首页

> 论文发表知识库

首页 论文发表知识库 问题

医学图像目标检测最新发展论文

发布时间:

医学图像目标检测最新发展论文

医学影像技术论文范文

在日常学习、工作生活中,大家都经常接触到论文吧,论文是学术界进行成果交流的工具。你写论文时总是无从下笔?以下是我帮大家整理的医学影像技术论文,欢迎阅读,希望大家能够喜欢。

【摘要】 医学图像在临床应用或科研中的物理问题、算法和软硬件设计操作等,是医学物理学的重要分支。医学影像是人体信息的载体,可用于教学和科研、治疗和疾病诊断。

治疗中的医学影像可以用于制定治疗计划、在治疗过程实施影像监督,以及通过对治疗监督是采集的数据的图像重建实现对治疗计划的验证。当前医学影像的世界前沿是功能成像

主要内容是对人的生理功能和心理功能成像。这些成像方法和技术的发展以及在医疗界中的广泛使用,必将引起医学领域研究和新的治疗方案的革命。

【关键词】 医学影像;影响物理;成像技术

1引言

人体成像包括对健康人的成像和对病人的成像,对于前者的成像主要用于科研和教学,后者主要用于医学临床诊断和治疗。医学影像物理和技术是医学物理学的重要分支,研究的对象包括了所有人体成像。

目前临床广泛使用的模态按照成像时使用的物质波不同,分为X射线成像、γ射线成像、磁共振成像和超声成像。

2对目前各种医学成像模态现状的分析

射线成像

X射线成像模态分为平面X射线成像和断层成像。人体不同器官和组织对X射线的吸收可以用组织密度进行表征,因此,可以利用平面x射线、x射线照相术对人体内脏器官和骨骼的损伤和病灶进行诊断和定位

同时也把胶片带进了医学领域。随着x射线显像增强技术的发展,x射线的血管造影术和其他脏器的专用x线机相继诞生,扩大了x射线成像的应用范围。平面x射线成像的未来发展方向是数字化的x光机技术其中,x线机是全世界的发展方向,但是其价格使得大多数用户望而怯步。

作为传统影像技术中最为成熟的成像模式之一的x射线断层成像,其速度对于心脏动态成像完全没有问题,加上显像增强剂,还可以对用于血管病变及其血脑屏障是否被病灶破坏进行检查,属于功能成像的范畴。当前,三维控件x射线断层成像的实验室样机已经问世,将会为x射线成像带来新的生命力。

核磁共振成像

目前,各种各样的核磁共振设备产品已经大量进入市场。核磁共振成像集中体现了各种高新技术在医学成像设备中的应用。目前核磁共振主要应用包括人脑认知功能成像,用于揭示大脑工具机制的认知心理实验测量。

核医学成像

核医学成像包括平面和断层成像两种方式。目前,以单光子计算机断层成像和正电子断层成像为主,为动物正电子断层成像主要是用于基础研究,而平面的γ相机已经处于被淘汰的水平。

核医学成像设备可以定量地检测到由于基因突变而引起的大分子运动紊乱继而引起的脏器功能变化,例如代谢紊乱、血流变化等。这是其他设备如超声波检查不可能完成的任务。

这就是临床医学上所说的早期诊断,核医学影像设备能够快速发展归功于此。但是核医学成像存在空间分辨率差、病理和周围组织的相互关系很难准确定位的确定,因此,还需要医学物理工作的不懈努力。

超声波成像

超声波是非电离辐射的成像模态,以二维成像的功能为主,也包括平面和断层成像两类产品。超声波成像由于其安全可靠、价格低廉,多以在诊断、介入治疗和预后影像检测中得到发展。

目前,超声波设备已有超过x射线成像的势头。同样,超声波成像也存在一定的缺点,如图像对比度差、信噪比不好、图像的重复性依赖于操作人员等。

3关于医学软件问题

基本情况分析

成像的硬件设备要完成功能离不开医学软件的支持,对于这些医学软件按照和硬件设备的关系,可分为三个层次:

第一层,工作和硬件紧密结合的软件。主要功能是负责成像设备的运动控制,对数据的采集,图像预处理和重建,完成数据分析。

第二层,主要负责对医疗器械产生的数据进行分析、处理软件。这种软件的应用需要来自医学物理人员,软件编程人员和医生三方的合作,目前,由于我国还没有建立这种三方合作机制,这类软件应用情况明显滞后。

第三层,主要功能是完成医学信息的整合的软件,用于医疗过程中医疗信息,医学工作的管理。例如PACS。这种软件也需要医生的参与,但是并没有依赖性。

PACS是医疗发展信息化的体现,是医学影像技术集成管理和开拓影像资源应用范围的重要技术手段。PACS将医学影像中的各种软件和图像工作站连接起来,使之成为局域网中的节点,实现了资源的共享。不同科室的医生在完成对病人的信息收集和诊断后可以完成信息的录入。还可以利用商业设备上采集的数据运用于病人的诊疗中,结合数据和医学影像,对诊断信息综合处理,以此提高诊断的准确率。

4医学影像物理和技术学科今后的发展

虽然存在各种不同的医学影像模态,但是目标只有一个,即为了更好的进行医学研究诊断,随着物理和计算机技术的发展,医学影像技术会随之提高。为了更好的为医疗服务,在今后的发展中,医学影响物理和技术学科还需在以下几方面继续努力。

第一,用于成像的物质波产生装置还需要不断进行提升,为更好的满足成像需求,在提高波源产生物质波的同时,还需要改变物质波的束流品质;

第二,将物质波和人体组织发生相互作用的规律模型化,为减少误诊率和定位误差,把模型参数的最佳化,改善从影像中提取信息的质量和速度。同时努力消除探测中的噪声和伪影;

第三,把探测的信号收集,放大、成形实现数字化;

第四,为满足影像诊断和治疗中的监督需要,高质量的实现图像重建和显示等。

在科学技术方面,开展医学影像在脑功能成像研究中的应用、临床诊断中的应用等,有利于拓宽医学影像的市场。

5结语

本文介绍了当今主流的几种医学成像技术,对各种成像方式的优缺点进行了阐述,对日后医学影像物理和技术的发展提出了自己的看法,希望能为那些为医疗服务的工作者们提供一些参考。随着医学影像物理和技术的不断进步,医疗服务行业的科学化加速发展。

参考文献

[1]黄浩,施红,陈伟炜,俞允,林多,许茜,俞向梅,洪全兴,魏国强.医学影像技术学专业教育的问题与思考[J].教育教学论坛.2013(11)

[2]彭文献,黄敏,罗敏.基于岗位需求培养医学影像技术学生专业意识的探讨[J].浙江医学教育.2011(03)

【摘 要】随着科学技术的进步,医学影像技术在医疗领域中的地位将更为重要。本文谈了医学影像技术发展史,总结了近年来取得的新进展。

【关键词】医学影像技术

医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念和方法及物理原理发展起来的先进技术手段。医学影像信息包括传统X线、CT、MRI、超声、同位素、电子内窥镜和手术摄影等影像信息。它们是窥测人体内部各组织,脏器的形态,功能及诊断疾病的重要方法。随着医疗卫生事业的.发展,以胶片为主要方式的显示、存储、传递X-ray摄像技术已不能满足临床诊断和治疗发展的需求,医疗设备的数字化要求日益强烈,全数字化放射学、图像导引和远程放射医学将是放射医学影像发展的必然趋势。

1 传统摄影技术在摸索中进行

计算机X线摄影

X射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,X射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极X射线管及断层摄影等。但是,由于这种常规X射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了X射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中X射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,X射线机的结构简单,图像分辨率也较低。在50年代以后,分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用X射线机不断出现,X光电视设备正在逐步代替常规的X射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的X线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种: (1)存储荧光体增感屏[计算机X射线摄影系统(computer )]。

(2)硒鼓探测器。(3)以电荷耦合技术(charge Coupled )为基础的探测器 。(4)平板探测器(Flat panel Detector)a:直接转换(非晶体硒)b:非直接转换(闪烁晶体)。这些系统实现了自动化、遥控化和明室化,减少了操作者的辐射损伤。

X-CT

CT的问世被公认为伦琴发现X射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。这种技术有两种模式,一种是所谓“先到断层成像”(FAT),另一种模式是“光子迁移成像”(PMI)。

磁共振成像

核磁共振成像,现称为磁共振成像。它无放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。

数字减影血管造影

它是利用计算机系统将造影部位注射造影剂的透视影像转换成数字形式贮存于记忆盘中,称作蒙片。然后将注入造影剂后的造影区的透视影像也转换成数字,并减去蒙片的数字,将剩余数字再转换成图像,即成为除去了注射造影剂前透视图像上所见的骨骼和软组织影像,剩下的只是清晰的纯血管造影像。

2 数字化摄影技术

数字X射线摄影的成像技术包括成像板技术、平行板检测技术和采用电荷耦合器或CMOS器件以及线扫描等技术。成像板技术是代替传统的胶片增感屏来照相,然后记录于胶片的一种方法。平行板检测技术又可分为直接和间接两种结构类型。直接FPT结构主要是由非品硒和薄膜半导体阵列构成的平板检测器。间接FPT结构主要是由闪烁体或荧光体层加具有光电二极管作用的非品硅层在加TFT阵列构成的平板检测器。电荷耦合器或CMOS器件以及线扫描等技术结构上包括可见光转换屏,光学系统和CCD或CMOS。

3 成像的快捷阅读

由于成像方法的改进,除了在成像质量方面有明显提高外,图像数量也急剧增加。例如随着多层CT的问世,每次CT检查的图像可多达千幅以上,因此,无法想象用传统方法能读取这些图像中蕴含的动态信息。这时在显示器上进行的“软阅读”正在逐渐显示出其无可比拟的优越性。软拷贝阅读是指在工作站图像显示屏上观察影像,就X线摄影而言这种阅读方式能充分利用数字影像大得多的动态范围,获取丰富的诊断信息。

4 PACS的广阔发展空间

随着计算机和网络技术的飞速发展,现有医学影像设备延续了几十年的数据采集和成像方式,已经远远无法满足现代医学的发展和临床医生的需求。PACS系统应运而生。PACS系统是图像的存储、传输和通讯系统,主要应用于医学影像图像和病人信息的实时采集、处理、存储、传输,并且可以与医院的医院信息管理系统放射信息管理系统等系统相连,实现整个医院的无胶片化、无纸化和资源共享,还可以利用网络技术实现远程会诊,或国际间的信息交流。PACS系统的产生标志着网络影像学和无胶片时代的到来。完整的PACS系统应包含影像采集系统,数据的存储、管理,数据传输系统,影像的分析和处理系统。数据采集系统是整个PACS系统的核心,是决定系统质量的关键部分,可将各种不同成像系统生成的图象采入计算机网络。由于医学图像的数据量非常大,数据存储方法的选择至关重要。光盘塔、磁带库、磁盘陈列等都是目前较好的存储方法。数据传输主要用于院内的急救、会诊,还有可以通过互联网、微波等技术,以数据的远距离传输,实现远程诊断。影像的分析和处理系统是临床医生、放射科医生直接使用的工具,它的功能和质量对于医生利用临床影像资源的效率起了决定作用。综上所述,PACS技术可分为三个阶段,(1)用户查找数据库;(2)数据查找设备;(3)图像信息与文本信息主动寻找用户。

5 技术——分子影像

随着医学影像技术的飞速发展,在今天已具有显微分辨能力,其可视范围已扩展至细胞、分子水平,从而改变了传统医学影像学只能显示解剖学及病理学改变的形态显像能力。由于与分子生物学等基础学科相互交叉融合,奠定了分子影像学的物质基础。Weissleder氏于1999年提出了分子影像学的概念:活体状态下在细胞及分子水平应用影像学对生物过程进行定性和定量研究。

分子成像的出现,为新的医学影像时代到来带来曙光。基因表达、治疗则为彻底治愈某些疾病提供可能,因此目前全世界都在致力于研究、开创分子影像与基因治疗,这就是21世纪的影像学。 新的医学影像的观察要超出目前的解剖学、病理学概念,要深入到组织的分子、原子中去。其关键是借助神奇的探针--即分子探针。到目前为止,分子影像学的成像技术主要包括MRI、核医学及光学成像技术。一些有识之士认为;由于诊治兼备的介入放射学已深入至分子生物学的层面,因此,分子影像学应包括分子水平的介入放射学研究。

6 学科的交叉结合

交叉学科、边缘学科是当今科学发展的趋势。影像技术学最邻近的学科应为影像诊断学。前者致力于解决信息的获取、存储、传输、管理及研发新的技术方法;后者则将信息与知识、经验结合,着重于信息的内容,根据影像做出正常解剖结构的辨认及病变的诊断。两者相辅相成,互为依托。所以,影像技术学的发展离不开影像诊断学更密切地沟通与结合将为提高、拓展原有成像方式及开辟新的成像方式做出有益的贡献。医用影像诊断装置用于详细地观察人体内部各器官的结构,找出病灶的位置毫克大小,有的还可以进行器

官功能的判断 。还有医用影像诊断装备情况,已成了衡量医院现代化水平的标志。

7 浅谈医学影像技术的下一个热点

医疗保健事业在经济上的窘迫使得90年代以来,成为一个没有大规模推广一种新的影像技术的、相对沉寂的时期,延续了一些现有影像技术的发展,使得他们中至今还没有一种影像技术能对影像学产生巨大的影响。随着科技的发展,最近逐渐发展起来的一批有希望的影像技术。如:磁共振谱(MRS),正电子发射成像(PET)单光子发射成像(SPECT),阻抗成像(EIT)和光学成像(OCT或NRI)。他们有可能很快成为大规模应用的影像技术,将为脑、肺、乳房及其他部位的成像提供新的信息。

磁源成像

人体体内细胞膜内外的离子运动可形成生物电流。这种生物电流可产生磁现象,检测心脏或脑的生物电流产生的磁场可以得到心磁图或脑磁图。这类磁现象可反映出电子活动发生的深度,携带有人体组织和器官的大量信息。

PET和SPECT

单光子发射成像(SPECT)和正电子成像(PET)是核医学的两种CT技术。由于它们都是接受病人体内发射的射线成像,故统称为发射型计算机断层成像(ECT)。ECT依据核医学的放射性示踪原理进行体内诊断,要在人体中使用放射性核素。ECT存在的主要问题是空间分辨率低。最近的技术发展可能促进推广ECT的应用。

阻抗成像(EIT)

EIT是通过对人体加电压,测量在电极间流动的电流,得到组织电导率变化的图像。 目的在于形成对体内某点阻抗的估计。这种技术的优点是,所采用的电流对人体是无害的,因而对成像对象无任何限制。这种技术的时间分辨率很好,因而可连续监测实际的应用,已实现以视频帧速的医用EIT的实验样机。

光学成像(OTC或NIR)

近期的一些实质性的进展表明,光学成像有可能在最近几年内发展成为一种能真正用于临床的影像设备。它的优点是:光波长的辐射是非离子化的,因而对人体是无伤害的,可重复曝光;它们可区分那些在光波长下具有不同吸收与散射,但不能由其它技术识别的软组织;天然色团所特有的吸收使得能够获得功能信息。它正在开辟它的临床领域。

MRS

MRS是一种无创研究人体组织生理化的极有用的工具。它所得到的生化信息可与人体组织代谢相关联,并表明它正常组织的方式有差别。目前MRS还没有常规用于临床,但已有大量技术正在进行正式适用。

上述的几个先进的技术,究竟哪一个能成为医学影像技术的热点,我们认为应要有最大效益、安全和经济是最为重要的。在逝去的20世纪,医学影像技术经历了从孕育、成长到发展的过程,回顾过去可以断言它在防治人类疾病及延长平均寿命方面是功不可没的。在一切“以人类为本”的21世纪中,人们将继续用医学影像技术来为人们的健康服务。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

医学图像边缘检测论文

(部分)张冬至,胡国清,夏伯锴,基于模态辨识的原油含水率智能组合测量模型[J],华南理工大学学报,2009, , pp73~78郭强,吕浩杰,胡国清.新型接触式电容压力传感器[J].仪表技术与传感器,2008, .黄玉程; 胡国清; 吴雄英; 刘文艳; 人脸图像边缘检测的方法研究和应用[J], 计算机工程, Vol. 32, Sep. 20, 2006, pp: 220-221, (EI收录)黄玉程,胡国清,吴雄英,刘文艳,人脸识别系统中图像噪声去除方法研究[J],微型计算机信息,Vol. 12, 2005, pp: 187~189, 40.胡国清,刘文艳,工程控制理论[M],北京,机械工业出版社,2004, 3陈广文, 许高攀,胡国清,静电式微开关硅悬臂梁的变形分析[J],传感技术,2001年20卷第12期,pp29~31许高攀,陈广文,胡国清, 微机电系统(MEMS)技术及其动态[J]。压电与声光,. pp: 34~37高攀,陈广文,胡国清,双面接触电容压力传感器的设计及制造工艺流程[J],仪表技术与传感器,2001年, , PP33~35刘文艳,胡国清,陶瓷液压阀的应力计算及分析[J],机械工程学报 2000, PP: 44~47 (EI 收录)胡国清, 机电控制工程基础与应用[M](专著46万字, 独立撰写), 机械工业出版社, 1997年8月.胡国清等,张光函,吴持恭,SIMPLE方法的改进[J],四川联合大学学报, , , 1997,pp: 72~75; (EI 收录)胡国清等,张光函,吴持恭,混合充分法研究[J], 四川联合大学学报, , , 1997, pp: 61~63 (EI 收录)胡国清,张光函,吴持恭,LDA和k¾e紊流模型研究液压集成块流流场[J], 成都科技大学学报1996, , pp: 64~71, (EI 收录)

医学影像技术论文范文

在日常学习、工作生活中,大家都经常接触到论文吧,论文是学术界进行成果交流的工具。你写论文时总是无从下笔?以下是我帮大家整理的医学影像技术论文,欢迎阅读,希望大家能够喜欢。

【摘要】 医学图像在临床应用或科研中的物理问题、算法和软硬件设计操作等,是医学物理学的重要分支。医学影像是人体信息的载体,可用于教学和科研、治疗和疾病诊断。

治疗中的医学影像可以用于制定治疗计划、在治疗过程实施影像监督,以及通过对治疗监督是采集的数据的图像重建实现对治疗计划的验证。当前医学影像的世界前沿是功能成像

主要内容是对人的生理功能和心理功能成像。这些成像方法和技术的发展以及在医疗界中的广泛使用,必将引起医学领域研究和新的治疗方案的革命。

【关键词】 医学影像;影响物理;成像技术

1引言

人体成像包括对健康人的成像和对病人的成像,对于前者的成像主要用于科研和教学,后者主要用于医学临床诊断和治疗。医学影像物理和技术是医学物理学的重要分支,研究的对象包括了所有人体成像。

目前临床广泛使用的模态按照成像时使用的物质波不同,分为X射线成像、γ射线成像、磁共振成像和超声成像。

2对目前各种医学成像模态现状的分析

射线成像

X射线成像模态分为平面X射线成像和断层成像。人体不同器官和组织对X射线的吸收可以用组织密度进行表征,因此,可以利用平面x射线、x射线照相术对人体内脏器官和骨骼的损伤和病灶进行诊断和定位

同时也把胶片带进了医学领域。随着x射线显像增强技术的发展,x射线的血管造影术和其他脏器的专用x线机相继诞生,扩大了x射线成像的应用范围。平面x射线成像的未来发展方向是数字化的x光机技术其中,x线机是全世界的发展方向,但是其价格使得大多数用户望而怯步。

作为传统影像技术中最为成熟的成像模式之一的x射线断层成像,其速度对于心脏动态成像完全没有问题,加上显像增强剂,还可以对用于血管病变及其血脑屏障是否被病灶破坏进行检查,属于功能成像的范畴。当前,三维控件x射线断层成像的实验室样机已经问世,将会为x射线成像带来新的生命力。

核磁共振成像

目前,各种各样的核磁共振设备产品已经大量进入市场。核磁共振成像集中体现了各种高新技术在医学成像设备中的应用。目前核磁共振主要应用包括人脑认知功能成像,用于揭示大脑工具机制的认知心理实验测量。

核医学成像

核医学成像包括平面和断层成像两种方式。目前,以单光子计算机断层成像和正电子断层成像为主,为动物正电子断层成像主要是用于基础研究,而平面的γ相机已经处于被淘汰的水平。

核医学成像设备可以定量地检测到由于基因突变而引起的大分子运动紊乱继而引起的脏器功能变化,例如代谢紊乱、血流变化等。这是其他设备如超声波检查不可能完成的任务。

这就是临床医学上所说的早期诊断,核医学影像设备能够快速发展归功于此。但是核医学成像存在空间分辨率差、病理和周围组织的相互关系很难准确定位的确定,因此,还需要医学物理工作的不懈努力。

超声波成像

超声波是非电离辐射的成像模态,以二维成像的功能为主,也包括平面和断层成像两类产品。超声波成像由于其安全可靠、价格低廉,多以在诊断、介入治疗和预后影像检测中得到发展。

目前,超声波设备已有超过x射线成像的势头。同样,超声波成像也存在一定的缺点,如图像对比度差、信噪比不好、图像的重复性依赖于操作人员等。

3关于医学软件问题

基本情况分析

成像的硬件设备要完成功能离不开医学软件的支持,对于这些医学软件按照和硬件设备的关系,可分为三个层次:

第一层,工作和硬件紧密结合的软件。主要功能是负责成像设备的运动控制,对数据的采集,图像预处理和重建,完成数据分析。

第二层,主要负责对医疗器械产生的数据进行分析、处理软件。这种软件的应用需要来自医学物理人员,软件编程人员和医生三方的合作,目前,由于我国还没有建立这种三方合作机制,这类软件应用情况明显滞后。

第三层,主要功能是完成医学信息的整合的软件,用于医疗过程中医疗信息,医学工作的管理。例如PACS。这种软件也需要医生的参与,但是并没有依赖性。

PACS是医疗发展信息化的体现,是医学影像技术集成管理和开拓影像资源应用范围的重要技术手段。PACS将医学影像中的各种软件和图像工作站连接起来,使之成为局域网中的节点,实现了资源的共享。不同科室的医生在完成对病人的信息收集和诊断后可以完成信息的录入。还可以利用商业设备上采集的数据运用于病人的诊疗中,结合数据和医学影像,对诊断信息综合处理,以此提高诊断的准确率。

4医学影像物理和技术学科今后的发展

虽然存在各种不同的医学影像模态,但是目标只有一个,即为了更好的进行医学研究诊断,随着物理和计算机技术的发展,医学影像技术会随之提高。为了更好的为医疗服务,在今后的发展中,医学影响物理和技术学科还需在以下几方面继续努力。

第一,用于成像的物质波产生装置还需要不断进行提升,为更好的满足成像需求,在提高波源产生物质波的同时,还需要改变物质波的束流品质;

第二,将物质波和人体组织发生相互作用的规律模型化,为减少误诊率和定位误差,把模型参数的最佳化,改善从影像中提取信息的质量和速度。同时努力消除探测中的噪声和伪影;

第三,把探测的信号收集,放大、成形实现数字化;

第四,为满足影像诊断和治疗中的监督需要,高质量的实现图像重建和显示等。

在科学技术方面,开展医学影像在脑功能成像研究中的应用、临床诊断中的应用等,有利于拓宽医学影像的市场。

5结语

本文介绍了当今主流的几种医学成像技术,对各种成像方式的优缺点进行了阐述,对日后医学影像物理和技术的发展提出了自己的看法,希望能为那些为医疗服务的工作者们提供一些参考。随着医学影像物理和技术的不断进步,医疗服务行业的科学化加速发展。

参考文献

[1]黄浩,施红,陈伟炜,俞允,林多,许茜,俞向梅,洪全兴,魏国强.医学影像技术学专业教育的问题与思考[J].教育教学论坛.2013(11)

[2]彭文献,黄敏,罗敏.基于岗位需求培养医学影像技术学生专业意识的探讨[J].浙江医学教育.2011(03)

【摘 要】随着科学技术的进步,医学影像技术在医疗领域中的地位将更为重要。本文谈了医学影像技术发展史,总结了近年来取得的新进展。

【关键词】医学影像技术

医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念和方法及物理原理发展起来的先进技术手段。医学影像信息包括传统X线、CT、MRI、超声、同位素、电子内窥镜和手术摄影等影像信息。它们是窥测人体内部各组织,脏器的形态,功能及诊断疾病的重要方法。随着医疗卫生事业的.发展,以胶片为主要方式的显示、存储、传递X-ray摄像技术已不能满足临床诊断和治疗发展的需求,医疗设备的数字化要求日益强烈,全数字化放射学、图像导引和远程放射医学将是放射医学影像发展的必然趋势。

1 传统摄影技术在摸索中进行

计算机X线摄影

X射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,X射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极X射线管及断层摄影等。但是,由于这种常规X射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了X射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中X射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,X射线机的结构简单,图像分辨率也较低。在50年代以后,分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用X射线机不断出现,X光电视设备正在逐步代替常规的X射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的X线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种: (1)存储荧光体增感屏[计算机X射线摄影系统(computer )]。

(2)硒鼓探测器。(3)以电荷耦合技术(charge Coupled )为基础的探测器 。(4)平板探测器(Flat panel Detector)a:直接转换(非晶体硒)b:非直接转换(闪烁晶体)。这些系统实现了自动化、遥控化和明室化,减少了操作者的辐射损伤。

X-CT

CT的问世被公认为伦琴发现X射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。这种技术有两种模式,一种是所谓“先到断层成像”(FAT),另一种模式是“光子迁移成像”(PMI)。

磁共振成像

核磁共振成像,现称为磁共振成像。它无放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。

数字减影血管造影

它是利用计算机系统将造影部位注射造影剂的透视影像转换成数字形式贮存于记忆盘中,称作蒙片。然后将注入造影剂后的造影区的透视影像也转换成数字,并减去蒙片的数字,将剩余数字再转换成图像,即成为除去了注射造影剂前透视图像上所见的骨骼和软组织影像,剩下的只是清晰的纯血管造影像。

2 数字化摄影技术

数字X射线摄影的成像技术包括成像板技术、平行板检测技术和采用电荷耦合器或CMOS器件以及线扫描等技术。成像板技术是代替传统的胶片增感屏来照相,然后记录于胶片的一种方法。平行板检测技术又可分为直接和间接两种结构类型。直接FPT结构主要是由非品硒和薄膜半导体阵列构成的平板检测器。间接FPT结构主要是由闪烁体或荧光体层加具有光电二极管作用的非品硅层在加TFT阵列构成的平板检测器。电荷耦合器或CMOS器件以及线扫描等技术结构上包括可见光转换屏,光学系统和CCD或CMOS。

3 成像的快捷阅读

由于成像方法的改进,除了在成像质量方面有明显提高外,图像数量也急剧增加。例如随着多层CT的问世,每次CT检查的图像可多达千幅以上,因此,无法想象用传统方法能读取这些图像中蕴含的动态信息。这时在显示器上进行的“软阅读”正在逐渐显示出其无可比拟的优越性。软拷贝阅读是指在工作站图像显示屏上观察影像,就X线摄影而言这种阅读方式能充分利用数字影像大得多的动态范围,获取丰富的诊断信息。

4 PACS的广阔发展空间

随着计算机和网络技术的飞速发展,现有医学影像设备延续了几十年的数据采集和成像方式,已经远远无法满足现代医学的发展和临床医生的需求。PACS系统应运而生。PACS系统是图像的存储、传输和通讯系统,主要应用于医学影像图像和病人信息的实时采集、处理、存储、传输,并且可以与医院的医院信息管理系统放射信息管理系统等系统相连,实现整个医院的无胶片化、无纸化和资源共享,还可以利用网络技术实现远程会诊,或国际间的信息交流。PACS系统的产生标志着网络影像学和无胶片时代的到来。完整的PACS系统应包含影像采集系统,数据的存储、管理,数据传输系统,影像的分析和处理系统。数据采集系统是整个PACS系统的核心,是决定系统质量的关键部分,可将各种不同成像系统生成的图象采入计算机网络。由于医学图像的数据量非常大,数据存储方法的选择至关重要。光盘塔、磁带库、磁盘陈列等都是目前较好的存储方法。数据传输主要用于院内的急救、会诊,还有可以通过互联网、微波等技术,以数据的远距离传输,实现远程诊断。影像的分析和处理系统是临床医生、放射科医生直接使用的工具,它的功能和质量对于医生利用临床影像资源的效率起了决定作用。综上所述,PACS技术可分为三个阶段,(1)用户查找数据库;(2)数据查找设备;(3)图像信息与文本信息主动寻找用户。

5 技术——分子影像

随着医学影像技术的飞速发展,在今天已具有显微分辨能力,其可视范围已扩展至细胞、分子水平,从而改变了传统医学影像学只能显示解剖学及病理学改变的形态显像能力。由于与分子生物学等基础学科相互交叉融合,奠定了分子影像学的物质基础。Weissleder氏于1999年提出了分子影像学的概念:活体状态下在细胞及分子水平应用影像学对生物过程进行定性和定量研究。

分子成像的出现,为新的医学影像时代到来带来曙光。基因表达、治疗则为彻底治愈某些疾病提供可能,因此目前全世界都在致力于研究、开创分子影像与基因治疗,这就是21世纪的影像学。 新的医学影像的观察要超出目前的解剖学、病理学概念,要深入到组织的分子、原子中去。其关键是借助神奇的探针--即分子探针。到目前为止,分子影像学的成像技术主要包括MRI、核医学及光学成像技术。一些有识之士认为;由于诊治兼备的介入放射学已深入至分子生物学的层面,因此,分子影像学应包括分子水平的介入放射学研究。

6 学科的交叉结合

交叉学科、边缘学科是当今科学发展的趋势。影像技术学最邻近的学科应为影像诊断学。前者致力于解决信息的获取、存储、传输、管理及研发新的技术方法;后者则将信息与知识、经验结合,着重于信息的内容,根据影像做出正常解剖结构的辨认及病变的诊断。两者相辅相成,互为依托。所以,影像技术学的发展离不开影像诊断学更密切地沟通与结合将为提高、拓展原有成像方式及开辟新的成像方式做出有益的贡献。医用影像诊断装置用于详细地观察人体内部各器官的结构,找出病灶的位置毫克大小,有的还可以进行器

官功能的判断 。还有医用影像诊断装备情况,已成了衡量医院现代化水平的标志。

7 浅谈医学影像技术的下一个热点

医疗保健事业在经济上的窘迫使得90年代以来,成为一个没有大规模推广一种新的影像技术的、相对沉寂的时期,延续了一些现有影像技术的发展,使得他们中至今还没有一种影像技术能对影像学产生巨大的影响。随着科技的发展,最近逐渐发展起来的一批有希望的影像技术。如:磁共振谱(MRS),正电子发射成像(PET)单光子发射成像(SPECT),阻抗成像(EIT)和光学成像(OCT或NRI)。他们有可能很快成为大规模应用的影像技术,将为脑、肺、乳房及其他部位的成像提供新的信息。

磁源成像

人体体内细胞膜内外的离子运动可形成生物电流。这种生物电流可产生磁现象,检测心脏或脑的生物电流产生的磁场可以得到心磁图或脑磁图。这类磁现象可反映出电子活动发生的深度,携带有人体组织和器官的大量信息。

PET和SPECT

单光子发射成像(SPECT)和正电子成像(PET)是核医学的两种CT技术。由于它们都是接受病人体内发射的射线成像,故统称为发射型计算机断层成像(ECT)。ECT依据核医学的放射性示踪原理进行体内诊断,要在人体中使用放射性核素。ECT存在的主要问题是空间分辨率低。最近的技术发展可能促进推广ECT的应用。

阻抗成像(EIT)

EIT是通过对人体加电压,测量在电极间流动的电流,得到组织电导率变化的图像。 目的在于形成对体内某点阻抗的估计。这种技术的优点是,所采用的电流对人体是无害的,因而对成像对象无任何限制。这种技术的时间分辨率很好,因而可连续监测实际的应用,已实现以视频帧速的医用EIT的实验样机。

光学成像(OTC或NIR)

近期的一些实质性的进展表明,光学成像有可能在最近几年内发展成为一种能真正用于临床的影像设备。它的优点是:光波长的辐射是非离子化的,因而对人体是无伤害的,可重复曝光;它们可区分那些在光波长下具有不同吸收与散射,但不能由其它技术识别的软组织;天然色团所特有的吸收使得能够获得功能信息。它正在开辟它的临床领域。

MRS

MRS是一种无创研究人体组织生理化的极有用的工具。它所得到的生化信息可与人体组织代谢相关联,并表明它正常组织的方式有差别。目前MRS还没有常规用于临床,但已有大量技术正在进行正式适用。

上述的几个先进的技术,究竟哪一个能成为医学影像技术的热点,我们认为应要有最大效益、安全和经济是最为重要的。在逝去的20世纪,医学影像技术经历了从孕育、成长到发展的过程,回顾过去可以断言它在防治人类疾病及延长平均寿命方面是功不可没的。在一切“以人类为本”的21世纪中,人们将继续用医学影像技术来为人们的健康服务。

图像处理及目标检测论文

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

你擅长哪个就写哪个。

图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

你哪一个熟悉就写哪方面的,如果都不熟悉,我建议写图像处理方面的。因为直观,可以写的也比较多,比如车牌识别、人脸识别、指纹识别、目标检测与跟踪。

传统目标检测最新论文

论文: EfficientDet: Scalable and Efficient Object Detection

目前目标检测领域,高精度的模型通常需要很大的参数量和计算量,而轻量级的网络则一般都会牺牲精度。因此,论文希望建立一个可伸缩的高精度且高性能的检测框架。论文基于one-stage的检测网络范式,进行了多种主干网络、特征融合和class/box预测的结构尝试,主要面临两个挑战:

FPN是目前最广泛的多尺度融合方法,最近也有PANet和NAS-FPN一类跨尺度特征融合方法。对于融合不同的特征,最初的方法都只是简单地直接相加,然而由于不同的特征是不同的分辨率,对融合输出特征的共享应该是不相等的。为了解决这一问题,论文提出简单但高效加权的bi-directional feature pyramid network(BiFPN),该方法使用可学习的权重来学习不同特征的重要性,同时反复地进行top-down和bottom-up的多尺度融合

论文认为除了缩放主干网络和输入图片的分辨率,特征网络(feature network)和box/class预测网络的缩放对准确率和性能也是很重要的。作者借鉴EfficientNet,提出针对检测网络的混合缩放方法(compound scaling method),同时对主干网络,特征网络和box/class预测网络的分辨率/深度/宽度进行缩放

最后,论文将EfficientNet作为主干,结合BiFPN和混合缩放,提出新的检测系列EfficientDet,精度高且轻量,COCO上的结果如图1,论文的贡献有以下3点:

定义多尺寸特征 ,论文的目标是找到变化函数 来高效融合不同的特征,输出新特征 。具体地,图2a展示了top-down FPN网络结构,一般FPN只有一层,这里应该为了对比写了repeat形式。FPN获取3-7层的输入 , 代表一个分辨率为 的特征层

top-down FPN操作如上所示, 为上采用或下采样来对齐分辨率, 通常是特征处理的卷积操作

top-down FPN受限于单向的信息流,为了解决这一问题,PANet(图2b)增加了额外的bottom-up路径的融合网络,NAS_FPN(图2c)使用神经架构搜索来获取更好的跨尺度特征网络的拓扑结构,但需要大量资源进行搜索。其中准确率最高的是PANet,但是其需要太多的参数和计算量,为了提高性能,论文对跨尺寸连接做了几点改进:

大多的特征融合方法都将输入特征平等对待,而论文观察到不同分辨率的输入对融合输出的特征的贡献应该是不同的。为了解决这一问题,论文提出在融合时对输入特征添加额外的权重预测,主要有以下方法:

, 是可学习的权重,可以是标量(per-feature),也可以是向量(per-channel),或者是多维tensor(per-pixel)。论文发现标量形式已经足够提高准确率,且不增加计算量,但是由于标量是无限制的,容易造成训练不稳定,因此,要对其进行归一化限制

,利用softmax来归一化所有的权重,但softmax操作会导致GPU性能的下降,后面会详细说明

,Relu保证 , 保证数值稳定。这样,归一化的权重也落在 ,由于没有softmax操作,效率更高,大约加速30%

BiFPN集合了双向跨尺寸的连接和快速归一化融合,level 6的融合操作如上, 为top-down路径的中间特征, 是bottom-up路径的输出特征,其它层的特征也是类似的构造方法。为了进一步提高效率,论文特征融合时采用depthwise spearable convolution,并在每个卷积后面添加batch normalization和activation

EfficientDet的结构如图3所示,基于one-stage检测器的范式,将ImageNet-pretrained的EfficientNet作为主干,BiFPN将主干的3-7层特征作为输入,然后重复进行top-down和bottom-up的双向特征融合,所有层共享class和box网络

之前检测算法的缩放都是针对单一维度的,从EfficientNet得到启发,论文提出检测网络的新混合缩放方法,该方法使用混合因子 来同时缩放主干网络的宽度和深度、BiFPN网络、class/box网络和分辨率。由于缩放的维度过多,EfficientNet使用的网格搜索效率太慢,论文改用heuristic-based的缩放方法来同时缩放网络的所有维度

EfficientDet重复使用EfficientNet的宽度和深度因子,EfficinetNet-B0至EfficientNet-B6

论文以指数形式来缩放BiFPN宽度 (#channels),而以线性形式增加深度 (#layers),因为深度需要限制在较小的数字

box/class预测网络的宽度固定与BiFPN的宽度一致,而用公式2线性增加深度(#layers)

因为BiFPN使用3-7层的特征,因此输入图片的分辨率必需能被 整除,所以使用公式3线性增加分辨率

结合公式1-3和不同的 ,论文提出EfficientDet-D0到EfficientDet-D6,具体参数如Table 1,EfficientDet-D7没有使用 ,而是在D6的基础上增大输入分辨率

模型训练使用momentum=和weight decay=4e-5的SGD优化器,在初始的5%warm up阶段,学习率线性从0增加到,之后使用余弦衰减规律(cosine decay rule)下降,每个卷积后面都添加Batch normalization,batch norm decay=,epsilon=1e-4,梯度使用指数滑动平均,decay=,采用 和 的focal loss,bbox的长宽比为 ,32块GPU,batch size=128,D0-D4采用RetinaNet的预处理方法,D5-D7采用NAS-FPN的增强方法

Table 2展示了EfficientDet与其它算法的对比结果,EfficientDet准确率更高且性能更好。在低准确率区域,Efficient-D0跟YOLOv3的相同准确率但是只用了1/28的计算量。而与RetianaNet和Mask-RCNN对比,相同的准确率只使用了1/8参数和1/25的计算量。在高准确率区域,EfficientDet-D7达到了,比NAS-FPN少使用4x参数量和计算量,而anchor也仅使用3x3,非9x9

论文在实际的机器上对模型的推理速度进行了对比,结果如图4所示,EfficientDet在GPU和CPU上分别有和加速

论文对主干网络和BiFPN的具体贡献进行了实验对比,结果表明主干网络和BiFPN都是很重要的。这里要注意的是,第一个模型应该是RetinaNet-R50(640),第二和第三个模型应该是896输入,所以准确率的提升有一部分是这个原因。另外使用BiFPN后模型精简了很多,主要得益于channel的降低,FPN的channel都是256和512的,而BiFPN只使用160维,这里应该没有repeat

Table 4展示了Figure 2中同一网络使用不同跨尺寸连接的准确率和复杂度,BiFPN在准确率和复杂度上都是相当不错的

Table 5展示了不同model size下两种加权方法的对比,在精度损失不大的情况下,论文提出的fast normalized fusion能提升26%-31%的速度

figure 5展示了两种方法在训练时的权重变化过程,fast normalizaed fusion的变化过程与softmax方法十分相似。另外,可以看到权重的变化十分快速,这证明不同的特征的确贡献是不同的,

论文对比了混合缩放方法与其它方法,尽管开始的时候相差不多,但是随着模型的增大,混合精度的作用越来越明显

论文提出BiFPN这一轻量级的跨尺寸FPN以及定制的检测版混合缩放方法,基于这些优化,推出了EfficientDet系列算法,既保持高精度也保持了高性能,EfficientDet-D7达到了SOTA。整体而言,论文的idea基于之前的EfficientNet,创新点可能没有之前那么惊艳,但是从实验来看,论文推出的新检测框架十分实用,期待作者的开源

论文:A Dual Weighting Label Assignment Scheme for Object Detection

[图片上传失败...(image-26dcc3-25)]

Anchor作为目标检测器训练的基础单元,需要被赋予正确的分类标签和回归标签,这样的标签指定(LA, label assignment)过程也可认为是损失权重指定过程。对于单个anchor的cls损失计算,可以统一地表示为:

[图片上传失败...(image-2e24aa-25)]

和 为正向权重和反向权重,用于控制训练的方向。基于这个设计,可以将LA方法分为两个大类:

[图片上传失败...(image-372b16-25)]

为了给检测器提供更多的监督信息,论文提出了新的LA方法DW(dual weighting),从不同的角度单独计算 和 并让其能够互补。此外,为了给权重计算函数提供更准确的reg分数,论文还提出了新的bbox精调操作,预测目标的边界位置并根据对应的特征产生更准确的精调信息。

由于NMS的存在,检测器应该预测一致的bbox,既有高分类分数也有准确的位置定位。但如果在训练时平等地对待所有的训练样本,而cls分数越高的预测结果的reg位置不一定越准确,这往往会导致cls head与reg head之间就会存在不一致性。为此,Soft LA通过加权损失来更柔和地对待训练样本,加强cls head与reg head的一致性。基于Soft LA,anchor的损失可以表示为:

[图片上传失败...(image-51f384-25)]

其中 为预测的cls分数。为一致性更高的预测结果分配更大的 和 ,能够使得网络专注于学习高质量的预测结果,减轻cls head与reg head的不一致问题。

[图片上传失败...(image-98093b-25)]

当前的方法直接将 设置为 ,主要关注如何定义一致性以及如何将其集成到损失权重中。表1总结了一些方法对 和 的计算公式,这些方法先定义用于度量一致性的指标 ,随后将 作为不一致性的度量指标,最后添加缩放因子将指标集成到损失权重中。  上述方法的 和 都是高度相关的,而论文认为pos和neg权重应该以prediction-aware的方式单独设置,具体如下:

通过上述定义, 对于pos权重相似的这种模棱两可的anchor,就可以根据不同的neg权重得到更细粒度的监督信息 。

[图片上传失败...(image-535eff-25)]

DW方法的整体流程如图2所示,先根据中心点距离来为每个GT构造候选正样本集,其余的anchor为候选负样本。由于负样本的统计信息十分混乱,所以不参与权重函数的计算。候选正样本会被赋予三个权重 、 以及 ,用于更有效地监督训练。

pos权重需要反映预测结果对检测性能的重要性,论文从目标检测的验证指标来分析影响重要性的因素。在测试时,通常会根据cls分数或cls分数与IoU的结合对单分类的预测结果进行排序,从前往后依次判断。正确的预测需满足以下两点:

上述条件可认为是选择高ranking分数以及高IoU的预测结果,也意味着满足这两个条件的预测结果有更大概率在测试阶段被选择。从这个角度来看,pos权重 就应该与IoU和ranking分数正相关。首先定义一致性指标 ,用于度量两个条件的对齐程度:

[图片上传失败...(image-aac9d-25)]

为了让不同anchor的pos权重的方差更大,添加指数调节因子:

[图片上传失败...(image-3a2156-25)]

最终,各anchor的pos权重会根据对应GT的候选anchor的pos权重之和进行归一化。

pos权重虽然可以使得一致的anchor同时具有高cls分数和高IoU,但无法区分不一致anchor的重要程度。如前面图1所示,anchor D定位校准但分类分数较低,而anchor B恰好相反。两者的一致性程度 一致,pos权重无法区分差异。为了给检测器提供更多的监督信息,准确地体现anchor的重要程度,论文提出为两者赋予更清晰的neg权重,具体由以下两部分构成。

根据COCO的验证指标,IoU不满足阈值的预测结果一律归为错误的检测。所以,IoU是决定achor为负样本的概率的唯一因素,记为 。由于COCO使用的IoU阈值来计算AO,所以 应该满足以下规则:

[图片上传失败...(image-639b1e-25)]

任意 上单调递减的函数都可以作为 中间部分。为了简便,论文采用了以下函数:

[图片上传失败...(image-fa54fb-25)]

公式6需要穿过点 和 ,一旦 确定了,参数 和 可通过待定系数法确定。

[图片上传失败...(image-83052a-25)]

图3展示了不同 下的 曲线。

在推理时,ranking队列中靠前的neg预测结果虽然不会影响召回率,但会降低准确率。为了得到更高的性能,应该尽可能地降低neg预测结果的ranking分数。所以在训练中,ranking分数较高的neg预测结果应该比ranking分数较低的预测结果更为重要。基于此,定义neg预测结果的重要程度 为ranking分数的函数:

[图片上传失败...(image-1f95aa-25)]

最终,整体的neg权重 变为:

[图片上传失败...(image-851912-25)]

与 负相关,与 正相关。对于pos权重相同的anchor,IoU更小的会有更大的neg权重。在兼容验证指标的同时, 能给予检测器更多的监督信息。

pos权重和neg权重都以IoU作为输入,更准确的IoU可以保证更高质量的训练样本,有助于学习更强的特征。为此,论文提出了新的box精调操作,基于预测的四条边的偏移值 进行下一步的精调。

[图片上传失败...(image-98246a-25)]

考虑到目标边界上的点有更大的概率预测准确的位置,论文设计了可学习的预测模块,基于初步的bbox为每条边生成边界点。如图4所示,四个边界点的坐标定义为:

[图片上传失败...(image-a8361b-25)]

其中, 为精调模块的输出。最后,结合边界点的预测和精调模块的输出,最终精调后的anchor偏移 为:

[图片上传失败...(image-935c8b-25)]

DW策略可直接应用到大多数的dense检测器中。论文将DW应用到FCOS中并进行了少量修改,将centerness分支和分类分支合并成cls分数,网络的损失为:

[图片上传失败...(image-5d0fc-25)]

[图片上传失败...(image-1a38af-25)]

这里的 跟公式3是同一个, 和 分别为候选anchor数和非候选anchor数。

[图片上传失败...(image-20568e-25)]

平衡超参数对性能的影响。

[图片上传失败...(image-14e2fa-25)]

候选anchor选择方法对性能的影响。第一种为中心点的距离阈值,第二种选择最近的几个,第三种为距离权重与pos权重乘积排序。

[图片上传失败...(image-74467a-25)]

neg权重计算方式对比。

[图片上传失败...(image-8baa09-25)]

LA研究之间的对比。

[图片上传失败...(image-9d2740-25)]

与SOTA检测算法对比。

论文提出自适应的label assignment方法DW,打破了以往耦合加权的惯例。根据不同角度的一致性和非一致性指标,动态地为anchor分配独立的pos权重和neg权重,可以更全面地监督训练。此外,论文还提出了新的预测框精调操作,在回归特征图上直接精调预测框。

深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理。  目标检测可以理解为是物体识别和物体定位的综合 ,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置。 2014年R-CNN算法被提出,基本奠定了two-stage方式在目标检测领域的应用。它的算法结构如下图 算法步骤如下: R-CNN较传统的目标检测算法获得了50%的性能提升,在使用VGG-16模型作为物体识别模型情况下,在voc2007数据集上可以取得66%的准确率,已经算还不错的一个成绩了。其最大的问题是速度很慢,内存占用量很大,主要原因有两个 针对R-CNN的部分问题,2015年微软提出了Fast R-CNN算法,它主要优化了两个问题。 R-CNN和fast R-CNN均存在一个问题,那就是 由选择性搜索来生成候选框,这个算法很慢 。而且R-CNN中生成的2000个左右的候选框全部需要经过一次卷积神经网络,也就是需要经过2000次左右的CNN网络,这个是十分耗时的(fast R-CNN已经做了改进,只需要对整图经过一次CNN网络)。这也是导致这两个算法检测速度较慢的最主要原因。 faster R-CNN 针对这个问题, 提出了RPN网络来进行候选框的获取,从而摆脱了选择性搜索算法,也只需要一次卷积层操作,从而大大提高了识别速度 。这个算法十分复杂,我们会详细分析。它的基本结构如下图 主要分为四个步骤: 使用VGG-16卷积模型的网络结构: 卷积层采用的VGG-16模型,先将PxQ的原始图片,缩放裁剪为MxN的图片,然后经过13个conv-relu层,其中会穿插4个max-pooling层。所有的卷积的kernel都是3x3的,padding为1,stride为1。pooling层kernel为2x2, padding为0,stride为2。 MxN的图片,经过卷积层后,变为了(M/16) x (N/16)的feature map了。 faster R-CNN抛弃了R-CNN中的选择性搜索(selective search)方法,使用RPN层来生成候选框,能极大的提升候选框的生成速度。RPN层先经过3x3的卷积运算,然后分为两路。一路用来判断候选框是前景还是背景,它先reshape成一维向量,然后softmax来判断是前景还是背景,然后reshape恢复为二维feature map。另一路用来确定候选框的位置,通过bounding box regression实现,后面再详细讲。两路计算结束后,挑选出前景候选框(因为物体在前景中),并利用计算得到的候选框位置,得到我们感兴趣的特征子图proposal。 卷积层提取原始图像信息,得到了256个feature map,经过RPN层的3x3卷积后,仍然为256个feature map。但是每个点融合了周围3x3的空间信息。对每个feature map上的一个点,生成k个anchor(k默认为9)。anchor分为前景和背景两类(我们先不去管它具体是飞机还是汽车,只用区分它是前景还是背景即可)。anchor有[x,y,w,h]四个坐标偏移量,x,y表示中心点坐标,w和h表示宽度和高度。这样,对于feature map上的每个点,就得到了k个大小形状各不相同的选区region。 对于生成的anchors,我们首先要判断它是前景还是背景。由于感兴趣的物体位于前景中,故经过这一步之后,我们就可以舍弃背景anchors了。大部分的anchors都是属于背景,故这一步可以筛选掉很多无用的anchor,从而减少全连接层的计算量。 对于经过了3x3的卷积后得到的256个feature map,先经过1x1的卷积,变换为18个feature map。然后reshape为一维向量,经过softmax判断是前景还是背景。此处reshape的唯一作用就是让数据可以进行softmax计算。然后输出识别得到的前景anchors。 另一路用来确定候选框的位置,也就是anchors的[x,y,w,h]坐标值。如下图所示,红色代表我们当前的选区,绿色代表真实的选区。虽然我们当前的选取能够大概框选出飞机,但离绿色的真实位置和形状还是有很大差别,故需要对生成的anchors进行调整。这个过程我们称为bounding box regression。 假设红色框的坐标为[x,y,w,h], 绿色框,也就是目标框的坐标为[Gx, Gy,Gw,Gh], 我们要建立一个变换,使得[x,y,w,h]能够变为[Gx, Gy,Gw,Gh]。最简单的思路是,先做平移,使得中心点接近,然后进行缩放,使得w和h接近。如下:我们要学习的就是dx dy dw dh这四个变换。由于是线性变换,我们可以用线性回归来建模。设定loss和优化方法后,就可以利用深度学习进行训练,并得到模型了。对于空间位置loss,我们一般采用均方差算法,而不是交叉熵(交叉熵使用在分类预测中)。优化方法可以采用自适应梯度下降算法Adam。 得到了前景anchors,并确定了他们的位置和形状后,我们就可以输出前景的特征子图proposal了。步骤如下: 1,得到前景anchors和他们的[x y w h]坐标。 2,按照anchors为前景的不同概率,从大到小排序,选取前pre_nms_topN个anchors,比如前6000个 3,剔除非常小的anchors。 4,通过NMS非极大值抑制,从anchors中找出置信度较高的。这个主要是为了解决选取交叠问题。首先计算每一个选区面积,然后根据他们在softmax中的score(也就是是否为前景的概率)进行排序,将score最大的选区放入队列中。接下来,计算其余选区与当前最大score选区的IOU(IOU为两box交集面积除以两box并集面积,它衡量了两个box之间重叠程度)。去除IOU大于设定阈值的选区。这样就解决了选区重叠问题。 5,选取前post_nms_topN个结果作为最终选区proposal进行输出,比如300个。 经过这一步之后,物体定位应该就基本结束了,剩下的就是物体识别了。 和fast R-CNN中类似,这一层主要解决之前得到的proposal大小形状各不相同,导致没法做全连接。全连接计算只能对确定的shape进行运算,故必须使proposal大小形状变为相同。通过裁剪和缩放的手段,可以解决这个问题,但会带来信息丢失和图片形变问题。我们使用ROI pooling可以有效的解决这个问题。 ROI pooling中,如果目标输出为MxN,则在水平和竖直方向上,将输入proposal划分为MxN份,每一份取最大值,从而得到MxN的输出特征图。 ROI Pooling层后的特征图,通过全连接层与softmax,就可以计算属于哪个具体类别,比如人,狗,飞机,并可以得到cls_prob概率向量。同时再次利用bounding box regression精细调整proposal位置,得到bbox_pred,用于回归更加精确的目标检测框。 这样就完成了faster R-CNN的整个过程了。算法还是相当复杂的,对于每个细节需要反复理解。faster R-CNN使用resNet101模型作为卷积层,在voc2012数据集上可以达到的准确率,超过yolo ssd和yoloV2。其最大的问题是速度偏慢,每秒只能处理5帧,达不到实时性要求。 针对于two-stage目标检测算法普遍存在的运算速度慢的缺点, yolo创造性的提出了one-stage。也就是将物体分类和物体定位在一个步骤中完成。 yolo直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。通过这种方式, yolo可实现45帧每秒的运算速度,完全能满足实时性要求 (达到24帧每秒,人眼就认为是连续的)。它的网络结构如下图: 主要分为三个部分:卷积层,目标检测层,NMS筛选层。 采用Google inceptionV1网络,对应到上图中的第一个阶段,共20层。这一层主要是进行特征提取,从而提高模型泛化能力。但作者对inceptionV1进行了改造,他没有使用inception module结构,而是用一个1x1的卷积,并联一个3x3的卷积来替代。(可以认为只使用了inception module中的一个分支,应该是为了简化网络结构) 先经过4个卷积层和2个全连接层,最后生成7x7x30的输出。先经过4个卷积层的目的是为了提高模型泛化能力。yolo将一副448x448的原图分割成了7x7个网格,每个网格要预测两个bounding box的坐标(x,y,w,h)和box内包含物体的置信度confidence,以及物体属于20类别中每一类的概率(yolo的训练数据为voc2012,它是一个20分类的数据集)。所以一个网格对应的参数为(4x2+2+20) = 30。如下图 其中前一项表示有无人工标记的物体落入了网格内,如果有则为1,否则为0。第二项代表bounding box和真实标记的box之间的重合度。它等于两个box面积交集,除以面积并集。值越大则box越接近真实位置。 分类信息: yolo的目标训练集为voc2012,它是一个20分类的目标检测数据集 。常用目标检测数据集如下表: | Name | # Images (trainval) | # Classes | Last updated | | --------------- | ------------------- | --------- | ------------ | | ImageNet | 450k | 200 | 2015 | | COCO | 120K | 90 | 2014 | | Pascal VOC | 12k | 20 | 2012 | | Oxford-IIIT Pet | 7K | 37 | 2012 | | KITTI Vision | 7K | 3 | | 每个网格还需要预测它属于20分类中每一个类别的概率。分类信息是针对每个网格的,而不是bounding box。故只需要20个,而不是40个。而confidence则是针对bounding box的,它只表示box内是否有物体,而不需要预测物体是20分类中的哪一个,故只需要2个参数。虽然分类信息和confidence都是概率,但表达含义完全不同。 筛选层是为了在多个结果中(多个bounding box)筛选出最合适的几个,这个方法和faster R-CNN 中基本相同。都是先过滤掉score低于阈值的box,对剩下的box进行NMS非极大值抑制,去除掉重叠度比较高的box(NMS具体算法可以回顾上面faster R-CNN小节)。这样就得到了最终的最合适的几个box和他们的类别。 yolo的损失函数包含三部分,位置误差,confidence误差,分类误差。具体公式如下: 误差均采用了均方差算法,其实我认为,位置误差应该采用均方差算法,而分类误差应该采用交叉熵。由于物体位置只有4个参数,而类别有20个参数,他们的累加和不同。如果赋予相同的权重,显然不合理。故yolo中位置误差权重为5,类别误差权重为1。由于我们不是特别关心不包含物体的bounding box,故赋予不包含物体的box的置信度confidence误差的权重为,包含物体的权重则为1。 Faster R-CNN准确率mAP较高,漏检率recall较低,但速度较慢。而yolo则相反,速度快,但准确率和漏检率不尽人意。SSD综合了他们的优缺点,对输入300x300的图像,在voc2007数据集上test,能够达到58 帧每秒( Titan X 的 GPU ),的mAP。 SSD网络结构如下图: 和yolo一样,也分为三部分:卷积层,目标检测层和NMS筛选层 SSD论文采用了VGG16的基础网络,其实这也是几乎所有目标检测神经网络的惯用方法。先用一个CNN网络来提取特征,然后再进行后续的目标定位和目标分类识别。 这一层由5个卷积层和一个平均池化层组成。去掉了最后的全连接层。SSD认为目标检测中的物体,只与周围信息相关,它的感受野不是全局的,故没必要也不应该做全连接。SSD的特点如下。 每一个卷积层,都会输出不同大小感受野的feature map。在这些不同尺度的feature map上,进行目标位置和类别的训练和预测,从而达到 多尺度检测 的目的,可以克服yolo对于宽高比不常见的物体,识别准确率较低的问题。而yolo中,只在最后一个卷积层上做目标位置和类别的训练和预测。这是SSD相对于yolo能提高准确率的一个关键所在。 如上所示,在每个卷积层上都会进行目标检测和分类,最后由NMS进行筛选,输出最终的结果。多尺度feature map上做目标检测,就相当于多了很多宽高比例的bounding box,可以大大提高泛化能力。 和faster R-CNN相似,SSD也提出了anchor的概念。卷积输出的feature map,每个点对应为原图的一个区域的中心点。以这个点为中心,构造出6个宽高比例不同,大小不同的anchor(SSD中称为default box)。每个anchor对应4个位置参数(x,y,w,h)和21个类别概率(voc训练集为20分类问题,在加上anchor是否为背景,共21分类)。如下图所示: 另外,在训练阶段,SSD将正负样本比例定位1:3。训练集给定了输入图像以及每个物体的真实区域(ground true box),将default box和真实box最接近的选为正样本。然后在剩下的default box中选择任意一个与真实box IOU大于的,作为正样本。而其他的则作为负样本。由于绝大部分的box为负样本,会导致正负失衡,故根据每个box类别概率排序,使正负比例保持在1:3。SSD认为这个策略提高了4%的准确率 另外,SSD采用了数据增强。生成与目标物体真实box间IOU为 的patch,随机选取这些patch参与训练,并对他们进行随机水平翻转等操作。SSD认为这个策略提高了的准确率。 和yolo的筛选层基本一致,同样先过滤掉类别概率低于阈值的default box,再采用NMS非极大值抑制,筛掉重叠度较高的。只不过SSD综合了各个不同feature map上的目标检测输出的default box。 SSD基本已经可以满足我们手机端上实时物体检测需求了,TensorFlow在Android上的目标检测官方模型,就是通过SSD算法实现的。它的基础卷积网络采用的是mobileNet,适合在终端上部署和运行。 针对yolo准确率不高,容易漏检,对长宽比不常见物体效果差等问题,结合SSD的特点,提出了yoloV2。它主要还是采用了yolo的网络结构,在其基础上做了一些优化和改进,如下 网络采用DarkNet-19:19层,里面包含了大量3x3卷积,同时借鉴inceptionV1,加入1x1卷积核全局平均池化层。结构如下 yolo和yoloV2只能识别20类物体,为了优化这个问题,提出了yolo9000,可以识别9000类物体。它在yoloV2基础上,进行了imageNet和coco的联合训练。这种方式充分利用imageNet可以识别1000类物体和coco可以进行目标位置检测的优点。当使用imageNet训练时,只更新物体分类相关的参数。而使用coco时,则更新全部所有参数。 YOLOv3可以说出来直接吊打一切图像检测算法。比同期的DSSD(反卷积SSD), FPN(feature pyramid networks)准确率更高或相仿,速度是其1/3.。 YOLOv3的改动主要有如下几点:不过如果要求更精准的预测边框,采用COCO AP做评估标准的话,YOLO3在精确率上的表现就弱了一些。如下图所示。 当前目标检测模型算法也是层出不穷。在two-stage领域, 2017年Facebook提出了mask R-CNN 。CMU也提出了A-Fast-RCNN 算法,将对抗学习引入到目标检测领域。Face++也提出了Light-Head R-CNN,主要探讨了 R-CNN 如何在物体检测中平衡精确度和速度。 one-stage领域也是百花齐放,2017年首尔大学提出 R-SSD 算法,主要解决小尺寸物体检测效果差的问题。清华大学提出了 RON 算法,结合 two stage 名的方法和 one stage 方法的优势,更加关注多尺度对象定位和负空间样本挖掘问题。 目标检测领域的深度学习算法,需要进行目标定位和物体识别,算法相对来说还是很复杂的。当前各种新算法也是层不出穷,但模型之间有很强的延续性,大部分模型算法都是借鉴了前人的思想,站在巨人的肩膀上。我们需要知道经典模型的特点,这些tricks是为了解决什么问题,以及为什么解决了这些问题。这样才能举一反三,万变不离其宗。综合下来,目标检测领域主要的难点如下: 一文读懂目标检测AI算法:R-CNN,faster R-CNN,yolo,SSD,yoloV2 从YOLOv1到v3的进化之路 SSD-Tensorflow超详细解析【一】:加载模型对图片进行测试  YOLO              C#项目参考: 项目实践贴个图。

图像检测论文

关于医学影像的论文范文

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,希望对大家有所帮助!

前 言

数字图像处理技术以当前数字化发展为基础, 逐渐衍生出的一项网络处理技术, 数字图像处理技术可实现对画面更加真实的展示。 在医学中,随着数字图像处理技术的渗透,数字图像将相关的病症呈现出来, 并通过处理技术对画面上相关数据进行处理,这种医疗手段,可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。 在医学中医学影像广泛用于以下几方面之中,其中包括 CT(计算机 X 线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及 UI(超声波影像)。 数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升。

1 关键技术在数字图像处理中的应用

医学影像中对于数字图像的处理, 通常是将数字图像转化成为相关数据,并针对相关数据呈现的结果,对患者病症进行分析,在对数字图像处理中,存在一定的关键技术,这些关键技术直接影响着整个医疗治疗与检查。

图像获取

图像获取顾名思义将医患的相关数据进行整理, 在进行数字图像检测时,得出的相关图像,在获取相关图像后,经过计算机的转变,将图像以数据的形式进行处理,最后将处理结果呈现出来。 在计算机摄取图像中,通过光电的转换,以数字化的形式展现出来, 数字图像处理技术还可实现将分析的结果作为医疗诊断的依据,进行保存[1].

图像处理

在运用数字图像获取相关图像后,需对图像进行处理,如压缩处理、编码处理,将所有运行的数据进行整理,将有关的数据进行压缩,并将相关编码进行处理,如模型基编码处理、神经网络编码处理等。

图像识别与重建

在经过图像复原后,将图像进行变换,在进行图片分析后分割相关图像,测量图像的区域特征,最后实现图像设备与呈现,在重建图像后,进行图像配准。

2 医学影像中数字图像处理技术

数字图像处理技术的辅助治疗

当前医学图像其中包括计算机 X 线断层扫描、 正电子发射断层成像、核磁共振影像以及超声波影像,在医疗治疗中,可根据相关数据的组建,进而实现几何模式的呈现,如 3D,还原机体的各项组织中,对于细小部位可实现放大观察,可实现医生定量认识,更加细致的观察病变处,为接下来的医疗治疗提供帮助。 例如在核磁共振影像治疗中, 首先设定一定的磁场,通过无线电射频脉冲激发的'方式,对机体中氢原子核进行刺激,在运行过程中产生共振,促进机体吸收能力,帮助查找病症所在[2].

提升放射治疗的疗效

在医疗中, 运用数字图像处理技术即可实现对患病处的观察,也可实现对病患处的治疗,这种治疗方式常见于肿瘤或癌症病变的放射性治疗。 在进行治疗前, 首先定位于病患方位,在准确定位后,借助数字图像处理技术,全方位的计划治疗方案,并在此基础上对病患处进行治疗。 例如在治疗肿瘤癌症等病变之处,利用数字图像排查病变以外机体状况,降低手术风险。

加深对脑组织以其功能认识

脑组织是人体机能运转的核心, 在脑组织中存在众多复杂的结构,因此想要实现对脑组织的功能认识,必须对脑组织进行全方位的观测,深层探析其各项组织结构。 近些年随着医疗技术的提升,数字图像处理技术被运用到医学之中,数字图像处理技术可实现透过大脑皮层对脑组织进行全方位观测,最后立体的呈现出脑组织中各项机构的运作状况[3]. 例如功能性磁共振成像即 FMRI,这种成像可对机体大脑皮层的活动状况进行检测, 还可实时跟踪信号的改变, 其高清的时间分辨率,为当代医疗提供了众多帮助。

实现了数字解剖功能

数字解剖即虚拟解剖, 这种解剖行为需以高科技为依托从力学、视觉等各方面,通过虚拟人资源得建立,透析机体各项组织结构,实现对虚拟人的解剖,增加对机体的认识,真实的还原解剖学相关知识,这种手段对于医疗教学、解剖研究具有重要的影响作用。

3 结 论

综上所述, 数字图像处理技术在医学影像中具有重要的应用价值,其技术的发展为医疗技术提供了进步的平台,也为数字图像处理技术的发展提供了应用空间, 这种结合的方式既是社会发展的要求,也是时代进步的趋势。

参考文献:

[1]张瑞兰,华 晶,安巍力,刘迎九。数字图像处理在医学影像方面的应用[J].医学信息,2012,03:400~401.

[2]刘 磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012,24:5642~5643.

[3]李 杨,李兴山,何常豫,孟利军。数字图像处理技术在腐蚀科学中的应用研究[J].价值工程,2015,02:51~52.

图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

相关百科

热门百科

首页
发表服务