1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。
不管是导师还是读者,评判论文的第一感是先审核题目,选题是撰写论文的奠基工程,在一定程度上决定着论文的优劣。下面我给大家带来2021各方向硕士论文题目写作参考,希望能帮助到大家!
计算机硕士论文题目选题参考
1、基于特征提取的图像质量评价及计算机辅助诊断
2、多功能体育馆音质控制计算机仿真实例对比研究
3、中职计算机应用基础课游戏化学习软件的设计研究
4、基于图像的计算机物体识别研究
5、中职计算机生态课堂高效教学策略的实践性研究
6、基于计算机视觉的胶囊缺陷检测系统的设计与实现
7、计算机网络信息安全风险评估标准与 方法 研究
8、基于计算机视觉的表面缺陷检测及应用
9、擦窗机伸缩臂计算机辅助设计系统研究
10、基于乳腺癌计算机辅助诊断的病理图像分析
11、面向创新创业的民办高校计算机基础课程教学改革研究
12、中职学校计算机类课程作业提交与评价系统研究
13、基于物联网的计算机监控系统设计与开发
14、基于计算机视觉的皮革测配色研究
15、基于计算机视觉的杂草种子鉴别
16、基于计算机视觉的花卉分级系统研究
17、计算机辅助景观表现研究
18、基于计算机视觉的水面智能监控研究
19、计算机辅助飞机铆钉连接优化设计
20、非相似平台管理计算机的余度管理技术研究
21、基于图像形状特征量的计算机辅助肝硬化检测研究
22、乳腺肿瘤超声剪切波弹性图像的计算机辅助诊断
23、面向老龄用户的计算机界面交互模式研究
24、培养中职计算机网络专业学生综合实践能力的 措施 研究
25、基于动态部分可重构FPGA的计算机组成原理实验平台设计
26、三值光学计算机解码器中并行感光阵列的设计
27、基于中国虹计算机的文件管理系统设计与研究
28、计算机网络虚拟实验教学平台的设计与实现
29、基于计算机视觉的油菜生长过程自动识别研究
30、基于计算机视觉的火焰三维重建算法的研究
31、企业内网计算机终端软件补丁管理系统的研究与设计
32、治安监控中基于计算机视觉的异常行为检测技术研究
33、集成无线体域网穿戴式计算机设计
34、基于计算机视觉的疲劳驾驶检测技术研究
35、基于MRI的肝脏病变计算机辅助诊断
36、基于模糊认知图的计算机在线证据智能分析技术研究
37、基于录像分析的高职计算机微课设计的案例研究
38、动态可重构穿戴计算机软件平台的设计与实现
39、计算机视觉中可变特征目标检测的研究与应用
40、基于计算机视觉的单体猪喘气行为视频特征表达方法研究
41、基于计算机视觉的指针式电表校验的关键技术研究
42、基于计算机视觉的车牌识别系统的算法研究
43、乐山计算机学校学生管理系统设计与实现
44、基于计算机视觉微测量技术研究
45、基于计算机视觉的枸杞分级方法研究
46、基于计算机视觉的外膜厚度测量方法的研究
47、基于计算机视觉的车道偏离预警算法研究
48、节能监管计算机联网多参数计量控制系统
49、点状开发建设项目水土保持方案计算机辅助编制系统研发
50、大学计算机课程实验教学平台的设计与实现
51、肠癌计算机辅助识别算法的研究
52、计算机联锁安全关键软件可靠性设计
53、计算机视觉在织物疵点自动检测中的应用研究
54、数字水印技术在计算机辅助评卷系统中的应用研究
教育 硕士论文题目
1、帮助学生掌握数学解题策略的实验与研究
2、中学数学合情推理教学现状调查和分析
3、中小学数学估算的教与学
4、培养中专生数学应用能力的研究
5、中美高中课程标准下数学探究的比较研究
6、 高中数困生良好数学思维品质培养研究
7、高一学生数学概括能力培养的实验 研究
8、网络环境下高中数学教学模式研究
9、新课标下促进学生数学学习正迁移的研究
10、基于新课程的初中数学自主学习课堂教学的实践与研究
11、中学生对数学公式的记忆特点研究
12、TI-92技术在高中数学新课程算法教学中的应用
13、数学史在中学数学教育中的教学价值
14、在数学教学中,指导学生掌握数学学习策略的实践研究
15、全国高考试题与高中数学竞赛试题相关性研究
16、新课程下初中数学学习过程评价的实验与研究
17、职高《数学》课程探究性学习的实践研究
18、培养数学学习迁移能力的课堂教学策略
19、在高中数学学习中自我监控能力培养策略的研究
20、中专班《数学实验》选修课的研究与实践
21、初中生数学思维过程的研究及数学思维能力的培养
22、培养高中生数学直觉思维能力的途径
23、论现行初中数学课堂练习及单元测验的改革
24、网络环境下“中学数学实验课”教学设计与评价的实践研究
25、高一学生函数概念学习障碍及教学对策
26、师范生数学语言表达能力的实验研究
27、职业中学数学教学中融入数学史教学的实践研究
28、高中数学教学中小组合作学习的实践与研究
29、高中数学新课程《球面上的几何》的教学实验与研究
30、数学发现法教学的课堂实施研究
31、开展初中“ 反思 性数学学习”的研究与实践
32、初中数学新课程下小组合作学习的研究与实验
33、以“教学反思”为载体的小学数学教师培训的研究
34、技校兴趣缺乏型数困生的现状及教学研究
35、中学数学课堂探究式教学模式的理论和实践研究
36、数学交流探究
37、论数学课程的情感与态度目标
38、数学课堂探究性教学的理论与实践研究
39、中学数学教师评价研究
40、五年一贯制师范数学课程设置研究
41、 高二数学 优秀生与学困生的解题策略比较研究
42、建构主义及其观点下的《全日制义务教育数学课程标准》(初中部分)解析
43、新课程标准下弗赖登塔尔数学教学原则在我国小学及初中低年级数学教学中的应用构想
44、在高中数学教学中运用《几何画板》进行数学实验的探索与实践
45、数学历史名题作为研究性学习的开发与实验研究
46、普通高中几何课程体系实施研究
47、中学数学中非语言表征的应用研究
软件工程专业硕士论文题目
1、 城轨线网数据标准与数据库设计研究
2、 基于秘密共享协议的移动数据库研究
3、 云环境下数据库同步服务的研究与实现
4、 列数据库SQL语言编译器的研究与实现
5、 面向复杂负载特征和性能需求的云数据库弹性动态平衡问题研究
6、 数据资源规划中主题数据库划分研究
7、 某某后方仓库综合数据库管理系统设计与实现
8、 SYBASE数据库的索引压缩的设计与实现
9、 分布式数据库中间件DBScale的设计与实现
10、 PostgreSQL数据库中SSD缓存模块的设计与实现
11、 数据库工具DBTool的设计与实现
12、 基于大型数据库的智能搜索与摘要提取技术研究
13、 基于用户行为分析与识别的数据库入侵检测系统的研究
14、 面向内存数据库的快照机制和持久性支持研究
15、 面向海量高并发数据库中间件的研究与应用
16、 CUBRID数据库自动化测试框架的设计与实现
17、 KingbaseES数据库列存储测试的设计与实现
18、 网络数据库服务质量监测系统的设计与实现
19、 外包数据库完整性验证的研究
20、 云南省宗教基础数据库系统的研究与分析
21、 基于SQL Server数据库的银行 保险 数据管理系统的设计和实现
22、 邮政金融电子稽查系统的数据库设计与实现
23、 文档型数据库的存储模型设计和研究
24、 多数据库环境电子商务信息安全技术研究
25、 多数据库环境数据集成与转换技术研究
26、 应用于网络监控系统的数据库设计与实现研究
27、 车辆特征数据库管理系统设计与实现
28、 数据库共享容灾技术应用研究
29、 非关系数据库加密模型的研究
30、 “数据库原理课程”在线评卷系统的设计与实现
31、 基于日志挖掘的数据库入侵检测方法研究
32、 内存数据库在城市垃圾监控系统中的研究与应用
33、 基于B/S结构的数据库加密技术的研究与应用
34、 省级基础水文数据库的设计与实现
35、 多数据库系统数据仓库集成技术应用研究
36、 多数据库环境下数据迁移技术的研究与应用
37、 基于J2EE数据库业务系统代码生成工具的设计与实现
38、 基于智能设备的嵌入式数据库安全性研究
39、 基于药用动物图像数据库的设计与实现
40、 地震预警地质构造条件数据库管理系统的设计与实现
各方向硕士论文题目写作参考相关 文章 :
★ 文学硕士论文的写作技巧
★ 心理学类论文大全及写作指导
★ 教育方向专业毕业论文题目有哪些
★ 论文写作格式
★ 硕士论文写作格式要求
★ 大学生论文题目参考2021
★ 经济学毕业论文题目参考2021
★ 大学学科论文范文及写作指导
★ 毕业论文写作心得5篇
★ 硕士论文写作指导方法及要求
ui设计毕业设计论文题目
ui设计毕业生即将毕业了,大家要在毕业前完成论文的写作哦!下面我为大家介绍ui设计毕业设计论文题目,希望能帮到大家!
1) 基于技术接受模型的传统媒体客户端用户使用行为研究
2) 基于特定主题的手机UI界面设计
3) 儿童数字读物UI设计原则与风格探析
4) 从街头篮球游戏分析游戏UI设计
5) 浅谈交互设计流程中的视觉因素
6) 基于jQueryMobile技术的移动网站开发研究
7) 纬编立体提花织物的计算机仿真
8) 纪检监察信息管理系统的设计与实现
9) 移动医疗类产品的UI设计研究
10) 网页UI设计中“中国风”元素的应用研究
11) 基于移动终端微信平台的UI界面优化设计研究
12) UI设计中用户交互体验的视觉思维分析及探讨
13) 浅谈UI设计中的视觉设计风格发展
14) 浅谈UI设计中的视觉表现
15) UI交互智能迷你净化器设计--创意思维设计
16) 回合制手游新增UI设计规范研究
17) 基于用户体验的移动终端UI设计
18) 基于HTML5和jQueryMobile的移动学习APP设计与实现
19) UI设计中图形创意方法
20) UI设计的交互性与界面视觉设计研究
21) 浅谈艺术设计中UI界面设计及应用
22) 手机操作系统ui设计浅析
23) 浅析用户交互设计中的视觉性设计
24) UI设计中用户体验研究
25) 一种嵌入式UI界面的设计原理浅谈
26) 基于Android的大学生“学习伴侣”系统
27) 中国传统元素在UI界面设计中的应用探析
28) 基于Android的自定义通用可视化控件
29) 利用网络平台进行农村科普教育的UI视觉表现形式研究
30) 动态插画在视觉传达中的创新与应用
31) 基于Android的远程四轴运动控制系统研发
32) 移动终端用户体验极简化设计研究
33) 基于Android的农业大棚环境监控系统的设计
34) 以用户为中心的交互式信息可视化设计研究
35) 电商购物网站UI艺术设计研究
36) 基于Android的健康管理系统客户端的设计与实现
37) 智能手机UI主题界面交互设计
38) 基于UG二次开发的机械零件库研究
39) 基于C/S架构的嵌入式无线视频监控系统的研究与实现
40) 拓路客特色旅游网站UI设计方案
41) UI设计中用户交互体验的视觉思维
42) 基于混合设计模式的iOS事务记录App研究与实现
43) UI交互设计在信息科技中的探究
44) 基于形态语义学的电子产品用户界面研究
45) 智能手机UI设计中用户体验的视觉体验研究
46) UI界面设计中的色彩心理研究
47) 移动互联网产品中的UI视觉设计研究
48) 移动终端环境下视觉训练软件UI设计模式研究
49) 基于手机游戏的UI设计方法研究
50) 论互联网+背景下的平面设计
51) 无线wifi定位技术及其在智慧校园中的研究与应用
52) 用户行为习惯在UI设计中的应用
53) 小学校讯通移动界面综合性设计及应用研究
54) 平行次元UI设计与分析
55) 老年人智能手机UI设计研究
56) 传统“五色观”在UI设计中的应用研究
57) UI设计中用户交互体验的视觉思维探究
58) 基于移动端的高校社团管理系统设计与开发
59) 智能穿戴设备中的UI设计
60) 海啸预警平台中海量数据检索与可视化系统的设计与实现
61) 基于机器视觉的柔性体振动测量系统研究
62) 纯电动汽车电池管理系统的开发与设计
63) 基于橙光游戏平台的《摩梭秘影》手机游戏设计
64) 移动互联网软件产品中的UI设计研究
65) 移动电子商务客户端的用户界面设计研究
66) 极简主义风格在UI设计中的应用与价值探究
67) 视觉设计中色彩元素在游戏UI中的应用研究
68) 可穿戴设备造型及UI设计研究
69) 中国传统图案在手机UI界面中的设计应用研究
70) 基于认知体验的手机APP界面设计探究
71) 移动UI视觉设计应用规律研究
72) 数媒教学APP界面中的情感化表现研究
73) 典型客户能效信息搜集与分析系统设计与实现
74) Android移动写作平台UI设计研究
75) 黄金分割原理在动画电影节奏中的应用研究
76) 手机UI设计中视觉艺术元素的构成
77) 数位产品使用中界面附加工作研究--以手机新闻APP应用为例
78) 论手机UI设计的发展趋势
79) 版式设计法则在UI设计中的体现
80) UI设计与震后汶川羌族文化遗产保护与传播
81) 移动终端健康类APP色彩应用与用户体验关系研究
82) UI静态页面设计与卡通动效结合研究
83) UI设计中的视觉表现
84) 基于AUTOSTAR的智能电视仿真平台设计与实现
85) 混合型移动应用开发框架的设计与实现
86) 从电影网站设计浅析网页UI设计趋势
87) 基于色彩语义学的移动应用UI界面色彩设计原则
88) 断舍离在UI设计中的思考及应用
89) 古代装饰器物在中国风手游UI设计中的拟物与抽象
90) UI设计与用户体验在产品中的重要性
91) 物联网猪场三维建模与视景仿真系统的`设计与实现
92) 如何培养技术与艺术相融合的高技能人才
93) 浅谈UI设计中“扁平化设计”的运用和发展趋势--以IOSUI为例
94) 论手机游戏UI设计中视觉艺术元素的构成
95) 基于UI设计原则的网页界面评价
96) 浅谈适应老年用户的手机社交应用UI设计
97) 基于IOS平台的服装品牌APP开发设计
98) 数字媒体时代视觉传达设计专业的现状及面临的挑战
99) 智能手机教务学工系统APPUI设计的色彩研究
100) 谈立体主义对手机UI设计发展的影响
101) 移动学习APP软件生成平台的对比研究
102) 大连智慧旅游平台UI浪漫设计研究
103) 研析电子设备界面设计的方法及准则
104) 基于Cocos2d-x的电视UI架构设计
105) 一种基于AndroidUI分析与设计方法
106) 智能手机UI界面设计分析
107) 基于WPF的UI设计模式研究
108) 试析图形图像UI设计
109) 基于中国传统元素的手机应用UI设计研究
110) 视觉传达设计的构成要素在游戏UI中的运用
111) UI设计与产品形象的关系探讨
112) 浅谈软件UI的色彩情感
113) 现代化养猪场三维建模与视景仿真系统的研究
114) 浅谈手机UI界面的人性化设计
115) 智能手机UI交互界面人性化设计研究
116) 一种新型自动气象站触控屏交互式系统设计
117) UI设计与产品形象的关系研究
118) 虚拟现实语境中的UI风格化
119) 论UI设计中色彩的应用
120) 手机UI界面的色彩搭配研究
121) 地铁车辆与环境虚拟现实仿真研究
122) 论UI设计中视觉元素的审美与功能
123) 扁平化UI在时尚品牌营销类APP中的应用研究
124) 中国传统视觉艺术与现代UI设计的融合
125) UI设计中图标设计探索
126) UI设计在塑造产品形象中的应用研究
127) 基于短距无线通信的农网用户剩余电流在线监测技术研究及应用
128) 论制造业生产管理软件的UI设计
129) 大型矿用挖掘机外观造型设计研究
130) 基于Android的智能家庭监控系统研制
131) UI界面设计的开创性用户体验探究
132) 基于视知觉理论的3-6岁儿童教育类应用软件UI分析与设计
133) 移动端智能手机软件产品的UI设计研究
134) 以用户体验为中心的UI设计视觉表现研究
135) 手机UI界面中情感化表现的创新性研究与应用
136) 浅谈图标设计在游戏UI中的魅力
137) 现代网站UI设计的可用性原则探讨
138) “互联网+”时代下的UI设计发展趋势
139) 基于MySQL的玉米病害检索诊断系统数据库设计
140) 论UI设计中的色彩心理学运用
141) 基于现代主义风格的UI设计研究
142) 论手机UI设计中视觉艺术元素的构成
143) 浅谈交互设计中的情感体现
144) 手机游戏UI图形设计的符号化研究
145) UI设计中的色彩使用
146) 基于Android的防震减灾科普宣传移动APP设计与开发
147) 视觉UI设计--漫谈信息图形化
148) 基于色彩心理学的UI设计研究
149) 探究UI设计的视觉传达艺术
150) 浅谈数字媒体交互式UI设计
151) 手机端用户界面设计中极简主义风格的应用
152) 智能手机人机交互界面中的视觉传达设计
153) 基于二阶聚类的病例归类及其软件设计
154) 移动互联网金融App的UI界面设计及互联网式推广
155) 浅谈扁平化的界面设计及未来发展趋势
156) 虚拟学院学习平台UI设计与实现
157) 媒体时代UI设计中交互视觉体验研究
158) 基于微软富用户体验框架的多媒体管理软件的设计与实现
设计是设计者个人或设计团体有目的进行有别于艺术的一种基于商业环境的艺术性的创造活动,设计就是一种工作或职业,是一种具有美感、使用与纪念功能的造型活动。下面我给大家带来设计类 毕业 论文题目与选题参考,希望能帮助到大家!
广告 设计毕业论文题目
1、浅析长沙开福万达广场设计管理
2、基于功能的H5广告研究
3、浅谈色彩在广告设计中的应用
4、户外广告的文明传承与创新研究
5、基于无线传输的LED广告屏设计
6、浅析数字媒体艺术发展的观念创新及表现形式
7、浅谈创意广告设计
8、户外广告效果评估的研究综述
9、基于数字媒体技术的影视广告设计--评《影视广告设计》
10、基于视觉传达设计下的计算机图形图像设计
11、广告设计方向专业人才培养质量标准研究
12、从国人传统思维到现代设计研究--字说广告的起源、发展、标准探析
13、广告设计的新理论--评《新形态广告设计》
14、新时期平面设计中视觉审美元素的应用研究
15、工业产业经济中汽车广告设计策划研究
16、公益广告语言的艺术化
17、商务目的引导下的广告转喻机制研究
18、平面广告设计中的情感化 思维训练 实践
19、广告牌灯光自动控制系统的设计
20、平面广告设计中计算机图形图像软件的运用与实现
21、浅谈电视广告中幽默元素的应用
22、微电影广告的情感表现
23、动画元素在电视广告中的修饰作用解析
24、浅谈商业摄影在平面广告设计中的运用
25、基于消费心理的茶生态旅游广告设计初探
26、平面广告设计中的“隐性美”探析
27、情感共鸣在平面广告设计中的表现和影响研究
28、数字生活空间公益广告有效传播策略
29、浅析图像处理软件入门案例
30、数码影像在平面广告设计表现中的整合应用
31、探究数字媒体艺术中运用 逆向思维 的探究
32、浅析插画在现代商业招贴广告设计中的应用
33、无语声设计在动画广告中的优势运用
34、影视广告设计中的色彩运用之探析
35、app广告的互动设计与探究
36、消费者对原生广告态度的实证研究--从认知、情感、行为角度探析
37、移动互联网环境下品牌互动广告传播的策略研究
38、简述在新媒体环境下的品牌视觉展示
39、多重感官体验--动画在平面广告设计中的融合
40、非物质设计与广告话语形态研究
41、基于TCB定位模式和IDU效益分析的青少年戒酒广告设计
42、 传统 文化 元素在茶叶广告设计中的应用与创新
43、视觉语言在广告中的应用及创意策略
44、关于平面广告设计中的“隐性”之美的讨论
45、浅谈广告设计中的色彩
46、“新丝路”下户外平面广告的立体化视觉语言分析
47、公益海报设计作品《节约用水》
48、美国商业广告设计中的文化价值观
49、平面广告设计中的扎染技术应用分析
50、网络广告中的视觉传达设计艺术探究
包装设计论文题目
1、交互式包装设计中情感体验的融合与设计优化探讨
2、论人性化包装设计在商业环境下的体现
3、绿色设计理念在包装设计中的应用
4、基于芒编与纸盒相结合的包装设计研究
5、彝族 刺绣 在产品包装设计中的应用研究
6、探究包装设计中视觉思维模式的创新
7、浅析地域文化在秦皇岛旅游纪念品包装设计中的应用
8、国潮文化符号在包装设计中的应用
9、植物纤维制可分解包装袋的营销策略
10、艺术品包装设计理念分析——以书画类艺术品为例
11、折叠结构在快餐包装设计中应用所思
12、浅析插画艺术在平面设计中的应用
13、文化旅游创意视角下的信阳毛尖包装设计
14、蔚县土特产品包装设计现状及对策探究
15、情感化设计在食品包装中的运用
16、基于淘宝SEO的度尾文旦柚包装设计
17、基于情感化设计的 儿童 产品包装研究
18、情感视角下插画在包装设计中的应用
19、贺岁生肖纪念瓷包装策略研究
20、网红思维角度下的包装设计营销策略研究
21、中老年降压药品的交互式包装设计
22、中国风视觉语言在国产化妆品包装设计中的运用研究
23、基于Ansys Workbench的电炖锅包装设计与仿真分析
24、塑壳式低压断路器纸质运输包装设计
25、民国时期“三星”牌膏类化妆品包装设计解读
26、洛阳地域文化在葡萄酒包装设计研究中的应用——以洛阳宝石酒庄包装设计为例
27、木版 年画 在包装设计中的运用
28、电饭煲运输包装设计及跌落仿真分析
29、糕点包装设计中的视觉元素研究——以四喜岷县点心系列包装设计为例
30、蜂蜜包装中的视觉元素研究——以Miel(蜜尒)蜂蜜系列包装设计为例
31、东阳竹编文化元素在高职院校包装设计课程中的应用
32、浅谈视觉阅览顺序在包装设计中的运用分析宋玉洁
33、以茶产业为例谈中小型食品企业包装设计的推广研析
34、论茶包装的设计维度
35、湖北省博物馆文创产品包装设计
36、基于地域文化特色的包装设计研究——以吉林人参为例
37、中国传统文化元素在食品包装设计中的应用研究
38、民族手工艺在包装设计中的转型应用研究
39、网购产品包装设计研究
40、浅析趣味性包装设计与受众消费心理
41、探究物联网发展视角下的包装设计
42、电子商务模式下山西农特产品包装创新性设计研究
43、插画艺术在中国农副产品包装设计中的应用
44、包装的色彩运用与广告效果探究
45、动漫元素在农特产品包装设计中的应用
ui设计生毕业论文题目
1、浅谈UI设计中的视觉设计风格发展
2、浅谈UI设计中的视觉表现
3、UI交互智能迷你净化器设计--创意思维设计
4、回合制手游新增UI设计规范研究
5、基于用户体验的移动终端UI设计
6、基于HTML5和jQueryMobile的移动学习APP设计与实现
7、UI设计中图形创意 方法
8、UI设计的交互性与界面视觉设计研究
9、浅谈艺术设计中UI界面设计及应用
10、手机 操作系统 ui设计浅析
11、浅析用户交互设计中的视觉性设计
12、UI设计中用户体验研究
13、一种嵌入式UI界面的设计原理浅谈
14、基于Android的大学生“学习伴侣”系统
15、中国传统元素在UI界面设计中的应用探析
16、基于Android的自定义通用可视化控件
17、基于技术接受模型的传统媒体客户端用户使用行为研究
18、基于特定主题的手机UI界面设计
19、儿童数字读物UI设计原则与风格探析
20、从街头 篮球 游戏分析游戏UI设计
21、浅谈交互设计流程中的视觉因素
22、基于jQueryMobile技术的移动网站开发研究
23、纬编立体提花织物的计算机仿真
24、纪检监察信息管理系统的设计与实现
25、移动医疗类产品的UI设计研究
26、网页UI设计中“中国风”元素的应用研究
27、基于移动终端微信平台的UI界面优化设计研究
28、UI设计中用户交互体验的视觉思维分析及探讨
29、利用网络平台进行农村科普 教育 的UI视觉表现形式研究
30、动态插画在视觉传达中的创新与应用
31、断舍离在UI设计中的思考及应用
32、古代装饰器物在中国风手游UI设计中的拟物与抽象
33、UI设计与用户体验在产品中的重要性
34、物联网猪场三维建模与视景仿真系统的设计与实现
35、如何培养技术与艺术相融合的高技能人才
36、浅谈UI设计中“扁平化设计”的运用和发展趋势--以IOSUI为例
37、论手机游戏UI设计中视觉艺术元素的构成
38、基于UI设计原则的网页界面评价
39、浅谈适应老年用户的手机社交应用UI设计
40、基于IOS平台的服装品牌APP开发设计
41、数字媒体时代视觉传达设计专业的现状及面临的挑战
42、智能手机教务学工系统APPUI设计的色彩研究
43、谈立体主义对手机UI设计发展的影响
44、移动学习APP软件生成平台的对比研究
45、大连智慧旅游平台UI浪漫设计研究
46、研析电子设备界面设计的方法及准则
47、基于Cocos2d-x的电视UI架构设计
48、一种基于AndroidUI分析与设计方法
49、智能手机UI界面设计分析
50、基于WPF的UI设计模式研究
设计类毕业论文题目与选题相关 文章 :
★ 艺术毕业毕业论文选题题目大全
★ 艺术毕业毕业论文选题题目大全(2)
★ 艺术设计毕业论文选题
★ 艺术类毕业论文题目参考大全
★ 艺术毕业论文题目
★ 艺术设计毕业论文选题参考
★ 设计类专业的开题报告范文(2)
★ 设计类专业的开题报告范文
★ 计算机毕业论文设计题目
★ 毕业论文题目来源
本文将对论文 Towards End-to-End Lane Detection: an Instance Segmentation Approach 进行解读。这篇论文是于2018年2月挂在arxiv上的。 文中提出了一种端到端的车道线检测算法,包括LaneNet和H-Net两个网络模型。其中,LaneNet是一种将 语义分割 和 对像素进行向量表示 结合起来的多任务模型,负责对图片中的车道线进行 实例分割 ;H-Net是由卷积层和全连接层组成的网络模型,负责预测转换矩阵H,使用转换矩阵H对属于同一车道线的像素点进行回归(我的理解是对使用坐标y对坐标x进行修正)。 根据论文中的实验结果,该算法在图森的车道线数据集上的准确率为,在NVIDIA 1080 TI上的处理速度为52FPS。 如图1所示,对于同一张输入图片,LaneNet输出实例分割的结果,为每个车道线像素分配一个车道线ID,H-Net输出一个转换矩阵H,使用转换矩阵H对车道线像素进行修正,并对修正的结果拟合出一个三阶的多项式作为预测得到的车道线。 论文中将实例分割任务拆解为 语义分割 和 聚类 两部分,如图2所示,LaneNet中decoder分为两个分支,Embedding branch对像素进行嵌入式表示,训练得到的embedding向量用于聚类,Segmentation branch负责对输入图像进行语义分割(对像素进行二分类,判断像素属于车道线还是背景)。最后将两个分支的结果进行结合得到实例分割的结果。 在设计语义分割模型时,论文主要考虑了以下两个方面: 1.在构建label时,为了处理遮挡问题,论文对被车辆遮挡的车道线和虚线进行了还原; 2. Loss使用 交叉熵 ,为了解决样本分布不均衡的问题(属于车道线的像素远少于属于背景的像素),参考论文 ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation ,使用了boundedinverse class weight对loss进行加权: 其中,p为对应类别在总体样本中出现的概率,c是超参数(ENet论文中是,使得权重的取值区间为[1,50])。 为了区分车道线上的像素属于哪条车道,embedding_branch为每个像素初始化一个embedding向量,并且在设计loss时, 使得属于同一条车道线的像素向量距离很小,属于不同车道线的像素向量距离很大 。 这部分的loss函数是由两部分组成:方差loss(L_var)和距离loss(L_dist): 其中,x_i为像素向量,μ_c为车道线的均值向量,[x]+ = max(0,x) 为了方便在推理时对像素进行聚类,在图4中实例分割loss中设置δ_d > 6*δ_v。 在进行聚类时,首先使用mean shift聚类,使得簇中心沿着密度上升的方向移动,防止将离群点选入相同的簇中;之后对像素向量进行划分:以簇中心为圆心,以2δ_v为半径,选取圆中所有的像素归为同一车道线。重复该步骤,直到将所有的车道线像素分配给对应的车道。 LaneNet是基于 ENet 的encoder-decoder模型,如图5所示,ENet由5个stage组成,其中stage2和stage3基本相同,stage1,2,3属于encoder,stage4,5属于decoder。 如图2所示,在LaneNet中,语义分割和实例分割两个任务 共享stage1和stage2 ,并将stage3和后面的decoder层作为各自的分支(branch)进行训练;其中, 语义分割分支(branch)的输出shape为W*H*2,实例分割分支(branch)的输出shape为W*H*N,W,H分别为原图宽和高,N为embedding vector的维度;两个分支的loss权重相同。 LaneNet的输出是每条车道线的像素集合,还需要根据这些像素点回归出一条车道线。传统的做法是将图片投影到鸟瞰图中,然后使用2阶或者3阶多项式进行拟合。在这种方法中,转换矩阵H只被计算一次,所有的图片使用的是相同的转换矩阵,这会导致地平面(山地,丘陵)变化下的误差。 为了解决这个问题,论文训练了一个可以预测转置矩阵H的神经网络H-Net, 网络的输入是图片 , 输出是转置矩阵H : 由图6可以看出,转置矩阵H只有6个参数,因此H-Net的输出是一个6维的向量。H-Net由6层普通卷积网络和一层全连接网络构成,其网络结构如图7所示: Curve fitting的过程就是通过坐标y去重新预测坐标x的过程:LaneNet和H-Net是分别进行训练的。在论文的实验部分,两个模型的参数配置如下所示: • Dataset : Tusimple • Embedding dimension = 4 • δ_v= • δ_d=3 • Image size = 512*256 • Adam optimizer • Learning rate = 5e-4 • Batch size = 8 • Dataset : Tusimple • 3rd-orderpolynomial • Image size =128*64 • Adam optimizer • Learning rate = 5e-5 • Batch size = 10
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :
原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为 最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。 需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。
要是能找到答案我就信了你的邪,去专业网站或图书馆电子数据库找啊,分给我算了 追问: 校园网也找不到。。。
我也是这个专业毕业的,我建议你个课题,我当时毕业设计就是这么做的,不过我的老硬盘坏了,不然可以直接把论文和程序源代码发你。我做的课题是数字图像处理的数字水印技术的研究,属于数字图像处理的。你到百度搜索“数字水印源代码”可以搜索出不少程序,而且不少论文都带有算法的详细研究,你把几种方案整理一下,多搜几个,我当时的论文在毕业答辩时候拿了87分,就是靠整合这些材料的,不过你要会对Protel这个软件会使用一点。这里我提个方向,实现数字水印有三种方法,每种方法都不是特别困难,为了增加论文的内容,你可以从快速傅里叶变换,离散余弦变换等三种方案来实现,然后你可以比较三种方案的优劣,一般论文都会对自己的算法有个评测,不用担心不会写。大体结构可以真么写:先是背景发展方向等等杂七杂八的废话写4页左右,然后是常见算法研究,大概可以两到三页,然后是你的几种算法以及程序实现,这个是主体,最后是各种算法实现的效果评比,最最后是对自己的方案提出可能的改进措施。再加个结束语就好了。这种结构很符合老师的要求。
1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文