然通讯》(Nature Communications)期刊上。◆人工喉是一个“黑色的方片”石墨烯这种神奇的二维碳材料,是如何实现“让聋哑人开口说话”这一神奇功能的呢?石墨烯人工喉实际上是一个黑色的方形片,两边有金属电极,外接两根导线连至数据处理器,这个黑色的小片在使用时需要贴在喉部位置,并进行适当固定,当聋哑人带上石墨烯人工喉之后,他发出“哦”“呃”“啊”等声音时,它会灵敏感知聋哑人在发声时喉部的震动状态,根据这个人说话的习惯和发音频率,数据处理器(芯片)会匹配相应的文字,再传回到石墨烯,从而使它发声。当然,人工喉需要在一句话说完之后,喉咙停止震动后来再通过芯片“翻译”,所以不是“同声传译”。此次使用的石墨烯是一种多孔多层石墨烯,其实石墨烯只是一个很宏观的概念,其下设多种分类,大分类中还有小分类。目前没有发现其它材料能够达到相同或者相似的人工喉效果。其实,这其中蕴藏着很多科学原理,最神奇的就在于石墨烯本身,它长得像黑色纸片,但它可与纸相差了十万八千里。石墨烯本身是一种二维碳材料,它的结构就像蜂窝状,形成一层透明的薄膜,是一种只有一个原子层厚度的准二维材料,是目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料。
石墨烯(Graphene):是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光”;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。 石墨烯的用途: 纳电子器件方面 2005年,Geim研究组[3 J与Kim研究组H 发现,室温下石墨烯具有10倍于商用硅片的高载流子迁移率(约10 am /V·s),并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性(300 K下可达0.3 m),这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的操作响应特性是石墨烯基电子器件的另一显著优势。此外,石墨烯减小到纳米尺度甚至单个苯环同样保持很好的稳定性和电学性能,使探索单电子器件成为可能。 利用石墨烯加入电池电极材料中可以大大提高充电效率,并且提高电池容量。自我装配的多层石墨烯片不仅是锂空气电池的理想设计,也可以应用于许多其他潜在的能源存储领域如超级电容器、电磁炮等。此外,新型石墨烯材料将不依赖于铂或其他贵金属,可有效降低成本和对环境的影响。 代替硅生产超级计算机 科学家发现,石墨烯还是目前已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。 这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。 光子传感器 石墨烯还可以以光子传感器的面貌出现在更大的市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。去年10月,IBM的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电板比其他材料具有更优良的透光性。 基因电子测序 由于导电的石墨烯的厚度小于DNA链中相邻碱基之间的距离以及DNA四种碱基之间存在电子指纹,因此,石墨烯有望实现直接的,快速的,低成本的基因电子测序技术。 减少噪音 美国IBM 宣布,通过重叠2层相当于石墨单原子层的“石墨烯(Graphene)”,试制成功了新型晶体管,同时发现可大幅降低纳米元件特有的1/f。石墨烯,试制成功了相同的晶体管,不过与预计的相反,发现能够大幅控制噪音。通过在二层石墨烯之间生成的强电子结合,从而控制噪音。噪声。 隧穿势垒材料 量子隧穿效应是一种衰减波耦合效应,其量子行为遵守薛定谔波动方程,应用于电子冷发射、量子计算、半导体物理学、超导体物理学等领域。传统势垒材料采用氧化铝、氧化镁等材料,由于其厚度不均、容易出现孔隙和电荷陷阱,通常具有较高的能耗和发热量,影响到了器件的性能和稳定性,甚至引起灾难性失败。基于石墨烯在导电、导热和结构方面的优势,美国海军研究试验室(NRL)将其作为量子隧穿势垒材料的首选。未来得石墨烯势垒将有可能在隧穿晶体管、非挥发性磁性记忆体和可编程逻辑电路中率先得以应用。 其它应用 石墨烯还可以应用于晶体管、触摸屏、基因测序等领域,同时有望帮助物理学家在量子物理学研究领域取得新突破。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用这一点石墨烯可以用来做绷带,食品包装甚至抗菌T恤;用石墨烯做的光电化学电池可以取代基于金属的有机发光二极管,因石墨烯还可以取代灯具的传统金属石墨电极,使之更易于回收。这种物质不仅可以用来开发制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,甚至能让科学家梦寐以求的2.3万英里长太空电梯成为现实。 参考文献:石墨烯 -
单层理论0.34nm,实测AFM时小于1nm都可以接受。
石墨烯是一种二维晶体。石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
它是一种二维晶体,其特性是其中电子的运动速度达到了光速的1/300,超过电子在一般导体中的运动速度。将石墨剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
自古英雄出少年,而我们今天要讲的这位少年,他14岁就进入了中科院,在破解了世界都感觉到为难的题目之后,他拒绝了美国的好意,决定回国报效国家,觉得国家才是他的归宿,那么让我们来了解了解他到底是谁吧。
我们今天这个主人公的名字叫做曹原,很多人都从报纸上了解过,他都说他是天才少年,而在2020年的五月,自然就连续刊登了这位少年的两篇论文,在论文里面我们可以看到这位少年的智商和眼光到底是到了什么样一个地步,这两个论文都是关于石墨烯研究的论文,在石墨烯研究的论文里面,除了之前一些哥伦比亚的学者发表过文章之后,石墨烯的研究已经搁置了,因为他们发现这段研究太过于困难,所以没有什么人在这个领域获得比较高的成就。
而我们的英雄少年在发现石墨烯一些东西之后就立马的疯狂了,他陷入了石墨烯的研究范围,并且痴心于这个石墨烯研究,在2020年的时候发表了两篇论文,一经发出引起了许多人的关注,这可是石墨烯呀,所有人都要抢夺的资源,在这位英雄少年的论文里面,很多观点都突破了原来固有的观念而形成了新的观念,在这些观念中给其他科学家造成了一定的冲击,也给石墨烯的研究造成了冲击,在100年之后没有想到人有人会对石墨烯研究的这么透彻。
许多人都想去了解这个英雄少年到底是经历了什么能够在自然连续发表两篇论文,我们了解到在自然的报纸刊登中,里面的论文都是举足轻重的,自然的一篇论文在当时可谓是黄金万两。
但是在自然中,我们的这位英雄少年却不只是在2020年发表了这篇论文,在2018年的三月份而这位英雄少年也是连续发表了两篇论文。因为内容太过震惊,而论文的观点也是突破了固有的观念,在当时自然都来不及排版就将他的论文发表出去,这两篇论文也激发了科学家的一阵震动。就是因为这两篇论文的诞生,而一个新兴的领域就诞生了,这个新兴的领域是由我们的英雄少年所开创的。
超导体被发现之后石墨烯已经沉寂了太久了,而这两篇的论文发表让一些挠破了头研究石墨烯的科学家展开了笑颜。在九六年出生的这个英雄少年叫做曹原,他来自于美丽的四川成都,而因为自己父母工作的关系,他跟随自己的父母到达了深圳,在深圳的耀华实验学校,他经受住了一些超前教育,而这些超前教育让他就自己的兴趣而了解到了更深的领域,因为自己学校和父母的支持,他小小年纪就开始捣鼓电子器具,而在电子器具发生一些改变之后他就更喜欢了。
头一次在做这些东西的时候,学校和父母都给了他很大的支持,甚至他将妈妈的金银手镯拿去提炼他所需要的物质,妈妈也是没有责怪他一句,甚至在家里面都给他办起来实验室。在学校和父母的帮助下,他学习到了很多东西,最后以699分的高分在14岁的时候就进入了少年班。
这个少年班是由中国科学技术大学开办的严济慈物理英才班,里面都是由天才组成的,在2014年的时候,他在中科大本科生大放异彩,获得了最高的荣誉后进入了麻省理工学院。再后来他发表两篇论文之后,麻省理工和美国都想留住这位英雄少年,并且想让这名少年留下来为美国做事情,但是这位少年心系国家,在美国的诱惑下他不曾所动,他只说我要回家的,我要回家报效祖国的。
曹原是一个公认的天才,他14岁就能考上中科大,对我国的科研做出了重大贡献。
关键词属于主题词中的一类。主题词除关键词外,还包含有单元词、标题词的叙词。主题词是用来描述文献资料主题和给出检索文献资料的一种新型的情报检索语言词汇,正是由于它的出现和发展,才使得情报检索计算机化(计算机检索)成为可能。主题词是指以概念的特性关系来区分事物,用自然语言来表达,并且具有组配功能,用以准确显示词与词之间的语义概念关系的动态性的词或词组。技巧—:依据学术方向进行选题。论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。技巧四:从小从专进行选题。所谓从小从专,即是指软文撰稿者在进行选则和提炼标题时,要从专业出发,从小处入手进行突破,切记全而不专,大而空洞。
如今这个天才已经成为了我国中国科学院的院士,为我国的科技发展默默地贡献出自己的一份力量。
扭转双层石墨烯可视作两层石墨烯以一定的扭转角度堆叠而成,其表面会形成随扭转角度变化的摩尔周期势,其能带结构也受扭转角度的调制。例如,两层石墨烯的能带耦合会导致态密度上范•霍夫奇点的出现,从而赋予其角度依赖的光电特性;非公度扭转角的石墨烯则具有极小的摩擦力;而魔角(~1.1 )扭转石墨烯则具有一系列新奇的量子效应,引发了人们极大的研究兴趣,催生了新的研究领域——扭转电子学(Twistronics)。目前,实验室的扭转双层石墨烯通常是通过人工堆叠的方法制备。如何通过生长的方法直接制备具有各种扭转角度的双层石墨烯是该领域需要解决的重要问题。
基于金属衬底的化学气相沉积(ChemicalVapor Deposition, CVD)法被认为是生长高品质石墨烯最有前景的方法,然而,由于AB堆垛具有更高的能量稳定性,CVD高温生长的双层石墨烯更趋向于形成AB堆垛而非扭转双层石墨烯。因此,打破AB堆垛石墨烯在能量上的优势,在高温下实现层间扭转成为一项重要挑战。
近日, 北京大学、北京石墨烯研究院刘忠范院士团队 及其合作者提出了“异位成核”(Hetero-site nucleation)的生长策略,通过在生长过程中引入气流扰动控制第二层石墨烯的成核位点,使两层石墨烯的晶格取向分别受到不同区域衬底的诱导,从而得到大比例的扭转双层石墨烯(图1)。
图1. 异位成核法生长策略及生长结果
一般情况下,铜表面石墨烯的生长遵从“自限制”生长模型,而当氢气分压较大时,石墨烯的边缘会从金属钝化变为氢饱和终止,导致边缘与金属的相互作用变弱,并阻碍单层石墨烯的生长,因此活性碳物种可“钻”入第一层石墨烯和铜之间进行第二层的生长。而第二层石墨烯与衬底的相互作用强于石墨烯层间的相互作用,这一特点为层间扭转提供了可能。但仅仅依靠衬底的作用还不足以形成扭转,因为石墨烯的晶格取向在成核初期即被决定,如果两层石墨烯在同一位点成核,则相同的成核环境会使两层石墨烯晶格取向一致,形成AB堆垛石墨烯。
研究人员发现,当两层石墨烯的成核位点不同时,由于衬底的台阶、扭结、位错或颗粒等微观环境的不同,层间扭转的概率会显著增加。为实现第二层石墨烯的可控成核和生长,研究人员采用了扰动生长的策略,即在CVD生长过程中改变氢气和甲烷的分压,调控石墨烯边缘的终止态和附近的局域碳物种浓度。这一方法得到了12C/13C同位素标记生长实验的验证:分别在第5 min、10 min引入“扰动”,第二层的成核时间恰好对应于5 min和10 min,第二层的成核位点也恰好在12C/13C 的交接处,所得到的石墨烯为~30 -tBLG和~9 -tBLG(图2)。同时,不采用扰动的结果则表现为AB堆垛双层石墨烯,这证明了该方法的有效性。
图2. 同位素标记实验结果
研究者还总结了“扰动——异位成核”方法的关键参数,通过控制两步生长法的氢气、碳源比例(图3),实现了高扭转比例(88%)的tBLG。高分辨透射电镜的表征显示出清晰的摩尔条纹(图4);电学输运测量表明其具有超高的室温载流子迁移率(68,000 cm2V 1s 1)(图5);角分辨光电子能谱测量显示出清晰的线性能带结构和范·霍夫奇点。这些均证明了通过该方法得到的tBLG具有超高的品质。
图3. 异位成核法生长参数
图4. TEM表征结果
图5. 迁移率测试结果
作者提出了异位成核(Hetero-site nucleation)的策略,通过引入气流扰动控制第二层石墨烯的成核,使两层石墨烯的晶格取向分别受到不同区域衬底的诱导,从而打破了AB堆垛能量最低的限制,实现了大比例的扭转双层石墨烯的制备。该方法为扭转石墨烯及二维材料的制备提供了新的思路,为近年来新兴的扭转电子学研究奠定了材料基础。
相关研究成果以“ Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles ”为题发表在 Nature Communications 杂志上。北京大学、北京石墨烯研究院刘忠范院士、彭海琳教授,新加坡国立大学博士后林立,中国科学技术大学黄生洪副教授为本文通讯作者,北京石墨烯研究院孙禄钊博士、曼彻斯特大学王子豪博士、北京大学博士生王悦晨为第一作者,合作者还包括曼彻斯特大学Kostya S. Novoselov教授、苏州大学Mark H. Rummeli教授、中国科学技术大学李震宇教授和牛津大学陈宇林教授等。该论文涉及到的研究工作得到了北京大学化学与分子工程学院、北京分子科学国家研究中心、 科技 部、国家自然科学基金委和北京市科委的资助。
论文链接:
石墨烯应用领域中科院近期发布的一份报告指出,石墨烯的研究和产业化发展持续升温,从石墨烯专利领域分布来看,其应用技术研究布局热点包括:石墨烯用作锂离子电池电极材料、太阳能电池电极材料、薄膜晶体管制备、传感器、半导体器件、复合材料制备、透明显示触摸屏、透明电极等。主要集中在如下四个领域:传感器领域。石墨烯因其独特的二维结构在传感器中有广泛的应用,具有体积小、表面积大、灵敏度高、响应时间快、电子传递快、易于固定蛋白质并保持其活性等特点,能提升传感器的各项性能。主要用于气体、生物小分子、酶和DNA电化学传感器的制作。新加坡南洋理工大学开发出了敏感度是普通传感器1000倍的石墨烯光传感器;美国伦斯勒理工学院研制出性能远超现有商用气体传感器的廉价石墨烯海绵传感器。储能和新型显示领域。石墨烯具有极好的电导性和透光性,作为透明导电电极材料,在触摸屏、液晶显示、储能电池等方面有很好的应用。石墨烯被认为是触摸屏制造中最有潜力替代氧化铟锡的材料,三星、索尼、辉锐、3M、东丽、东芝等龙头企业均在此领域作了重点研发布局。美国德州大学奥斯汀分校研究人员利用KOH对石墨烯进行化学修饰重构形成多孔结构,得到的超级电容的储能密度接近铅酸电池。密歇根理工大学科学家研发出一种独特蜂巢状结构的三维石墨烯电极,光电转换效率达到7.8%,且价格低廉,有望取代铂在太阳能电池中的应用。东芝公司研发出石墨烯与银纳米线复合透明电极,并实现了大面积化。半导体材料领域。石墨烯被认为是替代硅的理想材料,大量有实力的企业均开展了石墨烯半导体器件的研发。韩国成均馆大学开发出了高稳定性n型石墨烯半导体,可以长时间暴露在空气中使用。美国哥伦比亚大学研发出石墨烯-硅光电混合芯片,在光互连和低功率光子集成电路领域具有广泛的应用前景。IBM的研究人员开发出了石墨烯场效应晶体管,其截止频率可达100GHz,频率性能远超相同栅极长度的最先进硅晶体管的截止频率。生物医学领域。石墨烯及其衍生物在纳米药物运输系统、生物检测、生物成像、肿瘤治疗等方面的应用广阔。以石墨烯为基层的生物装置或生物传感器可以用于细菌分析、DNA和蛋白质检测。如美国宾夕法尼亚大学开发的石墨烯纳米孔设备可以快速完成DNA测序。石墨烯量子点应用于生物成像中,与荧光体相比具有荧光更稳定、不会出现光漂白和不易光衰等特点。石墨烯在生物医学领域的应用研究虽处于起步阶段,但却是产业化前景最为广阔的应用领域之一。
主要上市公司:贝特瑞(835185);方大炭素(600516);银基烯碳(400070);碳元科技(603133);沃特新材料(002886);常州二维碳素(833608)
本文核心数据:石墨烯行业企业营收额;石墨烯行业区域企业数量;石墨烯行业企业产能
行业概况
1、定义
石墨烯,是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。应用于物理、材料、电子信息、计算机等众多领域,具有较好的额导热性、光学特性和稳定性。石墨烯虽然从合成和证实存在到今天只有短短十几年的时间,但目前已经得到了较为广泛的应用。石墨烯层数可分为单层石墨层、少层石墨烯和多层石墨烯;按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等;按照产品形态又可分为石墨烯粉体和石墨烯薄膜。
2、产业链剖析:下游应用较为广泛
石墨烯产业链的上游为石墨矿资源及生产设备;中游为石墨烯薄膜和石墨烯粉体制造;下游主要的应用以新能源、涂料、大健康、节能环保、化工新材料、电子信息等六大产业。
目前,我国石墨烯产业链的上游石墨烯矿产及设备公司有方大炭素、思泉新材和宝泰隆等;中游石墨烯粉体和薄膜的生产公司有常州二维碳素、第六元素和中泰化学等;下游应用领域众多,目前较为广泛的新能源领域的代表企业有贝特瑞新材料、东方碳素、南都电池和欣旺达等;涂料领域的代表性企业有墨睿科技和深创时代等;大健康领域代表性公司有烯旺科技和圣泉集团等;节能环保领域的代表性企业有正拓能源和驰飞等;化工新材料的代表性企业有新纶科技和华高烯暖等;电子信息领域的代表性企业包括远望谷和汉威电子等。
行业发展历程:行业处在突飞猛进阶段
石墨烯的理论研究始于1947年,迄今已有70余年的历史。但真正能够独立存在的二维石墨烯晶体则是出现在2004年,英国曼彻斯特大学天文物理学教授Andre K. Geim领导的研究小组利用微机械剥离方法首次获得了石墨烯,标志着这一新型材料的问世。中国国家自然科学基从2007年开始对石墨烯项目投资,促进了我国石墨烯产业的发展。2013年以来,石墨烯先后被列入“十二五”“十三五”规划中,政策的推动促使了我国一大批石墨烯企业的诞生,石墨烯生产开始走向批量化、规模化。2017年至今,石墨烯已经在锂电池、太阳能、散热材料、电缆LED等行业有了较为广泛的应用。
行业政策背景:“十四五”规划愈发重视石墨烯行业的发展
相比于国外政府较早进行政策扶持,我国直到2012年才由工信部发布《新材料产业“十二五”发展规划》,首次明确提出支持石墨烯新材料的发展。之后,我国先后出台《关于加快石墨烯产业创新发展的若干意见》《国家创新驱动发展战略纲要》《新材料产业发展指南》《“十三五”材料领域科技创新专项规划》等文件,确立石墨烯在新时代我国制造业发展中的重要战略地位,鼓励在电化学储能、海洋工程、柔性电子器件、重大环保技术装备、汽车、航天航空行业等领域拓展石墨烯应用。2021年,国家发改委发布了《国民经济和社会发展第十四个五年规划纲要》,提出大力支持发展新材料产业的重点任务。
行业发展现状
目前,石墨烯产品主要为石墨烯粉体和石墨烯薄膜。石墨烯粉体主要应用于防腐涂料、锂电池、超级电容、导热塑料、消费电子散热片等行业;石墨烯薄膜主要在导热膜、柔性显示、传感器、集成电器等行业有较为广泛的应用。
1、供给:石墨烯粉体和石墨烯薄膜已经实现大规模量产
目前中国大部分石墨烯行业代表性企业均已建立石墨烯产品生产线,其中,在明确公布产量数据的企业中,第六元素、凯纳股份、青岛昊鑫及先丰纳米的石墨烯相关产品产能均达到了千吨级别。此外,根据2021年11月12日举办的2021(第八届)中国国际石墨烯创新大会公布的数据,目前中国已成为石墨烯材料生产大国,石墨烯粉体产能达1.46万吨,石墨烯薄膜产能740万平米。
注:上述数据均来源于企业官网,部分企业官网数据未做更新。
2、需求:石墨烯需求不断增加,市场规模达百亿以上
2015年到2018年,我国石墨烯产业处于高速发展期。据中国经济信息社数据统计,2015年石墨烯市场规模仅为6亿元,2018年我国石墨烯产业规模约为111亿元,复合增长率高达117%。在高速发展后,从2019年开始石墨烯行业进入快速平稳发展期,增速有所降低,根据赛迪智库发布的《2020年中国石墨烯产业发展形势展望》估算,2019年中国石墨烯规模将达到120亿元;根据石墨烯联盟公布的数据,2020年国内石墨烯相关领域市场规模达140亿元。初步估测2021年中国石墨烯市场规模或达到157亿元。
3、专利情况:2020年石墨烯相关专利申请热度最高
根据智慧芽搜索结果,2015-2022年9月,我国石墨烯相关专利申请数量先增后降,2020年相关专利申请数量达到峰值33390项,2021年相关专利申请数量下降至30165项。此外,截至2022年9月的石墨烯相关专利中,发明申请类型的专利占比最多,达到了57%,其次为授权发明,占比为27%。
注:查询时间为2022年9月26日。
4、发展痛点:关键技术制约下游应用拓展
由于石墨烯从发现至今仅经历10余年时间,其发展仍处于较新的阶段,尽管石墨烯在规模化生产技术和 工艺装备等方面均取得重大进展,但其低成本规模化制备技术、下游应用技术、绿色制备技术等方面仍存在技术瓶颈,且产品普遍存在尺寸和层数不均匀、质量不稳定等问题,材料的各项性能指标远不及实验室水平,难以满足大规模工业化量产的需求,制约了石墨烯在下游应用领域的拓展。
更多本行业研究分析详见前瞻产业研究院《中国石墨烯行业市场前瞻与投资战略规划分析报告》。
文 颖宝
这群年轻人,与凝望他们的时代。
1996年发生了许多具有先锋意义的历史:凤凰卫视中文台开播,羊“多莉”诞生,王菲成为首位登上《时代周刊》封面的华人歌手。
还有,《新周刊》创刊。
这一年出生的孩子们,具有一种和“前辈们”与众不同的特质。在国内,他们是特立独行的之一批95后;在国外,他们又被称为“Z世代”。
我们从中挑选出6位代表人物,和大家分享他们不一样的故事和人生。
新锐、朝气与无畏,是他们的标签。/《破风》剧照
竞技,飞跃
傅园慧,游泳运动员
傅园慧3岁的时候,每到换季就要咳嗽上小半个月,医生说她有哮喘倾向。这句话在她5岁那年应验了。
听说强魄的体格能抗衡哮喘,傅春升便将她送去学游泳。游泳馆里,许多小孩用力抱着教练的腿、生怕被扔下水,傅园慧却一边跳进泳池、一边将手背在身后模仿摆动的翅膀,朝妈妈大喊:“水里好好玩!我是属小的吗?”
教练说,不怕水是傅园慧的天赋。但天赋变实力的过程,高低起伏。
2012年,傅园慧在100米女子仰泳项目中,以59秒99的成绩出战伦敦的资格。然而到了真正的赛场,她变成了唯一没有游进60秒的选手。
那段时间,长年浸泡在水里导致的中耳炎,让傅园慧的耳朵刺痛难忍。加之心理压力大,她时常将自己关在房间里,在黑暗中呆坐一整个晚上。傅春升心疼女儿、劝她,却被回怼:“不要捣乱好不好。”
在2022 年的里约上,傅园慧刷新了100米女子仰泳的全国纪录,夺得铜牌。记者问她是否有保留实力,她搞怪地回“没有保留,我已经用了洪荒之力啦!”
一夜间,即使没有 的人们,也都知道了这一位“洪荒少女”。
在今年7月公布的中国游泳队东京参赛名单上,傅园慧与另外两位名将叶诗文、刘湘缺位。有体育记者分析,三位女将均为25岁,而征战东京的女性运动员,平均年龄为20.3岁。
此外,她们近年来的表现未达预期。早前在东京选拔赛中,傅园慧因抢跳被取消成绩,未能进入决赛。
傅园慧曾在媒体镜头前自我检讨:“没什么好推脱的,但我会竭尽全力做好一切。”
傅园慧就是这样,做真我,不逃避。
2022 年1月7日是傅园慧21岁生日,她在微博中写道:“永远也无法忘记曾经已经不堪一击的我,和这一年最痛苦挣扎时的我,是什么样子。那是一种深刻的绝望。”2022 年,她的微博风格开始变得积极:“让时间翻开崭新的一页。”/傅园慧微博
周琦,篮球运动员
被粉丝唤作“大王”时,周琦才15岁。
2011年,中国青年篮球队征战U16土耳其男篮邀请赛,夺得冠军与7连胜的好成绩。中锋周琦以场均20.5分、10.3个篮板、5.4次封盖的数据一战成名。亚洲篮球联合会在新闻报夸赞周琦“将是中国男篮继姚明和王治郅后另一位具备潜力的中锋”。(封盖:俗称盖帽,对方球员投篮过程中,己方球员在空球打掉的动作。)
但随着时间推移,周琦的表现备受争议。2022 年,篮球世界杯小组赛在五棵松体育馆,在主场迎战的中国队败给了波兰队。
球迷将矛头指向了周琦——比赛最后7.2秒,中国队仍以72:71领先。此时,掌握球权的他却出现发球失误,被波兰球员抢断。中国队因此被拖入加时赛,最终以76:79小比分落败。直播镜头扫过场下坐着的姚明,他的眼眶红了一圈。
即使影响赛事结果的因素有很多,比如易建联与郭艾伦皆因犯规提前下场,但无法改变这场比赛被钉上耻辱柱的事实。球迷一度将周琦的标签改为“波兰中锋”“波兰卧底”,并造出了 络成语“姚头叹琦”。
在综艺《吐槽大会》上,范志毅句句扎心:“周琦那个发球我看了好几遍,我上去用脚都能传给别人,你用手都不行。”舞台边上,周琦抱着篮球苦笑。
今年5月,周琦位列《2022 中国运动员传播影响力榜》第10位,这证明了他的实力尚在,且能对起到正面的导向作用。
他也在积极调整发展方向。近期,周琦在采访中表示,想从队转入辽宁队,因为后者能提供更好的。
失败并不要紧,重要的是反思和调整。
今年,周琦加强了训练,试图寻回光环。/周琦微博
上天,入地
周承钰,中国最年轻的火箭发射女指挥
综艺《创造101》成团夜里,节目组公布了限定女团名为“火箭少女101”,寓意直冲云霄、奔放未来。
把“火箭少女”这个词用在周承钰身上,其实更为合适。
2022 年11月24日,嫦娥五号探测器成功发射升空3小时后,作为连接器系统指挥员的周承钰发了一条朋友圈:“连接器完美脱落,连接器家族牛!预祝嫦娥五号顺利返回!”
这一年,她才24岁。
周承钰本科就读于国防科技大学。毕业前夕,导师给她安排了颇为硬骨头的论文题目。她一看,觉得自己研究不出结果,想打退堂鼓。导师翻出师兄师姐们的课题,全是难度更高的前沿新兴研究。导师对她说:如今手上的课题与前辈们的课题,你选一个。
于是周承钰把刚想“扔掉”的硬骨头抱了回家。
在嫦娥五号的升空地文昌发射场里,她是近80人的科研队伍中最年轻的指挥员,也是首位女性指挥员。
刚上班时,前辈们本着照顾小丫头的想法,更多地分配的工作给她。结果在长征五号遥三运载火箭测试任务中,她每天到二级连接器配气台工作,竟没有一句抱怨,让前辈们不已。
通往配气台的钢铁台阶,有15层楼高、共180多级阶梯,倾斜角接近90°,别说 立行走了,用四肢攀爬着上去一趟都累得够呛。私底下,科研人员唤它为“天梯”。周承钰一天爬4趟,一爬就是60天。
被问到是否觉得工作艰难时,她回答,在做毕业课题时已经“经历过更难的,所以不觉得现在难了”。
周承钰指挥的连接器系统,是发射场动力系统与加注系统的关键部分,具有设备分布广、协调接口多等特点,即便是经验丰富的科研人员,也要小心翼翼地操作。从嫦娥五号升空的结果来看,她将工作完成得很好,并且能高效有序调度超30名科研人员共同推进工作。
文昌发射场的同事里,有许多国防科技大学的师兄,周承钰想追上他们。如果时光倒流,回到选毕业课题的那一天,她或许会选择前辈们的题——
“他们能做好,我也能。”
嫦娥五号成功发射后,周承钰与话题#24岁女孩成文昌发射场最年轻女指挥#也同步上了热搜。/央视新闻截图
曹原,《自然》2022 年度科学人物榜首
2022 年,科学刊物《自然》将曹原安置在年度科学人物首位,附文“中国潜在的最年轻的者”。
国内媒体更倾向将他描述为“石墨烯的驾驭者”。
排在他后面的,有发布了盖亚探测器对10亿多颗恒星追踪数据的天文学家Anthony Brown、通过基因组数据协助警方逮捕上世纪七八十年代犯下数起凶杀案的“金州”的系谱学家Barbara Rae-Venter等等。
童年时期,曹原对照着科学画册,将银镯子泡入硝酸溶液,合成了。看着“凭空消失”的首饰,曹妈妈哭笑不得。曹原后来的大学老师、中科大物理教授丁泽军说:“曹原是一个真真正正为科学而生的人。”
曹原仅用3年就学完了初中、高中课程,然后在14岁那年凭借669分的高考分数,入读中科大少年班;4年后,他前往麻省理工学院读博。
2022 年,尚在麻省理工的曹原以之一 身份,发表了那两篇轰动世界的石墨烯超导论文,成为《自然》创建149年以来,之一位在同一天内、连续发两篇论文的 ,同时也是年纪最小的 。
在现代,电力是与水源、粮食同等重要的。“电阻”则顾名思义,会阻碍电流输送,造成一定程度的电力损耗。如果尽量减少电阻,人类将更多。百年来,世界各地的科学家为了这个问题想破脑袋,却一直停留在假设层面。
曹原的论文打破了僵局:当两层平行石墨烯的转角接近1.1°时,就会产生超导效应。有媒体评价,这一技术发现,将中国的石墨烯研究向前推进了30年。
从麻省理工学院毕业后,曹原婉拒了校方的劝留,选择回究石墨烯,“科学没有国界,但科学家有自己的祖国”。
就在刚刚过去的7月21日,曹原在《自然》发表了一篇新论文,阐述石墨烯超导研究的最新进展。这是他自2022 年至今,在顶刊上发布的第8篇论文。
连天才都在奔跑。
曹原今年才25岁。/ 络
逆行,抢救
佘沙,援鄂
热映《中国医生》中,张涵予饰演的金银潭医院院长,就病患源源不断的情况,在动员大会上,询问大家是否有自愿到重症监护室帮忙的。话音落下,现场安静了足足5秒。一个女孩突然 起来:“我报名。”在她的背影后,越来越多人 了起来。
在现实世界的2022 年,有无数像她这样自告奋勇的逆行者。
佘沙是人,2008年,她的老家经历了8.0级大,“房子都塌了,一片废墟”。12岁的她, 在尚有的小学操场上,不知所措。
一群穿着白大褂的部队军医向她跑来。准确地说,是向跑来。佘沙一家在医护人员及全国各地陌生援助者的帮助下,走出了阴霾。
2022 年,佘沙入职四川省第四医院,成为肿瘤介入治疗方面的。2022 年疫情暴发之际,她先后3次主动请缨援鄂,最终被分配到武汉大学医院工作——
这所医院是抗疫一线,也曾是期间救治伤员的定点医院。带领佘沙进行抗疫工作的长,恰是在中救助伤员的志愿者。得知这巧合后,佘沙说,善意会在冥冥之中延续。
佘沙在武汉大学医院负责“预防医院感染”工作,即对可能发生的医院感染进行预防与控制。她每天都在奔走、弯腰下蹲数次,给队驻点酒店的各个角落消,以避免医护人员在休息期间被感染;推车等工具全部在污染区,她便用人力搬运这种“最笨”的,将呼吸机等仪器一件件扛进医院。
2022 年,佘沙入选由、全国妇联等四部门联合发布的“一线医务人员抗疫巾帼英雄谱”,被授予“抗击肺炎疫情全国三八红旗手”称号。
回想2022 年除夕那天,佘沙缠着四川省第四医,嚷嚷着要加入援鄂队伍。问,你真不怕被感染哦?
佘沙说,哎呀,我不一样,我是的呀!
2022 年电视剧《最美逆行者》中,由任敏饰演的于丽娜 ,为报援助之恩加入援鄂队。有人说,于丽娜的原型就是佘沙。/图为佘沙本人 新华
甘如意,武汉医生
与佘沙一同入选“一线医务人员抗疫巾帼英雄谱”的,还有武汉医生甘如意。但大众对她更熟悉的称呼,是“4天3夜骑行女孩”。
甘如意在武汉金口卫生院范湖分血液检验科工作。2022 年1月中旬,武汉的疫情真正严重起来之前,甘如意已经回了荆州老家准备过年。
疫情的消息让她日渐焦虑。检验科只有3个医生,她提前回家了,剩下两位同事已经在抗疫岗位上扛了十几天。腊月廿九的晚上,她对爸爸说:“我要回医院了。”
当时武汉已经封城,与之的公共交通也都停止。她想过坐计程车,但连续问了几个司机,都不敢靠近武汉。
她决定骑自行车去武汉。从荆州县垱镇杨家码头村,到武汉金口卫生院范湖分院,一共285公里。预测,需要连续骑行18个小时。
实际耗时比预测时间要多得多。1月31日,大年初六,她骑行了5小时顺利到达县城,但在前往荆州市的长江大桥上,被以疫情防控为由阻拦骑车通行。她将自行车存放在副食店内,徒步过桥,然后在荆州扫了一辆共享单车,蹬上了318国道,前往下一 潜江市。
2月2日晚8点,抵达潜江市时,她已经骑行了3天、126公里,膝盖生疼、精神疲惫不已。所幸,她在潜江街头遇到两名。后者之余,在隔天安排她坐上了一辆前往武汉的送血车。
4月8日,武汉解封。离家68天的甘如意回到了荆州,妈妈给她做了一桌子菜,说:“你走的时候还是冬天,回来的时候已是春天了。”
上图为工作中的甘如意,下图为她骑过的自行车——这辆车如今收在武汉金山舰抗疫博物馆中。/ 络
抗压、超越、探索、不服输、心怀善意,是这一群1996年生的年轻人所坚持的人生品质。
若要给他们一个标签,那便是“新锐人物”。
1996-2022 年,新周刊发行25年间,亦坚持向时代传递这种新锐的价值观。
新周刊与新锐人物们一同成长、一同经历挫折、一同奔向未来。
以上就是与69属猴男和76属龙女相配吗相关内容,是关于傅园慧的分享。看完76年女和68年男合适吗后,希望这对大家有所帮助!