首页

> 论文发表知识库

首页 论文发表知识库 问题

半导体封装技术论文参考文献

发布时间:

半导体封装技术论文参考文献

先进的芯片尺寸封装(CSP)技术及其发展前景2007/4/20/19:53 来源:微电子封装技术汽车电子装置和其他消费类电子产品的飞速发展,微电子封装技术面临着电子产品“高性价比、高可靠性、多功能、小型化及低成本”发展趋势带来的挑战和机遇。QFP(四边引脚扁平封装)、TQFP(塑料四边引脚扁平封装)作为表面安装技术(SMT)的主流封装形式一直受到业界的青睐,但当它们在引脚间距极限下进行封装、贴装、焊接更多的I/O引脚的VLSI时遇到了难以克服的困难,尤其是在批量生产的情况下,成品率将大幅下降。因此以面阵列、球形凸点为I/O的BGA(球栅阵列)应运而生,以它为基础继而又发展为芯片尺寸封装(ChipScalePackage,简称CSP)技术。采用新型的CSP技术可以确保VLSI在高性能、高可靠性的前提下实现芯片的最小尺寸封装(接近裸芯片的尺寸),而相对成本却更低,因此符合电子产品小型化的发展潮流,是极具市场竞争力的高密度封装形式。CSP技术的出现为以裸芯片安装为基础的先进封装技术的发展,如多芯片组件(MCM)、芯片直接安装(DCA),注入了新的活力,拓宽了高性能、高密度封装的研发思路。在MCM技术面临裸芯片难以储运、测试、老化筛选等问题时,CSP技术使这种高密度封装设计柳暗花明。2CSP技术的特点及分类之特点根据J-STD-012标准的定义,CSP是指封装尺寸不超过裸芯片倍的一种先进的封装形式[1]。CSP实际上是在原有芯片封装技术尤其是BGA小型化过程中形成的,有人称之为μBGA(微型球栅阵列,现在仅将它划为CSP的一种形式),因此它自然地具有BGA封装技术的许多优点。(1)封装尺寸小,可满足高密封装CSP是目前体积最小的VLSI封装之一,引脚数(I/O数)相同的CSP封装与QFP、BGA尺寸比较情况见表1[2]。由表1可见,封装引脚数越多的CSP尺寸远比传统封装形式小,易于实现高密度封装,在IC规模不断扩大的情况下,竞争优势十分明显,因而已经引起了IC制造业界的关注。一般地,CSP封装面积不到节距QFP的1/10,只有BGA的1/3~1/10[3]。在各种相同尺寸的芯片封装中,CSP可容纳的引脚数最多,适宜进行多引脚数封装,甚至可以应用在I/O数超过2000的高性能芯片上。例如,引脚节距为,封装尺寸为40×40的QFP,引脚数最多为304根,若要增加引脚数,只能减小引脚节距,但在传统工艺条件下,QFP难以突破的技术极限;与CSP相提并论的是BGA封装,它的引脚数可达600~1000根,但值得重视的是,在引脚数相同的情况下,CSP的组装远比BGA容易。(2)电学性能优良CSP的内部布线长度(仅为)比QFP或BGA的布线长度短得多[4],寄生引线电容(<Ω)、引线电阻(<)及引线电感(<)均很小,从而使信号传输延迟大为缩短。CSP的存取时间比QFP或BGA短1/5~1/6左右,同时CSP的抗噪能力强,开关噪声只有DIP(双列直插式封装)的1/2。这些主要电学性能指标已经接近裸芯片的水平,在时钟频率已超过双G的高速通信领域,LSI芯片的CSP将是十分理想的选择。(3)测试、筛选、老化容易MCM技术是当今最高效、最先进的高密度封装之一,其技术核心是采用裸芯片安装,优点是无内部芯片封装延迟及大幅度提高了组件封装密度,因此未来市场令人乐观。但它的裸芯片测试、筛选、老化问题至今尚未解决,合格裸芯片的获得比较困难,导致成品率相当低,制造成本很高[4];而CSP则可进行全面老化、筛选、测试,并且操作、修整方便,能获得真正的KGD芯片,在目前情况下用CSP替代裸芯片安装势在必行。(4)散热性能优良CSP封装通过焊球与PCB连接,由于接触面积大,所以芯片在运行时所产生的热量可以很容易地传导到PCB上并散发出去;而传统的TSOP(薄型小外形封装)方式中,芯片是通过引脚焊在PCB上的,焊点和pcb板的接触面积小,使芯片向PCB板散热就相对困难。测试结果表明,通过传导方式的散热量可占到80%以上。同时,CSP芯片正面向下安装,可以从背面散热,且散热效果良好,10mm×10mmCSP的热阻为35℃/W,而TSOP、QFP的热阻则可达40℃/W。若通过散热片强制冷却,CSP的热阻可降低到,而QFP的则为[3]。(5)封装内无需填料大多数CSP封装中凸点和热塑性粘合剂的弹性很好,不会因晶片与基底热膨胀系数不同而造成应力,因此也就不必在底部填料(underfill),省去了填料时间和填料费用[5],这在传统的SMT封装中是不可能的。(6)制造工艺、设备的兼容性好CSP与现有的SMT工艺和基础设备的兼容性好,而且它的引脚间距完全符合当前使用的SMT标准(),无需对PCB进行专门设计,而且组装容易,因此完全可以利用现有的半导体工艺设备、组装技术组织生产。的基本结构及分类CSP的结构主要有4部分:IC芯片,互连层,焊球(或凸点、焊柱),保护层。互连层是通过载带自动焊接(TAB)、引线键合(WB)、倒装芯片(FC)等方法来实现芯片与焊球(或凸点、焊柱)之间内部连接的,是CSP封装的关键组成部分。CSP的典型结构如图1所示[6]。目前全球有50多家IC厂商生产各种结构的CSP产品。根据目前各厂商的开发情况,可将CSP封装分为下列5种主要类别[7、3]:(1)柔性基板封装(FlexCircuitInterposer)由美国Tessera公司开发的这类CSP封装的基本结构如图2所示。主要由IC芯片、载带(柔性体)、粘接层、凸点(铜/镍)等构成。载带是用聚酰亚胺和铜箔组成。它的主要特点是结构简单,可靠性高,安装方便,可利用原有的TAB(TapeAutomatedBonding)设备焊接。(2)刚性基板封装(RigidSubstrateInterposer)由日本Toshiba公司开发的这类CSP封装,实际上就是一种陶瓷基板薄型封装,其基本结构见图3。它主要由芯片、氧化铝(Al2O3)基板、铜(Au)凸点和树脂构成。通过倒装焊、树脂填充和打印3个步骤完成。它的封装效率(芯片与基板面积之比)可达到75%,是相同尺寸的TQFP的倍。(3)引线框架式CSP封装(CustomLeadFrame)由日本Fujitsu公司开发的此类CSP封装基本结构如图4所示。它分为Tape-LOC和MF-LOC两种形式,将芯片安装在引线框架上,引线框架作为外引脚,因此不需要制作焊料凸点,可实现芯片与外部的互连。它通常分为Tape-LOC和MF-LOC两种形式。(4)圆片级CSP封装(Wafer-LevelPackage)由ChipScale公司开发的此类封装见图5。它是在圆片前道工序完成后,直接对圆片利用半导体工艺进行后续组件封装,利用划片槽构造周边互连,再切割分离成单个器件。WLP主要包括两项关键技术即再分布技术和凸焊点制作技术。它有以下特点:①相当于裸片大小的小型组件(在最后工序切割分片);②以圆片为单位的加工成本(圆片成本率同步成本);③加工精度高(由于圆片的平坦性、精度的稳定性)。(5)微小模塑型CSP(MinuteMold)由日本三菱电机公司开发的CSP结构如图6所示。它主要由IC芯片、模塑的树脂和凸点等构成。芯片上的焊区通过在芯片上的金属布线与凸点实现互连,整个芯片浇铸在树脂上,只留下外部触点。这种结构可实现很高的引脚数,有利于提高芯片的电学性能、减少封装尺寸、提高可靠性,完全可以满足储存器、高频器件和逻辑器件的高I/O数需求。同时由于它无引线框架和焊丝等,体积特别小,提高了封装效率。除以上列举的5类封装结构外,还有许多符合CSP定义的封装结构形式如μBGA、焊区阵列CSP、叠层型CSP(一种多芯片三维封装)等。3CSP封装技术展望有待进一步研究解决的问题尽管CSP具有众多的优点,但作为一种新型的封装技术,难免还存在着一些不完善之处。(1)标准化每个公司都有自己的发展战略,任何新技术都会存在标准化不够的问题。尤其当各种不同形式的CSP融入成熟产品中时,标准化是一个极大的障碍[8]。例如对于不同尺寸的芯片,目前有多种CSP形式在开发,因此组装厂商要有不同的管座和载体等各种基础材料来支撑,由于器件品种多,对材料的要求也多种多样,导致技术上的灵活性很差。另外没有统一的可靠性数据也是一个突出的问题。CSP要获得市场准入,生产厂商必须提供可靠性数据,以尽快制订相应的标准。CSP迫切需要标准化,设计人员都希望封装有统一的规格,而不必进行个体设计。为了实现这一目标,器件必须规范外型尺寸、电特性参数和引脚面积等,只有采用全球通行的封装标准,它的效果才最理想[9]。(2)可靠性可靠性测试已经成为微电子产品设计和制造一个重要环节。CSP常常应用在VLSI芯片的制备中,返修成本比低端的QFP要高,CSP的系统可靠性要比采用传统的SMT封装更敏感,因此可靠性问题至关重要。虽然汽车及工业电子产品对封装要求不高,但要能适应恶劣的环境,例如在高温、高湿下工作,可靠性就是一个主要问题。另外,随着新材料、新工艺的应用,传统的可靠性定义、标准及质量保证体系已不能完全适用于CSP开发与制造,需要有新的、系统的方法来确保CSP的质量和可靠性,例如采用可靠性设计、过程控制、专用环境加速试验、可信度分析预测等。可以说,可靠性问题的有效解决将是CSP成功的关键所在[10,11]。(3)成本价格始终是影响产品(尤其是低端产品)市场竞争力的最敏感因素之一。尽管从长远来看,更小更薄、高性价比的CSP封装成本比其他封装每年下降幅度要大,但在短期内攻克成本这个障碍仍是一个较大的挑战[10]。目前CSP是价格比较高,其高密度光板的可用性、测试隐藏的焊接点所存在的困难(必须借助于X射线机)、对返修技术的生疏、生产批量大小以及涉及局部修改的问题,都影响了产品系统级的价格比常规的BGA器件或TSOP/TSSOP/SSOP器件成本要高。但是随着技术的发展、设备的改进,价格将会不断下降。目前许多制造商正在积极采取措施降低CSP价格以满足日益增长的市场需求。随着便携产品小型化、OEM(初始设备制造)厂商组装能力的提高及硅片工艺成本的不断下降,圆片级CSP封装又是在晶圆片上进行的,因而在成本方面具有较强的竞争力,是最具价格优势的CSP封装形式,并将最终成为性能价格比最高的封装。此外,还存在着如何与CSP配套的一系列问题,如细节距、多引脚的PWB微孔板技术与设备开发、CSP在板上的通用安装技术[12]等,也是目前CSP厂商迫切需要解决的难题。的未来发展趋势(1)技术走向终端产品的尺寸会影响便携式产品的市场同时也驱动着CSP的市场。要为用户提供性能最高和尺寸最小的产品,CSP是最佳的封装形式。顺应电子产品小型化发展的的潮流,IC制造商正致力于开发甚至更小的、尤其是具有尽可能多I/O数的CSP产品。据美国半导体工业协会预测,目前CSP最小节距相当于2010年时的BGA水平(),而2010年的CSP最小节距相当于目前的倒装芯片()水平。由于现有封装形式的优点各有千秋,实现各种封装的优势互补及资源有效整合是目前可以采用的快速、低成本的提高IC产品性能的一条途径。例如在同一块PWB上根据需要同时纳入SMT、DCA,BGA,CSP封装形式(如EPOC技术)。目前这种混合技术正在受到重视,国外一些结构正就此开展深入研究。对高性价比的追求是圆片级CSP被广泛运用的驱动力。近年来WLP封装因其寄生参数小、性能高且尺寸更小(己接近芯片本身尺寸)、成本不断下降的优势,越来越受到业界的重视。WLP从晶圆片开始到做出器件,整个工艺流程一起完成,并可利用现有的标准SMT设备,生产计划和生产的组织可以做到最优化;硅加工工艺和封装测试可以在硅片生产线上进行而不必把晶圆送到别的地方去进行封装测试;测试可以在切割CSP封装产品之前一次完成,因而节省了测试的开支。总之,WLP成为未来CSP的主流已是大势所驱[13~15]。(2)应用领域CSP封装拥有众多TSOP和BGA封装所无法比拟的优点,它代表了微小型封装技术发展的方向。一方面,CSP将继续巩固在存储器(如闪存、SRAM和高速DRAM)中应用并成为高性能内存封装的主流;另一方面会逐步开拓新的应用领域,尤其在网络、数字信号处理器(DSP)、混合信号和RF领域、专用集成电路(ASIC)、微控制器、电子显示屏等方面将会大有作为,例如受数字化技术驱动,便携产品厂商正在扩大CSP在DSP中的应用,美国TI公司生产的CSP封装DSP产品目前已达到90%以上。此外,CSP在无源器件的应用也正在受到重视,研究表明,CSP的电阻、电容网络由于减少了焊接连接数,封装尺寸大大减小,且可靠性明显得到改善。(3)市场预测CSP技术刚形成时产量很小,1998年才进入批量生产,但近两年的发展势头则今非昔比,2002年的销售收入已达亿美元,占到IC市场的5%左右。国外权威机构“ElectronicTrendPublications”预测,全球CSP的市场需求量年内将达到亿枚,2004年为亿枚,2005年将突破百亿枚大关,达亿枚,2006年更可望增加到亿枚。尤其在存储器方面应用更快,预计年增长幅度将高达。

集成电路研究综述(涂希文)【摘要】: 集成电路(IC)是二十世纪重要的发明之一。它被广泛地应用于国民经济和社会的一切领域,其发展规模和技术水平已成为衡量国家地位和综合国力的重要标志之一。IC产业是知识密集、技术密集和资金密集型产业,世界集成电路产业发展异常迅速,技术进步日新月异。IC技术作为推动国民经济和社会信息化的关键技术,关系到国家产业竞争力和国家信息安全。虽然目前中国IC产业无论从质还是从量来说都不算发达,但伴随着全球产业东移的大潮,中国的经济稳定增长,巨大的内需市场,以及充裕的各类人才和丰富的自然资源,可以说中国集成电路产业的发展尽得天时、地利、人和之势,将会崛起成为新的世界IC制造中心。本文在研究过程中,对集成电路的发展历程进行了回顾,并对当今世界IC产业的主要国家及区域的现状及未来计划进行调研,结合我国的IC产业的发展现状进行了深入分析,本文欲抛砖引玉,共同探讨中国IC的振兴之路。本文共分六章。第一章,导论,分析研究的背景和本文研究的意义。第二章,集成电路产业的国际比较,对于集成电路的发发展进行了回顾,着重介绍美国、日本、韩国和我国台湾地区的集成电路发展历程,并深入分析了其能处于世界领先地位的原因。 第三章主要介绍了我国集成电路的发展历程,并在大量数据分析的基础上深入剖析我国集成电路的发展历程、现状、存在的问题并预测了我国集成电路的发展趋势。第四章,提出了构建我国集成电路自主创新战略的战略指导思想与原则。 第五章,研究我国集成电路自主创新战略的对策和措施。第六章,全文总结与展望。综合并集成前面各章的相关结论,得出一些综合性结论要点。集成电路发展研究是一个新课题,本文尽管做了一些研究,但仍然存在不足,很多重要的问题还有待于今后更为深入的研究和思考。【关键词】:集成电路 集成电路产业 现状 趋势 对策集成电路是以半导体材料为基片,经加工制造,将元气、有源器件和五连线集成在基片内部、表面或基片之上,执行某种电子功能的微型电路。从20世纪50年代开始,集成电路制造技术经历了从小规模集成(SSI) 、中规模集成(MSI)到大规模集成(LSI)阶段,乃至进入超大规模集成(VLSI)和甚大规模集成(Ultra Large Scale Integration,ULSI)阶段。尤其在过去的30年中,集成电路几乎完全遵循摩尔定律发展,即集成电路的集成度每隔18个月就翻一番。进入20世纪90年代以及21世纪以后,其设计规模由VLSI、ULSI向G规模集成(Giga-Scale Integration,GSI)的方向发展,于是,越来越多的功能,甚至是一个完整的系统都能够被集成到单个芯片之中。电子系统设计已从板上系统(System on Board,SoB)、多芯片模块(Multi-Chip Modules,MCM)进入到系统级芯片(System on Chip,SoC)时代。集成电路的飞速发展体现出如下特点: 特征尺寸越来越小,芯片面积越来越大,单片上的晶体管数目越来越多,时钟频率越来越高,电源电压越来越低,布线层数越来越多,I/O引线越来越多。美国半导体工业协会SIA组织给出了1997年到2009年美国集成电路工艺发展趋势。随着集成度的提高,芯片内部晶体管数目越来越多,集成电路设计的复杂性越来越高,传统的手工设计和适应小规模的设计模式已经不再适用。为了设计复杂的大规模集成电路,人们越来越借助于电子设计自动化(EDA)工具。随着科学技术的迅速发展,和对数字电路不断增强的应用要求,集成电路的发展将对社会的法展起决定性的推动作用。第一章 研究的背景与意义全球IC的快速发展,对IC的研究也越来越多,跨国公司直接投资进入对东道国市场结构效应的影响成为国际投资研究的重要前沿领域之一。外商直接投资对东道国市场结构的影响在很大程度上取决于外资进入方式的选择。不同的进入方式对东道国市场结构的影响是不同的,跨国公司与东道国本土企业之间的利益分配也是不同的。跨国公司纷纷进入中国集成电路产业,投资建厂,充分利用本地资源优势,本土企业与跨国公司并存的情况下,本土企业面临着发展的机遇和挑战。新世纪IC产业的变迁为中国IC产业的崛起带来了机遇,如果我们能抓住这一有利时机,中国不仅能成为IC产业的新兴地区,更能成为世界IC强国。在世界IC产业风云骤变之际,相对薄弱的中国IC产业蕴含着潜龙腾空的契机。第二章 集成电路产业的国际比较美国于1981年由国防部高级研究计划局(DARPA)开始了MOSIS计划。该计划除了提供多项目晶片(MPW)服务外还订出了一套与厂家无关的设计规则和元件库,符合MOSIS规则的设计将可以在所有支持MOSIS规则的厂家进行生产。美国国家安全局(MOSA)和国家科学基金会(NSF)从1985年开始介入该计划。支持该计划的厂商有IBM、AMI、安捷伦、惠普、TSMC、SUPERTEX、PEREGRINE等,已经可以支持微米的设计和制造。由于MOSIS计划的实施卓有成效,其他国家纷纷效仿。欧洲一直在跟踪美国的MOSIS计划。欧盟发起的EURO PRACTICE是一个面向工业界的类似美国MOSIS的集成电路组织,德国、比利时、意大利、法国、荷兰、挪威、丹麦、英国、西班牙、瑞典、瑞士、爱尔兰等十一个国家的61个生产、设计和培训机构提供多种统一标准的包括多项目晶片在内的服务。韩国的IDEC(IC DESIGN EDUCATIN CENTER)是在韩国政府和主要的半导体工业界与1995年成立的以培养人才为主的支持机构。我国仅台湾省的国家晶片设计中心(成立于1991年)。其宗旨是“为提升基础研究水准,建议成立类似美国MOSIS集成电路设计服务单位,提供微电子系统设计人员更方便之IC制造服务;并推广IC设计概念至咨讯、通讯、消费性电子、精密机械、自动化、航天航空、光电等领域之产业及研究发展单位。”此外,国际上对于CPU的研究与实验性实施很多,而真正能够生产的却很少。主流体系结构的完整硬件描述层出不穷。欧洲空间局(ESA)公布了完整的SPARCV7和SPARCV8的HDL(VHDL,VERL LOG)描述。但是高速CPU的设计和实施关键却是集中在集成电路版图上,例如,美国DEC公司的ALPHA处理器在1992年就以微米的工艺实现了64位处理器21064,并达到了200兆赫的时钟频率,稍后,以和微米的工艺实现了21164,分别达到了300和433兆赫的时钟频。中国远落后于之,我国落后于其他国家的根本原因:一是缺乏自主知识产权 ,继在上海、成都设立集成电路封装测试工厂之后,英特尔公司宣布,将在大连投资25亿美元建立该公司在亚洲的第一个300毫米晶圆工厂,这使英特尔成为继法国STM公司之后,第二家在中国拥有完整产业链的国外半导体巨头;二是落后在整体水平, “从目前的情况看,我国在集成电路的总体设计能力方面提升较快,龙芯、众志等都是中国自主设计的具有自主知识产权的芯片产品。”科技部高新技术发展及产业化司副司长廖小罕在接受《瞭望》新闻周刊采访时表示,我国的主流芯片设计与美国相比还有几年的差距,“这几年就意味着差很多,因为在IT行业,产品的设计都是以月来计算的。” 廖小罕认为,集成电路设计是智力问题,只要我们有优秀的人才队伍、有好的团队,就能拉近与先进国家的距离,同时我们也有一定规模的芯片生产能力。但要形成规模化的集成电路装备制造业,则需要一个很长的过程。与原子弹的生产不同,集成电路产业化涉及面非常广,其发展在很大程度上体现一个国家的工业化水平。 总体上看,我国集成电路产业经过多年的发展,已初步形成了设计业、芯片制造业及封装测试业三业并举、相互协调的发展格局,但产业规模小,产业链不完善,装备制造业有待逐步建立起来。由于高端的芯片制造技术和设备关系到国家整体经济的竞争能力,关系到国家战略,所以我国一直没有放弃发展计算机芯片产业的努力,“863”计划和国家重大科技专项都把集成电路设计列入其中。我们在追赶,但别人进步更快,从整体上看,我国集成电路产业目前仍相对落后。而影响产业发展的瓶颈还是国家工业化水平低。信息产业部中国电子信息产业发展研究院(赛迪集团)所属的赛迪顾问半导体产业研究中心高级分析师李珂从另外的角度分析了我国集成电路产业的发展状况。李珂介绍说,按照摩尔定律,半导体技术18个月就要前进一代,目前45纳米技术最为先进,65纳米技术次之,90纳米技术为当下国际主流技术,在国内也是领先的。从技术水平看,我国集成电路近5年来发展极为迅速,国内领先的技术与国际水平相比大约有5年左右的差距,问题是整体水平相差很大。集成电路生产中所需设备96%需要进口,原材料半数以上需要进口。如封装过程中需要的金丝线,国内的生产工艺达不到要求,高纯度的气体、试剂等都需要从国外买进。“这些东西不是我们不能做,麻烦的是工艺和品质得不到保障。”李珂强调说。国家发改委副主任张晓强指出,该项目是近几年来中美经济合作最大的项目之一,将对中国信息产业的发展带来积极影响,并将从推动人才发展、改进基础设施和产业供应链等方面,全面提升中国在全球高科技产业价值链中的地位,对中国东北老工业基地区域经济和集成电路产业发展具有积极意义。“但政府必须对此有清醒的认识,不管什么样的企业来华建厂,都不能替代自主发展、自主创新。只有我们自己不断地创新发展,不断地学习和积累自身的实力,才会有更多的发展机会、更多的话语权。”接受《瞭望》新闻周刊采访的清华大学教授魏少军强调。第二章 我国集成电路的发展2008年,中国集成电路芯片制造业产业规模比上年下滑,其衰退幅度甚至大于中国集成电路产业整体下滑的幅度。从往年的统计数据可以看到,2007年中国集成电路芯片制造业的增幅为23%,2006年增幅为,巨大的反差已足以说明芯片制造业所面临的困难有多大。与2001年因网络泡沫破裂而导致的半导体产业急剧下滑相比,2008年全球半导体产业的衰退幅度虽然不像当年那样大,但其波及的产业领域更广,并且持续的时间还难以预测。受国际金融危机影响,2008年全国市场销售额为5973亿元,同比增长%,这是中国集成电路市场首次出现个位数增长。来自工业和信息化部的数据显示,2008年四季度,国内许多集成电路业工厂订单量减少10%以上,产能利用率不足30%。2008年全年电子信息产品进出口总额亿美元,同比增长10%,增速比上年同期下降个百分点。其中,11月电子信息产品月进出口额出现负增长。2009年3月,我国集成电路出口约亿个,出口总金额约为亿美元,比2月增长,比2008年同期减少。1-3月,我国集成电路累计出口约亿个,比2008年同期减少;累计出口总金额约为亿美元,比2008年同期减少。2008年下半年开始的全球金融危机对我国集成电路出口造成了很大影响。从2008年11月开始,我国集成电路出口额首次出现同比负增长。截止2009年3月底,我国集成电路的出口额已经连续5个月同比出现负增长。其中,1月份的同比降幅最大,达;2月和3月的同比降幅有所趋缓,分别为和。1月、2月和3月集成电路的出口金额呈逐月上升趋势,但由于全球金融危机余波还未消散,对我国集成电路出口的深远影响还有待观察。2008年11月,国家宣布今后3年,铁路建设投资将达到万亿元,作为相关产业的集成电路行业将从中获益。国务院不久前出台的电子信息产业调整振兴规划又明确指出,将“建立自主可控的集成电路产业体系”,“加大投入,集中力量实施集成电路升级”。对国内集成电路行业来说,政策环境正在不断改善,都将为行业创造良好的外部环境。中小企业应紧紧抓住扩大内需为集成电路产业带来的机遇,重点开拓新市场和技术应用新领域,提高创新能力,努力实现企业在特定领域技术和产品的领先优势。2009年国内集成电路产业仍将保持增长的态势,但增幅将继续回落。预计2009年产业的整体增幅在4%左右。从2008年国内集成电路设计、芯片制造与封装测试业的发展情况看,产业均受市场的低迷影响,制造业所受的影响最为明显。全年芯片制造业规模增速仅为1%,各主要芯片制造企业均不同程度出现产能闲置、业绩下滑的情况。封装测试业虽然也普遍遇到订单下降、开工率不足的问题,但情况相对较好,全年的行业增幅在7%左右。除了与别国技术上的差异外,另外一个值得注意的情况是,很多通用的体系结构及其细节都被人申请了专利,这个情况使得我国的工作很难进行,需要国家高层领导人站在国家和民族战略利益的高层次以国家行为进行协调。今天,我国已经具备了物质条件和一定的技术能力,因为我国境内已建成和在建一批集成电路生产线,其生产工艺及参数可以掌握和控制。同时我国已经拥有一些关于集成电路体系结构和数字与模拟设计的专门人才,通过政府的主导,合理组织这些资源,使我国在集成电路和微处理器方面突飞猛进是可能的。第四章 构建我国集成电路创新战略就目前形式来看,我国要研究集成电路的发展规律,形成共识;要统一规划,集中领导;要完善创新体系,加快技术创新;要抓住信息产业转移机遇,优化产业链结构;要向高技术密集、新知识密集转移;要增强、提升大公司的国际竞争力;要解决好我国IC发展的关键问题;要加强海峡两岸IC产业的合作;要提高我国 IC 产业发展的可持续性等。总之,集成电路产业是信息产业和现代制造业的核心战略产业,其已成为一些国家信息产业发展中的重中之重。集成电路设计要与整机开发相结合,积极支持有条件的整机企业建立集成电路设计中心,设计开发市场较大的整机所需的各种专用集成电路和系统级芯片。开发生产有自主知识产权集成电路产品,有条件地逐步扩大国内现有的集成电路生产线的生产能力,加强工艺技术、生产技术的研究与开发,加快现有生产线的技术升级,形成规模生产能力,提高产品技术水平,扩大产品品种。实施优惠政策,改善投资环境,积极鼓励国内外有经济实力和技术力量的企业或投资机构在国内建立集成电路芯片生产线。第五章 我国集成电路发展的对策及措施一、由政府主导制订出集成电路的长期发展计划和具体的发展技术规范,鼓励国内厂商、大学和科研机构采用,其技术和人才作为国家战略资源加以保护和扶持。建立国家电路设计中心,开发和维护一套可信、可靠的设计工具、设计规则、各种先进的和普及的电路库等基础数据。培养、吸引和保持大量的人才,为今后的大发展打好基础。采取严格保密制度,以国防、国家安全和政府应用为突破口,打破专利限制,全面掌握各类技术,同时积极运用国家的政治、经济和军事力量,制定出一系列对应方案,化解和顶住可能发生的外部压力。二、对国家批准的集成电路重大项目,因集中采购产生短期内难以抵扣的增值税进项税额占用资金问题,采取专项措施予以妥善解决。具体办法由财政部会同有关部门制定。为完善集成电路产业链,对符合条件的集成电路封装、测试、关键专用材料企业以及集成电路专用设备相关企业给予企业所得税优惠。具体办法由财政部、税务总局会同有关部门制定。三、国家大力支持重要的软件和集成电路项目建设。对符合条件的集成电路企业技术进步和技术改造项目,中央预算内投资给予适当支持。鼓励软件企业加强技术开发综合能力建设。国家鼓励、支持软件企业和集成电路企业加强产业资源整合。对软件企业和集成电路企业为实现资源整合和做大做强进行的跨地区重组并购,国务院有关部门和地方各级人民政府要积极支持引导,防止设置各种形式的障碍。通过现有的创业投资引导基金等资金和政策渠道,引导社会资本设立创业投资基金,支持中小软件企业和集成电路企业创业。有条件的地方政府可按照国家有关规定设立主要支持软件企业和集成电路企业发展的股权投资基金或创业投资基金,引导社会资金投资软件产业和集成电路产业。积极支持符合条件的软件企业和集成电路企业采取发行股票、债券等多种方式筹集资金,拓宽直接融资渠道。四、充分利用多种资金渠道,进一步加大对科技创新的支持力度。发挥国家科技重大专项的引导作用,大力支持软件和集成电路重大关键技术的研发,努力实现关键技术的整体突破,加快具有自主知识产权技术的产业化和推广应用。紧紧围绕培育战略性新兴产业的目标,重点支持基础软件、面向新一代信息网络的高端软件、工业软件、数字内容相关软件、高端芯片、集成电路装备和工艺技术、集成电路关键材料、关键应用系统的研发以及重要技术标准的制订。科技部、发展改革委、财政部、工业和信息化部等部门要做好有关专项的组织实施工作。在基础软件、高性能计算和通用计算平台、集成电路工艺研发、关键材料、关键应用软件和芯片设计等领域,推动国家重点实验室、国家工程实验室、国家工程中心和企业技术中心建设,有关部门要优先安排研发项目。鼓励软件企业和集成电路企业建立产学研用结合的产业技术创新战略联盟,促进产业链协同发展。鼓励软件企业大力开发软件测试和评价技术,完善相关标准,提升软件研发能力,提高软件质量,加强品牌建设,增强产品竞争力。五、对软件企业和集成电路设计企业需要临时进口的自用设备(包括开发测试设备、软硬件环境、样机及部件、元器件等),经地市级商务主管部门确认,可以向海关申请按暂时进境货物监管,其进口税收按照现行法规执行。对符合条件的软件企业和集成电路企业,质检部门可提供提前预约报检服务,海关根据企业要求提供提前预约通关服务。对软件企业与国外资信等级较高的企业签订的软件出口合同,政策性金融机构可按照独立审贷和风险可控的原则,在批准的业务范围内提供融资和保险支持。支持企业“走出去”建立境外营销网络和研发中心,推动集成电路、软件和信息服务出口。大力发展国际服务外包业务。商务部要会同有关部门与重点国家和地区建立长效合作机制,采取综合措施为企业拓展新兴市场创造条件。六、加快完善期权、技术入股、股权、分红权等多种形式的激励机制,充分发挥研发人员和管理人员的积极性和创造性。各级人民政府可对有突出贡献的软件和集成电路高级人才给予重奖。对国家有关部门批准建立的产业基地(园区)、高校软件学院和微电子学院引进的软件、集成电路人才,优先安排本人及其配偶、未成年子女在所在地落户。加强人才市场管理,积极为软件企业和集成电路企业招聘人才提供服务。高校要进一步深化改革,加强软件工程和微电子专业建设,紧密结合产业发展需求及时调整课程设置、教学计划和教学方式,努力培养国际化、复合型、实用性人才。加强软件工程和微电子专业师资队伍、教学实验室和实习实训基地建设。教育部要会同有关部门加强督促和指导。鼓励有条件的高校采取与集成电路企业联合办学等方式建立微电子学院,经批准设立的示范性微电子学院可以享受示范性软件学院相关政策。支持建立校企结合的人才综合培训和实践基地,支持示范性软件学院和微电子学院与国际知名大学、跨国公司合作,引进国外师资和优质资源,联合培养软件和集成电路人才。按照引进海外高层次人才的有关要求,加快软件与集成电路海外高层次人才的引进,落实好相关政策。制定落实软件与集成电路人才引进和出国培训年度计划,办好国家软件和集成电路人才国际培训基地,积极开辟国外培训渠道。第六章 集成电路发展展望在国家各项扩大内需政策的带动下,集成电路设计业将是今后3年国内集成电路产业中增长最快的领域,预计其今后3年的年均复合增长率将达到,到2011年设计业规模将达到亿元。随着大量在建芯片生产线的陆续投产,国内芯片制造业在未来3年也将呈现止跌回升的势头,其3年的复合增长率预计将为,到2011年时其销售收入规模预计为亿元;封装测试业未来则将保持目前稳定发展的势头,到2011年其销售收入规模预计将达到亿元,年均符合增长率为。【参考文献】【1】 中国商情网, 2008-2009年中国半导体集成电路行业发展前景分析及投资风险预测报告[J]【2】 燕斌,我国集成电路产业发展的现状分析与对策研究[M],天津大学,2004【3】 宫敏,各国的集成电路发展策略[J],科技专题,2002(6)【4】 国务院,国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知[A],2011【5】 徐宁,超大规模集成电路物理设计理论与算法[M],清华大学,2009(9)【6】 刘萍萍,FDI对我国集成电路产业市场结构的影响研究[J],大连理工,2009

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1.适合PCB的穿孔安装; 2.比TO型封装(图1)易于对PCB布线; 3.操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。 Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。 以焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1.适合用SMT表面安装技术在PCB上安装布线; 2.封装外形尺寸小,寄生参数减小,适合高频应用; 3.操作方便; 4.可靠性高。 在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装 90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。 BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: 引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 3.厚度比QFP减少1/2以上,重量减轻3/4以上; 4.寄生参数减小,信号传输延迟小,使用频率大大提高; 5.组装可用共面焊接,可靠性高; 封装仍与QFP、PGA一样,占用基板面积过大; Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术 BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。 1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 1.满足了LSI芯片引出脚不断增加的需要; 2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。 曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 1.封装延迟时间缩小,易于实现组件高速化; 2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 3.可靠性大大提高。 随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

半导体封装杂志

学光杂志,AFM全称Atomic Force Microscope,AM全称为:Advanced Materials。

AFM即原子力显微镜,它是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵。

现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中。

Advanced Materials是工程与计算大学科、材料与化学大领域(包含材料化学,材料物理,生物材料,纳米材料,光电材料,金属材料,无机非金属材料,电子材料等等非常多的子学科,以及非常大量与材料相关的研究领域)的顶尖期刊,在国际材料领域科研界上享誉盛名。

其他:

AFM优点:

原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。

AFM原理:

当原子间距离减小到一定程度以后,原子间的作用力将迅速上升。因此,由显微探针受力的大小就可以直接换算出样品表面的高度,从而获得样品表面形貌的信息。

以上内容参考:Advanced Materials-百度百科

跟杂志社联系一下,或去邮局订阅《半导体技术》杂志地 址: 河北省石家庄179信箱46分箱邮政编码: 050002电 话: 传 真: 电子邮件: ; 国内刊号: CN 13-1109/TN国际刊号: ISSN 1003-353X邮发代号: 18-65定 价: 15元/期《半导体技术》是由信息产业部主管,中国半导体行业协会、半导体专业情报网、中电科技集团公司十三所主办,业内权威的国家一级刊物之一。1976年创刊,它以严谨风格,权威著述,在业内深孚众望,享誉中外,对我国半导体事业的发展发挥了积极作用。“向读者提供更好资讯,为客户开拓更大市场”,是《半导体技术》的追求,本刊一如既往地坚持客户至上,服务第一,竭诚向读者提供多元化的信息。《半导体技术》是中文核心期刊、中国科学引文数据库来源期刊、中国期刊网、中国学术期刊(光盘版) 全文收录期刊、美国《剑桥科学文摘》、英国《SA,INSPEC》、和俄罗斯《AJ》来源期刊、中国学术期刊综合评价数据库来源期刊、中国科技论文统计源期刊,河北省优秀期刊。《半导体技术》的稿源及读者对象主要是全国各研究机构、大专院校和企事业单位等。月刊 .1976年创刊 .主管单位: 信息产业部主办单位: 中国半导体行业协会 半导体专业情报网 电子十三所编辑单位: 半导体技术杂志社社 长: 杨克武主 编: 周立军主 任: 顾忠良

半导体技术期刊

一般是1-2篇的要求,研究生一篇就OK了。之前我也是苦于发表不出来,文章质量太次,那个急啊,还是学长给的莫‘文网,帮忙修改的文章,很快就录用了

该期刊非SCI收录,下面的影响因子属于《引证报告》的影响因子 半导体技术 [ISSN:1003-353X] 本刊收录在: 中国科学引文数据库(CSCD)来源期刊(2009-2010) 提示: CSCD扩展库(E) 本刊收录在: 中国科学引文数据库(CSCD)来源期刊库(2013-2014) 提示: CSCD扩展库(E) 本刊收录在: 中国科技期刊引证报告(2012年版) 本刊收录在: 中国科技期刊引证报告(2013年版) 提示: 《引证报告》2013年版影响因子: 本刊收录在: 中国科技期刊引证报告(2014年版) 提示: 《引证报告》2014年版影响因子: 本刊收录在: 中文核心期刊要目总览(2008年版) 提示: 排序:无线电电子学、电信技术 - 第25位 本刊收录在: 中文核心期刊要目总览(2011年版) 提示: 排序:电子技术、通信技术类 - 第23位 主题分类: Material Science and Metallurgy: General and Others TN:电子技术、通信技术: TN:电子技术、通信技术

还不错可以 投稿 试试

33卷后面标的是什么答案如下:33卷后面标的是设置打开,跟着是一个女孩爱着一个男孩的。

半导体技术论文摘要

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为~微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到微米的输出,而波长~微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。

无论是在学校还是在社会中,大家最不陌生的就是论文了吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。你知道论文怎样写才规范吗?以下是我整理的论文摘要模板,仅供参考,大家一起来看看吧。

一、什么是论文摘要?

1.论文摘要即“摘其要点而发”。

2.论文摘要是对论文内容不加注释和评论的简短陈述。

3.摘要又称概要、内容提要。摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。

4.论文摘要就是论文内容提要,是在对论文进行总结的基础之上,用简单、明确、易懂、精辟的语言对全文内容加以概括,提取论文的主要信息。

6.内涵:短文

7.外延:陈述论文主要内容的简明、确切的,不加解释和评论的。

9.论文摘要是简明、确切、不加解释和评论地陈述论文主要内容的短文。

二、论文摘要起什么作用?

不阅读论文全文即能获得必要的信息。

1.读者尽快了解论文的主要内容,以补充题名的不足。现代科技文献信息浩如烟海,读者检索到论文题名后是否会阅读全文,主要就是通过阅读摘要来判断;所以,摘要担负着吸引读者和将文章的主要内容介绍给读者的任务。

2. 为科技情报文献检索数据库的建设和维护提供方便。论文发表后,文摘杂志或各种数据库对摘要可以直接利用,论文摘要的索引是读者检索文献的重要工具。所以论文摘要的质量高低,直接影响着论文的被检索率和被引频次。

三、论文摘要应包含那些内容?

摘要的内容应包含与论文同等量的主要信息,供读者确定有无必要阅读全文。

摘要的'四要素:

1.目的: 研究的目的、范围、重要性;

2.方法: 采用的手段和方法;

3.结果: 完成了哪些工作取得的数据和结果;

4.结论: 得出的重要结论及主要观点,论文的新见解。

(1)目的:指出研究的范围、目的、重要性、任务和前提条件,不是主题的简单重复。

(2)方法:简述课题的工作流程,研究了哪些主要内容,在这个过程中都做了哪些工作,包括对象、原理、条件、程序、手段等。

(3)结果:陈述研究之后重要的新发现、新成果及价值,包括通过调研、实验、观察并剖析其不理想的局限部分。

(4)结论:通过对这个课题的研究所得出的重要结论,包括从中取得证实的正确观点,进行分析研究,比较预测其在实际生活中运用的意义,理论与实际相结合的价值。

1、应该怎么写

文字:简明扼要:文字必须十分简练,内容需要充分概括;引起读者对文章的兴趣,使他们继续读。

2、不应该怎么写

不能冗长,少写无关的东西,语句不能含糊不清。论文摘要论文摘要不要列举例证,不讲研究过程,不用图表,不给化学结构式,也不要作自我评价。

1) 应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。

2) 不得简单重复题名中已有的信息。比如一篇文章的题名是《几种中国兰种子试管培养根状茎发生的研究》,摘要的开头就不要再写:“为了……,对几种中国兰种子试管培养根状茎的发生进行了研究”。

3) 结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。

4)句型应力求简单,慎用长句。每句话要表意明白,无空泛、笼统、含混之词。

5) 要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。

6) 除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。

7) 不用引文,除非该文献证实或否定了他人已出版的著作。

8) 缩略语、略称、代号,除了相邻专业的读者也能清楚理解的以外,在首次出现时必须加以说明。目前摘要编写中的主要问题有:要素不全,或缺目的,或缺方法;出现引文,无独立性与自明性;繁简失当。

3.摘要的基本规范

(1)应以第三人称写作.摘要是完整的短文,具有独立性,可以单独使用.即使不看论文全文的内容,仍然可以理解论文的主要内容,作者的新观点和想法以及论文所要实现的目的,采取的方法,研究的结果与结论.

(2)叙述完整,突出逻辑性,短文结构要合理.

(3)文字简明扼要,不容赘言,采用直接表述的方法,不使用不必要的文学修饰,做到用最少的文字提供最大的信息量.

4、摘要里主要包括什么

主要包括简要的研究背景,所采用的研究工具,研究方法,得出的重要结论。另外可以说明论文的创新点

5、摘要应该怎么写

写作的过程中应当简明扼要,应当引起读者对文章的兴趣,使他们继续读,另外得出的结论写作要精炼

6、现在论文摘要常见的错误有哪些

常出现,记流水帐,把自己整篇文章从头到尾的标题说明一番。

一、[示例]

论文题目:天体对地球重力加速度的影响

论文摘要:地球重力加速度是一个极其重要的物理量,随着对重力加速度测量精度要求的日益提高,必须考虑天体对地球重力加速度的影响。

本文介绍了天体(包含日、月及太阳系行星)对地球重力加速度影响的基本概念,推导了影响的计算公式,并经过误差分析,证明此公式的相对误差小于1×10-9,完全可满足现代精密重力加速度测量的要求。

撰写论文摘要的常见毛病,一是照搬论文正文中的小标题(目录)或论文结论部分的文字;二是内容不浓缩、不概括,文字篇幅过长。

二、[示例]

论文题目:集成电路热模拟模型和算法

论文提要:众所周知,半导体器件的各种特性参数都是温度的灵敏函数学[诸如ls(T),B(T),C1(T),Cp(T)]。

集成电路将大量元件集成在一块苡片上,电路工作时,元件功耗将产生热量,沿晶片向四周扩散。但是由于半导体片及基座材料具有热阻,因此芯片上各点温度不可能相同。特别对于功率集成电路,大功率元件区域将有较高温度所以在芯片上存在着不均匀的温度分布。

但是为了简化计算,一般在分析集成电路性能时,常常忽略这种温度差别,假定所有元件者处于同一温度下。例如通用的电路模拟程序--SPICE就是这样处理的。显然这一假定对集成电路带来计算误差。对于功率集成电路误差将更大。

因此,如何计算集成电路芯片上的温度分布,如何计算元件温度不同时的电路特性,以及如何考虑芯片上热、电相互作用,这就是本文的目的。本文介绍集成电路的热模拟模型,并将热路问题模拟成电路问题,然后用电路模拟程序求解芯片温度分由。这样做可以利用成熟的电路分析程序,使计算的速度和精度大为提高。

作者根据这一模型和算法,编制了一个YM-LiN-3的FORTRAN程序,它可以确定芯片温度分布,也可发计算元件处于不同温度时的电路特性,该程序在微机IBM-PC上通过,得到满意结果。

上述论文提要字数近600,显然过长,只要认真加以修改(例如:第一段可删掉,第二段只保留其中的最后几句话,加上第三段),便可以二三百个字编写论文摘要。

半导体技术与应用论文

刊名: 半导体技术 Semiconductor Technology主办: 中国半导体行业协会;半导体专业情报网;中国电子科技集团公司第十三所周期: 月刊出版地:河北省石家庄市语种: 中文;开本: 大16开ISSN: 1003-353XCN: 13-1109/TN邮发代号:18-65历史沿革:现用刊名:半导体技术创刊时间:1976该刊被以下数据库收录:CA 化学文摘(美)(2011)SA 科学文摘(英)(2011)JST 日本科学技术振兴机构数据库(日)(2013)Pж(AJ) 文摘杂志(俄)(2011)CSCD 中国科学引文数据库来源期刊(2013-2014年度)(含扩展版)核心期刊:中文核心期刊(2011)中文核心期刊(2008)中文核心期刊(2004)中文核心期刊(2000)中文核心期刊(1996)中文核心期刊(1992)期刊荣誉:Caj-cd规范获奖期刊一般情况下 一篇核心就可以吧

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

2019年5月,美国商务部将华为列入实体清单,禁止美国企业向华为出口技术和零部件;2020年5月,美国进一步升级对华为贸易禁令,要求凡使用了美国技术或设计的半导体芯片出口华为时,必须得到美国政府的许可证,进一步切断华为通过第三方获取芯片或代工生产的渠道。

此前,高通、英特尔和博通等美国公司都向华为提供芯片,用于华为智能手机和其他电信设备,华为手机使用谷歌的安卓操作系统。华为自研的麒麟高端手机芯片,也依赖台积电代工。随着美国芯片禁令实施,华为手机业务遭遇重创,消费者业务收入大幅下滑,海外市场拓展也受到影响。

美国凭借芯片技术优势对中国企业“卡脖子”,使半导体产业陡然成为中美 科技 竞争的风暴眼。“缺芯”之痛,突显了中国半导体产业的技术短板。它如一记振聋发聩的警钟,惊醒国人看清国际 科技 竞争的残酷现实。

半导体产业是 科技 创新的龙头和先导,在信息 科技 和高端制造中占据核心地位。攻克半导体核心技术难题,解决高端芯片受制于人的现状,成为中国高 科技 发展和产业升级的当务之急。

全球半导体版图

半导体产业很典型地体现了供应链的全球化,各国在半导体产业链上分工协作,相互依赖。美国、韩国、日本、中国、欧洲等国家或地区发挥各自优势,共同组成了紧密协作的全球半导体产业链。

根据美国半导体行业协会发布的最新数据,美国的半导体企业销售额占据全球的47%,排名第二的是韩国,占比为19%,日本和欧盟半导体企业销售额占比均为10%,并列第三。中国台湾和中国大陆半导体企业销售额占比分别为6%和5%。

具体来看,美国牢牢控制半导体产业链的头部,包括最前端EDA/IP、芯片设计和关键设备等。具体而言,在全球产业链总增加值中,美国在EDA/IP上,占据74%份额;在逻辑芯片设计上,占据67%;在存储芯片设计上,占据29%;在半导体制造设备上,占据41%。

日本在芯片设计、半导体制造设备、半导体材料等重要环节掌握核心技术;韩国在存储芯片设计、半导体材料上发挥关键作用;欧洲在芯片设计、半导体制造设备和半导体材料上贡献突出;中国则在晶圆制造上发挥重要作用。

中国大陆在全球晶圆制造(后道封装、测试)增加值占比高达38%;中国台湾在全球半导体材料、晶圆制造(前道制造、后道封装、测试)增加值占比分别达到22%和47%。

以上国家和地区构成了全球半导体产业供应链的主体。

芯片是人类智慧的结晶,芯片制造是全球顶尖的高端制造产业之一,是典型的资本密集和技术密集行业。制造的过程之复杂、技术之尖端、对制造设备的苛刻要求,决定了芯片产业链的复杂性。半导体制造中的大部分设备,包含了数百家不同供应商提供的模块、激光、机电组件、控制芯片、光学、电源等,均需依托高度专业化的复杂供应链。每一个单一制造链条都可能汇集了成千上万的产品,凝聚着数十万人多年研发的积累。

芯片技术也涉及广泛的学科,需要长时期的基础研究和应用技术创新的成果累积。举例来说,一项半导体新技术方法从发布论文,到规模化量产,至少需要10-15年的时间。作为全球最先进的半导体光刻技术基础的极紫外线EUV应用,从早期的概念演示到如今的商业化花费了将近40年的时间,而EUV生产所需要的光刻机设备的10万个零部件来自全球5000多家供应商。

芯片制造的复杂性,创造了一个由无数细分专业方向组成的全球化产业链。在半导体市场中,专业的世界级公司通过几十年有针对性的研发,在自己擅长的领域建立了牢固的市场地位。比如,荷兰ASML垄断着世界光刻机的生产;美国高通、英特尔、韩国三星、中国台湾的台积电等也都形成了各自的技术优势。目前全世界最先进制程的高端芯片几乎都由台积电和三星生产。

中美芯片供应链各有软肋

“缺芯”,不仅困扰着中国企业。

自去年下半年以来,受新冠疫情及美国贸易禁令干扰,芯片产能及供应不足,全球信息产业和智能制造都遭遇了严重的“芯片荒”。

随着新一轮新冠疫情在东南亚蔓延, 汽车 行业芯片短缺进一步加剧,全球三家最大的 汽车 制造商装配线均出现中断。丰田称 9 月全球减产 40%。美国车企也不能幸免,福特 汽车 旗下一家工厂暂停组装 F-150 皮卡,通用 汽车 北美地区生产线停工时间也被迫延长。

蔓延全球的芯片荒,迫使各国对全球半导体供应链的安全性、可靠性进行重新审视和评估。中美两个大国在半导体供应链上各有优势,也各有软肋。

中国芯片产业起步较晚,但近年来加速追赶。根据中国半导体行业协会统计,2020年中国集成电路产业销售额为8848亿元,同比增长17%,5年增长了超过一倍。其中,设计业销售额为亿元,同比增长;制造业销售额为亿元,同比增长;封装测试业销售额亿元,同比增长。中国2020年出口集成电路2598亿块,出口金额1166亿美元,同比增长。

中国芯片核心技术与美国有较大差距,主要突破在芯片设计领域,芯片设计水平位列全球第二。在制造的封测环节也不是我们的短板。中国芯片制造的短板主要在三方面:核心原材料不能自己自足、芯片制造工艺与国际领先水平有较大差距、关键制造设备依赖进口。

由于不能独立完成先进制程芯片的生产制造,大量高端芯片依赖进口。2020年中国进口芯片5435亿块,进口金额亿美元。

美国是世界芯片头号强国,拥有世界领先的半导体公司,但其核心能力是主导芯片产业链的前端,包括设计、制造设备的关键技术等,但上游资源和制造能力也依赖国外。美国在全球半导体制造市场的市占率急速下降,从 1990 年 37% 滑落至目前 12%左右。

波士顿咨询公司和美国半导体行业协会在今年4月联合发布的《在不确定的时代加强全球半导体产业链》的报告显示,若按设备制造/组装所在地统计,2019年中国大陆半导体企业销售额占比高达35%;美国则排名第二,销售额占比为19%。

世界芯片的主要制造产能集中在亚洲, 2020 年中国台湾半导体产能全球占比为 22%,其次是韩国 21%,日本和中国大陆皆为 15%。这意味着美国在芯片的制造和生产环节,也存在很大的脆弱性。这也是伴随东南亚疫情爆发导致芯片产业链产能受限,美国同样遭遇“芯片荒”的原因。

对半导体产业链脆弱性的担忧,推动美国加大对半导体产业的投资和政策扶持。今年5月美国参议院通过一项两党一致同意的芯片投资法案,批准了520亿美元的紧急拨款,用以支持美国半导体芯片的生产和研发,以提升美国国内半导体产业链的韧性和竞争力。今年2月24日,美国总统拜登签署一项行政命令,推动美国加强与日本、韩国及中国台湾等盟国/地区合作,加速建立不依赖中国大陆的半导体供应链。

除了产能问题,美国在全球半导体竞争中的另一个软肋就是对中国市场的依赖。中国是全球最大的半导体需求市场,每年中国半导体的进口额都超过3000亿美元,大多数美国半导体龙头企业至少有25%的销售额来自中国市场。可以说,中国是美国及全球主要半导体供应商的最大金主。如果失去中国这个最富活力、最具成长性的市场,那么依赖高资本投入的美国各主要芯片供应商的研发成本将难以支撑,影响其研发投入及未来竞争力。

这从另一方面说,恰是中国的优势,中国庞大的市场需求和发展空间,足以支撑芯片产业链的高强度资本投入与技术研发,并推动技术和产品迭代。

“中国芯”提速

随着中国推进《中国制造2025》,芯片制造一直是中国 科技 发展的优先事项。如今,美国在芯片供应和制造上进行霸凌式断供,使中国构建自主可控、安全高效的半导体产业链的目标更加紧迫。

客观上,半导体产业链需要各国协作,这从成本和技术进步角度,对各国都是互利共赢。但美国的断供行为改变了传统的商业与贸易逻辑。在大国竞争的背景下,对具有战略意义的半导体和芯片产业链,安全、可靠成为主导的逻辑。

中国要成为制造强国,实现在全球产业链、价值链的跃升,摆脱关键技术受制于人的困境,芯片制造这道坎儿就必须跨过。

随着越来越多的中国高 科技 企业被列入美国实体清单,迫使半导体产业链中的许多中国企业不得不“抱团取暖”,携手合作,努力寻求供应链的“本土化”。“中国芯”突围,成为中国 科技 界、产业界不得不面对的一场“新的长征”。中国半导体产业进入攻坚期,也由此迎来发展的重大战略机遇期。

在国家“十四五”规划和2035远景目标纲要中,把 科技 自立自强作为创新驱动的战略优先目标,致力打造“自主可控、安全高效”的产业链、供应链;国家将集中资金和优势 科技 力量,打好关键核心技术攻坚战,在卡脖子领域实现更多“由零到一”的突破。国家明确提出到2025年实现芯片自给率70%的目标。

2020年8月,国务院印发《新时期促进集成电路产业和软件产业高质量发展的若干政策》,瞄准国产芯片受制于人的短板,在投融资、人才和市场落地等方面进一步加大政策支持,助力打通和拓展企业融资渠道,加快促进集成电路全产业链联动,做大做强人才培养体系等。

全国多地制定半导体产业发展规划和扶持政策,积极打造半导体产业链。长三角地区是我国半导体产业重点聚集区,深圳市则是珠三角地区集成电路产业的龙头,京津冀及中西部地区的半导体产业也正在加快布局。

作为中国创新基地,上海市政府6月21日发布《战略性新兴产业和先导产业发展“十四五”规划》,其中集成电路产业列为第一位的发展项目,提出产业规模年均增速达到20%左右,力争在制造领域有两家企业营收进入世界前列,并在芯片设计、制造设备和材料领域培育一批上市企业。

上海市的规划中,对芯片制造也制定出具体目标和实施路径:加快研制具有国际一流水平的刻蚀机、清洗机、离子注入机、量测设备等高端产品;开展核心装备关键零部件研发;提升12英寸硅片、先进光刻胶研发和产业化能力。到2025年,基本建成具有全球影响力的集成电路产业创新高地,先进制造工艺进一步提升,芯片设计能力国际领先,核心装备和关键材料国产化水平进一步提高,基本形成自主可控的产业体系。

上海联合中科院和产业龙头企业,投资5000亿元,打造世界级芯片产业基地:东方芯港。目前东方芯港项目已引进40余家行业标杆企业,初步形成了覆盖芯片设计、特色工艺制造、新型存储、第三代半导体、封装测试以及装备、材料等环节的集成电路全产业链生态体系。

在国家政策指引和强劲市场的驱动下,国家、企业、科研机构、大学、 社会 资金等集体发力,中国芯片行业正展现出空前的发展动能和势头。

在外部倒逼和内部技术提升的共同作用下,中国芯片产业第一次迎来资金、技术、人才、设备、材料、工艺、设计、软件等各发展要素和环节的整体爆发。国产芯片也在加速试错、改造、提升,正在经历从“不可用”到“基本可用”、再到“好用”的转变。

中国终将重构全球半导体格局

中国芯片制造重大技术突破接踵而至:

中微半导体公司成功研制了5纳米等离子蚀刻机。经过三年的发展,中微公司5纳米蚀刻机的制造技术更加成熟。该设备已交付台积电投入使用。

上海微电子已经成功研发出我国首款28纳米光刻机设备,预计将在2021年交付使用,实现了光刻机技术从无到有的突破。

中芯国际成功推出N+1芯片工艺技术,依托该工艺,中芯国际芯片制程不断向新的高度突破,同时成熟的28纳米制程扩大产能。

7月29日,南大光电承担的国家 科技 重大专项“极大规模集成电路制造装备及成套工艺”之光刻胶项目通过了专家组验收。

8月2日青岛芯恩公司宣布8寸晶圆投片成功,良率达90%以上,12寸晶圆厂也将于8月15日开始投片。

2017年,合肥晶合集成电路12寸晶圆制造基地建成投产,至2021年合肥集成电路企业数量已发展到近280家。

中国半导体行业集中蓄势发力,在关键技术和设备等瓶颈领域,从无到有,由易入难,积小成而大成,关键技术和工艺水平正在取得整体跃迁。

小成靠朋友,大成靠对手。某种意义上,我们应该感谢美国的遏制与封锁,逼迫我们在芯片和半导体行业加速摆脱对外部的依赖。

回望新中国 科技 发展史,凡是西方封锁和控制的领域,也是中国技术发展最快的领域:远的如两弹一星、核潜艇,近的如北斗导航系统以及登月、空间站、火星探测等航天工程。在外部压力的逼迫下,中国 科技 与研发潜能将前所未有地爆发。

实际上,中国的整体 科技 实力与美国的差距正在迅速缩小。在一些尖端领域,比如高温超导、纳米材料、超级计算机、航天技术、量子通讯、5G技术、人工智能、古生物考古、生命科学等领域已经居于世界前沿水平。

英国世界大学新闻网站8月29日刊发分析文章,梳理了中国 科技 水平的颠覆性变化:

在创新领域,中国在全球研发支出排名第二,全球创新指数在中等收入国家中排名第一,正在从创新落伍者转变为创新领导者。

人才方面,拥有庞大的高端理工人才库,中国已是知识资本的重要创造者,美中 科技 关系从高度不对称转变为在能力和实力上更加对等。

技术转让方面,中国从单纯的学习者和技术接收者,转变为技术转让的来源和跨境技术标准的塑造者。

人才回流,中国正在扭转人才流失问题,积极从世界各地招募科学和工程人才。

这些变化表明,中国 科技 整体实力已经从追赶转变为能够与国际前沿竞争,由全球 科技 中的边缘角色转变为具有重要影响力的国家之一。

中国的基础研究水平也在突飞猛进。据《日经新闻》8月10日报道,在统计2017年至2019年间全球被引用次数排名前10%的论文时,中国首次超过美国,位居榜首位置。报道还着重指出中国在人工智能领域相关论文总数占据,美国为,显示中国在人工智能领域的研究成果正在超越美国。

另有日本学者在研究2021QS世界大学排名后,发现世界排名前20的理工类大学中,中国有7所上榜,清华大学居于第一位,而美国有5所。如果进一步细分到“机械工程”、“电气与电子工程”,中国大学在排名前20中的数量更是全面碾压美国。

芯片技术反映了一个国家整体 科技 水平和综合研发实力,中国的基础研究、应用研究、人才实力具备了突破芯片核心技术的基础和能力。

正如世界光刻机龙头企业——荷兰ASML总裁温尼克今年4月接受采访时所说:美国不能无限打压中国,对中国实施出口管制,将逼迫中国寻求 科技 自主,现在不把光刻机卖给中国,估计3年后中国就会自己掌握这个技术。“一旦中国被逼急了,不出15年他们就会什么都能自己做。”

温尼克的忧虑,正在一步步变成现实。全球半导体产业正进入重大变革期,中国在芯片制造领域的发愤图强,正在改写世界半导体产业的竞争格局。

中国的市场优势加上国家政策优势、资金优势以及基础研究的深入,打破美国在芯片制造领域的技术垄断和封锁,这一天不会太遥远。

可以 投稿 试试

相关百科

热门百科

首页
发表服务