首页

> 论文发表知识库

首页 论文发表知识库 问题

生物信息学学位论文

发布时间:

生物信息学学位论文

林学与业,课程改革生物信息学,是一门综合学科。涉及到数学,生物学和计算机的内容。但在我看来,计算机的基础需要,但要求不是很高,关键是要有很好的生物学知识,包括遗传学的、生物化学的、发育生物学的、分子生物学的、植物生理学的知识等等,也就说需要达到这样的一个要求:在进行数据分析时,能对各种分析结果进行生物学的评价,并给出最优的分析策略。同时也应该有纯熟的数理基础,包括统计学的、拓扑学的,这样才能把待分析的问题转换成可计算的模型,最后能给出实现的程序。从个人来说,因为生物信息学是一个非常大的领域,所以,关键是要确定自己的研究方向。比如,以关联分析为方向的生物信息学,那么就要掌握好各种关联分析的统计分析方法,有很强的数据管理能力,足够好的序列分析能力(这是进行variation查找和分析的基础)

摘 要:随着计算机科学和生物科学的迅猛发展,生物信息学成为一门独立学科,它将会成为21 世纪生命科学中的重要研究领域之一。本文对生物信息学在本科教学中的教学方法、实验教学、考核办法以及如何与现代教育技术相结合进行了初步的探索,并对如何提高教学效果培养跨学科的生物信息学人才做了深入思考。 关键词:生物信息学 课堂教学 实验教学 现代教育技术 前言 生物信息学(Bioinformatics)是一门新兴的交叉学科。广义地说,生物信息学从事对生物信息的获取、加工、储存、分配、分析和解释,并综合运用数学、计算机科学和生物学工具,以达到理解数据中的生物学含义的目标[1]。其含义是双重的:一是对海量数据的收集、整理与服务,即管理好这些数据;二是从中发现新的规律,也就是使用好这些数据。以1987年出现Bioinformatics这一词汇为标志,生物学已不再是仅仅基于试验观察的科学。伴随着21世纪的到来,生物学的重点和潜在的突破点已经由20世纪的试验分析和数据积累,转移到数据分析及其指导下的试验验证上来。生物信息学作为一门学科被广泛研究的根本原因,在于它所提供的研究工具对生物学发展至关重要,因此成为生命科学研究型人才必须掌握的现代知识。今天的实验生物学家,只有利用计算生物学的成果,才能跳出实验技师的框架,作出真正创新的研究。现在基因组信息学和后基因组信息学资源已经成了地球上全人类的共同财富。如何获取和利用基因组和后基因组学提供的大量信息,如何具有享用全人类共有的资源的初步能力,成了当今世纪生命科学学生必须掌握的基本技术和知识以及必须具有的初步能力[2]。 生物信息学以互联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种生物信息分析,以理解海量分子数据中的生物学含义。区别于其他生命科学课程,其在教学过程中要求有发达的互联网和计算机作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000M主干带宽的高校已占调查总数的,2005年一些综合类大学和理工类院校已率先升级到万兆校园网[3],这些都为生物信息学课程在高校开设提供了良好的物质基础。该门课程与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较其他课程更具优势。另外,该门课程尚未完全形成成熟的课程体系,为教师学习借鉴先进的教育思想与教学实践经验,在各方面尝试教学改革提供了广阔的空间。 1 课堂教学 生物信息学主要以介绍原理、方法为主,深入浅出,注重知识更新。课堂讲授以介绍生物信息学的相关算法、原理、方法为主,而这也是教学的重点和难点。在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免空洞复杂的算法讲解,以免学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,望而生畏;注重讲解算法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进地掌握复杂的内容,介绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系及其他学科的思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物学问题的科学素质。在教学工作中教师必须能够紧跟学科发展方向,随时进行知识更新,了解最新的前沿动态,掌握新方法,将最新的知识和方法教给学生。同时,也要在教学中鼓励学生通过各种途径自觉地关注学科发展动态,拓宽知识面,培养其自学能力和创新意识。 2 充分利用现代化教育技术,采用启发式教学 目前,高等院校在教室内配备的多媒体投影播放系统促进了多媒体教学的广泛应用。生物信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等内容涉及的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和掌握,提高学生理论与实践相结合的能力。同时,由于生物信息学依赖于网络资源和互联网上的分析工具和软件,教室内的多媒体计算机连接到互联网,极大地提高了教学效果。但在实际教学中发现,多媒体教室也有局限性,学生主要以听讲为主,不能及时实践,教师讲解与学生实践相脱节,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式,就可以解决上述问题。在教学中采用启发式教学,可为学生建立教学情景,学生通过与教师、同学的协商讨论、参与操作,能够发现知识、理解知识并掌握知识。 3 采用讲、练做一体化的教学模式,注重学生实践能力的培养 生物信息学课堂教学应积极学习借鉴职业培训和计算机课程教学中讲、练、做一体化的教学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变传统的以教师为中心、以教材和讲授为中心的教学方式。根据教学内容和学生的认知规律,应灵活地采用先理论后实践或先实践后理论或边理论边实践的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、综合的发展。 通常可采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解可采取进行实际演示的方法,教师边讲解边示范,学生在听课时边听讲、边练习,或者教师讲解结束后学生再进行练习。理论与实践高度结合,可充分发挥课堂教学的生动性、直观性,加深学生对知识的理解,培养和提高学生的实践操作能力。 4 优化生物信息学实验教学内容,发挥网络教学优势 生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识解决问题的能力和独立思考、综合分析的能力。 生物信息学实验教学内容的选择与安排应按照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教师在网上批改实验报告后将成绩和 评语 发送给学生,让学生及时了解自己的学习情况。教师可以通过网上论坛、聊天室和及时通讯工具QQ、MSN等对学生的实验进行指导,与其讨论问题等。网络环境下的生物信息学实验教学不仅能提高学生的学习兴趣,给学生的学习和师生的互动带来极大的方便,提高教师的工作效率,而且可以及时了解掌握学生的学习情况,有利于教师不断调整教学方案,达到更好的教学效果。 5 生物信息学采用无纸化考试,加强实践能力考核 生物信息学主要是学习利用互联网、计算机和应用软件进行生物信息分析的基本理论和基本方法。考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力。因此,在生物信息学考试中可尝试引入实践技能考试,通过上机实践操作重点考核学生知识应用能力。实践技能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行解释,不仅可考查学生对基本知识和基本原理的掌握,而且可考查学生进行生物信息分析的实际能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,可促进学生注重提高理论用于实践的综合能力,同时可更有效地提高学生计算机应用能力。学生成绩评定大部分是以学生的考试成绩为主,难以对学生的学习情况和学习过程作全面地评价。因此,除采用实践技能考试并将其作为学生成绩的主要部分外,还应加强对学生平时学习态度、学习能力、创新思维等方面的考查。 总之,生物信息学教学是网络环境下生物教学的全新内容。上述教学措施提高了学生的学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,教师自身素质的提高和进一步的教学改革,将会不断完善生物信息学教学,培养具有跨越生命科学、信息科学、数理科学等不同领域的“大科学”素质和意识的生物信息学人才。 参考文献: [1]赵国屏等.生物信息学[M].科学出版社,2002. [2]钟杨,张亮,赵琼.简明生物信息学[M].北京:高等教育出版社,2001. [3]教育部科技发展中心对大学校园网建设应用状况调查结果显示.千兆已成主流,应用全面透[J].中国教育网络,2005,(5):36-39.

【论著与综述区别】您好!不能以生物信息学题目本身确定是否属于论著或综述应当具体看成果本身的内容、形式和出版方式论著通常是一本书,以出版社图书方式出版且主要成果为原创综述论文以期刊或论文集心思发表的一篇文章而已大部分以编著为主(编辑他人成果为主要部分)的应当是教材,而不算论著或专著

科学生物信息学论文

生信分析论文写法如下:

这次我们来讲解的这边文献是 2019-10-12 发表的 OTT 杂志上的一篇生信加少量实验验证的文章。实话实说,目前对于生信最最最基本的,如果没有实验验证还是不好发文章的。所以一般都会加一些实验验证的。

这个文章的主要流程是个这样的:这里我们就基于文童的材料方法来说一下具体的内容:公共数据获取:当中关于公共数据获取部分提到了这些东西。使用了 GEO 数据库来进行候选数据筛选。

这 GEO 里面找到了三个芯片,其中描述了这三个芯片的平台。差异表达分析:作者使用了 GEO2R 来进行数据的筛选。富集分析:接着作者对差异表达的基因进行了富集分析,其中包括 GO 分析和 KEGG 分析。

作者使用的富集分析的软件是 DAVID,这个软件我们也吐槽过说,更新不及时,是很好用,所以推荐是 WebSestalt 富集分析软件,或者 clusterprofiler。蛋白相互作用分析:5TCGA 数据库验证再往下作者做的其实是 TCGA 的数据库验证,但是在材料方法里面没写。我们可以在结果当中具体的过程。

对于肿瘤研究,现在如果只是用 GEO 数据集分析,不用 TCGA 再看一下的话,都觉得不好意思,所以一般的肿瘤研究可能都会用到 TCGA 的验证的。其目的也就类似于多加了一个数据集来增加结果准确性。但是对于 TCGA 有些肿瘤正常样本很少。分析的结果可能偏差更大。文章使用的 GEPIA 的数据库。这个数据库对于查询 TCGA 表达结果还是很好用的,简单上手。

核心基因甲基化相关分析:在核心基因选择之后,利用了 TCGA 的甲基化数据MEXPRESS 来查看基因的田基化水平有没有变化。由于版本的更新。现在的这个数据库的  版本的结果会比之前的更加详细一些。

最好是多收集点生物信息方面的资料,题目可以写生物信息的发展历程,等等

摘 要:随着计算机科学和生物科学的迅猛发展,生物信息学成为一门独立学科,它将会成为21 世纪生命科学中的重要研究领域之一。本文对生物信息学在本科教学中的教学方法、实验教学、考核办法以及如何与现代教育技术相结合进行了初步的探索,并对如何提高教学效果培养跨学科的生物信息学人才做了深入思考。 关键词:生物信息学 课堂教学 实验教学 现代教育技术 前言 生物信息学(Bioinformatics)是一门新兴的交叉学科。广义地说,生物信息学从事对生物信息的获取、加工、储存、分配、分析和解释,并综合运用数学、计算机科学和生物学工具,以达到理解数据中的生物学含义的目标[1]。其含义是双重的:一是对海量数据的收集、整理与服务,即管理好这些数据;二是从中发现新的规律,也就是使用好这些数据。以1987年出现Bioinformatics这一词汇为标志,生物学已不再是仅仅基于试验观察的科学。伴随着21世纪的到来,生物学的重点和潜在的突破点已经由20世纪的试验分析和数据积累,转移到数据分析及其指导下的试验验证上来。生物信息学作为一门学科被广泛研究的根本原因,在于它所提供的研究工具对生物学发展至关重要,因此成为生命科学研究型人才必须掌握的现代知识。今天的实验生物学家,只有利用计算生物学的成果,才能跳出实验技师的框架,作出真正创新的研究。现在基因组信息学和后基因组信息学资源已经成了地球上全人类的共同财富。如何获取和利用基因组和后基因组学提供的大量信息,如何具有享用全人类共有的资源的初步能力,成了当今世纪生命科学学生必须掌握的基本技术和知识以及必须具有的初步能力[2]。 生物信息学以互联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种生物信息分析,以理解海量分子数据中的生物学含义。区别于其他生命科学课程,其在教学过程中要求有发达的互联网和计算机作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000M主干带宽的高校已占调查总数的,2005年一些综合类大学和理工类院校已率先升级到万兆校园网[3],这些都为生物信息学课程在高校开设提供了良好的物质基础。该门课程与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较其他课程更具优势。另外,该门课程尚未完全形成成熟的课程体系,为教师学习借鉴先进的教育思想与教学实践经验,在各方面尝试教学改革提供了广阔的空间。 1 课堂教学 生物信息学主要以介绍原理、方法为主,深入浅出,注重知识更新。课堂讲授以介绍生物信息学的相关算法、原理、方法为主,而这也是教学的重点和难点。在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免空洞复杂的算法讲解,以免学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,望而生畏;注重讲解算法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进地掌握复杂的内容,介绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系及其他学科的思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物学问题的科学素质。在教学工作中教师必须能够紧跟学科发展方向,随时进行知识更新,了解最新的前沿动态,掌握新方法,将最新的知识和方法教给学生。同时,也要在教学中鼓励学生通过各种途径自觉地关注学科发展动态,拓宽知识面,培养其自学能力和创新意识。 2 充分利用现代化教育技术,采用启发式教学 目前,高等院校在教室内配备的多媒体投影播放系统促进了多媒体教学的广泛应用。生物信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等内容涉及的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和掌握,提高学生理论与实践相结合的能力。同时,由于生物信息学依赖于网络资源和互联网上的分析工具和软件,教室内的多媒体计算机连接到互联网,极大地提高了教学效果。但在实际教学中发现,多媒体教室也有局限性,学生主要以听讲为主,不能及时实践,教师讲解与学生实践相脱节,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式,就可以解决上述问题。在教学中采用启发式教学,可为学生建立教学情景,学生通过与教师、同学的协商讨论、参与操作,能够发现知识、理解知识并掌握知识。 3 采用讲、练做一体化的教学模式,注重学生实践能力的培养 生物信息学课堂教学应积极学习借鉴职业培训和计算机课程教学中讲、练、做一体化的教学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变传统的以教师为中心、以教材和讲授为中心的教学方式。根据教学内容和学生的认知规律,应灵活地采用先理论后实践或先实践后理论或边理论边实践的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、综合的发展。 通常可采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解可采取进行实际演示的方法,教师边讲解边示范,学生在听课时边听讲、边练习,或者教师讲解结束后学生再进行练习。理论与实践高度结合,可充分发挥课堂教学的生动性、直观性,加深学生对知识的理解,培养和提高学生的实践操作能力。 4 优化生物信息学实验教学内容,发挥网络教学优势 生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识解决问题的能力和独立思考、综合分析的能力。 生物信息学实验教学内容的选择与安排应按照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教师在网上批改实验报告后将成绩和 评语 发送给学生,让学生及时了解自己的学习情况。教师可以通过网上论坛、聊天室和及时通讯工具QQ、MSN等对学生的实验进行指导,与其讨论问题等。网络环境下的生物信息学实验教学不仅能提高学生的学习兴趣,给学生的学习和师生的互动带来极大的方便,提高教师的工作效率,而且可以及时了解掌握学生的学习情况,有利于教师不断调整教学方案,达到更好的教学效果。 5 生物信息学采用无纸化考试,加强实践能力考核 生物信息学主要是学习利用互联网、计算机和应用软件进行生物信息分析的基本理论和基本方法。考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力。因此,在生物信息学考试中可尝试引入实践技能考试,通过上机实践操作重点考核学生知识应用能力。实践技能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行解释,不仅可考查学生对基本知识和基本原理的掌握,而且可考查学生进行生物信息分析的实际能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,可促进学生注重提高理论用于实践的综合能力,同时可更有效地提高学生计算机应用能力。学生成绩评定大部分是以学生的考试成绩为主,难以对学生的学习情况和学习过程作全面地评价。因此,除采用实践技能考试并将其作为学生成绩的主要部分外,还应加强对学生平时学习态度、学习能力、创新思维等方面的考查。 总之,生物信息学教学是网络环境下生物教学的全新内容。上述教学措施提高了学生的学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,教师自身素质的提高和进一步的教学改革,将会不断完善生物信息学教学,培养具有跨越生命科学、信息科学、数理科学等不同领域的“大科学”素质和意识的生物信息学人才。 参考文献: [1]赵国屏等.生物信息学[M].科学出版社,2002. [2]钟杨,张亮,赵琼.简明生物信息学[M].北京:高等教育出版社,2001. [3]教育部科技发展中心对大学校园网建设应用状况调查结果显示.千兆已成主流,应用全面透[J].中国教育网络,2005,(5):36-39.

应该可以吧。。。

生物医学信息学杂志

医学信息杂志编辑委员会主办的国家级科技期刊《医学信息》杂志是中华人民共和国科技部主管、临床医学两大领域,栏目内容涵盖医学信息学

能发;能上;祝顺利!

《医学信息》是经国家新闻出版署审核批准,由中国老年学和老年医学学会精准医疗分会、中国医师协会整合医学分会等支持,陕西文博生物信息工程研究所主管主办的一本国家综合性医药卫生类学术期刊,曾荣获国家及省级多项荣誉。本刊旨在报道国内外医学信息学及临床医学领域领先的科研成果,反映中国医学信息学、临床医学与科研工作的重大进展,促进国内外学术交流。[1]中文名医学信息外文名Medical Information语种中文类别出版,医学期刊主管单位陕西省文博生物信息工程研究所快速导航办刊宗旨 收录情况栏目设置专家述评、热点分析、整合医学、医学信息学、综述、论著、临床研究、调查分析、药物与临床、中医中药、诊疗技术、护理研究、经验交流、疑难病案等栏目。办刊宗旨遵守党和国家的卫生工作方针政策,贯彻理论与实践相结合的方针,反映我国医学信息学、临床医学与科研工作的重大进展,促进国内外学术交流,坚持"以交流促创新,以创新促发展"的办刊宗旨,坚持刊物品质第一位的办刊理念,全力打造一个贴切于新时代要求的学 术交流平台。收录情况中外文核心期刊查询系统收录期刊CNKI中国学术期刊网络出版总库(CAJD)收录期刊中国核心期刊(遴选)数据库收录期刊中国学术期刊综合评价数据库(CAJCED)统计源期刊万方数据数字化期刊群收录期刊中国期刊全文数据库(CJFD)全文收录期刊中国龙源期刊网全文收录期刊中文科技期刊数据库中文生物医学期刊文献数据库(CMCC)收录期刊

能啊,你只要写信息类方面的护理工作

生物信息学研究生论文

谁一个、、论文不才交么……生物信息在生物学研究中的作用。生物信息是指生物体中包含的全部信息,如基因组信息、蛋白质、核酸、糖类等生物大分子的结构等。生物信息对生物体的生存、繁殖都起着重要作用。生物信息包含的范围很广,除遗传物质、神经电冲动和激素之外,生物体发出的声音、气味、颜色以及生物的行为本身都含有信息,都对生物的个体和群体产生影响,和生物的生存与进化密不可分。生物信息的特点是消耗极少的能量和物质即可产生极大的生物效应。生物信息一般可分为遗传信息、神经和感觉信息及化学信息。虽然遗传信息和神经感觉信息的载体都属于化学物质,但通常所指的化学信息是除以上两类物质以外的化学物质所携带和传递的信息。高等生物的激素及昆虫外激素都属于这一类。遗传信息是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。遗传信息以密码形式存储在DNA分子上,通过DNA的复制传递给子代。在后代生长发育过程中,遗传信息自DNA转录给RNA,后翻译成特异的蛋白质,以执行各种生命功能。从历史上看,首先是由(1866)的研究形成了概念,即相应于生物各种性状的因素(现在称为基因)中包含着相应的信息(以后等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。 关于基因的化学本质方面,根据等(1944)进行的转化实验,以及和(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,现在已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息。神经和感觉信息靠电脉冲和神经递质携带和传递。神经系统接受内外环境中的信息,进行加工处理,调节和控制机体各部分功能。生物靠神经系统电脉冲和神经递质携带和传递。神经系统的功能是接收、传递内外环境中的信息,加以处理、分析,从而控制和调节机体各部功能,对环境作出适当的反应。因此,神经信息对于有机体的生存以及正常生活起着至关重要的作用。化学信息是除上述两类物质外由化学介质传递的信息。生物体的各种功能能够有条不紊地进行,对环境能及时做出反应,是由于生物体内存在着通过各种各样的化学信息分子进行传递的信息系统。生物信息在生物研究中有重要作用,然而,原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。因此,生物信息学便是生物信息在生物研究中重要应用。 生物信息学是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。生物信息学研究对象是生物信息。其研究重点主要体现在基因组学和蛋白学两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。 生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学,随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 综上所述,对生物信息的研究对生物学的蓬勃发展具有重要作用。

这种最基本的东西没必要求论文啊,自己随便写写就好了,用个DNAMAN,随便挑个基因,分分钟搞出来。再者没人会拿这种东西单独去发一篇论文吧?这点东西根本不够资格,只够在某篇论文里的两句话的分量。

1,序列比对(Sequence Alignment) 序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的. 2, 蛋白质结构比对和预测 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要. 3, 基因识别,非编码区分析研究. 基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等. 4, 分子进化和比较基因组学 分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现. 5, 序列重叠群(Contigs)装配 根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题. 6, 遗传密码的起源 通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材. 7, 基于结构的药物设计 人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益. 8.生物系统的建模和仿真 随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。 9.生物信息学技术方法的研究 生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。 10, 生物图像 没有血缘关系的人,为什么长得那么像呢? 外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合? 有什么生物学基础?基因是不是相似?我不知道,希望专家解答。 11, 其他 如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.

最好先阅读几篇相应文章和相今似的论文,比如你的课题是油菜,你可以搜有关其他物种如小麦的。根据论文写作步骤制定实验计划。要练习使用一些常用软件,如NCBI,GenBank,在用时最好先下载安装有道词典,因为是英文网站,不容易懂,专业名词也太多!不要怕,万事开头难!好好准备,入了门就好了!

生物信息学论文2000字

谁一个、、论文不才交么……生物信息在生物学研究中的作用。生物信息是指生物体中包含的全部信息,如基因组信息、蛋白质、核酸、糖类等生物大分子的结构等。生物信息对生物体的生存、繁殖都起着重要作用。生物信息包含的范围很广,除遗传物质、神经电冲动和激素之外,生物体发出的声音、气味、颜色以及生物的行为本身都含有信息,都对生物的个体和群体产生影响,和生物的生存与进化密不可分。生物信息的特点是消耗极少的能量和物质即可产生极大的生物效应。生物信息一般可分为遗传信息、神经和感觉信息及化学信息。虽然遗传信息和神经感觉信息的载体都属于化学物质,但通常所指的化学信息是除以上两类物质以外的化学物质所携带和传递的信息。高等生物的激素及昆虫外激素都属于这一类。遗传信息是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。遗传信息以密码形式存储在DNA分子上,通过DNA的复制传递给子代。在后代生长发育过程中,遗传信息自DNA转录给RNA,后翻译成特异的蛋白质,以执行各种生命功能。从历史上看,首先是由(1866)的研究形成了概念,即相应于生物各种性状的因素(现在称为基因)中包含着相应的信息(以后等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。 关于基因的化学本质方面,根据等(1944)进行的转化实验,以及和(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,现在已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息。神经和感觉信息靠电脉冲和神经递质携带和传递。神经系统接受内外环境中的信息,进行加工处理,调节和控制机体各部分功能。生物靠神经系统电脉冲和神经递质携带和传递。神经系统的功能是接收、传递内外环境中的信息,加以处理、分析,从而控制和调节机体各部功能,对环境作出适当的反应。因此,神经信息对于有机体的生存以及正常生活起着至关重要的作用。化学信息是除上述两类物质外由化学介质传递的信息。生物体的各种功能能够有条不紊地进行,对环境能及时做出反应,是由于生物体内存在着通过各种各样的化学信息分子进行传递的信息系统。生物信息在生物研究中有重要作用,然而,原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。因此,生物信息学便是生物信息在生物研究中重要应用。 生物信息学是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。生物信息学研究对象是生物信息。其研究重点主要体现在基因组学和蛋白学两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。 生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学,随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 综上所述,对生物信息的研究对生物学的蓬勃发展具有重要作用。

1,序列比对(Sequence Alignment) 序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的. 2, 蛋白质结构比对和预测 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要. 3, 基因识别,非编码区分析研究. 基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等. 4, 分子进化和比较基因组学 分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现. 5, 序列重叠群(Contigs)装配 根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题. 6, 遗传密码的起源 通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材. 7, 基于结构的药物设计 人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益. 8.生物系统的建模和仿真 随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。 9.生物信息学技术方法的研究 生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。 10, 生物图像 没有血缘关系的人,为什么长得那么像呢? 外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合? 有什么生物学基础?基因是不是相似?我不知道,希望专家解答。 11, 其他 如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.

这种最基本的东西没必要求论文啊,自己随便写写就好了,用个DNAMAN,随便挑个基因,分分钟搞出来。再者没人会拿这种东西单独去发一篇论文吧?这点东西根本不够资格,只够在某篇论文里的两句话的分量。

给你两个网站吧,里面有些范文

相关百科

热门百科

首页
发表服务