首页

> 论文发表知识库

首页 论文发表知识库 问题

数学论文90字

发布时间:

数学论文90字

数学归纳思想在各学段之特点和教学启示

第一章 导论

数学教学绝不是简单的知识传授,教师要认识到教学过程是一个创造过程,每个教师都要研究教与学的相互作用,将教学过程视为师生共在的探索真理的过程。本文是我为大家整理的数学教研论文 范文 ,欢迎阅读! 数学教研论文范文篇一:中专数学教学的研究与思考 一、中专数学教学的现状分析 由于中专 教育 主要是面向社会为社会培养人才,因此,在实际的教学中,教师需要对学生进行实践教学,但是,在中专数学教学中,教师主要进行理论知识的教学,实践教学课非常的少,这样就导致学生虽然具备一定的数学理论知识,但是却不能很好的进行实际的应用.由此可见,中专数学理论教学与实际操作的脱节,不利于学生的长远发展. 二、进一步优化数学教学的 措施 分析 1.明确教学目标 在中专数学教学中,教师应该明确教学的目标.教师进行数学教学的主要目的就是通过对学生进行系统的数学教育,使学生具有一定的数学能力,使学生通过数学的学习,能够解决生活中的实际问题,提高学生的生活能力.另外,在生活中,很多生活中的问题都需要数学知识进行解决,因此,教师对学生进行数学的教学,主要就是为了更好的培养学生的生活能力,促进学生的不断发展[2].例如,在进行函数教学的时候,教师在课堂教学的开始,就应该告知学生学习函数能够解决生活中的哪些问题,函数在生活中用途非常的广泛,函数能够解决纳税问题,票价问题,销售利润问题等. 2.更新教材内容 随着社会经济的发展和科学技术的不断进步,数学知识也在不断的发展,很多前沿的知识学生在中专数学课堂的学习中无法学到,由于中专教材不是一年一更新,需要五年到十年左右更新一次[3].因此,很多前沿的知识无法在教材上体现,因此,教师应该不断的对教材内容进行更新,将最先进的数学知识加入到教材中去,使学生能够学习到最前沿的知识,促进学生的不断发展和进步. 3.提高教师教学水平 在中专数学教学中,应该不断的提高教师的教学水平,不断的加强师资队伍建设,中专学校应该拥有一批专业知识过硬,专业技能扎实,教学水平高,具有创新精神的数学教师,教师在教学中能够及时的发现教学中不适于学生发展的因素,并且通过创新,提出合理化的建议,不断的促进学生学习上的进步.另外,中专数学教师还应该多参加培训和学习,提高自身的专业素质,为学生的学习提供最好的师资保证. 4.教学中注重激发学生的学习兴趣 教师只有在教学中不断的激发学生的学习兴趣,才能够收到最好的教学效果.传统的 教学 方法 主要就是教师在课堂上对学生进行提问,学生通过思考完成教师的提问,在这个过程中,由于学生无法提起学习的兴趣,在课堂上的暂时性记忆也随着时间淡忘,无法收到满意的教学效果,课堂教学效率不高,学生的学习水平也无法全面的提高.因此,教师应该采取相应的教学策略,激发学生的学习兴趣,使学生能够主动去学习,爱上学习,进而收获知识.在数学教学课堂上,教师可以从学生的兴趣出发,在列举教学案例的时候,教师可以列举一些学生感兴趣的教学案例,激发起学生学习的积极性,提高学生的课堂效率,促进学生学习上的进步.例如,在进行函数教学的时候,由于函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心.因此,教师在教学中,学生在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.并且在教学过程中努力做到生生对话、师生对话,在对话之后重视体会、 总结 、 反思 ,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法,并且不断的激发学生的学习兴趣.总之,在教学中,教师应该树立正确的教学目标,掌握有效的教学方法,并且在教学中注意运用多种教学策略,才能够不断的提高学生的学习水平,培养学生的学习能力,促进学生的全面进步. 作者:张丽 工作单位:南京市玄武中等专业学校 数学教研论文范文篇二:高校数学信息技术整合方法研究 一、高校数学教学中使用多媒体的优势 有利于促使高校数学课堂教学实现因材施教。多媒体辅助高校数学教学过程中所使用的课件与传统教学中所使用的板书有本质的区别,在高校数学教学中以板书为核心的教学需要学生花费很大的精力做笔记,而多媒体辅助高校数学教学中的课件通过下载就能够查阅和利用,并且不会出现传统教学中因为笔记不全而难以顺利巩固和复习知识的情况。在此过程中,教师也可以根据实际的教学效果对课件进行进一步的合理化与完善化并提供给学生,学生可以完全摆脱课程设置的限制并按照自身数学实际水平找出学习侧重点并自主安排学习进度,所以多媒体辅助高校数学教学与传统高校数学教学相比具有更强的教学针对性,对落实因材施教的教学理念具有重要的意义。 二、现代教育技术与高校数学教学整合的方法 与传统的高校数学课堂教学相比,多媒体辅助高校数学教学拥有很大的优势,但是如果在高校数学课堂教学中不能对多媒体进行合理利用,则容易产生事倍功半的效果,所以在多媒体辅助高校数学教学的优化过程中,教师要处理好多媒体辅助高校数学教学中的几种关系,从而在正确利用多媒体技术开展高校数学教学的基础上最大限度地发挥多媒体技术对高校数学教学质量提高所具有的推动作用。 1.确保教学手段与教学目的关系的协调。新课程理念下的高校数学教学的目的在于通过高校数学教育使学生具备良好的人文素质、创新精神、科学素养、思维能力等,所以多媒体辅助高校数学教学活动的目的在于通过对多媒体辅助教学技术的利用,使学生的智力以及思维能力得到良好的发展并实现高校数学教学的目标。在此目的的指导下,教师必须在多媒体辅助高校数学教学的过程中,以新课程教学目标为核心开展教学过程。而在实际教学中,一些教师由于不能做到合理使用多媒体教学技术而导致了事倍功半的效果,针对这一问题,教师首先要突出教学目的在教学过程中的主线作用,让多媒体辅助教学技术为教学目标的实现服务,如果二者存在冲突则应当舍弃这种教学手段;其次教师要以教学和学生的需求为依据对多媒体的表现手段做合理选择。如多媒体的表现手段包括声音、动画等,在高校数学教学中需要有针对性地选取高效率的表现手段,这里所说的针对性包括教学内容的针对性以及教学目标的针对性。 2.确保多媒体演示与教师讲授关系的协调。在高校数学课堂教学中,多媒体辅助教学有明显的优势,它能够提高学生自主学习、合作学习、探究性学习等方面的能力,同时也有利于课堂情境的塑造。但是在高校数学课堂教学过程中,师生之间的互动以及学生与学生之间的互动是不能舍弃的,所以有必要将多媒体演示和教师讲授良好地结合起来,让多媒体辅助教学技术发挥辅助教师授课的作用。在现代的教学理论中,高校数学教师被认为是高校数学教学活动中的主导,学生是高校数学教学活动中的主体,而多媒体是高校数学教学活动中的辅助工具,其中教师本身主导地位不容忽视的原因主要体现在两个方面:一是高校数学教学活动开展的过程也是学生与教师交流的过程,通过这种交流,教师可以向学生传授高校数学知识,也可以利用自身人格魅力影响学生以提高学生的综合素质,尤其是道德品质素质,教师的这一作用是多媒体教学技术不可取代的;二是多媒体辅助高校数学教学活动的开展依赖教师的操作,无论是可见设计,还是教学演示,都需要教师进行,所以教师的主导地位实质上没有变化。 3.确保情感交流与知识传授关系的协调。在高校数学课堂教学中,学生和教师的交流是双向的互动关系,这个过程既是传授知识和反馈信息的过程,也是情感交流的过程,而教师、学生与多媒体之间是单向的没有情感的交流,所以人际之间的交流是无法发挥与师生交流同等作用的。这就要求在多媒体辅助高校数学教学中教师首先要控制多媒体辅助教学技术的使用时间,从而突出教师在知识传授中的主导地位;其次要选择合理的多媒体辅助教学技术使用的时机和方式,从而突出学生在整个教学过程中的主体地位;最后教师要善于利用自身的激情调动学生学习的热情,通过充满情感的体态和话语将自己的情感体验传达给学生,在关注学生情绪变化的基础上对学生在体验教学内容中的情感和思想进行合理地引导。 作者:朱彦生 工作单位:吉林农业工程职业技术学院 数学教研论文范文篇三:高等数学教学现状探讨 1高等数学教学中渗透数学史的提出 数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与 文化 本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。 高等数学教学中渗透数学史的提出背景 数学史主要是对数学概念、数学方法和数学思想的起源与发展进行研究,并且与社会政治、经济和一般文化相联系的一门科学。数学史首先对于揭示数学知识的现实来源和应用有一定的意义;其次,对于引导学生体会真正的数学思维过程,激发学生对数学的兴趣,培养探索精神有一定的意义;最后,对于揭示数学在文化史和科学进步史上的地位与影响,进而揭示其人文价值也有重要意义。对于高等数学教师来说,在教学过程中渗透数学史的内容,是一种极有意义的方法。数学史有很强的教育功能,将数学史融入高等数学的教学过程是必然的趋势。 高等数学教学中渗透数学史的存在意义 渗透数学史的科学意义 数学史既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,因此我们无法割裂科学现实与科学史之间的联系。诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究 热点 ,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用。总之,数学传统与数学史材料可以在现实的数学研究中获得发展。 数学史的文化意义 美国数学史家M.克莱因曾经说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显。”[1]毫不夸张地说,数学史可以从一个侧面反映人类的文化史。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。例如,罗马数学史告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。而古希腊数学家则强调严密的推理并由此得出的结论,这就十分容易理解,古希腊具有很难为后世超越的优美文学、极端理性化的哲学[2]。 数学史的教育意义 了解数学史的人,自然会有这样的感觉:数学发展的实际情况与我们今日所学的数学书不是很一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学学习的大部分内容则是17—18世纪的高等数学。这些数学课本已经过千锤百炼,它们是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、演化历程以及导致其发展的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,而弥补这方面不足的最好途径就是进行数学史的学习。 2高等数学教学中渗透数学史的几点做法 通过数学史的渗透加深学生对数学的理解 数学史的渗入可以丰富我们的教学内容,为学生提供新的学习途径。因为历史上的问题是真实的,因而更有趣;历史知识的介绍一般都非常自然,它或者揭示了实质性的数学思想方法,或者直接提供了相应数学内容的现实背景,这对于学生理解数学内容和方法都是重要的,所以在教学上要有所创新。在教学中,适时结合数学史内容进行教学,可以帮助学生了解数学知识是怎样形成的,可以极大地调动学生学习数学的积极性,有的同学甚至自己去找数学家的 故事 书看;有的同学通过对数学史的了解,不仅更好地理解了数学知识,而且转变了学习数学的态度,对问题的探讨由不耐烦到独立解决,喜欢对问题追根究底。 通过数学史的渗透培养学生正确的数学 思维方式 首先,将数学家们获得重大发现的思想活动的历史记录以及经历的百感交集的体验引入课堂,是培养学生思维能力的最好教材;其次,还可以结合历史环境介绍一些数学史中的反例,让学生了解数学的发展并不是一帆风顺的,历史上任何一项数学成果的取得都是经历了重重曲折的;介绍数学的发展史,让学生了解数学家的思维方式,以此影响自己的思维方式。 通过数学史的渗透激发学生学习数学的兴趣 高等数学以其抽象的内容、广泛的应用、严谨的结构、连续的发展而别于其他学科;实际教学中,学生在学习高等数学时只注重字母、公式的记忆,对概念、定理的产生缺乏正确的认识,知识死记硬背,因而,乏味、枯燥、难理解成为学生对数学这门学科的印象,看不到活的数学,更不用说对这门学科产生浓厚的兴趣了,再加上学习过程中随着对理解和接受数学知识要求的不断提高,从而也加大了学生学习高数的难度,学习兴趣不可避免会受到影响,学习效果当然会大打折扣。如果教师在教学过程中能够把抽象的概念同具体的 历史故事 、数学人物有机结合起来,适时地穿插一些学生感兴趣又有知识性的历史事件或名人故事,充分调节课堂气氛、诱发学生学习兴致,增强数学的吸引力,就可以使枯燥的教学变得生动,消除学生对数学的恐惧感,从而有助于提高学生学习的兴趣和积极性。 通过数学史的渗透使学生以史为鉴 目前,德育教育不仅是政治、语文、历史学科的事了,数学史内容的加入使数学具有更强大的德育教育功能,通过介绍数学史让学生们以史为鉴。首先,通过数学史可以对学生进行爱国主义教育。现行的教材既有国外的数学成就,也有我国在数学史上的贡献,比如数学书中有:刘徽的“割圆术”、鸡兔同笼问题、秦九韶算法、更相减损之术等数学问题,还有我国的祖冲之、祖暅、秦九韶等一批优秀的数学家[3],还有很多具有世界影响力的数学成就,在我国很多问题的研究甚至比国外早很多年。在课程的要求下,除了增强学生的民族自豪感外,还可以培养学生的“国际意识”,了解更多的世界名家,就是让学生认识到爱国主义不是“以己之长,说人之短”,而是全人类互相借鉴、互 相学 习、共同提高。其次,通过介绍著名数学家的成长史和研究史,让学生学习数学家的优秀品质。数学家们的精神令人钦佩,他们坚持真理、不畏权威、努力追求的精神,很多人甚至付出毕生的精力。数学家的可贵精神对那些在平时学习中遇到稍微烦琐的计算和稍微复杂的证明就打退堂鼓的学生来说,是一个很好的榜样,对他们养成良好的数学品质有积极的作用。 3对高等数学教学过程中渗透数学史的启示 因为在高等数学中渗透数学史,有如此重大的意义,所以要求教师应加强数学史的学习与研究。然而,经研究发现大部分教师的实践效果并不是很好,原因并不是教师们不接受新的教育理念,也不是不愿意承认数学史的融入、落实文化渗透的理念,而是由于数学史的知识匮乏导致理念难以落实,因此数学教师应注意多方学习数学史知识,多方研究数学史。在数学史融入高等数学教学的行动研究中,发现对数学史的学习研究可以分为以下三个层次:了解性学习、掌握性学习、研究性学习。第一层次要求知道数学史的发展概况,了解起过重要作用的数学家,影响深远的数学思想、方法等。第二层次可以从数学史中适当提取相关内容,用于数学研究、教学、学习之中。第三个层次以文献资料为线索,研究不同时期的数学发展,数学家活动,数学思想、方法的进展等,并对数学的发展趋势提出预见性分析。 4结束语 总而言之,数学史在中学数学教学中的作用是非常重要的。因此我们需要把数学史融入高等数学教学中,并将文化理念落实于课堂教学。所以要把数学史融入课堂教学看成一种教学现象,用行动研究的理论来研究这种教育现象。在研究的过程中,要坚持学习行动研究的理论,并用行动研究的理论指导对数学史融入课堂教学的实践,在实践的过程,积累大量的问题,通过这些问题的解决,促进对行动研究理论的重新认识,提高对教育理论的应用。 作者:刘菊芬 吴芳 工作单位:铜仁学院教育科学系

无论是身处学校还是步入社会,大家都接触过论文吧,论文是描述学术研究成果进行学术交流的一种工具。你知道论文怎样写才规范吗?以下是我为大家收集的数学小论文作文,仅供参考,大家一起来看看吧。

星期天,全家人在一起讨论清明节回老家扫墓的事。谈着谈着,我心里忽然冒出了一个疑问:这里离老家有多远呢?”我问妈妈,妈妈笑了,说:你说呢?你上了这么多年学,一定会有办法知道的,对吧?”

我想了想,灵光一闪,对了,可以用我们最近学的比例尺的知识来算。我立即拿来地图,找到了泰州市,却怎么也找不到老家所在地顾高镇。怎么办呢?我冥思苦想,突然灵机一动:我可以先找到离老家顾高镇最近的乡镇黄桥镇,量出地图上泰州到黄桥的距离,再减去一些,就是地图上泰州到老家的大约的距离了!说干就干,我立即量出地图上泰州到黄桥的距离,它是0。6cm。因为老家比黄桥离泰州更近些,我便把减去了,变成了。因为这份地图的比例尺是1:6000000,我便用0。5×6000000=3000000cm,3000000cm=30km。

我立即向妈妈报出了我的答案:大约30千米,本以为会得到妈妈的表扬,可谁知妈妈却疑惑地说:好像没这么近吧?”听了妈妈的话,我也疑惑不解:怎么会这样?”我又来到地图前,重新量起来。量着量着,我突然发现了其中的奥秘:我量的是地图上两点间的直线距离,而实际的道路不是直线的,是绕来绕去的,所以实际路程一定比依据地图计算出来的远。

我把我的发现告诉了妈妈,妈妈也恍然大悟:对!就是这样!你真聪明!”

在学校里,学了如何算体积的,急忙想算一下周围用品的体积。突然,我的目光集中在我的未开封清风面巾纸上,有了,就只算单张面巾纸的体积。

既然算单张的,就要先算整包的。我拿出尺子,分别量出了长,宽,高。

长:7。4厘米 体积为:7·4×5。6×2。5=103。6立方厘米

宽:5,6厘米 但是,我突然想到,面巾纸是可以压的扁一点的,这不

高:2。5厘米 就减少了体积吗?我思考了几分钟,想到既然是测量未开封的的,就应该是未压扁的。想到这,我又看到了我的数据。可能是量的是压得。最后仔仔细细量重新变动数据。

长:7。5厘米 体积为:7·5×5。5×2。5=立方厘米

宽:5,5厘米 眼看就要成功了,可我猛地发现,包装塑料纸也是有体

高:2。5厘米 积的,可是又有什么办法。思考许久,忽然,我想到了一个很原始的办法。我抽出里面的面巾纸,把塑料包装纸对折4着,这成了一个小正方体。

长:2。1厘米 体积为:2。1×1。8×0。3=1。134立方厘米

宽:1,8厘米 虽然可能有误,但是我也想不出其他办法了。

高:0。3厘米

最后算式:(103,125—1。134)÷10(一包面巾纸里有10张)=10。1991立方厘米

经过这次,我终于享受到写数学小论文的快乐。

今天,我无意间发现里一个有趣的测试,这是一个由印第安人发明的水晶球心理测试。

我打开页面,看了看规则,是这样的:随便从10—99之间选一个数字,把十位数和个位数相加,再把原数减去相加的数,最后记住得出数字的图案,点一下水晶球,就会出现那个你记住的图案了(水晶球旁边有10——99的数字,数字旁有一种图案)。如:23 2+3=5 23——5=18。

我看好后,就选了78 7+8=15 78——15=63。我又看了看63旁的图案,便点了点水晶球,发现出现的图还真的是我记下的图。我又选了一些数字,算了算,水晶球都可以准确的出现我记下的图案。好神奇啊!

我心想:水晶球为什么知道我记下的图案啊?

于是,我做了一个很笨的小实验:从10——99的数字都算一遍。结果发现得出来的数都是9的倍数:9。18。27。36。45。54。63。72。我又看了看这些数字边的图案,都是一样的。我说:”哦,所以水晶球会知道我记下的图案啊!哈哈哈!“

我发现数学其实无处不在。只要我们善于发现,善于观察,善于思考,数学的海洋将任我们翱翔!

西瓜是夏天中最爱欢迎的水果。今天,妈妈买回了一个又大又圆的`西瓜。于是,我们准备吃西瓜了!

小妹妹问我:”嘉嘉姐姐,你要吃多少呀!“我想了想说,”我吃这个西瓜的1/2吧。“”1/2是什么?“她问。”1/2是分数,是把一个东西平均分成2份,取其中的1份。“我说。”哦。“小妹妹似懂非懂地说。”我吃这个西瓜剩下的1/2。“妈妈插话道。小妹妹问:”剩下的1/2是不是嘉嘉姐姐留下的全部吃掉啊?那我没得吃了?“”哈哈!“我和妈妈哈哈大笑。”不是这样的。“妈妈笑着说。我接话道:”剩下的1/2就是把我吃剩的那部分看作一个整体,再把这部分平均分成2份,取其中的1份。“”是这样啊!那我还是有西瓜吃的了!“小妹妹恍然大悟。小妹妹调皮地说:”以后我要先吃1/2,这样我的1/2比你的多,这次不划算!“”你的,我哪吃得了这么多?你想吃多少就吃多少!“我们都笑了!

你现在认识分数了吗?分数还有很多哦!等着你去发现。让我们一起踏上寻找数学的旅程吧!

一年一度的双11“剁手节”来了。

今天下午,妈妈坐在沙发上,翻看着天猫里面的商品准备在明天双十一抢购。我一直想买一个做奶茶的工具,妈妈是一个实用主意者,没有用的东西一般都不会买回来。我很担心提出需求后妈妈不给买,又说我乱花钱。忍不住内心的想要还是说了出来。

“妈妈可以给我买个玩具吗”?我轻声细语的问。妈妈说,只要我能回答她一个数学问题可以买,我爽快的答应了。我们搜了做奶茶的工具,出现了许多的旗舰店,其中有两家销量最好的都各有各的优惠。它们一套都是68。5元,但是甲店是买两套送一套,乙店是打七折。我要买三套,妈妈问我哪一家便宜,我说甲店是68。5×2=137元(3套),乙店是68。5×3=205。5元,205。5×0。7=143。85元(3套)。143。85大于137,所以甲店划算。当我准确算出答案时,妈妈很爽快的我买了做奶茶的工具。

数学知识在生活中无处不在,我要找到数学的乐趣,遨游在数字的海洋里。

关于速度一向学习成绩不好的我,在无意中发现了一道题,并且给做出来了,下面我给大家分享一下吧!在20xx年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电。该地供电局组织电工进行抢修供电局距离抢修工地15千米。抢修车装载着所需材料先从供电局出发,15分钟后电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地,已知吉普车速度是抢修车速度的1。5倍,求这两种车的速度。

解:1。设抢修车的速度为x千米/时,则吉普车的速度为1。5x千米/时.由题意走相同路程15千米,吉普车比抢修车快15分钟(即0。25小时)得方程15/X-15/1。5X=0。25解得X=20千米/小时,则1。5X=30千米/小时

答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.

2。因为走的路程(S=15KM)一样,人用的时间是X。材料用的时间是X+15,即(15÷X)÷(15÷(X+15))=1。5,一元一次方程,得X=30分钟,即0。5小时,那么吉普车的速度就是30KM/H,抢修车20KM/H

答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.

3。设吉普车用的时间为x小时。

根据题意得:x+15=1。5x

一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。

算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000

答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.

简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”

我思索了一会儿,不慌不忙地说:“可以这样算:

5/1=5

30*5=150(小时)200小时>150小时

还可以这样算:

5/1=5

200/5=40(小时)30小时<40小时

由这几步可得出结论,节能灯泡省钱。”

妈妈又问我:“很好。再想想看,还有没有别的办法来算?”

我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:

5/200*100=*100=

1/30*100≈*100=

>

或者这样算:

200/5*100=40*100=4000

30/1*100=30*100=3000

4000>3000

因此,也是节能灯泡便宜。。”

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:“生活处处有数学”这个道理。

今天,老师给我们讲了一道三级训练上的重点难题:一个长100米,宽80米的广场中间留了宽4米的人行道,把广场平均分成4块,求每块的面积是多少?

看到题目后,有的人开动脑筋,寻找方法;有的人望着天花板干瞪眼;我绞尽脑汁使劲地想,终于思考出一种方法,于是赶紧举起小手,老师便叫我起来回答,我大声地说:“100-4=96米;96÷2=48米;80-4=76米;76÷2=38米;38×48=1824平方米”。

“你能说说你的思考方法吗?”沈老师问。“先把长减去4,算出两块的长,再除以2就得出一块小广场的长;宽也用同样的方法,最后长和宽相乘便得出一块的面积了。”

沈老师又问“还有其他的方法吗?”

夏雨航站起来回答,他连说了好几个算式,可我们却不懂。

老师又让大家想其他方法,大家看起来信心十足,但又害怕不对又都低下了头。

于是沈老师就带着我们一起理解了各个算式,这困难就迎刃而解了.

通过这节课我明白了一个道理:世上无难事,只怕有心人,只要你肯想,就一定能想出解决问题的办法来!

有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”

这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。

比如,在我爸爸给我买的一本数学拓展题中,有一题思考题是这样说的:”一辆客车从东城开向西城,每小时行45千米,行了2。5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?“ 这时,我就在数学草稿纸上这样写: 45×2。5=112。5(千米),112。5+18=130。5(千米),130。5×2=261(千米),答:东西两城相距261千米。

但我又看了看,发现有点不对劲。原来,我忽略了一个重要的东西,就是:这时刚好离东西两城的中点18千米,其中的”离“,这到底是没到中点呢?还是过了中点呢?如果是还没到中点,离中点还差18千米的话,就是我刚刚这么写。但如果是到了中点多了18千米,那就应该这么写:45×2。5=112。5(千米),112。5——18=94。5(千米),94。5×2=189(千米)。

那到底是怎么写呢?我便向爸爸求助,我跟爸爸讲了这件事后,又给爸爸看了看式子,结果,爸爸却说:”嗯……你写的这两个式子都对。都可以写。“

在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,根据生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案。

今天早上一起来,妈妈就宣布:由于家里停水,今天全家到欧尚那边去吃早餐,顺便到超市买东西。

到了那边,我们准备先去吃早餐,先来到了珅府捞面。可是,这里一碗面就要3、40块钱,好贵,而且更加“惊悚”的是,这里的一个鸡爪要5块钱。我们觉得太贵不合算,就来到了“丸来丸趣”,没想到,仅仅一墙之隔,价钱差距就这么大:这里一碗面只要9块钱。吃完早餐,我们就开始逛超市啦!我们先买了一袋我和爸爸最喜欢吃的青桔子,总共数量是11个,价钱是元,差不多一个5毛钱左右。我们又去买了5个鸡爪,一共元。这个鸡爪的价格简直与珅府捞面的价格有着“天壤之别”,一边是不到1元/个,一边是5元/个。来到水果区,我们买了一袋青蛇果,3个共元,这么小的一个青蛇果差不多一个要6元,好贵!接下来,我们又去买了一个哈密瓜,元,没想到,3个小小的青蛇果比一个大大的哈密瓜整整还贵出了元。由于我在邻居桃桃家里尝过黄桃很好吃,我们又去买了3个大大的黄桃,一共元,平均下来每个黄桃是元。我们买完所有需要的东西去结帐,算上这里没有提到的东西,一共是500元。

这次,我从买东西里面学到了很多数学知识,今天真是太开心了!

今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。

”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。

爸爸是一个的十足的数学迷,平时最爱出些数学题来考我了。这不,今天闲来无事又向我出题了,我问道“:爸爸今儿要出啥题?我奉陪到底:”爸爸看我自信满满,满脸笑意说:“输了可别哭鼻子,请听题:有一师徒二人共同加工26个零件,徒弟先到车间,就先拿了一些零件放在自己的机床边。师傅”来了,一看徒弟要拿去加工的零件太多了,他除了拿了留给他的零件外,又从徒弟那里拿了一半零件。徒弟觉得自己应该多干一点,又从师傅那里拿来一半。师傅不肯,徒弟只好再给师傅5个零件,最后还是师傅比徒弟多加工2个零件。请问,徒弟最初准备加工零件是多少个?“我不禁想:可以先求出徒弟最后加工零件(26÷2)÷2=12个。徒弟没给师傅5个零件时,徒弟有零件12+5=17个,徒弟没从师傅那里拿走一半之前,师傅有9×2=18个,而这时徒弟只有零件26——18=8个,因此师傅没拿走徒弟手中零件的一半之前徒弟有零件8×2=16个。这时,爸爸拍了我的肩,说:”想出来了没。“我这才恍过神来,答道:”徒弟最初准备加工零件16个。“

爸爸故弄玄虚地问:”你确定吗,还要改吗?“我胸有成竹的摇了摇脑袋,说:”不用改了 。“”恭喜你……答对了!“

我高兴的一蹦三尺高,心里乐滋滋的,像吃了蜜一样甜。

我和妈妈去金鸡湖玩。途中看到很多交通指示牌。有的写着离前方1000米,有的500米,也有3公里等等。我就好奇的问妈妈:”妈妈,10公里有多少米啊?“妈妈笑着对我说就是10000米啊!”啊?我以为10米呢!“我对妈妈说。

”哦,儿子你知道一公里等于多少米么?“妈妈问

”100米?“我试着回答

”错了,一公里等于1000米!“妈妈说

”那为什么人们不说一公里是1000米,而以公里计算呢?“我问道

”那样太麻烦啦,如果是几百几千甚至几万公里,以米计算的话那得写多少个0啊,人们为了便于记录,就以公里代替,1000米,10000米,100000米等等,只要把后面的3个0去掉,就是公里数啦!“妈妈说。

”我懂了,妈妈,1000米去了3个0就是1公里,10000米去了3个0就是10公里,100000米去了3个0就是100公里!“我兴奋地告诉妈妈

”儿子,你真棒!“妈妈赞许的说道。

哈哈,原来计算公里数是有窍门的呀!

学位论文字数和字符数

毕业讠仑文么? 我们学校规定8万起 不过一般我们至少写10万发表的那种期刊讠仑文没有固定字数要求 一切看你投刊的编辑部怎么要求的我们在文学,经济 新闻 教育方面比较有优势。期待合作。

多少字的毕业论文最适合写?这些都取决于毕业论文的类别,是本科毕业论文还是毕业论文,博士学位论文中,不同类别的毕业论文字数都是不一样的,最基本、最常见的论文长度是本科论文的长度,一般为8千-1万字就足够了,而研究生和博士论文写的论文字数会更加多,一般是3-5万字是硕士论文,而博士论文一般是需要10万字左右。写毕业论文首先要注重具体要求,按要求合理控制字数即可,字数要求一般不那么严格,只要在合理范围内,大家如果有其他疑问可以咨询自己的指导老师。

一般而言,专科毕业论文正文字数一般应在5000字以上,非211、985的学校的本科毕业论文正文字数在8000字左右(工程类需要制图的专业则会超过这个数字),但是一些要求较高的学校或者是重点学校则要求论文字数在1万左右或以上。总而言之,各个学校在论文字数上的规定都会有细微的差异。

硕士毕业论文字数一般是3-5万之间,学校不一样,专业不一样,字数也就不一样,一般指导老师都会给出一个大概的字数条件。

扩展资料

要求

1、在文后的参考文献表中,各条参考文献应按其在正文中出现的先后用阿拉伯数字连续排序。注意一定要按在文中出现的顺序编号。

2、文后参考文献表中的中文参考文献请改为中英文对照。

3、文后期刊类、会议论文集中的参考文献表中的英文期刊名称、会议论文集名请写全称。

4、各类参考文献请严格按照“二、各类参考文献写法”中的标点符号写。

毕业论文字数是看字符数。因为不仅仅是字啊。

建筑工程技术毕业论文90个字

摘要:有效的建筑工程技术管理有利于提高建筑工程质量,同时可以帮助建筑企业降低生产成本从而增加企业经济效益。随着市场经济的快速发展,建筑行业的市场竞争越来越激烈,如何提高建筑工程技术管理水平也逐渐成为建筑企业关注的焦点。本文通过论述建筑工程技术管理的重要性,并针对建筑工程技术管理存在的问题提出相对应的对策措施,希望能帮助建筑企业有效提高建筑工程技术管理水平

1、建筑工程技术管理概论

建筑工程技术管理是利用科学的管理方法,提高建筑施工技术水平并满足施工中各项指标顺利完成,其中包含了施工单位对国家政策、行业执行标准以及施工规范制度等内容的贯彻执行,明确地划分了各部门的任务和技术指标。

在现代建筑企业中,质量是维系企业生产发展的命脉,是获取经济收益的依据。通过建筑工程施工技术管理,可以实现施工方案的优化、建筑材料的科学配置以及施工效率的大幅度提升;企业管理者通过制定相应的技术标准,来提高自己的管理水平,保质保量按时完成企业制定的建设目标,将人力、财力、物力的作用发挥到极限;它包括两个不同的维度考量。

首先,从建筑企业方面来说,建筑工程技术是在一定约束条件下进行的。建筑企业通过与业主签订合同,在约定的工期、质量、材料、工艺等条件下展开施工,这一过程中包括的管理要素很多,如项目合同管理、项目材料管理、项目设备管理等,最终获取的建筑项目成果也可以看作是建筑工程技术的运用体现。

其次,从内容方面来看,工程技术的本质是管理,管理的内容是一切有利于工程项目实现的要素。在施工前就需要展开相应的收集和调查工作,进而实现施工技术中相关资料的编制,所需要的技术细节是分解到不同的施工阶段中的。

2、建筑工程技术管理存在的问题

建筑工程技术管理缺乏落实

建筑行业是一个庞大的综合性体系,截至目前应用与管理方面的理论、技巧很多,不同的企业所选择的标准也是不同的。但这些应用大多体现在企业管理、施工管理等方面,发挥的主要是对整体或阶段性的一种协作,并没有认真对施工技术的`方案进行研究。

技术管理的针对性很强,主要针对工程技术材料、项目内部核心技术等为落脚点,而这些内容大部分情况下都是保密内容,并不能与施工建设行为保持同步,这就严重影响了工程的施工进度和质量保障。

从现实角度考虑,当前大多数建筑企业都具有了技术管理的意识,但缺乏技术管理的落实,问题的原因除了思想方面重视不足之外,主要是由于技术人员缺乏相应的管理权限,从程序上行不通。

建筑工程技术管理经验欠缺

一直以来,技术人员和管理人员在建筑企业内部都是相对分离的,这种二元化的人才机制会严重影响技术的应用和革新。原因在于,技术的管理需要相对应的环境和权力,而主观工程技术管理的人员,大多只是对技术本身进行“管理”,缺乏对整体的把控和运用。

此外,在一些建筑企业群体中还存在“重施工、轻规划”的错误思想,这也是导致建筑工程技术管理经验欠缺的原因。每一个工程项目结束之后,都应该有专门人员进行经验总结,将建设过程中出现的问题原因找到,并制定相应的解决策略,便于在后期的发展中规避,这也是收集经验的主要渠道。

建筑工程技术管理人才匮乏

建筑工程技术管理不能等同于“技术”加“管理”,它本身是一个独立的概念,需要相应的人员专门进行维护和执行。很显然在此类人才方面,我国是十分欠缺的,大多数监理人员存在这一方面的职能,但并不完善,在企业内部的一些施工经理也具有同样的职能,也存在较大的漏洞。

同时,人才的匮乏还表现在综合能力方面。建筑工程技术管理的运用中,存在多种知识的相互配合,从设计蓝图到工程放样,再到原材料调配进场,等等,这一系列的过程都需要具有丰富的综合性高知识才能指挥。本质上说,建筑工程技术管理人员应具备独立技术人员的能力之和。

3、建筑工程技术管理的应对策略

完善建筑工程施工技术管理体制

要建立完善的建筑工程施工技术制度,才能够实现建筑企业自身的水平提升,确保建筑工程技术相关法律和法规的贯彻。体制中主要是人为性的因素,因此提高思想意识是构建管理体系的前提条件,可以通过职业道德培训和专业能力提升的方式实现。

加大建筑工程成本控制

建筑工程成本指的是建筑企业对某一项工程建设所消耗的资金总和,在当前建筑市场竞争激烈的情况下,企业要维系自身的经济利益,就必须加强对成本的控制,减少不必要的支出。

成本控制越科学,对建筑工程技术的要求就越明显,施工单位必须依靠技术优势来弥补省略资金的不足。在执行过程中,可以将整个工程进行细分,将相同的内容重新归纳总结,进行整体性运作,有效节省资金和劳动力,提高企业利润。例如,针对工程施工中的土石方工作,不同阶段的土石方材料经过计算,整体性进行施工和补充。

加强建筑材料控制措施

建筑材料是整个建筑工程中消耗资金最大的部分,也是成本控制的重点,需要单独进行考虑。不同阶段的施工材料在采购、运输和库存方面特点也不同,应该尽量选择价格经济、质量好的产品材料,包括原材料、成本以及配件等,如果材料自身的质量不能满足要求,必然会影响最终的建筑质量。

工程施工技术管理是对建筑材料的指南,它可以指导材料的种类、规格甚至品牌,在同样价格区间有利分辨何种材料更符合需要。

4、结束语

建筑工程技术管理不仅可以有效地控制建筑项目成本,同时还能够发挥资源优化功能,在目前建筑行业激烈的市场竞争中发挥着关键作用。在进行工程技术管理工作过程中,必须要提前做好各项准备工作,预计各项内容的控制难点,实现与后期施工过程的一一对应。很显然,这种方式也可以看作是一种总体性的统筹规划;随着我国建筑行业及市场的不断进步,建筑工程技术管理的发展也会越来越完善,通过创新实践,必然在未来发挥巨大的经济效益和社会效益。

一、毕业论文的选题选题是论文写作的首要环节。选题的好坏直接关系到论文的学术价值和使用价值,新颖性、先进性、开创性、适用性以及写作的难易程度等。下面重点谈谈选题的原则:1.要客观需要,颇有价值。选题要根据我国经济建设的需要,具有重大的理论和实用价值。例如“企业联盟问题研究”,就是这样。正如一汽集团李启祥副总经理说,我国汽车与国外的汽车竞争,无论是技术、质量、品牌、功能、成本和规模经济等都比不过人家,只能靠一体化,战略联盟,与“大众”合资进入世界大汽车集团,靠国外发展自己。因此,关于战略联盟的研究,既满足了我国经济建设的需要,又具有重大的理论和实用价值。2.要捕捉灵感,注重创新。论文的生命在于创新。创新的含义非常广泛,是指一种新的观点,创立新说,新的论据(新材料),新的补充,新的方法,新的角度。也有人说创新指研究的内容是新的,方法是新的,内容与方法都是新的。还有人认为创新指独特见解,提出前人未曾提出过的问题,纠正前人的错误观点,对前人成果进一步深化、细化、量化和简化等。由上可见,一篇论文总要有一点创新,否则就算不上真正的论文。创新靠灵感,灵感靠积累。只有在长期的艰苦砥砺中才能偶然产生一点思想的火花,而这稍纵即逝的思想火花就可能变成学术创新的起点。

具体的范文模板链接: 提取码: ne8r

论文写作,先不说内容,首先格式要正确,=========现在的论文,只要是原创都要收费,一篇完整的论文,题目,摘要(中英文),=========商业社会也没办法谁愿意免费给你写论文目录,正文(引言,正文,结语),致谢,=========你在这问也没用,我去年的论文找参考文献。规定的格式,字体,段落,页眉=========【4930页脚,开始写之前,都得清楚的,你的论文=============92524写的】算是写好了五分之一。然后,选题,你的题==================质量还不错,你可以去看下目时间宽裕,那就好好考虑,选一个你思考最成熟的,可以比较多的阅读相关的参考文献,从里面获得思路,确定一个模板性质的东西,照着来,写出自己的东西。如果时间紧急,那就随便找一个参考文献,然后用和这个参考文献相关的文献,拼出一篇,再改改。正文,语言必须是学术的语言。一定先列好提纲,这就是框定每一部分些什么,保证内容不乱

金融学专科学生必读撰写调查报告、毕业论文指南集中实践环节教学工作是广播电视大学教学过程管理的重要环节。财经类集中实践性教学环节包括社会调查和毕业论文两项主要内容。集中实践环节不得免修。财经系各个专业专科集中实践环节的指导工作现已开始,为落实人才培养模式改革的目标,确保该项工作有序、准时、高质、高效地完成,特编写《金融学专科学生撰写调查报告、毕业论文指南》材料,供学生认真学习,严格遵守。现将各环节具体要求规定如下:调查报告每位学生必须在撰写毕业论文前参加社会调查活动,并撰写出具有一定价值的社会调查报告。调查报告最好反映工作单位的情况(尚未工作的同学要以本地区企业为调查对象)。调查报告开头要介绍调查的时间、地点、调查的对象、调查的内容。正文用一级标题注明以下几部分:一、某单位的概况;二、经营管理特点;三、存在问题;四、思考与建议。调查报告必须在3000字以上,交电子文档和打印材料各一份。调查报告不准写成小论文,也不能写成报告文学、通讯报道。必须是一个金融机构的真实情况的反映,要用事实、数据说话。调查报告不需要目录、摘要、关键词、脚注、参考文献等。其打印格式与毕业论文的要求一致。调查报告要在封面加盖被调查单位的公章(定稿后再盖章)。写作提纲写作提纲是学生在正式开始写作论文之前提交给论文指导教师的一份关于选题理由、文章结构及实例分析、个人见解的报告。要用一级标题注明四个部分的内容。具体要求如下:一、选题理由部分,要介绍自己的学习、工作经历与背景;说明该选题的意义、研究价值、实际作用 等等。二、文章结构部分,要求学生写清楚整个论文的基本观点,这些观点必须逻辑清楚、合理。学生结合自己的基本观点写清楚整个论文的结构。这是学生向指导教师说明自己如何论证观点的一个部分。例如学生要写清楚整篇文章包含那几个部分,第一部分写什么,其中包括几个小部分,每个小部分写什么等等,以此类推。三、实例分析部分,要以本地区实例为主。这一部分非常重要,体现同学分析问题解决问题的能力。四、个人见解部分,是对文章的总结。写作提纲的字数在500字以上。文字方面要求语言流畅、思路清晰,说清楚自己的观点。毕业论文(一)毕业论文选题、内容与字数方面的要求1.撰写毕业论文要避免选择已经完全得到解决的常识性问题作为论题。论文选题必须是本专业方面的研究题目,必须有明确的研究方向(不能是调查报告、工作研究、工作总结)。2.毕业论文应做到观点新颖明确、材料详实有力、结构完整严谨、语言通顺、格式规范。毕业论文应由学生本人在指导教师的指导下独立完成,杜绝一切抄袭、剽窃行为。3.专科论文字数在4000字以上。(二)关于论文的修改与定稿1.毕业论文初稿要认真修改。2.论文的最后定稿应是封面填写准确、装订规范(论文夹、封面、写作提纲、目录、摘要、关键词、正文、参考文献八项)、字体符合要求的文章。(三)相关记录表格的填写与论文指导、答辩相关的表格(包括论文指导记录表、答辩情况记录等),应填写清楚、不得空项。交第一稿之前学生要在班主任处领取论文夹。按指导记录得要求进行修改,每次交稿时应带前次指导记录。(四)、论文用纸、装订、打印份数与字体要求1.论文用张一律为A4纸,左侧装订。2.定稿后文字稿一式3份。3.字体要求(1)封面主标题(3#字黑体,粗体,居中);副标题(4#字黑体,居中)封面学生姓名等内容居中,文字楷体小四号字加粗,详细内容见附表。(2)写作提纲主标题(3#字黑体,粗体,居中);副标题(4#字黑体,居中)内容宋体小4#字(2)论文目录目 录摘要 、关键词 …………… 1正文 [目录要深入到二级标题层次] …………… 2参考文献 …………… 10(3)论文正文主标题3#字黑体,粗体,居中 副标题4#字黑体,居中署名(楷体小4#字)(之后空一行)〖摘要〗:概括论文主要观点,200字以上,楷体五号字。〖关键词〗:(3—5个,楷体五号字)(之后空二行)论文正文(论文内各标题4#黑体,其他宋体小4#字)(之后空几行)参考文献:(不得少于3篇,宋体小5#字,要注明何人所著何时何社出版)四、进度安排 2006年3月15日前交第一稿(交调查报告和论文。论文包括论文夹、封面、写作提纲、目录、摘要、关键词、正文、参考文献八项)。3月31日为第一稿的最后截止日期。此后不再接收04秋金融学专科学生论文的第一稿。 2006年3月15日-5月20 日为论文指导过程,师生之间要进行3次以上的面对面的交流与指导。直至论文达到前述要求。 2006年5月31日前学生要在完成论文修改之后将规定的资料交给指导教师(包括:调查报告和论文。论文包括论文夹、封面、开题报告、目录、摘要、关键词、正文、参考文献八项)。 2006年6-7月为专科科论文答辩时间。每位学生必须参加毕业答辩。毕业答辩的具体时间另行通知。大连电大财经系2005年12月附:论文、调查报告封面样本利率市场化后企业投融资策略的调整学生姓名:学 号:入学时间: 年 季专 业:直属/分校:指导教师:大连广播电视大学2006年5月

90年代中学时代杂志

《中学时代》不是课程辅导,它表现中学生追求理想、感悟人生、积极奋进、健康向上的生活和精神风貌。《中学时代》不是优秀作文选,它给读者送去的是人生旅途中的清泉和食粮。《中学时代》不是文学创作,它反映的是现实生活中的真人真事,抒发的是真情实感。《中学时代》不同于成年人书刊,它表现的人和事都是中学生,它的作者95%以上也是中学生,它所呼吁的心声还是来自于中学生。《中学时代》杂志是面向全国中学生,内容包括“开卷有益”、“成长岁月”、“校园故事”、“世相百态”等板块,杂志内容积极向上,语言轻松幽默,贴近中学生生活,抒发中学生的真情实感,突显中学生的个性。适用于以高三为主的所有高中学生及学科教师,杂志精确的把握了高考动态,解读与评析高考试题,同时杂志将兼顾内容的思想性、艺术性和欣赏性,带动学生素养的全面提高。《中学时代》杂志创办于1980年,杂志社坐落在济南趵突泉畔,泉清水秀的城市哺育出一部精美多彩的《中学时代》《中学时代》服务于中学生,表现他们追求人生、展示青春、评价自我、体验生活的多彩世界,展现他们孜孜不倦、奋勇拼搏、积极向上的精神风貌《中学时代》的特点是贴近中学生生活、抒发中学生的真情实感,以真切的纪实故事和炽热的内心情愫,使读者陶醉其中《中学时代》视读者为“亲人”。不仅以中学生为读者,而且还以中学生为作者。中学生写、中学生读,亲切、自然的感觉融汇于杂志和读者之间《中学时代》把“为中学生代言”作为基本原则。将中学生的烦恼和苦闷公开发表,为中学生的利益呐喊呼吁,以求得社会的帮助,是这个杂志永恒不变的追求

《中学时代》杂志为省级优秀期刊,杂志国内刊号和国际刊号齐全,杂志出刊后被中国知网收录。 《中学时代》杂志,全国百种重点期刊,中国期刊方阵双百期刊,山东省一级期刊。本刊是由中共济南市委宣传部主管、济南出版社主办的面向全国公开发行的综合教育类刊物。全文收录于中国知网、龙源期刊网。全国统一刊号:CN 37-1069/Z,国际标准刊号:ISSN 1003-8116,国内邮发代号:24-41 《中学时代》栏目教学研究、教育创新、课改前沿、教法新探、教学实践、教学交流、德育教育、音体美教学、信息化教学、素质教育等。 《中学时代》投稿邮箱

20世纪90年代的散文繁荣导致了多种散文杂志的创刊,如《散文〈海外版〉》、《中华散文》、《当代散文》、《美文》、《散文天地》等等。另有不少大型刊物也开始注重发表散文,如《十月》、《收获》等,《钟山》还搞了同题散文大赛,各省作协刊物也都扩大了散文版面,有不少还开辟了散文专号或专辑;而各家报纸的改版,增加副刊版面,则给发表散文提供了更多的场所。尤其是晚报热、周末版热的掀起,更使散文有了用武之地。书籍出版部门也不甘落后,陆续推出众多的散文集,从五四时期的名家名作专集,到当代知名作家的作品集等等,不一而足。

数学函数论文2000字

数学思想是人脑对现 /a>思想是人脑对现实世界的空间形式和数量关系的本质的反映,是思维加工的产物。函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。用变量和函数来思考问题的方法就是函数思想。这是一种考虑运动变化、相依关系,以一种状态确定地刻划另一种状态过渡到研究变化过程的思想方法。函数思想是函数概念、性质等知识更高层次的提炼和概括,是在知识和方法反复学习运用中抽象出的带有观念性的指导方法。 所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。下面简单介绍一下运用函数思想来解决方程、不等式、数列、参数的取值范围等问题。一、运用函数思想求解方程问题 函数与方程既是两个不同的概念,又存在着密切的联系。一个函数若能用一个解析式表达,则这个表达式就可看成一个方程;一个二元方程的两个未知数间存在着对应关系,如果这个对应关系是单值的,那么这个方程也可以看成一个函数。一个方程的两端可以分别看成函数,方程的解就是这两个函数图象交点的横坐标。因此,许多有关方程的问题都可用函数思想来解决。例1 求证:不论 a取什么实数,方程x2 - ( a2 + a ) x + a - 2=0必有两个不相等的实根。分析:此题若用常规解法,求出判别式△是一个关于a的一元四次多项式,符号不易判断。若用函数思想去分析题意,设函数f(x)=x2-(a2+a)x+a-2,要证明命题成立,只需证明函数y=f(x)的图象与x轴有两个交点,由于它的开口向上,只要找到一个实数X0,使f(x0)<0即可。比如f(1)=1-(a2+a)+a-2= - a2-1<0。故函数y=f(x) 的图象与x轴有两个交点,因此命题成立。例2 已知关于x的实系数二次方程x2+ax+b=0 有两个实数根α,β,证明:(I)如果 |α|< 2,|β |< 2,那么2| a |< 4+b且| b | < 4;(II)如果2| a |< 4+b且 | b | < 4,那么|α|< 2,|β| < 2;分析:本题表面上看是方程问题,方程的根的分布与参数a,b之间满足的关系式,如果用纯方程理论处理则十分繁琐;如果用函数思想来分析,将方程根的分布问题转化为函数图像与x轴交点问题,则可抓往本质。解:本题(I)(II)的结果是2 | a | < 4+b{ <==> α,β ∈(-2,2)| b | < 4可设函数f(x)=x2+ax+b( I )由二次函数的图像知f(2)>0α,β∈(-2,2) ==>{ f(-2)>0|b|=|α�6�1β|< 44+2a+b>0 2a> - (4+b)==>{ ==> {4-2a+b>0 2a< 4+b==> 2|a| <4+b且|b| < 42 |a| <4+b 4+2a+b>0 f(2)>0(Ⅱ) 如果{ ==> { ==>{ 则| b | < 4 4-2a+b>0 f(-2)>0α,β在(-2,2)之内或在(-2,2)之外,若α,β在(-2,2)之外,则 |α�6�1β| = b > 4,这与| b | < 4相矛盾,故α,β∈(-2,2)。二 、运用函数思想证明不等式例3 设 a , b , c 均为正数,且a+b>c,a b c求证:----- + ------ > -------1+a 1+b 1+ca b c分析:不等式左右两边,结构相似: -----, ------, -------,因1+a 1+b 1+c此可以联想函数f(x)=x / (1+x) (x>0)的单调性。证明:先证函数f(x)=x / (1+x) (x>0)的单调性。任取x1>0 , x2>0,不妨设x1 0 , x2> 0 ∴ 1+ x1 >0 , 1+ x2 >0又∵x1< x2 ∴x1- x2< 0x1- x2 ∴------------------- < 0(1+ x1)(1+ x2)即f(x1)c>0 ∴f(a+b)>f(c)a+b c即--------- > ----1+a+b 1+ca b a b a+b∵------ + ------ > ------- + ------- = -------1+a 1+b 1+a+b 1+a+b 1+a+b a b c∴------ + ------ > -------1+a 1+b 1+c例4 已知a、b、x、y都是实数,且a2+b2=1,x2+y2=1,求证:ax+by≤1分析:已知条件中有平方和等于1,可联想正、余弦之间的平方关系,再利用函数的有界性进行证明。证明:∵a2 + b2 = 1 , x2 + y2 = 1∴可设a=sinα, b=cosα, x=sinβ, y=cosβ则有ax+by=sinαsinβ+cosαcosβ=cos(α-β)≤1∴ax+by≤1三、运用函数思想解数列问题数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2......n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。因此,有些数列的问题可用函数思想来解决。例5 在等差数列中,前n项为Sn,已知Sp = q , Sq =p( p、q∈ N*且p≠q),求Sp+q分析:本题的常规解法是用求和公式建立方程组,求出a1和 d,进而求出Sp+q,但计算十分繁琐。若考虑到等差数列的前n项和是关于n的二次函数,且无常数项。故可考虑建立目标函数Sn=an2+bn(a,b为待定系数),可优化解题过程。解:设Sn=an2 + bn (a,b为待定系数)则Sp=ap2+bp ∴ap2+bp=q (1)Sq=aq2+bq ∴aq2+bq=p (2)(1) - (2)整理得(p-q)[a (p+q) + b)]=-(p-q )∵p≠q ∴p-q≠0 ∴a(p+q)+b= -1又∵Sp+q=a ( p + q )2 + b ( p + q ) = ( p + q ) [ a ( p+q ) + b ]= - (p+q)∴Sp+q= - (p+q)四、运用函数思想求参数(或变量)的范围(一)构造一次函数求参数的范围例6 若不等式2x-1>m(x2-1)对 |m|≤2的所有m均成立,求x的取值范围。解:构造关于m的一次函数f(m)=(x2-1)m - 2x+1,则由f(m)<0对m∈[-2,2]恒成立,得f(-2)<0 2x2+2x-3>0 √7 - 1 √3 + 1{ => { => ------------ < x < ----------f(2)<0 2x2-2x-1<0 2 2√7 - 1 √3 + 1∴x的取值范围是(---------- ,----------- )2 2(二 )构造二次函数求变量的范围例7 已知实数a , b , c , d , 满足a+b+c+d=5,a2+b2+c2+d2=7,求a的取值范围。解:构造关于x的二次函数f(x)=(x - b)2+(x - c)2+(x - d)2=3 x2 - 2(b + c + d) x+(b2 + c2 + d2)∵f(x)≥0 ∴△≤0即4(b + c + d)2-12(b 2+ c2 + d2)≤0亦即 4( 5 - a)2 - 12(7 - a2)≤0∴2a2-5a+2≤0∴1/2≤a≤2∴a的取值范围为[1/2,2] 这个 开头的话 和中间一些还是不错的啦 具体自己组织下~ 1、坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式,因此判断平面直角坐标系中的一个点是否在函数图象上,只需把点的坐标代入函数解析式进行检验,能满足函数解析式的表明点在图象上,不满足函数解析式的则表明点不在图象上。2、求两个函数的交点坐标,即求这两个函数解析式组成的二元方程组的解。3、在解决有关函数的问题时,要注意利用平面直角坐标系中X轴与Y轴之间的夹角为直角、以及勾股定理等平面几何知识,要能很熟练地求出函数与坐标轴的交点坐标。5、根据函数的概念、性质以及它们的图象,进行形与数、形与方程、形与不等式之间的相互转换,是解决函数问题的重要方法。 函数概念在数学中占有重要的地位。它在整个中学函数教学的这条主线上,起到承前启后的关键作用。函数概念以及它的思想方法成为中学数学教学的主线之一,函数概念的学习,是学生对现实世界中具体的数量关系的认识向抽象的数量关系的认识的一个飞跃。然而由于函数概念的复杂性,使它成为初中教学的一个难点。本文在前人的研究基础上,从函数的概念出发,通过问卷调查和个案访谈,从函数概念的定义、表示方法和应用三个角度调查了本人所在的中学的初中学生对函数概念的理解,并将此结果加以对比分析,得出以下结论:1.初中学生对函数概念本质的理解不深刻,不能全面认识自变量x与因变量y之间的关系,这与在新课程标准要求下对学生进行训练的重点有关。2.学生对图形和图表表征的函数的识别发展显著落后于对解析式表征的函数的识别。3.初中学生对函数概念的应用能力较低。4.初中学生在函数的认知发展水平方面存在差异,但总体没有明显差异:(1)在运用解析式来描述函数概念方面的能力,初三学生强于初二学生;(2)对于图表和图像法的运用方面,初二学生强于初三学生。本文对研究结果进行深入分析,结合教学实际,对初中现阶段的函数概念教学提出以下改进措施:(1)加强对函数概念的本质认识;(2)加强函数表示形式间的转换;(3)关注日常生活中的函数模型。 这些也可以用下的~

在数学的发展史中,重要数学概念的形成离不开数学的发展,这些概念的形成对数学的发展有推动作用.函数概念是数学概念中的一个非常典型的数学概念.函数概念的形成,从最初的萌芽阶段到最终形成历经了一千多年.纵观数学的发展史,函数概念的每一次升华都是数学发展到一定阶段的产物,并对后面数学的发展作出推动作用.研究函数概念的发展。

最早给出函数概念的明确定义的是,1667年,他的函数定义为:“它是从一些其它的量经过一系列代数运算而得到的,或者是经过任何其它可以想象的运算而得到的。”这最后一句话的意思,据他解释是“除了五种代数运算外,必须加上第六种运算即趋于极限的运算。”

莱布尼茨首次用“ function ” 一词表示幂,即 。1673年,他用 “ function ” 一词表示任何一个随曲线上的点的变动而变动的量。

记号 是欧拉1743年引进的。当时,欧拉认为函数是一条可以随意描绘出的曲线。1748年欧拉把函数定义为由一个变量与一些常量通过任何方式形成的解析表达式。

上述种种函数定义,用现在的观点看,无非是函数表示法中的解析表示法和图象表示法。

1775年欧拉又给出一个新的函数定义:

如果一个变量依赖于另一个变量,使当后一个变量变化时,前一个量也随着变化,那么称第一个量是第二个量的函数。

虽然18世纪对函数概念有多种不同的抽象和理解,但占统治地位的函数概念是:函数是由一个解析表达式给出的。

这些函数概念是人们对各种具体的函数关系的不断和反复认识,经过抽象得出的,但都反映了一个量对另一量的依赖关系,都是“变化”和“运动”的辩证唯物主义观点的抽象。

1837年高斯和雅可比(1804-1851)的学生,黎曼的指导老师狄利克雷(1805-1859)给出了一个函数定。他说:“如果对于某区间上的每一个确定的x值,按照某一法则y都有一个或多个确定的值,那么y叫做x函数。”

狄利克雷的定义一方面继承了欧拉等人关于函数概念的精神,又打破了把“函数”和“解析式子”等同起来的局限性,抓住了两个变量对应关系的确定存在这一要害,而不管它是否可用数学运算来表达。从而使函数概念能更准确地描述各种互相依赖的变量之间的关系。但是随着科学技术及数学学科本身的发展,这个以变量概念作为函数概念的定义逐渐暴露出不足之处。20世纪初,又给出了下面的函数定义:“设x和y是两个非空集合,如果对于每个X中的元素x,依照某一法则,总有确定的一个Y中的y和它对应,这个对应法则就叫做函数”。这就是说,函数是非空集合X到非空集合Y的一个映射。

这个定义使我们可以将函数概念推广到以任何对象为元素的两个集合之间,这就极大地扩展了函数概念建立的基础,适应了现代数学对函数概念的需要。

函数概念从提出到完成,用了二百多年的时间。从函数概念建立的过程我们可以看出,人们对函数概念的认识是随着科学和数学学科本身的不断发展、不断深入而不断深化、不断完善的。

这篇作文可以这样写,例如数学函数形成要与历史相结合因为函数概念是数学概念中最重要的概念之一,在数学发展300年来函数概念,无数的数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。所以拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索。函数概念的纵向发展早期函数概念——几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。1十八世纪函数概念——代数观念下的函数1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。以上就是函数形成与发展史,也是函数形成的重要原因。

一、函数的起源(产生) 十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。 十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。 人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。 二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。 十八世纪中叶,著名的数学家达朗贝尔 (D’Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。 实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。 1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。 函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不解释 十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。 十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6) 1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。 ⒉以“集合”为基础的函数概念 函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( )提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。 二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。 随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。 对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。 对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。 为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。 到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。 三、新旧两种定义的比较 比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别: ⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。 ⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。

相关百科

热门百科

首页
发表服务