数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的 体操 ”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!
浅析小学数学学习特点对教学的影响
小学数学是知识学习的起始点,与人类的学习比起来,小学数学的学习更有具体性。小学生对数量关系和空间形式知识的学习,具有抽象性,需要学生认真思考。要从学生的实际情况出发,分析学生在学习小学数学前在知识、能力、情感态度价值观等方面所达到的水平,使教师根据小学数学学习特点策划教学方案,为教学提供理论依据。本文从学习内容、学习过程以及学习方式三点来论述小学数学学习特点对教学的影响。
一、学习内容的抽象性与形象性
1.抽象性和形象性的特点
教材编写人员将富有抽象的数学知识转变为 儿童 易理解的形象化数学知识,通过转化,它不但没有失去数学学科的抽象性、逻辑性和严密性,而且更加形象生动。大大提高了学生的学习兴趣。教材通过丰富多样的图片和 故事 ,把数学知识以多种方式呈现在学生面前。使学生想学爱学。虽然小学数学学习内容很抽象,但经过多种方式的呈现,使知识更形象生动。这种 方法 解决了数学知识特点与小学生思维之间的矛盾问题。
2.抽象性和形象性特点对小学数学教学的影响
教师在讲解小学数学时要使形象性与抽象性相结合,通过各种教学方式把抽象的数学知识形象化。因此教师需恰当地解决具体与抽象之间的联系,即要解决以下四个问题:第一,怎样将学习内容的形象性与数学的本质结合起来;第二怎样进行抽象概括;第三,怎样对数学知识的理解深入到学生心中;第四,使学生学会用自己的语言来描述数学问题。
二、学习过程的渐进性和系统性
1.渐进性和系统性的特点
教学模式开发和应用的过程,是一个随着 教育 理论和教学实践不断发展的过程。它具有渐进性和系统性。这两种特性遵循了小学生的发展规律,对知识的学习是一个循环渐进的过程。在教学中要充分考虑学生的年龄特点和小学数学学习的特点,在具体活动中引导学生多动手、动脑和动口,调动各种感官参与活动,提高学习效率。渐进性和系统性是学生学习过程中的特点,它主要表现在,数学知识的逻辑性和系统性,数学知识具有扩展性,每个知识点要相互渗透,形成全面系统的知识。学会举一反三。对小学数学循序渐进学习。
2.渐进性和系统性特点对小学数学学习的影响
根据小学数学渐进性和系统性的特点,合理地选择教学方式。在教学过程中遵循学生发展的规律。将小学数学学习的渐进性和系统性恰当的结合起来,从而制定有效的教学方案,使得小学数学的教学有计划、高效的开展。适应这个特点需要满足以下两个方面:第一个方面,按照教科书为学生制定的数学学习顺序进行学习;第二个方面,在学习原理的基础上,使小学数学学习过程具有系统性。
三、学习方式的接受性和探索性
1.接受性和探索性在小学数学学习活动中的体现
小学数学的学习方式分为接受学习和发现学习两种。无论是哪种学习方式,都是学生将已存在的数学知识转化为自己知识的过程,来提高数学水平。转化知识的过程既是学生自己发现探索的过程,也是接受原有知识的过程。通过学生对数学学习方式的探索,小学数学的学习是在接受性和探索性及两者统一的基础上表现出来的。而对数学知识的再发现决定了小学数学学习的探索性,对数学知识的传递决定了其学习的接受性。接受性和探索性是小学数学学习的必要条件。
在教学过程中,教师要正确地认识和承认学生的差异,通过独立思考和小组合作交流,使学生能在不同的基础上得到发展,并能从教师对每一种方法的肯定中获得成功的喜悦。可以让学生选择自己喜欢的计算方法与同学交流,增加本节课学习的兴趣,提高教学效率。
2.接受性和探索性特点对小学数学教学的影响
接受性和探索性特点是通过教与学的方式对小学数学教学产生影响。教师要以学生为主体,在小学数学的教学过程中起引导作用,教师要采用多种教学方式引导学生思考,且根据学生接受的程度和讲授的数学知识恰当地选择教授方法,这样学生既能运用多种方法学习数学,又能掌握知识,小学数学教学过程的进步需要靠多样的学习方式和先进的 教学方法 来完成,使学生能够在玩中学,提高学习兴趣,达到教学目的。在教学过程中需要关注以下三点:第一,以多种多样的学习方式指导学生;第二,在教学过程中,要注重培养学生自己探索发现数学问题及解决数学问题的能力;第三,根据小学数学的学习特点采用多种教学方式提高学生学习的主动性和积极性。
四、结语
小学数学教学过程中必须要关注小学生学习数学的特点,根据其特点采用多种教学方法进行教学。教学内容应生动形象而不缺抽象,教授过程中要把系统性与渐进性相结合,接受性与探索性相结合,遵循小学数学学习的特点,循环渐进地掌握知识,达到期望的教学目标。小学数学学习的特点对教学既有指导性,也有探索性,只要充分理解其特点,才能使小学数学的教学向着有利于学生接受的方向迅速前进,从而提高教学效率,达到教学目标。
浅析新课改下高中数学导数教学的发展
最近几年来,伴随着我国市场经济的飞速发展,社会也在不断的发生着变化,同期我国的科学技术水平也迈上了一个新的台阶。为了能够更好的发展,同期也需要我们的自然学科进行相应的发展,这样可以更好的适应社会发展的需要。众所周知,数学学科是高中素质教育中不可或缺的重要组成部分之一,自从我国教育体制开始形成之时,数学科目就开始存在,所以说数学在素质教育中占据的地位非常重要,而导数作为帮助学生解决函数、数列等难点的工具,同时又能紧密联系其他学科,更是有着十分重要的地位。在实行新课改后,微积分作为教学内容而列入高中数学教材,这对学生的导数知识掌握能力提出了更高的要求。因此本文对新课改实施背景下,如何通过教学方法的改进来提高学生导数掌握能力进行研究。
一.现阶段高中数学导数教学的现状
(1)教学模式单一,对学生 学习方法 引导不够
在文理分科的背景下,导数在高中数学学科中是作为一门选修课程来学的,这造成了文科学生由于对导数的应用了解不深而不能很好地掌握,利用导数求解函数参数问题也就无从谈起。同时由于实行新课改后,数学学科的课时被压缩,很多教师为了在短时间内完成大纲规定的内容,在教学过程中一般来说都是采取的教师讲授或者板书,毫无疑问,在整个教学的过程中学生都是被动听课的方式进行教学的,这种教学方式在一定程度上大大压制了学生思维的活跃性和课堂参与的积极性。这就造成了学生由于导数内容太难而失去学习激情,这更加不利于导数知识的掌握,不利于教学活动的开展。
(2)应试教育观念导致的教学僵化
一直以来,我国的应试教育体制在教育体系中的地位都比较稳固,甚至到现在为止还没有得到完全的消除。即使实行了新课改,很多教师由于教学观念没有转换过来,在教学过程中过于重视考试题型的讲解和练习,而忽视了帮助学生对数学思想和内涵进行正确认识,这导致了学生在导数学习中纯粹以考试为目的,机械式地背诵公式,无法将所学导数知识运用于生活和其他学科的内容学习中,这与新课改提倡的素质教育理念是不相符的。导数教学的难点在于学生对于导数的认识不足,难以理解导数概念,这需要老师利用物理学科或者生活中的场景进行深入了解,而不是用纯粹的理论化的数学概念来对学生进行“填鸭教育”。
二、新课改下提高数学导数教学质量的 措施
(1)帮助不同的学生制定不同的 学习计划
总的来说,学习方法是学生进行有效学习的基础,而且在一定程度上对学生的学习起着举足轻重的作用。正确的学习方法是学生有效掌握所学知识的保证,这就要求数学教师在课堂教学中除了对学生进行课堂内容讲解外,还需要通过一定的测试和沟通来了解学生的导数内容掌握情况,对于掌握不足的学生应该帮助制定相应的学习计划,测试的目的不是为了成绩,而是为了掌握学生的学习情况,同时针对学生的学习情况对教学计划进行适当的调整,如果后续的学习计划制定没有跟上,那么测试也就失去了意义。
(2)借助案例帮助学生加深对导数的理解
导数由于其对于高中学生来说过强的理论性,造成了学生对于导数的理解和应用往往掌握不够,这种情况下纯粹的理论教学只会造成学生进一步的不理解,这十分不利于学生的学习效率和老师的课堂效率,所以在导数的课堂教学中,老师要注意借助导数应用案例来激发学生的学习热情,比如物理运动的速度变化问题、加速度变化问题等,这样不仅能够帮助学生更好地理解导数内涵,而且能够使学生在加强对其他学科知识的理解的同时主动思考导数知识在生活中的应用,大大提高了教学质量和效率。
(3)加强导数技巧性和应用训练
在平时的教学中应该多鼓励学生应用导数内容求解函数等相关问题,这样可以进一步提高学生对导数的理解程度和应用水平。同时老师也可以针对导数的应用多出一些技巧性的题目对学生进行训练,比如利用导数知识来画出二阶、三阶函数的图像等,学生要做出这种题目就需要一定的技巧,随着解答的技巧性题目数量的增多,学生对于导数的应用也就更熟练。同时在导数的初学阶段,由于学生对于导数理解不够,老师可以出一些含有生活案例的题目让学生来解答,比如将学生骑车时速度变化的问题加入到导数题目中,这样可以促使学生主动思考导数知识,加深对导数的理解,为以后的导数深入学习打下基础。
三、结语
综上所述,我们可以知道,高中数学的导数教学具有其一定的独特性,究其原因是因为在一定程度上不但具有数学学科严密的逻辑性,而且同时还具有初中数学不具备的抽象性,所以在教学中需要教师根据高中数学的特点进行相应的教学。高中导数的有效教学不但需要教师采用积极引导的教学,同时还需要学生培养出数学思维进行学习,只有通过教师和学生共同努力,这样才能在新课改的情况下,让高中数学导数教学得到稳定可持续的发展。
浅谈初中生数学问题意识的培养
一、初中生问题意识培养的意义
问题意识即在学科学习过程中能够主动思考、认真探究,从而针对某个方面提出问题的思想准备。在数学课堂上,学生常常不敢或不愿回答课堂提问,不能或不善提出问题,能够经常积极回答问题的只有少数学生,能够在课堂中提出问题的学生更是少之又少。学生缺少问题意识,不能提出问题,不利于学生思维的发展,不利于学习能力的进一步提升。朱永新关于新课程的核心理念之一:教给学生一生有用的东西。而学生自主学习、勤学好问的习惯一定是学生一辈子受益的。心理学研究表明,意识到问题的存在是思维的起点,学生没有问题本身就是大问题.被称为现代科学之父的爱因斯坦曾指出:“提出一个问题往往比解决一个问题更重要。”初中生数学问题意识的培养,是学习习惯和学习能力培养的重要方面,是新课程改革的需要。
二、初中生问题意识培养策略
如何培养学生问题意识呢?我们通过教学实践进行了相关探索,并初步形成了一些策略。
1、改变评价方式,鼓励提问
造成学生问题意识缺失的原因是多方面的。我们的评价导向不利于学生问题意识的培养是原因之一,多数时候我们对回答问题对、考试分数高大加赞赏,对于学习有困难的学生缺少鼓励指导。大批循规蹈矩的学生,不敢也不会去质疑。学生学习中的问题本应该由学生主动提出,而实际教学中常常是学生被老师问。如何改变这一现状?我们可以采用多种方式鼓励学生提问。(1)注意运用表扬或激励性语言,逐步使学生感受到课堂中能提出问题和敢于回答问题一样都是值得肯定和鼓励的。(2)把学生课堂提问是否积极作为对学生评价的一个重要方面。(3)有目的进行一些提问竞赛等活动。
2、夯实学习基础,让学生能问
教学实践中我们体会到学生能否提出问题与学生学习基础有密切关系,学习基础较好的学生更容易提出问题。因此,教师要注重夯实学习基础、培养学生勤学好问的品质,让学生坚实的学习基础成为产生问题的土壤.
3、营造轻松学习氛围,使学生敢问
数学课堂上学生没有提出问题,并不是没有问题,更多时候是因为紧张等原因导致有问题不敢提出。学生只有在宽松、和谐的氛围中,思维潜力才会得到最大限度的开启。为了消除学生在课堂上的紧张和害怕的情绪,教师需要尽可能营造轻松、和谐、民主的学习氛围,可以先让学生在学习小组内交流、质疑,再让学生在全班内提出或解答问题。教师以微笑、平和、宽容、鼓励的心态指导学生,与学生交流探讨,帮助学生树立自信,拉近师生情感距离,使学生做到想问就问。
数学教学应教会学生会思考。让学生经历观察、猜想、操作、实验、合情推理的过程,不仅有利于培养学生的独立性、能动性和创新精神,而且学生在轻松学习氛围中能够 消除紧张 因素,有问题时敢于提出。
4、教师示范引领,诱导学生善问
如果一个人没有问题,就不会有新的发现,就不会有真正的成长。学生没有问题意识就会学得被动低效,教师没有问题意识就会阻碍专业成长。教师要让学生有问题意识,就首先自己具有问题意识。教师强烈的问题意识能起到很好的示范作用,能促进学生的问题意识发展。
案例2.三角形三边关系教学
(1)让生拿出课前准备好的三根长度不一样的塑料吸管。
(2)把这三根吸管“首尾顺次连结”你有何发现?这时学生发现有的能构成三角形,有的却不能。
(3)教师再继续提出三个问题:①你的三根吸管的长度各是多少?②三根吸管的长度具有怎样关系时能“首尾顺次连结”组成三角形?③是否具有任何长度的三条线段都能“首尾顺次连结”构成三角形?
在上述探究过程中,正是教师不断追问诱导,集中学生的思维,引发了学生的不断质疑,思考层层深入,结果不断涌现,惊喜不断。长此以往,学生就会善于提问。
5、利用现代媒体技术,促学生提问
《义务教育课程标准(2011版)》(以下简称《标准》)指出:数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程的整合。把信息技术作为学生学习数学和解决问题的有力工具,有效地改进教和学的方式,使学生乐意投入到现实的、探索性的数学活动中。现代信息技术应用于数学教学能达到其他方式无法比拟的效果,有力于学生在“问题空间”自主探究。教师为学生设置环境,提供他们需要使用的工具与资源,促使学生提出问题并进行探索,激发学生解答问题,实现学生自己建构知识。
现代信息技术为数学活动的开展提供了广阔的天地,只要学生投入到运用媒体软件做数学的活动过程中,必然发现或提出各种问题、引发自主探究。
三、结语
总之,真正的教育应该是以学生的发展为本,老师不仅关注如何教,更应该关心学生如何学.我们要求学生创造出能够提出问题、敢于提出问题、善于提出问题的学习环境,从而培养学生的问题意识和创新精神.
大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。
大学数学论文 范文 一:大学数学网络 教育 论文
一、教师要转变观念
意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。
二、进行有效引导
在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。
三、有效整合教学资源
现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。
大学数学论文范文二:大学数学教学中网络教育资源研究
一、如何利用网络教育资源提高大学数学教育质量
(一)加强教师对网络教育资源的认知
以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。
(二)教师要把网络教育资源的内容融入到教学之中
教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。
(三)教师要引导学生们自主利用网络教育资源
教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。
(四)增强学生自主学习能力和兴趣
现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。
二、结束语
大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。
大学数学论文范文相关 文章 :
1. 大学生论文范文
2. 大学论文格式范文
3. 大学生论文范文模板
4. 大学毕业论文范文
5. 大学生毕业论文范文
6. 大学毕业生论文范文
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!
浅谈提高课堂的有效性思维的策略
有效的课堂教学是通过课堂教学活动,让学生在认知和情感上均有所发展。从事小学数学教学的过程中,对于其有效性有以下几点思考:
一、重视情境创设充分调动学生有效的学习情感
构建良好的师生关系,调动有效的学习情感,对于维持学生的学习兴趣和注意力至关重要。调动有效的学习情感,既能培养学生的学习信心,调动其学习的主动性,又能切实提高课堂教学的有效性。
在情境创设中,应注意以下几点:
1、情境创设应目的明确
每一节课都有一定的教学任务。情境的创设,要有利于学生数学学习,有利于促进学生认知技能、数学思考、情感态度、价值观等方面的发展。所以,教学中既要紧紧围绕教学目标创设情境,又要充分发挥情境的作用,及时引导学生从情境中运用数学语言提炼出数学问题。如果是问题情境,
提出的问题则要具体、明确,有新意和启发性,不能笼统地提出诸如“你发现了什么”等问题。?
2.教学情境应具有一定的时代气息
作为教师,应该用动态的、发展的眼光来看待学生。在当今的信息社会里,学生可以通过多种 渠道 获得大量信息,教师创设的情境也应具有一种时代气息,让他们学会关心社会,关心国家发展。如教学《百分数的应用》,
创设了中国北京申奥成功的情境:出示第二轮得票统计图(北京56票,多伦多22票,巴黎18票,伊斯坦布尔9票)请学生根据统计图用学的百分数知识来提出问题,解决问题。?
3.情境的内容和形式应根据学生的生活 经验 与年龄特征进行设计?
教学情境的形式有很多,如问题情境、 故事 情境、活动情境、实验情境、竞争情境等。情境的创设要遵循不同年龄 儿童 的心理特征和认知规律,要根据学生的实际生活经验而设计。对低、中高年级的儿童,可以通过讲故事、做游戏、直观演示等形式创设情境,而对于高年级的学生,则要创设有助于学生自主学习、合作交流的问题情境,用数本身的魅力去吸引学生。?
二、深钻教材,确保知识的有效性。
知识的有效性是保证课堂教学有效的一个十分重要的条件。对学生而言,教学知识的有效是指新观点、新材料,他们不知不懂的,学后奏效的内容。教学内容是否有效和知识的属性以及学生的状态有关。第一,学生的知识增长取决于有效知识量。教学中学生知识的增长是教学成败的关键。第二,学生的智慧发展取决于有效知识量。发展是教学的主要任务,知识不是智慧,知识的迁移才是智慧。在个体的知识总量中并不是所有的知识都具有同样的迁移性,而是其中内化的、熟练的知识才是可以随时提取,灵活运用,这一部分知识称为个体知识总量中的有效知识,是智慧的象征。第三,学生的思想提高取决于有效知识量。这种知识是指教学中学生获得的、融会贯通深思熟虑的、实在有益的内容,即有效知识。第四,教学的心理效应取决于有效知识量。通过对知识的获取产生愉悦的心理效应,才能成为活动的原动力和催化剂。
三、探究有效的学习过程。
课堂教学的核心是调动全体学生主动参与学习全过程,使学生自主地学习、和谐地发展。学习过程是否有效,是课堂教学是否有效的关键。学生是学习的主体,但我们也不得不承认,处于成长发展中的小学生,是不成熟的学习主体。由于受年龄、经验、知识、能力的限制,他们提出问题、分析问题的能力毕竟是有限的。因此,只有发挥教师作为组织者、引导者、点拔者的作用,才能发挥学生的主体性、主动性,让学生学会学习。尤其在学生疑难处、意见分歧处,或在知识、 方法 归纳概括时,更要及时加以点拔指导。
有效的学习过程还可以通过游戏实施。小学生注意的特点是无意占优势,尤其是低年级往往表现出学前儿童所具有的那种对游戏的兴趣和足劲要求,他们能一连几小时地玩,却不能长时间地一动不动地坐在一个地方。新课程要求“面向每一个学生,特别是有差异的学生”。因此针对差异性,可以实施分层教学策略,最大限度地利用学生的潜能实施教学过程分层,放手让学生独立思考,展示学生个性,从而使每一个学生都得到发展。使数学课堂教学真实有效。
四、联系生活实际,创设有效的生活情境
创设有效的生活情境是提高课堂教学有效性的重要条件。《数学课程标准》指出:“力求从学生熟悉的生活情景与童话世界出发,选择学生身边的、感兴趣的数学问题,以激发学生学习的兴趣与动机,使学生初步感受数学与日常生活的密切联系。”数学教学中,教师要不失时机创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情景,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。
在创设生活教学情境时,一要选取现实的生活情境。教师可直接选取教材中提供的学生熟悉的日常生活情境进行加工或自己创设学生感兴趣的现实生活素材作为课堂情境。二要构建开放的生活情境。教师要对课内知识进行延伸与拓展,将抽象知识学习过程转变为实践性、开放性的学习过程,引导学生发现问题,大胆提出猜想,不断形成、积累、拓展新的数学生活经验。要创设多元的生活情境。
可以通过对学生生活及兴趣的了解,对教学内容进行二次加工和整合,再次创设生活情境。真正实现课的导入“生活化”——教学的导入仿佛是优美乐章的“序曲”;例题教学“生活化”——例题教学是优美乐章的主旋律;知识运用“生活化”——综合运用知识的能力仿佛是动听的“交响乐”。
生产和生活实际是数学的渊源和归宿,其间大量的素材可以成为数学课堂中学生应用的材料。
要做有心人,不断为学生提供生活素材,让生活走进课堂。真正让文本的“静态”数学变成生活的“动态”数学。要让学生觉得数学不是白学的,学了即可用得上,是实实在在的。这样的课堂教学才是有效的。
五、注重教学 反思 ,促进课堂教学质量
记得有人说过“教无定法,教学是一门遗憾的艺术”。因为我们的教师不是圣人,一堂课不会十全十美。所以我们自己每上一节课,都要进行深入的剖析、反思,对每一个教学环节预设与实际吻合、学生学习状况、
调控状况、课堂生成状况等方面认真进行 总结 ,找出有规律的东西,在不断“反思”中学习。我们反思的主要内容有:思考过程、解题思路、分析过程、运算过程、语言的表述、教学的思想方法进行反思等。以促进课堂教学质量,教学效果也一定会更好。
教学作为一种有明确目的性的认知活动,其有效性是广大教师所共同追求的。无论课程改革到哪一步,“有效的课堂”是我们
永恒的追求。我们要在新课程理念指导下,在发挥学生主体作用的前提下,改革课堂教学模式,提高课堂教学实效。
试谈高中数学学习能力型问题和创新能力型问题
随着数学课程教材和考试评价改革的深入开展,提高学生能力的问题越来越引起人们的重视,被提到了重要的地位。为了进一步提高数学学习的质量,有必要对能力问题开展进一步的研究。在数学 教育 领域内,一般能力通常包括学习新的数学知识的能力、探究数学问题的能力、应用数学知识解决实际问题的能力和数学创新能力,提高这些能力将大大推动学生素质的提高。为此我们结合数学教学和考试命题的实践,有必要对数学教育中如何提高一般能力进行初步的探索,因此,我对高中数学学习能力型问题与创新能力型问题的差异进行了分析,给高中学生以予参考。
一、如何理解学习能力型问题
1.学习能力型习题的特点
(1)内容新。
学习能力型习题中常常出现过去没有学习过的新的概念、定理、公式或方法,要求学生通过自己学习以后,理解这些概念、定理、公式或方法,并且能运用它们解决有关的问题。
(2)抽象性。
这里新的概念、定理、公式或方法的叙述通常比较简略,比较抽象,没有解释性和说明性的语言,需要学生自己去仔细揣摩、领会和理解。与平时在课堂里教师指导下学习新知识有很大的区别,没有教师的讲解、举例和解说,没有许多感性的内容,比较抽象和概括,对学生的独立学习能力和 抽象思维 能力要求较高。因此学生解这类问题往往感到很困难。
(3)学了就用。
这里学习新知识的时间很短,要求通过阅读很快就能理解新的概念、定理、公式和方法,并能立即运用它们解决有关的问题,不举例题,没有模仿的过程。因此对学生思维的敏捷性和独创性要求较高。
2. 解学习能力型习题的步骤
(1)阅读理解
首先通过阅读理解题意,理解题目所包含的新的概念、定理、公式或方法的本质:这里分为两步:1、字面理解:要求读懂其中每一个 句子 的含义。2、深层理解:要求深入理解新的概念的本质属性,分清新的定理和条件和结论,理解新的方法的关键等。
(2)运用
在理解新的概念、定理、公式或方法的基础上,运用它们解决有关的问题。
3.如何提高解学习能力型问题的能力
(1)平时学习时要注意培养独立学习的能力
同于学习能力型问题包含新的概念、定理、公式或方法,在解题时要求通过自己独立学习,理解这些新的概念、定理、公式或方法,在此基础上,运用它们解决有关的总是因此要能顺利地解决这类问题必须有较强的独立学习能力。在平时学习时要培养自己预习的习惯,在上新课之前,自己先预习,尽量通过自己独立学习掌握新的知识,而不依赖教师的讲解。
(2)重视提高阅读理解能力
这里非常重要的就是阅读理解能力。例如学习一个新的概念,题目中只给出名称和抽象的定义,要求通过阅读概念的定义,理解概念的本质,这就对阅读理解能力提出较高的要求。首先要求学生具备一定的语文和数学的基础知识,对定义中的词和句子能有正确的理解,再进一步能根据概念的定义辨别正例和反例,并能具体运用概念。
论小学数学教学中培养学生学习兴趣的途径
数学领域是一片五彩缤纷、任人驰骋的天地,要想学好数学,需要好奇心、学习兴趣、思维能力和创造意识。而"学习的最好刺激乃是对所学学科的兴趣"(美国心理学家布鲁纳)。教师要设法使学生对数学学习产生浓厚的兴趣,只有让学生在学习的过程中体会到愉悦和快乐,才能够激发他们的学习欲望,才能够很好的进行学习。
一、精心设计课堂导入环节
课堂教学的导入虽仅占几分钟或几句话,但它是教学过程的重要环节,负有酝酿情绪、集中学生注意力、渗透主题和带入情境的任务,新课的导入要像磁石一样,牢牢地吸引学生的注意力,使学生强烈的求知欲望和高涨的学习热情,为课堂教学营造良好的学习氛围。因此一节课导入的好坏直接关系到学生的学习效果。导入的方法很多,可以讲故事、猜 谜语 ,也可以做游戏、听音乐,甚至简单的一个设问,都可以导入新课。如在教学能被2、3、5整除数的特征时,教师先写几个较大的数,让学生判断这些数能否被2、3、5整除,所有学生都无法完成这个任务,然后反过来,教师让学生报数,教师来进行判断,无论数多大均能很快并很正确地判断出来。
学生被老师这种"未卜先知"、"料事如神"的本领吸引住了,这时教师引导:"你们写的数那么大,老师根本没有除,为什么能很快判断出它们能不能被2、3、5整除呢?因为这里有一个诀窍,如果你们也掌握了这个知识的诀窍,那么你们也可以像老师一样,不用具体去除,就能迅速判断,你们想学不想学?"短时间内的几句话就把学生的兴趣和求知欲激发起来了,这样就为上好这节课提供了良好的心理品质,变学生"要我学"为"我要学",充分调动了学生学习数学的积极性和主动性。整个教学过程学生学得积极、主动。
二、利用直观教具的演示
教师利用多媒体教学能使学生直观认识新知识,更容易接受新知识。因为小学生好奇心特别强,而且抓住小学生对动画片痴迷这一特点,把他们兴趣引到课堂中往往得到满意的效果。如在教学《长方形周长计算》时,教师利用多媒体设计了龟兔赛跑的动画,把这个小故事制成几张幻灯片,其中设置了小乌龟跑的路线的动画效果,学生聚精会神,对小乌龟的一举一动都产生了一丝不苟地观察,并产生了无可估量的兴趣,因此在兴趣中轻松地解决了教学的重点和难点。
教师还可以利用 简笔画 、画图示例等直观教学吸引学生。简笔画教学是教师的教学基本功之一,如果能充分发挥教师这一特长,也能调动学生的学习兴趣,因为每个小孩生来就有着爱画画的本性,在教学过程中,学生对一笔代过的简笔画非常感兴趣,把这一兴趣潜移默化到教学实例中,同样能使学生在愉快氛围中获取知识。如教学《10以内的加减法》时,教师把小鸡和母鸡简笔画描到黑板上,让学生数出小鸡和母鸡的只数,再提出所要完成的问题,学生联系实例在兴趣盎然中会给得到惊喜的答案。
教学中,教师合理地运用教学模型,采用视想结合,不仅能开拓学生思维,更重要的是引导学生迅速进入教学情景,诱发学生学习兴趣。除了利用电化设备,在教学中还可以运用模型,灵活、广泛的进行直观教学。如教学《图形的认识》时,运用一些模型教具,让学生亲手摸一摸、看一看,调动学生的兴趣,而且能把抽象的几何内容转化为实物,使学生学起来简单易理解,并且提高学习兴趣。
三、培养学生的动手能力
在教学活动中让学生亲自动手操作,既能满足他们好动的要求,又能在愉悦中获取知识。学生理解和掌握知识总是以感性认识为基础,感性认识丰富,表象清晰,理解就深刻。因此,教学中让学生动手操作,独立探索,会极大地激发学生的求知欲和学习兴趣。小学生的思维以具体形象为主,在知识的构建过程中,教师应根据小学生的认知特点和数学知识本身的特点,有意识地设置学生动手操作的情境,使课堂处于一种积极探索的有序状态。例如在《圆的认识》教学中,课前教师给学生准备好硬纸、尺子、剪刀、圆规等学习用具,在授课时教师给学生亲自动手画圆,剪圆,量圆的半径和直径,并且在不同的圆里找出的异同点,通过学生动手,教师的点拨,把圆的特点知识在兴趣中获取。再如,在教学《平均分》时,教师是这样做的:(1)出示问题:"把6个桃子分成2份,可以怎样分?"(2)学生通过自己动手操作得出了三种答案:"5和1","4和2","3和3"。(3)让学生再观察,哪种分法最公平?学生稍加思考便知道"3和3"两份一样多,老师顺势引入"平均分"这一课题。学生通过参加分苹果的实际操作过程,极大地提高了对该教学内容的学习兴趣。
在课堂上,通过学生的动手操作,不折不扣地让学生去摆一摆、折一折、分一分、称一称、量一量、摸一摸、数一数、涂一涂、拼一拼,有利于突破教学的重点、难点,有利于减轻学生负担,有利于激发学生的兴趣,使学生主动积极地参与学习,发展了学生的能力,提高了教学效果。
四、灵活多变的课堂形式
通过创设多变的教学情境,充分调动学生积极参与的情感,既给学生带来了成功的喜悦,又使学生在轻松、愉快的数学活动中提高了计算能力和应用能力。如教师在《多位数乘一位数复习课》中设计了一个到智慧岛游玩的环节自始至终贯穿于整个复习课。一开始是到了智慧岛需要买门票,只要你算对了老师出的题目以后,就可以得到一张门票(下一个环节里用到的题卡),这样,可以激发学生进一步学习的欲望。当学生拿到题卡以后,进行计算的练习。当学生全部计算正确以后,就会得到一颗智慧星,这样设计,提高了学生学习的兴趣。然后老师出了几棵小树,上面是错误的计算题,让学生给生病的小树治病,治好病以后会进入下一个环节,利用两组灯笼间数的规律,通过计算,把剩余的灯笼"点亮",再一次进行了计算练习,同时结束智慧岛之游,使整节课的设计前后连贯,有始有终。
在教学中,根据教学内容,设计各种各样的游戏活动进行教学,使学生在喜悦中理解和掌握知识。如教学"8个和第8个",让小朋友手里拿着红花,先让他们从小到大排列,再从大到小排列。让8个小朋友向前走一步,再比第8个小朋友向后退一步,从而使学生区分8个和第8个的含义。请前面的7个小朋友坐下,再让第7个小朋友举起红花。又如教学"小明有9元,买笔用去4元,买本子用去2元。小明还剩多少钱?"设计了这样的一个游戏,讲台上面摆放着笔和本子,并标上价钱,请一个学生扮演售货员,一个学生扮演小明,并且手里有9元,游戏开始了,请同学们读题目。第一次买笔售货员找回5元给小明,这时,老师就问小明还要买什么东西,同学们异口同声地说:"买本子。"第二次售货员找回3元。通过这样教学,学生很快列出正确的算式。让学生身临其境,培养学生分析应用题数量关系的能力,又正确掌握解题思路。
兴趣是最好的老师,只有在教学中激发了学生的学习兴趣,才能更好地发挥学生的主体性,促进学生自主地学习。只有充分培养学生学习数学的热情,才能激发学生学习数学的兴趣,提高课堂学习效率。
2017大学数学论文范文
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。
几类特殊函数的性质及应用
【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。
【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分
1.引言
特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。
特殊函数定义及性质证明
特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。
特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。
2.伽马函数的性质及应用
伽马函数的定义:
伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。
Г函数在区间连续。
事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。
,伽马函数的递推公式
此关系可由原定义式换部积分法证明如下:
这说明在z为正整数n时,就是阶乘。
由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....
用Г函数求积分
贝塔函数的性质及应用
贝塔函数的定义:
函数称为B函数(贝塔函数)。
已知的定义域是区域,下面讨论的三个性质:
贝塔函数的性质
对称性:=。事实上,设有
递推公式:,有事实上,由分部积分公式,,有
即
由对称性,
特别地,逐次应用递推公式,有
而,即
当时,有
此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为
由上式得以下几个简单公式:
用贝塔函数求积分
例
解:设有
(因是偶函数)
例贝塔函数在重积分中的应用
计算,其中是由及这三条直线所围成的闭区域,
解:作变换且这个变换将区域映照成正方形:。于是
通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。
贝塞尔函数的性质及应用
贝塞尔函数的定义
贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。
贝塞尔函数的'递推公式
在式(5)、(6)中消去则得式3,消去则得式4
特别,当n为整数时,由式(3)和(4)得:
以此类推,可知当n为正整数时,可由和表示。
又因为
以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。
为半奇数贝塞尔函数是初等函数
证:由Г函数的性质知
由递推公式知
一般,有
其中表示n个算符的连续作用,例如
由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。
贝塞尔函数在物理学科的应用:
频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令
称为的Fourier变换。它的逆变换是
若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,
这就是Shannon取样定理。Shannon取样定理中的母函数是
由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:
以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。
首先建立取样定理
设:
其中是零阶贝塞尔函数。构造函数:
令
经计算:
利用分部积分法,并考虑到所以的Fourier变换。
通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:
类似地
经计算:
经计算得:
则有:设是的Fourier变换,
记则由离散取样值
因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。
例,利用
引理:当
当
因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式
首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:
(1)
其中
函数的幂级数展开式为:
则关于幂级数展开式为: (2)
由引理及(2)可得
(3)
由阶修正贝塞尔函数
其中函数,且当为正整数时,取,则(3)可化为
(4)
通过(1)(4)比较系数得
又由被积函数为偶函数,所以
公式得证。
3.结束语
本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。
参考文献:
[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.
[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)
[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.
[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.
[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.
[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.
[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.
[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.
[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.
[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.
数学教育的毕业论文范文
导语:数学教育方面的研究有利于教师们更好地开展相关的数学教学。下面是我为大家带来的数学教育的毕业论文范文,希望大家喜欢。
摘要:数学是一门科学学科,不仅向学生传授数学基础知识,还重在启发学生的智力,提高学生的思维能力、独立思考能力和创新精神。由于新课改的深入,我国传统的教学模式致使数学教育教学中出现众多问题。学校在教育教学中,为了提高学生成绩,一味地强调培养学生的应试能力,忽略学生学习的主体性和创新能力。针对数学教育教学的现状,数学教育应该改变教学途径,注重培养学生学习数学的兴趣,提高学生的创新能力,从整体上提高数学教育教学水平。
关键词:高中数学;教育现状;改变途径
随着新教育课程改革的实施和深入,我国传统的教学模式出现众多弊端,针对这些弊端,在教育改革的路程中,探索新的教育教学方式成为教育教学的主题。高中数学教育不仅培养学生的独立思考能力,还应该注重培养学生的创新能力,因此,高中数学教学过程中,教师应该创新教学方法,让学生在学习数学知识的过程中,提高自身的逻辑思维能力和创新精神,从而提高数学教育教学水平。
一、高中数学教育教学的现状
新课改的实施,使我国高中数学教育教学模式出现了种种弊端,例如,传统的教学意识、单一的教学方法、繁重的升学压力等,以下从这几个方面就我国高中数学教育现状作简要论述。
(一)传统的教学意识
常言道:"学好数理化,走遍天下都不怕"。这充分显示出数学教育在人们意识中的重要地位,认为数学是其他学科的基础,因此在数学教育教学中,人们对数学教育有着十分苛刻的要求。人们十分重视数学教育显然是极其正确的,但是,在教学过程中,教师只是采取传统的强行教学模式,如死记硬背,认为只有这样才能更好地掌握数学科学。数学作为一门科学学科,不仅仅是传授基础的数学知识,而重在启发学生的智力,培养并提高学生的思维能力。教师如果只是为了提高分数而一味地强调基础知识,那么培养出的人才将不能适应社会的发展,在一定程度上将会给教育教学和社会发展带来隐患。
(二)单一的'教学方法
教师在教学过程中,采取的一言堂的教学模式,教师成为课堂的主角,注重讲授,而并未认识到学生是课堂的主体,在讲授过程中忽略学生对知识的反馈。数学是一门逻辑性很强的学科,教师应该细心、耐心地讲解每一个步骤,让学生理解、吃透每个知识点,而不是死记硬背每一个步骤,这样学生在考试过程中,只是一味地模仿、照搬,而不对问题进行深入分析以及对公式进行推导,长期的这种教学模式,不仅使学生对数学失去兴趣,而且不利于提高学生的数学成绩、独立思考能力和创新能力等。
(三)繁重的高考压力
随着教育教学的改革和发展,教育界的学者们也逐渐认识到数学教育过程中存在着众多问题。为了减轻学生的学习压力,教育者们提出减负的观念。他们提出这一观念是从学生的角度出发,其初衷是好的,但是在实施过程中,人们并没有将它的初衷体现出来,而是与初衷出现偏差。针对这一观念出现的偏差是因为教育教学者和学生已经将升学思维根深蒂固于头脑中,这不仅使"减负"这一概念成为名副其实的幌子,而且使教育教学模式并没有发生实质性的变化。在数学教学过程中,数学教育者如果只是为了追求较高的升学率,而忽视了培养学生的创新能力和思维能力,那么培养出来的将是高分数低智能的学生。面对这种教学模式培养出的人才状况,教育界对教育教学进行改革已经势在必行。
二、改变现状的途径
针对我国高中教育的现状,我国应该改革数学教育模式,采取有效措施使数学教育教学培养出高素质、高水平的人才。以下从三个方面简要说明改变数学教育现状的途径。
(一)树立正确的教育教学观念
正确的教学观念有利于正确引导教学高质量的发展,因此,教师在教育教学中树立正确的教育教学观念尤为重要。首先,教师在教学中不应该一味地强调应试教育,不能以分数评价学生。分数不是衡量学生能力的唯一标准,如果教师以分数来衡量学生的能力,就不仅会影响学生学习数学的积极性,还会限制学生思维能力、独立思考能力的发展。其次,教师应该树立学生是学习的主体的观念,在教学中应该以学生为主体,充分发挥学生的主体性,激发学生对数学的学习兴趣,使学生乐在其中,让他们发挥自身的学习水平,投入到学习中,尽情地思考、讨论,在思考、讨论中掌握数学知识和学习技巧,从而提高自身的逻辑思维能力。
(二)采用多种教学手段活跃课堂气氛
数学是一门逻辑很强的学科,学生在学习数学过程中往往会感到枯燥、乏味,于是在课堂中就会处于被动地位,对数学没有热情和积极性。因此,教师在教学中应该采用多种教学手段,将一些带有趣味性和文学色彩的内容融入数学课堂教学中,活跃课堂气氛,同时,将数学与生活实践相结合,调动学生的积极性,这样不仅使沉闷的课堂充满活力,使教学内容丰富多彩,而且培养学生的观察能力、理解能力和实践能力,让学生将数学知识应用于生活中,从而达到学以致用的目的。
(三)建立平等的师生关系
学生与教师看似是两个不同地位的角色,但是在教学中,学生和教师是相互合作、平等的关系。在学生心里,教师是高高在上的;在有些教师心里,学生就是学生,与自己的关系是不可逾越的。这些致使学生与教师之间产生了距离。学生在面对老师时,有着一种畏惧的心理,因此不敢表达自身内心真实的想法。同时,教师以高高在上的姿态进行教学,而从不走进学生的内心,了解学生的真实想法,这在一定程度上阻碍了师生间的交流,从而影响教学质量。面对这种状况,教师应该走进学生内心,成为学生的朋友,鼓励学生勇于探求新知识,解除学生的内心疑惑,以平等之心对待每一个学生,加强与学生的交流和沟通,提高学生学习数学的兴趣,让学生在轻松、愉悦、和谐、平等的环境中掌握数学知识,提高数学成绩,从而从整体上提高数学教学质量。
在新课改教育教学的背景下,数学教育教学与其他学科教学一样,在不断摸索中求发展。数学教师应该适应教育发展的潮流,改变传统的教学观念和教学方式,充分发挥学生学习的主体性,激发学生学习数学的热情,培养学生的创新能力和逻辑思维,提高数学教育教学质量,从而使教育更加人性化、科学化。
在大学数学教学中,数学文化是一个非常重要的组成部分,是学习数学的精髓。下面是我为大家整理的,供大家参考。
一、在数学教学中渗透语言的艺术美
斯托利亚曾说:“数学教学也就是数学语言的教学。”数学作为一门逻辑性非常强的学科,虽然和其他学科相比具有其特殊性,但其语言和其他学科语言一样,也是一门艺术,因此,数学教学语言的艺术技巧显得非常重要。为此,数学教师要不断锤炼自己的语言,用精准、简明、形象、生动的数学语言激发学生的兴趣、启迪学生思维,并积极鼓励学生不断探索,可以有效地优化数学教学效果。如:在学习高中数学必修一幂函式性质时,我很神秘地说:同学们,你们知道的365次方和的365次方分别约等于多少?当同学们不知所措时,我给出答案:的365次方约等于,的365次方约等于,并解释这道题蕴含的哲理是:的365次方也就是说你每天进步一点,即使只有,一年365天后,你将进步很大,远远超过1;的365次方也就是说你每天退步一点点,即使只有,一年365天后,你将远远小于1,几乎接近于0,远远被人抛在后面。通过这样的语言,学生很快认识了幂函式的值如何随底数变化而变化。同时鼓励同学们珍惜时间,不断努力,坚持下去,一定会有进步。富有艺术之美的语言在数学教学中具有强大的生命力,教师要创造机会,让学生体会艺术的语言给我们带来的数学之美,让学生在语言中逐渐理解、提升。
二、在数学教学中感受、欣赏艺术美
通过讲解共轭复数、对称多项式、对称矩阵等,让学生感受数学代数对称之美;通过讲解轴对称、中心对称、互补、互逆、相似等,让学生感受数学几何对称之美等。在学习选修内容《数系的扩充与复数》时,讲到历史上曾一度被看做是“幻想中的数”的虚数,由于它带有某种奇异色彩,更能使学生产生幻想和揭示其奥妙的欲望,这也正是数学的神秘之美。学生在教师充满艺术美的教学中感美、欣赏美,学生的学习劲头倍增,必定会达到意想不到的效果。
三、在数学教学中建立艺术化教学环境
在学习高中数学必修五数列知识时,我请一位同学用电子琴现场表演节目,同学们一下子就被这个新颖、独特的课前引入吸引,在观看表演后不禁问,老师葫芦里卖什么药。接着我简要介绍电子琴的键盘,让学生了解到琴的键中其中5个黑键恰好就是著名的斐波那契数列中的前几个数。在同学们追问什么是斐波那契数列时,我说:同学想知道什么是斐波那契数列,那么就要先学习好是数列,这样一步一步带领学生探索知识。教育家罗伯特•特拉弗斯说:“教学之所以被称为具有独特的表演艺术,它区别于其他任何表演艺术,就是由教师与那些观看表演的人的关系所决定的。”毫无疑问,掌握一定课堂教学艺术的教师,就能够取得较好的教学效果。
四、总结
综上所述,把艺术教育巧妙地渗透到数学教学中,使数学教学的课堂变得丰富多彩,充满活力,让学生在学习数学知识的同时促进艺术教育的发展。
一、限制职业学校数学教学发展的主要因素
一学生数学基础普遍较差
从职业学校的生源来看,学生以初中生为主。他们对数学基础知识的掌握普遍较差,缺少数学学习的积极性和自信心。大部分学生对数学思想的掌握不够全面,没有清晰的数学思维和逻辑,对数学中的很多概念性知识的理解不到位,缺少解决综合问题的能力。由于训练量的缺失,很多学生的运算能力不过关,很容易在数学运算中出现错误。
二数学课程安排不尽合理
近些年来,职业学校纷纷提高了对专业课程教学和实习的重视,为专业课程安排了更多的教学课时。这大大压缩了数学教学的时间,使得职业学校数学教师们面临着课时少、内容多的难题。很多数学教师只能将教学重心放到追赶教学进度上,对于很多重难点做不到细致的讲解,课堂练习的机会更是少之又少,从而大大影响了数学课堂的教学质量。
二、职业学校数学课堂教学的改革方向
一深化思想认识,端正学生学习态度
要想真正提高职业学校数学课堂教学质量,必须从思想认识上提高重视程度,从学校和学生两个层面配合数学教学工作。职业学校在保证专业课程教学时间的同时,还要尽量增加数学教学的课时,避免出现教学时间少、教学任务重、数学教师满负荷工作的现象。教师要加强与学生的交流,充分了解学生对数学课程的看法,教会学生数学学习的方法,帮助学生端正数学学习的态度,让学生能够自觉配合教师工作,更积极地参与到数学教学中。
二转变教学方式,激发学生学习兴趣
深化职业学校数学课堂教学改革必须加快教学方式的转变,数学教师要注重培养学生学习主动性和积极性,改变传统“一言堂”的灌输式教学,突出学生的主体地位,将课堂还给学生。为此,数学教师在课堂中要注重角色的转变,从课堂的主导者转变为引导者,通过构建情境、设定问题等方式让学生对教学内容进行自主探究,让学生在不断的学习成功中获得自信,从而达到激发学生学习兴趣,提高学生课堂参与度的目的。
三注重能力培养,灵活安排内容
职业学校数学课程不仅是为了提高学生数学运算能力,还要为学生日后的专业实习和工作打好基础。数学教师在安排课堂教学内容时,虽然做到了面面俱到,各类数学知识点都有涉及,但这种重理论轻应用的教学安排,使得数学的实用性和灵活性受到限制。所以,在职业学校数学课堂教学改革中,数学教师要灵活安排教学课堂内容,将数学教学与教育实际相结合,提高专业的针对性,针对不同专业的学生安排不同的教学内容和教学方式,提高学生在专业范畴内解决问题的能力,让数学真正为学生的专业学习、工作提供帮助。
四改善师生关系,实现课下教学拓展
良好的师生关系对激发学生学习积极性、提高课堂学习质量有重要帮助。数学教师在课堂教学中,要努力利用生动、幽默的课堂语言拉近与学生的距离,消除学生对数学学习的恐惧感和牴触情绪,对于学生面临的数学难题,教师要耐心解答。除了在课堂学习中的帮助,教师在平时的生活中也要加强与学生的沟通,加深与学生之间的感情,并及时了解学生对教师教学方法的想法,以便及时对教学方法和教学内容进行调整,提高数学课堂的教学效果。数学课程是职业学校不可或缺的基础课程。深化职业学校数学课堂教学改革必须从深化思想认识、转变教学方式、注重能力培养、改善师生关系等方面入手,达到激发学生学习积极性、提高数学课堂的教学质量的目的,让职业学校为社会提供更多的创造性人才和实用型人才。、
论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!
1. 圆锥曲线的性质及推广应用
2. 经济问题中的概率统计模型及应用
3. 通过逻辑趣题学推理
4. 直觉思维的训练和培养
5. 用高等数学知识解初等数学题
6. 浅谈数学中的变形技巧
7. 浅谈平均值不等式的应用
8. 浅谈高中立体几何的入门学习
9. 数形结合思想
10. 关于连通性的两个习题
11. 从赌博和概率到抽奖陷阱中的数学
12. 情感在数学教学中的作用
13. 因材施教因性施教
14. 关于抽象函数的若干问题
15. 创新教育背景下的数学教学
16. 实数基本理论的一些探讨
17. 论数学教学中的心理环境
18. 以数学教学为例谈谈课堂提问的设计原则
1. 网络优化
2. 泰勒公式及其应用
3. 浅谈中学数学中的反证法
4. 数学选择题的利和弊
5. 浅谈计算机辅助数学教学
6. 论研究性学习
7. 浅谈发展数学思维的学习方法
8. 关于整系数多项式有理根的几个定理及求解方法
9. 数学教学中课堂提问的误区与对策
10. 中学数学教学中的创造性思维的培养
11. 浅谈数学教学中的“问题情境”
12. 市场经济中的蛛网模型
13. 中学数学教学设计前期分析的研究
14. 数学课堂差异教学
15. 一种函数方程的解法
16. 积分中值定理的再讨论
17. 二阶变系数齐次微分方程的求解问题
18. 毕业设计课题(论文主题等)
19. 浅谈线性变换的对角化问题
1. 浅谈奥数竟赛的利与弊
2. 浅谈中学数学中数形结合的思想
3. 浅谈中学数学中不等式的教学
4. 中数教学研究
5. XXX课程网上教学系统分析与设计
6. 数学CAI课件开发研究
7. 中等职业学校数学教学改革研究与探讨
8. 中等职业学校数学教学设计研究
9. 中等职业学校中外数学教学的比较研究
10. 中等职业学校数学教材研究
11. 关于数学学科案例教学法的探讨
12. 中外著名数学家学术思想探讨
13. 试论数学美
14. 数学中的研究性学习
15. 数字危机
16. 中学数学中的化归方法
17. 高斯分布的启示
新颖的数学论文题目有:
1、数学模型在解决实际问题中的作用。
2、中学数学中不等式的证明。
3、组合数学与中学数学。
4、构造方法在数学解题中的应用。
5、高中新教材中数学教学方法探讨。
6、组合数学恒等式的证明方法。
7、浅谈中学数学教育。
8、浅谈中学不等式的几何证明方法。
9、数学教育中学生创造性思维能力的培养。
10、高等数学在初等数学中的应用。
11、向量在几何中的应用。
12、情境认识在数学教学中的应用。
13、高中数学应用题的编制和一些解题方法。
14、浅谈反证法在中学教学中的应用。
15、探索证明线段相等的方法。
16、几个带参数的二阶边界值问题的正解的存在性研究。
17、关于丢番图方程1+x+y=z的一类特殊情况的研究。
18、变限积分函数的性质及应用。
19、有限集上函数的迭代及其应用。
20、小学课堂环境改着的行动研究。
21、网络环境下小学数学主题教学模式应用研究。
22、培养小学生数学学习兴趣的教学策略研究。
23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。
24、小学生数学创新思维的培养。
25、促进小学生数学课堂参与的数学策略研究。
26、使学生真正成为学习的主人。
27、改革课堂教学的着力点。
28、谈素质教育在小学数学教学中的实施。
29、素质教育与小学数学教育改革。
30、浅谈学生数学思维能力的培养。