化学专业成教毕业论文参考题目一、教学法方向1.国外化学课程改革的历史及发展趋势研究2.我国化学课程改革的历史及发展趋势研究3.国外典型化学课程、教材的基本理念和内容体系研究4.我国化学新课标教材专题内容的横向比较研究5.我国高中化学新课标必修教材和选修教材的功能定位和内容体系研究6.我国高中化学新课标教材中各个栏目的教学价值、活动设计和教学策略研究7.科学探究的本质及科学探究教学的有效策略研究8.初、高中化学新课标教材的内容衔接研究9.化学实验教学的理论和实践研究10.化学教师的教学理念和教学行为研究11.试论化学教学的艺术12.化学基础理论的教学策略研究13.化学基本概念的教学策略研究14.元素化合物的教学策略研究15.高中化学课程资源的开发策略研究——以《某***节内容为例》16.教学反思与化学教师的专业成长17.有效探究教学设计初探——以《某***节内容为例》18.化学教学中的科学方法教育19.初、高中学生化学学习兴趣、动机的研究20.高一新生化学学习障碍的成因分析研究21.农村学生化学学习动机的调查研究22.论化学教材中插图的价值与使用策略23.化学教学中实施绿色化学教育的策略研究24.化学新课程教学中的问题与对策初探25.基于观念建构的化学基本概念教学策略——以《******》教学为例26.化学教师的教学理念与教学行为一致性程度研究27.先行组织者理论在化学教学中的应用研究28.科学探究中的科学本质教育29.化学教师的科学探究观调查研究30.有效实施科学探究的教学设计策略研究31.论化学探究性学习的评价性问题32.化学课堂教学逻辑设计的问题探讨33.新课程背景下教学设计中存在的问题与对策探讨34.新课程背景下高中化学教师教学行为的适应性研究35.论化学课堂提问的优化36.化学教师对模型的认识与应用研究37.合作学习在化学实验教学中的案例初探38.中学化学教学中的环境及可持续发展教育39.室内空气污染的来源,对人体健康的影响及防治对策研究40.试论光化学烟雾的形成条件、机理、危害及防治措施41.化学教学中开展研究性学习案例初探42.中学化学实验绿色化研究43.论高中化学章节间的结构联系44.污染中有机污染物的调查及处理45.试论多媒体教学手段在中学化学教学中的应用 自考课程免费试听46.试论我国的酸雨问题及防治对策47.化学学困生的成因及防治策略48.有效利用化学史的教学策略49.例谈教学中化学与其它学科的综合50.试论有效学习情境创设的有效策略 二、分析化学方向1.化学与食品安全2.化学与农药残留 3.化学与环境4.化学与现代农业5.化学与生命6.微量元素与人体健康 7.维生素与人体健康8.化学与能源和资源的利用9.浅谈在化学教学中绿色化学观念的渗透10.环境教育在中学教学中的意义11.溶液酸碱度的表示法----PH值的教学研究与设计12.浅谈化学定性分析实验在中学化学教学中的重要性13.如何增强化学定性分析实验的趣味性 三、物理化学方向1.各种体系的状态性质加和性的比较研究2.热力学公式导出条件与应用条件分析3.三相平衡线的热力学分析4.热力学标准态和标准热力学函数5.胶体分散系的稳定理论评述6.反应进度的概念及在物理化学中的应用7.根据热力学原理讨论浓度对化学平衡的影响8.中学化学教学中有关化学平衡原理的探讨9.中学化学教学中有关化学反应速率知识的探讨10.“化学反应原理”模块教学方法探讨11.新课标体系中《化学反应原理》模块知识解析——化学反应的方向和限度 四、结构化学方向1.利用一维势箱模型处理共轭体系2.波函数与电子云3.电子运动的宏观性与微观性4.电子结构与元素周期律5.第二周期双原子分子及其离子共价键结构比较6.几种典型分子化学键的比较与探讨7.有关氢键理论研究的现状及前景8.金属晶体的堆积型式与点阵型式9.离子晶体的堆积型式与点阵型式 五、有机化学方向1. 《化学必修2》模块中有机化合物知识内容变化及教学策略探究2. 高中课程标准选修模块《有机化学基础》教材内容建构3 近三年来新课标高考理综有机化学试题分析研究4. 在新课程中有机化学实验教学研究5. 有机化学实验教学中绿色化学教育的实践6.烷、烯或炔制备的改进(可选其中之一)7. 新课程理念下有机化学教学改革方式探索8.“苯、芳香烃"课堂教学探讨9.有机分子不饱和度的计算及在解题中的应用10.试论中学有机化合物的教学特点11.如何增加有机化学实验的趣味性12.有机实验在有机化学教学中的作用13.如何在“煤和石油”的教学中让学生了解我国的石化工业14.含氧有机化合物教学中结构与性质关系的探讨15.中学有机实验改进意见16.影响有机物水溶性因素的探讨17.有机物命名中常见的错误18.搞好有机化学复习的几点体会19.有机化合物的同分异构现象20.有机化合物的酸碱性及其结构因素21.中学有机化学教学中注重与实际联系的点滴做法
无论通多少CO2都只会生成苯酚和碳酸氢钠,说生成水杨酸的更是离谱。化学方程式:C6H5ONa+CO2+H2O==C6H5OH+NaHCO3,离子方程式:C6H5O- + CO2 + H2O == C6H5OH + HCO3-。原因有二:1 二氧化碳与水易结合生成碳酸,且碳酸酸性比苯酚酸性强,根据强酸与弱酸盐反应生成弱酸与强酸盐(即“强酸制弱酸”)的原理,故生成苯酚。2 为什么只生成碳酸氢根呢?这就要联系到电离平衡上了。碳酸的电离分两步:H2CO3<==>H++HCO3-,HCO3-<==>H++CO3 2-。但是第二步的电离常数比第一步的小很多很多,所以第二步可以视为基本不发生。或者说苯酚的酸性还没有弱到足以打破第二步的电离平衡,所以碳酸氢根中的氢不会被“抢走”。综上所述,生成物就只有苯酚和碳酸氢钠。
碳酸酸性强于苯酚强于碳酸跟 你这题估计打错了,如果是过量二氧化碳就是碳酸氢钠
直接到粒子浓度的方面来讲,可能很多人会摸不着头脑。在高中化学里,要了解粒子浓度,确实首先要系统学习强弱电解质、化学反应平衡、盐类水解等问题。 1.什么是强弱电解质实质(表现状态) 在这里我们将不再多谈强弱电解质的原理。核心关键要记住强电解质在溶液中全部以离子形式存在,而弱电解质在溶液中以分子和离子形式共存。众所周知,NaOH是强碱(强电解质),在水溶液中以离子形式存在 [emm...各位抱歉,实在不会打离子形式,本文中所有离子形式均省略符号 即:Na+ 与 OH-] 醋酸 CH3COOH是弱酸(弱电解质),在水溶液中分子与离子共存,即电离非常微弱,化学方程式用可逆号 [就这么看吧233...] 即2.盐类水解的一个例子 在溶液中,盐电离出来的离子和水电离出来的氢离子或者氢氧根离子结合,生成弱电解质的反应,叫做盐类的水解. 通俗的来说,就是盐电离的离子与水的氢离子与氢氧根离子结合生成在溶液里难电解的分子或离子。(核心在于强弱电解质的熟记!)那么,我们可以停下来进一步思考,盐电离的离子要与H+与OH-生成弱电解质,强酸强碱盐就不能水解了。 NaCl盐先电离出Na离子与Cl离子 Na进一步与水中的阴离子OH-生成NaOH(强碱) Cl进一步与水中的阳离子H+生成HCl(强酸)无论是NaOH还是HCl在水溶液中都完全电离为离子了。 我们来举一个弱酸强碱盐的例子 CH3COONa (1.为什么这里要用= 而不用可逆号?) (2.为什么这里要用可逆号?根据前面的弱电解质电离来分析看看) 1.因为醋酸盐属于盐类,大部分盐类均为强电解质 2.盐类的水解十分微弱 可假设为水解 分析到这里,你现在已经部分了解了什么是强弱电解质、什么是盐类水解了吧? 让我们猜猜,醋酸钠CH3COONA水溶液呈什么性? 对,你肯定猜到了,因为上面已经写了 CH3COONA水溶液呈碱性,因为醋酸根与水中的氢离子反应生成CH3COOH,用离子式来表达就是CH3COONA为什么显碱性?这个问题与pH有关,我们在本节不多加阐述,可以认为, H+浓度大于OH- 显酸性 OH-浓度大于H+ 显碱性 OH-浓度等于H+ 中性 ph大于7认为是碱性 ph小于7认为是酸性 ph=7认为是中性 你是不是发现了ph的数值与浓度有关?ph的数值确实与浓度有关!你的猜测是对的!但是本节不多加阐述,如果想更加清楚,可以去书里网上找寻相关文件查询哦! 本人也是一位高中生,仅为休闲时记录个人学习疑问以及分享, 勿喷~
摘要采用等体积浸渍-沉淀法制备了ZrO2/Al2O3、K2O-ZrO2/Al2O3、MgO-ZrO2/Al2O3、V2O5-ZrO2/Al2O3负载型复合载体,并以负载型复合载体负载Cu-Ni双金属制备了催化剂。用CO2-TPD、NH3-TPD、H2-TPR和微反应技术表征了双金属催化剂的表面酸碱特性、还原性能和催化活性。结果表明,在Cu-Ni催化剂上存在着金属位Cu-Ni合金、Lewis酸位Zrn+和Lewis碱位Zr=O三类活性中心;CO2在金属位和Lewis酸位协同作用下可生成CO2卧式吸附态M-(CO)-O→Zrn+,此吸附态具有反应活性,可解离成M-CO和Zr=O;CH3OH在Lewis酸位和Lewis碱位协同作用下可形成解离吸附态Zr-OCH3和Zr-OH;然后,M-CO与Zr-OCH3反应生成DMC。用K2O、MgO和V2O5掺杂改性复合载体负载Cu-Ni双金属催化剂还原温度有所上升,V2O5改性后的复合载体ZrO/Al2O3负载Cu-Ni双金属催化剂具有较强的表面酸中心;采用MgO改性后所得的ZrO2/Al2O3复合载体负载Cu-Ni双金属催化剂表面碱性最强;V2O5改性后的ZrO/Al2O3复合载体催化剂,由于表面酸中心数的增多,催化剂的活性增大。关键词:碳酸二甲酯(DMC);双功能催化剂;二氧化碳;甲醇联系
顶1楼!!2005年10月5日,今年的诺贝尔化学奖尘埃落定。法国化学家伊夫·肖万、美国化学家罗伯特·格拉布和理查德·施罗克三人分享了这一殊荣。 谈及此次获奖成果,中国科学院金属有机化学国家重点实验室主任麻生明研究员说:“化学界对这一研究的重要意义非常认可。我们的一些研究人员总是希望'大而全’,但是看看这次的获奖成果,再看看上次(2001年)有机化学家的获奖成果,就知道化学家一生有这样一个'反应’就很了不起了。” 该实验室的丁奎岭研究员告诉记者:“2002年,我和戴立信院士合写《中科院发展报告》中有关烯烃复分解反应的章节时,就曾提到格拉布催化剂的反应活性以及对反应底物的适用性,可与传统的碳-碳键形成方法如Diels-Alder反应和Wittig反应相媲美,而这两项研究都已经获得诺贝尔奖,我们也曾暗示格拉布等人的研究有问鼎诺贝尔奖的实力,现在他们果然获奖了。” 指挥烯烃分子“交换舞伴” 诺贝尔化学奖评委会主席佩尔·阿尔伯格将烯烃复分解反应描述为“交换舞伴的舞蹈”。授奖当天,在瑞典皇家科学院华丽的议事厅里,阿尔伯格和一位皇家科学院教授以及两位女工作人员一起,用舞蹈向听众诠释烯烃复分解反应的含义。最初两位男士是一对舞伴,两位女士是一对舞伴,在“加催化剂”的喊声中,他们交叉换位,转换为两对男女舞伴。 “用互换舞伴来解释这一获奖的化学反应很形象。”麻生明告诉记者。今年诺贝尔化学奖的三位得主,获奖原因就是他们弄清了如何指挥烯烃分子“交换舞伴”,将分子部件重新组合成别的物质。 一个碳原子可以通过单键、双键或三键方式与其他原子连接,有着碳-碳双键的链状有机分子被称为烯烃。丁奎岭说,研究碳-碳键的断裂与形成规律是有机化学中需要解决的核心问题之一。为了切断碳-碳键并使其按照人们希望的方式重新结合,需要寻找合适的催化剂,这也是化学家面临的挑战课题。关于金属催化的烯烃分子的切断与重组,即烯烃复分解反应的研究,可以追溯到上世纪50年代中期。但是刚开始时,科学家们所研制的催化剂均为多组分催化剂,“这么做是因为当时的科学家实际上没有认清反应的机理,不知道到底是哪种活性物质发挥了作用,只好使用多种混合物来进行催化。”这些催化体系还受到苛刻的反应条件等因素的限制,更加促使科学家们进一步认识和理解反应进行的机制。 20世纪70年代,法国石油研究所的伊夫·肖万实现了理论上的突破。他阐明了烯烃与金属卡宾通过〔2+2〕环加成形成金属杂环丁烷中间体的相互转化过程,这一机制后来被广泛认同。金属卡宾是指一类有机分子,其中有一个碳原子与一个金属原子以双键连接,如果用舞蹈的方式来简单解释,它们可被看作一对拉着双手的舞伴。而在烯烃分子里,两个碳原子也像双人舞的舞伴一样,拉着双手在跳舞。金属卡宾在与烯烃分子相遇后,两对舞伴会暂时组合起来,手拉手跳起四人舞蹈。随后它们“交换舞伴”,组合成两个新分子,其中一个是新的烯烃分子,另一个是金属原子和它的新舞伴。后者会继续寻找下一个烯烃分子,再次“交换舞伴”。 寻找更优秀的催化剂 有了漂亮的理论,下一步的重点就是确定哪种金属卡宾适合充当促成舞伴交换的“中间人”,理查德·施罗克和罗伯特·格拉布正是寻找优秀催化剂的“伯乐”。 1990年,在美国麻省理工学院工作的施罗克和合作者报告说,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂。实践也证明,钼卡宾用于催化烯烃的复分解反应,取得了比以往的催化体系更容易引发的、更高的反应活性,反应条件也更温和,同时为发现性能更优秀的催化剂奠定了基础。 1992年,美国加州理工学院的格拉布发现了钌卡宾络合物,并成功应用于降冰片烯的开环聚合反应,该催化剂克服了其他催化剂对功能基团容许范围小的缺点,不但对空气稳定,甚至在水、醇或酸的存在下,仍然可以保持催化活性。在此基础上,1996年格拉布对原催化剂作了改进,使其成为应用最为广泛的烯烃复分解催化剂。1999年,格拉布通过用氮卡宾配体代替膦配体,发展了第二代格拉布催化剂,其催化活性比第一代催化剂提高了两个数量级。丁奎岭说:“这点很重要,因为钌是贵金属。”在开环复分解聚合反应中,催化剂用量可以降低至百万分之一;在关环复分解反应中,催化剂用量也仅为万分之五,同时选择性更高,对底物的适应范围更加广泛,催化剂的成本也更低。 麻生明说:“如果没有肖万的理论,就没有施罗克和格拉布的成果;但是如果没有后者的工作,肖万也得不到这个诺贝尔奖。这恰好体现了理论和实践相辅相成的道理。” 奖励来得理所应当 对于此次诺贝尔化学奖的归属,很多人表示是理所当然、水到渠成的事情,这不仅是因为这一科研成果本身非常重要,更重要的是它在生产生活领域有着极其广泛的实际应用,每天都惠及人类。 诺贝尔奖的文告指出:烯烃的复分解反应是基础科学对人类、社会和环境做出重要贡献的例子。该方法现在被广泛应用于化工业,主要用于研发药品和先进塑料材料。通过肖万、格拉布和施罗克等人的工作,复分解法变得更加有效,反应步骤比以前简化,所需要的资源也大大减少;使用起来也更简单,只需要在正常温度和压力下就可以完成;对环境的污染也大大降低,使人们向着“绿色化学”又迈进了一大步,大大减少了有害废物对人们的危害。 丁奎岭说,由于格拉布催化剂的诞生,使得过去许多令化学家束手无策的复杂分子的合成变得轻而易举,如亲水性高分子、高分子液晶、抗癌药物、昆虫信息素等的合成,用乙烯和丁烯来制备丙烯等。麻生明还告诉记者:“上次格拉布教授来我们所访问,介绍了他做出的一种高分子材料,用子弹打也无法穿透,很适合做防弹材料。” 不过,麻生明认为,金属卡宾络合物催化的烯烃复分解反应还不是完全的绿色反应。就像做衣服时,如果能把所有的布料,包括边角余料都用上,才算百分百的经济;从原子的经济性来讲,很多烯烃复分解反应还没有达到百分百绿色的程度。丁奎岭认为只能说这种反应比较“符合绿色原则”,废物很少。他还指出,烯烃复分解反应的研究还面临不少挑战,工业的大规模应用还很少,主要还是用在精细化工领域。 记者问及我国在该领域的研究水平,两位专家都回答,我国这方面的研究还很薄弱。丁奎岭说,《科学观察》指出,从论文引用次数来看,这一领域在国际上是炙手可热的科学前沿。但中科院文献情报中心的统计表明,我国在该领域几乎没有大的课题和项目。“虽然也有科学家在使用这些催化剂进行天然气产物和复杂分子的合成研究,但是据我所知,国内可能还没有研究人员在致力于改进这种催化剂。”
化学反应惠泽人类2005年10月5日,今年的诺贝尔化学奖尘埃落定。法国化学家伊夫·肖万、美国化学家罗伯特·格拉布和理查德·施罗克三人分享了这一殊荣。谈及此次获奖成果,中国科学院金属有机化学国家重点实验室主任麻生明研究员说:“化学界对这一研究的重要意义非常认可。我们的一些研究人员总是希望'大而全’,但是看看这次的获奖成果,再看看上次(2001年)有机化学家的获奖成果,就知道化学家一生有这样一个'反应’就很了不起了。”该实验室的丁奎岭研究员告诉记者:“2002年,我和戴立信院士合写《中科院发展报告》中有关烯烃复分解反应的章节时,就曾提到格拉布催化剂的反应活性以及对反应底物的适用性,可与传统的碳-碳键形成方法如Diels-Alder反应和Wittig反应相媲美,而这两项研究都已经获得诺贝尔奖,我们也曾暗示格拉布等人的研究有问鼎诺贝尔奖的实力,现在他们果然获奖了。”指挥烯烃分子“交换舞伴”诺贝尔化学奖评委会主席佩尔·阿尔伯格将烯烃复分解反应描述为“交换舞伴的舞蹈”。授奖当天,在瑞典皇家科学院华丽的议事厅里,阿尔伯格和一位皇家科学院教授以及两位女工作人员一起,用舞蹈向听众诠释烯烃复分解反应的含义。最初两位男士是一对舞伴,两位女士是一对舞伴,在“加催化剂”的喊声中,他们交叉换位,转换为两对男女舞伴。“用互换舞伴来解释这一获奖的化学反应很形象。”麻生明告诉记者。今年诺贝尔化学奖的三位得主,获奖原因就是他们弄清了如何指挥烯烃分子“交换舞伴”,将分子部件重新组合成别的物质。一个碳原子可以通过单键、双键或三键方式与其他原子连接,有着碳-碳双键的链状有机分子被称为烯烃。丁奎岭说,研究碳-碳键的断裂与形成规律是有机化学中需要解决的核心问题之一。为了切断碳-碳键并使其按照人们希望的方式重新结合,需要寻找合适的催化剂,这也是化学家面临的挑战课题。关于金属催化的烯烃分子的切断与重组,即烯烃复分解反应的研究,可以追溯到上世纪50年代中期。但是刚开始时,科学家们所研制的催化剂均为多组分催化剂,“这么做是因为当时的科学家实际上没有认清反应的机理,不知道到底是哪种活性物质发挥了作用,只好使用多种混合物来进行催化。”这些催化体系还受到苛刻的反应条件等因素的限制,更加促使科学家们进一步认识和理解反应进行的机制。20世纪70年代,法国石油研究所的伊夫·肖万实现了理论上的突破。他阐明了烯烃与金属卡宾通过〔2+2〕环加成形成金属杂环丁烷中间体的相互转化过程,这一机制后来被广泛认同。金属卡宾是指一类有机分子,其中有一个碳原子与一个金属原子以双键连接,如果用舞蹈的方式来简单解释,它们可被看作一对拉着双手的舞伴。而在烯烃分子里,两个碳原子也像双人舞的舞伴一样,拉着双手在跳舞。金属卡宾在与烯烃分子相遇后,两对舞伴会暂时组合起来,手拉手跳起四人舞蹈。随后它们“交换舞伴”,组合成两个新分子,其中一个是新的烯烃分子,另一个是金属原子和它的新舞伴。后者会继续寻找下一个烯烃分子,再次“交换舞伴”。寻找更优秀的催化剂有了漂亮的理论,下一步的重点就是确定哪种金属卡宾适合充当促成舞伴交换的“中间人”,理查德·施罗克和罗伯特·格拉布正是寻找优秀催化剂的“伯乐”。1990年,在美国麻省理工学院工作的施罗克和合作者报告说,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂。实践也证明,钼卡宾用于催化烯烃的复分解反应,取得了比以往的催化体系更容易引发的、更高的反应活性,反应条件也更温和,同时为发现性能更优秀的催化剂奠定了基础。1992年,美国加州理工学院的格拉布发现了钌卡宾络合物,并成功应用于降冰片烯的开环聚合反应,该催化剂克服了其他催化剂对功能基团容许范围小的缺点,不但对空气稳定,甚至在水、醇或酸的存在下,仍然可以保持催化活性。在此基础上,1996年格拉布对原催化剂作了改进,使其成为应用最为广泛的烯烃复分解催化剂。1999年,格拉布通过用氮卡宾配体代替膦配体,发展了第二代格拉布催化剂,其催化活性比第一代催化剂提高了两个数量级。丁奎岭说:“这点很重要,因为钌是贵金属。”在开环复分解聚合反应中,催化剂用量可以降低至百万分之一;在关环复分解反应中,催化剂用量也仅为万分之五,同时选择性更高,对底物的适应范围更加广泛,催化剂的成本也更低。麻生明说:“如果没有肖万的理论,就没有施罗克和格拉布的成果;但是如果没有后者的工作,肖万也得不到这个诺贝尔奖。这恰好体现了理论和实践相辅相成的道理。”奖励来得理所应当对于此次诺贝尔化学奖的归属,很多人表示是理所当然、水到渠成的事情,这不仅是因为这一科研成果本身非常重要,更重要的是它在生产生活领域有着极其广泛的实际应用,每天都惠及人类。诺贝尔奖的文告指出:烯烃的复分解反应是基础科学对人类、社会和环境做出重要贡献的例子。该方法现在被广泛应用于化工业,主要用于研发药品和先进塑料材料。通过肖万、格拉布和施罗克等人的工作,复分解法变得更加有效,反应步骤比以前简化,所需要的资源也大大减少;使用起来也更简单,只需要在正常温度和压力下就可以完成;对环境的污染也大大降低,使人们向着“绿色化学”又迈进了一大步,大大减少了有害废物对人们的危害。丁奎岭说,由于格拉布催化剂的诞生,使得过去许多令化学家束手无策的复杂分子的合成变得轻而易举,如亲水性高分子、高分子液晶、抗癌药物、昆虫信息素等的合成,用乙烯和丁烯来制备丙烯等。麻生明还告诉记者:“上次格拉布教授来我们所访问,介绍了他做出的一种高分子材料,用子弹打也无法穿透,很适合做防弹材料。” 不过,麻生明认为,金属卡宾络合物催化的烯烃复分解反应还不是完全的绿色反应。就像做衣服时,如果能把所有的布料,包括边角余料都用上,才算百分百的经济;从原子的经济性来讲,很多烯烃复分解反应还没有达到百分百绿色的程度。丁奎岭认为只能说这种反应比较“符合绿色原则”,废物很少。他还指出,烯烃复分解反应的研究还面临不少挑战,工业的大规模应用还很少,主要还是用在精细化工领域。记者问及我国在该领域的研究水平,两位专家都回答,我国这方面的研究还很薄弱。丁奎岭说,《科学观察》指出,从论文引用次数来看,这一领域在国际上是炙手可热的科学前沿。但中科院文献情报中心的统计表明,我国在该领域几乎没有大的课题和项目。“虽然也有科学家在使用这些催化剂进行天然气产物和复杂分子的合成研究,但是据我所知,国内可能还没有研究人员在致力于改进这种催化剂。”
改革开放以来,我国化工行业发展迅速,为国民经济发展做出了重要贡献。同时,我国化工行业经营环境也日趋复杂,面临的风险和安全隐患也越来越大。下面是我为大家推荐的化工类 毕业 论文,供大家参考。
化工类毕业论文 范文 一:化学工程学科集群分析
一、我国化学工程与技术专业学科集群现象
经过调查统计,我国共有100多所高校招有化学工程与技术专业硕士研究生,该专业研究方向过多,一个专业出现87个研究方向。研究方向的划分有的甚至是跨学科的。如化学工程与技术专业是属于工学的,应用化学专业是属于理学,可应用化学居然是化学工程与技术专业的一个研究方向。同属于一个研究方向,研究方向的名称也是多样化的,缺乏统一标准,如安徽大学、南昌大学的绿色化学工程,上海大学就称为绿色化学与工艺。为了解决上述问题,我们请教了化工领域的专家,给这87个研究方向做一个归类,分为9个大的方向(表1)。由表1可以发现我国化学工程与技术专业是存在学科集群现象的,表现在:专业的学科建设,已经不单是化学工程的问题,而涉及到了化学化工研究的所有领域,包括应用化学、环境化工、工业催化、资源与材料工程、新能源技术、生物工程与技术、过程系统工程、油气加工及石油化工等。我国化学工程与技术专业学科集群的力度较大,表现在:各个高校的研究方向基本上都比较多,如清华大学、中国矿业大学、北京工业大学、北京理工大学、华南理工大学、华东理工大学、上海大学等高校,其研究方向都是传统与现代并存,传统化学化工的研究方向所占比例较大,如化学工程,包含的研究方向较多。部分代表21世纪化学化工发展方向的研究方向,在很多学校都受到重视,如资源与材料工程,研究方向也比较多。
二、化学工程与技术专业学科集群的创新及竞争优势
本文选择山西省高校做研究,分析其师资力量情况,以分析化学工程与技术专业集群的创新及竞争优势。山西省作为我国化工3大生产基地,化学化工产业是山西省的支柱产业,化学化工专业是山西省高校、特别是工科院校的学科优势之一。选择山西大学、中北大学、太原理工大学的化学化工学院为样本(见表2),按照前文对学科集群的认识,这些学院都有9个以上相关专业和研究方向,已经形成了一定的学科集群规模。其中论文指该学院教师被SCI、EI、ISTP3大检索刊物收录的论文数。中北大学的数据包含了CA论文。山西大学的数据不包括ISTP论文。专著指该学院教师出版的学术专著数,不包括教材。项目及奖项指该学院教师申请的省部级以上项目、经费及省部级以上奖项。发明专利指:该学院教师申请并且授权的发明专利。3所高校的化学化工学院拥有一定数量的教授和博士生导师,博士学位的教师也占到了较大比例。3所学院教师的科研成果也较为可观,被3大检索刊物收录的论文数量较多,出版了一定数量的专著,申请了一定数量的国家自然科学基金项目。山西大学化学化工学院承担了国家自然科学基金的重大攻关项目,以及“863”项目,甚至获得了国家科技进步奖和国家技术发明奖二等奖各1项。中北大学化学与环境学院承担过“973”项目,获得过国家技术发明二等奖1项,三等奖2项,国防科学技术一等奖2项。中北大学和山西大学还拥有发明专利十几项。从师资力量来看,应该说学科集群让山西省高校化学化工领域的创新取得了一定的成就,使得山西省高校化学化工专业在全国具有了一定的竞争优势和影响力。
三、化学工程与技术专业学科集群的协同创新模式
山西大学至今已与国内20余所高校、科研院所建立了学术交流与合作关系;与日本岩手大学、香港浸会大学等国家和地区的高校及科研单位签订协议,开展交流。在校企合作方面,与山西三维集团股份有限公司、太原钢铁(集团)公司、天脊集团等大型企业,在产品研发、岗位培训等多方面进行了良好的合作。太原理工大学与山西化工研究所建立了山西省化学工程技术中心,还与山西焦化集团公司等6个企业建立了长期稳定的产学研合作关系。中北大学安全工程系与航天一院、航天三院、北京理工大学、南京理工大学、第二炮兵工程学院、西安近代化学研究所等科研机构和相关生产企业进行了卓有成效的科研项目合作。从产学研合作角度来看,三所高校都与国内外相关院校、科研院所和企业建立了良好的产学研合作关系。从企业合作的视角来看,在研发方面,与山西省的产业集群密切相关,合作领域主要为新能源技术、环境化工、生物工程与技术。3所高校的化学工程与技术学科集群与山西省的产业集群具有一定的协同关系,构建了学科集群与产业集群协同创新的模式,围绕着山西省的产业特色,为山西省地方经济服务。
四、我国化学工程与技术专业集群的路径
从以上3所高校的情况来看,基本上已经完成了单个高校某个学科的集群,在3所高校内部相关专业之间建立了学科集群,集群的方式是建立化学化工学院,统筹化学化工各个专业,从多学科、多专业、多研究方向的角度,进行学科集群。关于区域性学科集群,即单个高校与该高校所在地高校、研究所和企业之间的集群,3所高校都作出了一定的努力,也取得了一定的实效。集群的方式是产学研合作,与山西省高校、科研院所和企业建立合作关系,从而服务地方经济。关于跨区域性学科集群,即单个高校与该高校所在地之外高校、研究所和企业之间的集群,中北大学有一定的建树,却没有进一步深入。中北大学之所以能够有一定建树的原因是该校原来是部属院校,与其他部属院校具有一定的合作关系。因此,中北大学的跨区域学科集群,仅仅局限于与兄弟院校的合作,还没有进一步深入到与其他省份企业的合作上。
五、结论
第一,我国高校化学工程与技术专业有87个研究方向,扩散性较强,涉及到了化学化工的各个领域,表明该专业的建设具有学科集群现象,并且已经以建院的形式,完成了单个高校某个学科的集群。第二,学科集群有利于团队建设,从而能够产生一定的创新成果,与产业集群一样,使得高校学科建设具有一定的竞争优势和影响力。第三,学科集群与高校所在地产业集群存在一定的协同关系,也就是说,学科集群首先必须与高校所在地经济发展特色密切相关。只有这样,才能实现产学研结合,服务地方经济。第四,从学科集群的路径来看,单个高校某个学科的集群已经完成,区域性学科集群也具有了一定的规模,跨区域性学科集群还有待于进一步发展。当然,我们相信,在区域性学科集群发展到一定程度后,必然会走向跨区域性学科集群。
化工类毕业论文范文二:生物质化学人才培训思考
一、生物质化学工程人才的需求分析
能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。
二、生物质化学工程人才的知识结构
生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术 方法 、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。
三、生物质化学工程人才培养的探索与实践
(一)组织高水平学术会议,营造人才培养氛围
2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的 报告 ,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。
(二)理论与实验课程体系
根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。
(三)实习、实践和毕业环节
生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外 留学 经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践 渠道 ;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。
随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。
《 化学工程中计算流体力学应用分析 》
摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。
关键词:计算流体力学;求解;基本原理;化学工程;应用
化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。
1计算流体力学在化学工程中的基本原理
计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。
针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。
2计算流体力学砸你化学工程中的实际应用
在搅拌中的应用分析
在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验差加大。
通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。
在化学工程换热器中的应用分析
换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。
在精馏塔中的应用
CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。
Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。
Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。
在化学反应工程中的应用研究
在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。
3结束语
计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。
参考文献
[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).
[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).
《 能源化学工程专业化工热力学教学思考 》
[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。
武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。
目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。
由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。
首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.
有关化学工程应用毕业论文推荐:
1. 化学工程毕业论文
2. 化学毕业论文精选范文
3. 化工毕业论文范文大全
4. 化学毕业论文范例
5. 化学毕业论文范文
6. 化工毕业设计论文范文
摘要采用等体积浸渍-沉淀法制备了ZrO2/Al2O3、K2O-ZrO2/Al2O3、MgO-ZrO2/Al2O3、V2O5-ZrO2/Al2O3负载型复合载体,并以负载型复合载体负载Cu-Ni双金属制备了催化剂。用CO2-TPD、NH3-TPD、H2-TPR和微反应技术表征了双金属催化剂的表面酸碱特性、还原性能和催化活性。结果表明,在Cu-Ni催化剂上存在着金属位Cu-Ni合金、Lewis酸位Zrn+和Lewis碱位Zr=O三类活性中心;CO2在金属位和Lewis酸位协同作用下可生成CO2卧式吸附态M-(CO)-O→Zrn+,此吸附态具有反应活性,可解离成M-CO和Zr=O;CH3OH在Lewis酸位和Lewis碱位协同作用下可形成解离吸附态Zr-OCH3和Zr-OH;然后,M-CO与Zr-OCH3反应生成DMC。用K2O、MgO和V2O5掺杂改性复合载体负载Cu-Ni双金属催化剂还原温度有所上升,V2O5改性后的复合载体ZrO/Al2O3负载Cu-Ni双金属催化剂具有较强的表面酸中心;采用MgO改性后所得的ZrO2/Al2O3复合载体负载Cu-Ni双金属催化剂表面碱性最强;V2O5改性后的ZrO/Al2O3复合载体催化剂,由于表面酸中心数的增多,催化剂的活性增大。关键词:碳酸二甲酯(DMC);双功能催化剂;二氧化碳;甲醇联系
冰冻三尺,非一日之寒,近期曝光的几个假食品,不是在市场上横空出世,而是滋生蔓延已久,甚至已经形成产业链,颇具规模。像“合成豆腐”,外包装袋上还有其仿冒的正宗产品独有的激光防伪标志,原来制假者专门配备了价值800万元左右的激光制版机,舍得下如此血本,可见其规模之大,销路之广。俗话说,苍蝇不盯无缝的蛋,以假豆腐之“软”,竟然能在市场上获得如此强劲的生命力,监管的长期乏力甚至缺失,难辞其咎。更有甚者,在生产假葡萄酒厂家的车间里,都安装着监控摄像头,直接连通当地质监部门,并有专人监控。但就是在这些摄像头底下,造假者毫无顾忌地灌装假冒的名牌葡萄酒。这种“睁一只眼闭一只眼”的背后,恐怕还不只是失职渎职那么简单。监管的眼睛是闭上了,而利益的眼睛则可能睁得贼亮。出了事,要么说“不归我管”,要么说“管不了”。其实,这些“说法”本身,就已经能说明食品监管存在问题。一则,造假手法不断翻新升级,食品安全挑战变幻莫测,确实存在制度不完善、职能不健全的问题,相关部门“心有余而力不及”;二则,恐怕还是“非不能也,是不为也”,或者“为”起来也不那么给力。工业文明的技术和成果,如果在不良的法治和道德环境中,将会发生怎样可怕的异化,其威胁的,还不仅仅是人们餐桌上的美味佳肴,更是一个文明社会的公序良俗。假鸡蛋、“合成豆腐”等假食品,在制假技术上可能还很“初级”,但其技术化、产业化的危险倾向已经值得引起全社会的警觉。有鉴于此,我们既需要提倡行业道德,净化市场环境,构筑隐形的防线;更需要有关部门更加负责、更加主动、更加常态化地开展工作,变事后推责为事先履职,变“踢皮球”为“打组合拳”,变感叹空白为填补空白,构筑起坚实的监管防线,食品安全问题才会逐渐冰消瓦解,百姓才会真正放心
食品快速检验检测技术以其简捷性和便携性两大优势得到了快速发展。 下面是我为大家整理的食品快速检测技术论文,希望你们喜欢。
食品的快速检验检测技术
摘要:食品安全已成为社会关注的焦点问题。文章介绍了目前常用的食品安全快检技术,并展望了其发展方向。
关键词:食品安全 快检 技术综述
引言
食品安全(food safety)是指食品无毒、无害,符合应当有的营养要求,对人体健康不造成任何急性、亚急性或者慢性危害。俗话说“民以食为天”,食品安全关系到人民群众的身体健康和生命安全,关系到社会和谐稳定,而近年来食品安全问题层出不穷,加了吊白块的面粉,有毒的大米,注了水的鸡肉,掺了石蜡的火锅底料,硫酸泡过的荔枝,以及假酒假烟假蜂蜜劣质奶粉充斥着市场,真让老百姓担心起这片“天”。因此,对食品的生产、加工和销售环节实施监测监控势在必行,食品安全分析检测技术应运而生。
传统的食品安全分析检测技术主要是指化学分析法和大型仪器检测法,相对成熟。但它们的操作只能局限于实验室,操作复杂,耗时长,不能满足对食品质量安全实时监督掌控的需求,尤其在突发事件时,快速检验检测技术以其简捷性和便携性两大优势得到了快速发展。
1、食品快速检验检测技术的研究现状
化学速测技术
化学速测技术主要是根据待测成分的某些化学性质,将样品与特定试剂发生水解、氧化、磺酸化或络合等化学反应,通过与标准品的颜色比较或特定波长下的吸光度比较,以获得检测结果,通常也成为化学比色分析法。
利用普通化学原理的速测法主要包括检测试剂和试纸,随着检测仪器的不断发展,国内外均已有与测试剂相配套的微型光电比色计。针对试纸检测的仪器也有报道,如硝酸盐试纸条[1],主要是将硝酸盐还原为亚硝酸盐,在弱酸性条件下与对氨基苯磺酸重氮化后,和N-1-盐酸萘乙二胺偶合形成紫红色染料,试纸变色,插入检测仪读数即可。德国默克公司生产的与试纸联用的光反射仪技术相对成熟,国内尚无商品化仪器问世。
利用生物化学原理的速测法主要应用于微生物的检测,商品化成品以美国3M公司的PerrifilmTM Plate系列微生物测试片为代表,在检测金黄色葡萄球菌时,只需要测试片与确认片配套使用即可。测试片有上下两层薄膜组成,下层的聚乙烯薄膜上印有网格,便于计数,同时覆盖着含有特异性显色物质和抗生素的培养基,若样品中含有金黄色葡萄球菌,无须增菌,直接接种纸片培养24h后便可观察到显示出特殊颜色的菌落;确认片与测试片相似,只是含有不同的特异性显色物质,将有疑似菌落的测试片影印到确认片后,培养1-3h即可观察,不需进行繁琐的生理生化鉴定。而常规的Baird-Parker平板计数法耗时长达78h。
酶抑制速测技术
酶抑制速测技术主要用于食品中农药残留和重金属的快速检测。这些物质可通过键合作用造成酶的化学性质和结构的改变,产生的酶-底物结合体会发生颜色、吸光度或者pH值的变化,通过测定这些变化以达到定性或定量检测的目的。根据检测方式的不同,可分为试纸法、pH计法和光度法。相比而言,试纸法成本低、操作简单,更易于推广。它主要是将酶和底物分别固定在两张试纸片上,当样品中有待测组分时,会对酶产生抑制作用,两张试纸片接触后,酶和底物结合便会发生显著地颜色变化,比较适合农贸市场和超市等一些食品集散地的实时安全监管。由于该方法的检出限和保存性等方面的局限,只适用于初筛检测[2]。
生物传感器速测技术
生物传感器技术是利用生物感应元件的专一性,按照一定的规律将被测量转换成可用信号,使这种信号强度与待测物浓度形成一定的比例关系,具有快速、灵敏、高效的特点,是目前食品安全检测技术的研究热点,广泛应用于食品中农药残留、兽药残留等方面的检测,与传统的离线分析技术相比,它更适应于在复杂的体系内进行快速在线连续监测,在现场快速检测领域有着不可逾越的优势,按照传感器类型又可分为免疫传感器、酶传感器、细胞传感器、组织传感器、微生物传感器等等。
免疫传感器是在抗原抗体结合免疫反应的基础上发展起来的生物传感器。利用压电免疫传感器检测食品中常见肠道细菌时,通过葡萄球菌蛋白A将肠道菌共同抗原的单克隆抗体宝贝在10MHz的石英晶体表面,以大肠菌群为例,响应值可达10-6-10-9。
免疫速测技术
免疫速测是利用抗原抗体的专一、特异性反应建立起来的方法,根据选用的标记物可分为放射免疫检测、酶免疫检测、荧光免疫检测、发光免疫检测、胶体金免疫检测等。酶联免疫吸附检测法是应用较为广泛的一种免疫速测技术。它将酶标记在抗体/抗原分子上,形成酶标抗体/抗原即酶结合物,抗原抗体反应信号放大后,作用于能呈现出颜色的底物上,可通过仪器或肉眼进行辨别。目前,黄曲霉毒素酶联免疫试剂盒已广泛应用于食品检测中。
分子生物学速测技术
聚合酶链式反应(PCR)是近年来分子生物学领域中迅速发展并运用的一种技术,在食品检测中主要用于微生物的检测。它利用是否能从待测样品所提取的DNA序列中扩增出与目标菌种同源性的核酸序列来判定是否为阳性,该方法从富集菌体、提取遗传物质、PCR扩增到电泳、测序鉴定,可控制在24h,而致病菌的传统培养检测至少需要4-5天。
随着研究的逐深入,由PCR技术派生出的实时荧光PCR法、DNA指纹图谱法、免疫捕获PCR法、基因芯片法等也逐步得到了应用。基因芯片技术可以在很小的面积内预置千万个核酸分子的微阵列,利用细菌的共有基因作为靶基因,选用通用引物进行扩增,利用特异性探针检测这些共有基因的独特性碱基,从而区分出不同的细菌微生物。该法特异性强、敏感性高,可实现微生物检测的高通量和并行性检测。
2、食品快速检验检测技术的发展方向
食品安全快检法以其简捷性和便携性两大优势得到了快速发展,但缺点也显而易见,需要完善的地方依然很多:
简单 速检验检测技术往往是由一些非专业技术人员使用,因此,检测方法采样、处理、检测、分析等各个环节简单、易行是该方法的一大发展趋势。
准确 检法前处理简单,势必导致待测样品纯度不高,基体干扰大。因此,在今后方法的研究中,应更多关注与如何避免假阳性结果,尤其是在分子生物学速测法中,增强靶基因的特异性、引物的特异性、排除死菌体造成的假阳性应得到进一步探索。
便携 着微电子技术、智能制造技术、芯片技术的发展,检测仪器应向微型化、集约化、便携化方向发展,以满足更多的现场、实时、动态的检测要求。
经济 测成本的高低直接决定着检测技术能否得到广泛的推广和应用,如何在确保又好又快的检测基础上,尽最大可能的降低成本也是今后的研究方向。
标准化前,我国尚未制定出与食品安全快速检测技术相关的标准和规范,这也阻碍了快检法的推广和应用。随着技术的提高和检测中对快检法的需要,应及时制定出相关标准规范以增强快检结果的认可性和权威性。
参考文献
[1]房彦军,周焕英,杨伟群。试纸-光电检测仪快速测定食品中亚硝酸盐的研究【J】解放军预防医学杂志,2004,22(17):18-21
[2]易良键。食品安全快速检测方法的应用和研究【J】中国信息科技,2012,3:46
点击下页还有更多>>>食品快速检测技术论文
美拉德反应及其对食品加工过程的影响论文
无论在学习或是工作中,大家都跟论文打过交道吧,借助论文可以有效提高我们的写作水平。你写论文时总是无从下笔?以下是我整理的美拉德反应及其对食品加工过程的影响论文,欢迎大家分享。
美拉德反应是由法国化学家在1912年发现的,JohnHodge等在1953年时将其命名为美拉德反应。美拉德反应也被叫做羰胺反应,其定义为:还原糖或者是羰基化合物在常温或者加热时与含游离氨基的化合物发生缩合、聚合等化学反应,反应物和中间产物经过一系列复杂的化学变化,最终生成棕褐色的大分子物质——拟黑素(类黑素)。美拉德反应除了生成拟黑素之外,其还有醛、酮、杂环化合物生成,这些化合物为食品增加了色泽和风味。
一、美拉德反应
对于美拉德反应的相关研究已经达到了一个相对成熟的阶段,美拉德反应也成为了现代食品加工过程中应用最为频繁的技术之一。Hodge在1953年首次提出了美拉德反应的流程图,其对美拉德反应的过程进行系统性地阐述。依据现代化学观点,美拉德反应主要可以分为三个阶段,其分别为起始阶段、中间过程、最终阶段。
1、起始阶段。美拉德反应的起始阶段涉及到化学分子或基团的缩合、环化、取代重排等历程。首先,氨基化合物和醛糖缩合成为席夫碱,席夫碱不稳定,其环化生成N-取代醛糖基胺,该化合物又经过重排(Amadori方式)生成Amadori化合物。
2、中间过程。美拉德反应的中间阶段为起始阶段产物Amadori化合物以三种不同形式的分解过程,其分别为:碱性条件下的2,3-烯醇化反应,产物包括了脱氢还原酮类和还原酮类化合物;酸性条件下的1,2-位烯醇化反应,产物包括了含呋喃环的醛类化合物和羟甲基呋喃醛;碱性产物和酸性产物继续发生裂解,生成羰基(单羰基或双羰基)化合物,除此之外,碱性产物和酸性产物也可以发生Strecker分解,与氨基共同作用生成Strecker醛类化合物。
3、最终阶段。最终阶段是美拉德反应生成拟黑素的过程,其主要为低温下胺类和醛类的聚合反应,该反应过程较为复杂,目前尚未完全明确该过程的反应机理。胺类和醛类除了聚合生成高分子以外,其还产生美拉德反应的中间体杂环化合物(具有挥发性)、醛类化合物、还原酮等。
二、美拉德反应对于食品加工过程的影响
美拉德反应的发现与应用对现代食品加工及贮藏过程有着深刻的影响,至今其仍作为一项食品加工技术被广泛应用于食品加工过程中。美拉德反应的反应产物是影响食品口味、色泽、安全、营养等功能性质的主要因素,对于传统烤制食品(北京烤鸭、烤乳猪)、油炸食品(油炸肉卷、炸带鱼)影响尤甚。从营养学的角度分析,美拉德反应对于食品加工过程并非是有利无害的,美拉德反应的反应底物为蛋白质和糖类,蛋白质和糖类是人体所必须摄取的营养成分,食品加工过程中的美拉德反应无疑在一定程度导致了这些影响成分的流失;对于那些食品中含有的人体所不能合成的氨基酸,美拉德反应有可能导致其遭到破坏,进而导致食品的营养价值下降。因此,需要辩证地看待美拉德反应对于食品加工过程的影响。在实际的食品加工过程中,应当合理控制美拉德反应,通过美拉德反应增加食品的色泽、风味和安全性,同时最大程度地保留住食品中的营养成分。
1、对食品风味的影响。美拉德反应对于食品的风味有着重要的影响,例如,享誉全国的名菜“全聚德北京烤鸭”在其放入烤炉进行烤制之前,其会在烤鸭外层涂上一层秘制调料,调料中含有糖和香料物质。在烤制的过程中,调料中的各种化学物质发生相互作用(主要为热降解、美拉德反应、产物的二次和三次反应等),这是“全聚德北京烤鸭”具有独特风味的重要原因。美拉德反应能够产生一些影响食品风味的物质,其主要有含硫杂环,如噻吩类、噻唑类;含氮杂环,如吡嗪类;含氧杂环,如呋喃类,此外,还存在着一些硫化氢和氨类物质。并非所有的物质都能够使食品增加风味(吡嗪类、硫化氢、氨类),这些是在食品加工过程中需要避免的。例如,在烤制面包时,美拉德反应生成的麦芽酚能够使面包具有特殊的香味,而生成的吡嗪类物质或醛类物质则会使得面包有糊味。
2、对食品色泽的影响。美拉德反应经过的一些列复杂的化学变化,其所产生的一系列化合物能够赋予食品不同的色泽。美拉德反应中的温度、反应途径等因素发生变化,能够使得食品依次呈现出浅黄色、金黄色、褐色、棕色直至棕黑色的色泽变化。例如,金黄色面包、红褐色红烧肉、红茶等,这些食品所呈现出的颜色很大程度上与美拉德反应有关。对于食品加工过程而言,其需要控制好美拉德反应的影响因素(原料用量、温度、加工途径),例如,酱油加工过程中,应当控制好温度,防止因为温度过高而导致酱油颜色加深;面包烤制过程中,需要氨基酸和还原糖的用量以及烤制温度,防止其过度反应而导致面包呈焦黑色。
3、对食品营养的影响。上文已经提到,美拉德反应的底物多是糖和氨基酸,这些营养物质会随着反应的进行被转化为其他物质,进而造成食品中营养流失的问题。科学研究表明,糖类在和许多氨基酸作用时,容易使氨基酸失去其原有功能,例如,苏氨酸、赖氨酸、亮氨酸、色氨酸,在与糖类进行美拉德反应时,赖氨酸最易损失。赖氨酸对于人体具有重要的生理意义:其是人体合成各种蛋白质的重要前提。乳制品加工过程中最易受到美拉德反应的影响而导致食品营养降低,而低乳糖食品由于其乳糖含量较低,能够减少美拉德反应的发生,从而最大程度地保留了食品中的`营养成分。值得注意的是,美拉德反应也能够降低食品中矿物质的生物活性,原因是美拉德反应的产物(MRPs)与食品中的矿物质发生螯合反应形成了难溶化合物。
4、对食品安全性的影响。美拉德反应会生成一系列的中间产物,这些中间产物对食品安全性有着不可忽视的影响。这美拉德反应的部分中间产物对食品的色泽和香味等功能特性做出了一定的贡献,但是另一些中间产物,如醛类化合物、杂环胺类化合物等则带来了食品安全隐患。美拉德反应所生成的中间产物具有不稳定性,目前对于糖类和氨基酸反应的中间产物是否存在安全问题尚不清楚;但美拉德反应所产生的丙烯酰胺是公认的致癌物质(有神经毒性)。土豆富含还原糖和天冬氨酸,其在加热(120℃以上)的条件下容易产生丙烯酰胺,但世界卫生组织目前还没有给出明确的丙烯酰胺致癌浓度。
三、结语
美拉德反应是一系列复杂的化学变化过程,美拉德反应的产物对于食品加工过程有着重要影响。在实际的食品加工过程中,应当合理控制美拉德反应,趋利避害,提高食品的功能特性。
参考文献:
[1]周永生,周文娟.美拉德反应及其对食品加工过程的影响[J].安徽农业科学,2010,38(27):15092-15095.
[2]于彭伟.美拉德反应对食品加工的影响及应用[J].肉类研究,2010(10):15-19.
[3]龚巧玲,张建友,刘书来,等.食品中的美拉德反应及其影响[J].食品工业科技,2009(2):330-334.
[4]美拉德反应在肉味香精中的研究进展[J].蔡培钿,白卫东,钱敏.中国酿造.2009(05).
[5]美拉德反应产物的抗氧化活性研究[J].鲁伟,黄筱茜,柯李晶,周建武,饶平凡.食品与机械.2008(04).
随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。
《 化学工程中计算流体力学应用分析 》
摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。
关键词:计算流体力学;求解;基本原理;化学工程;应用
化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。
1计算流体力学在化学工程中的基本原理
计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。
针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。
2计算流体力学砸你化学工程中的实际应用
在搅拌中的应用分析
在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验差加大。
通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。
在化学工程换热器中的应用分析
换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。
在精馏塔中的应用
CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。
Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。
Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。
在化学反应工程中的应用研究
在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。
3结束语
计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。
参考文献
[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).
[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).
《 能源化学工程专业化工热力学教学思考 》
[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。
武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。
目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。
由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。
首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.
有关化学工程应用毕业论文推荐:
1. 化学工程毕业论文
2. 化学毕业论文精选范文
3. 化工毕业论文范文大全
4. 化学毕业论文范例
5. 化学毕业论文范文
6. 化工毕业设计论文范文
化工论文格式范文
导语:化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。下面是我分享的化工论文格式的范文,欢迎阅读!
题目:化学工程中的化工生产工艺
摘要:
化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。也正是随着这些理念的出现,一系列新型的化学工艺以及加工生产技术逐渐走进化学工程当中。综合生产效益和生产效率的两个点,化工生产应该在环保化的基础之上促进高效化发展。将对化学工程中的化工生产工艺进行全面的分析。希望对相关技术人员有所启发。
关键词:化学工程;化工生产工艺;化工技术
目前,化学生产工艺在化学生产中的发展一直处于开发阶段,而化学工艺的研发在近几年却变得逐渐火热起来,其护腰原因还是因为化工生产在一定程度上对我们的自然环境造成了污染。随着节能环保和低碳生活理念的持续火热,人们对环境的关注度也越来越重,因此,化工生产就应该及时做出改变。在过去,化工生产的污染排放问题一直得不到科学合理的解决,化工废料污染的排放,给我们的生活环境造成了较大的污染。
1我国化工生产的现状
机械工业、煤矿工业和化学工业是我国三大工业主体。之所以化学工业能够成为三大工业中的一部分,其主要原因就是因为化学工业能够生产出大量我们生活所需的物件,能够最大限度的满足人们的生活需求,进而推动了我国农业和工业的进一步发展。肥料是支撑我国农业不断发展的基础要素,在很多程度上维持这我国的经济水平稳定。但是,在化学生产过重,势必会产生一定的化学废料并对周围环境造成一定范围的污染,尤其是化工企业所排放出来的“三废”。
化工生产效率较低
我国三大工业存在一个相同的问题,那就是整体生产效率较低。而在化学工业这方面,其主要的原因就是因为生产环境较为恶劣,再加上化工生产设备存在质量问题。例如,在生产化学肥料时,反应器皿往往不能达到正常化学反应所需的温度,进而导致化学反应不充分,最终导致废气问题出现。另外,如果化学反应不充分,那么最终形成的化学产品合格率就比较低,难以满足人们生活的使用需求。
对自然环境污染较为严重
化工生产可以说是我国目前最为严重的污染源之一,尤其是重金属和化学废料的污染。从化工厂附近的水源当中抽取检测发现,水中的污染物严重超标,进而导致水源受到污染,间接影响到周围的土质,导致范围内的环境出现失衡问题。另外,化工企业为了节约生产成本,违反国家的环保法律,直接将一些化工废料排入到自然环境当中,进而造成大范围严重的化工污染。而在化学反应过程中,化学生产的连续性较低,进而导致整个化学工程反应迟缓,工程的进度受到严重的影响,进而导致整个生产环节出现脱节现象,这就会导致化工生产受到较大的影响。而导致脱节问题出现的主要原因还是应该化工生产工艺不合格所导致的。简单来说,我国的化工生产主要存在生产效率低、企业环境保护意识差“、三废”处理不科学和化工生产技术低下等问题。也正是这些问题的存在,严重阻碍了我国化工生产的发展。
2降低我国化工生产污染的措施
从分析我国化工生产现状发现,我国的化工生产技术和环境还不是很完善,各个工作环节都还存在缺陷。而针对这些问题的特点,我们就应该对化工工艺进行改进,而从化工工艺角度来看,我们又应该从哪几个方面做起呢?笔者经过实践工作总结了解,要想降低化工生产中的污染问题就必须做好以下几点:
优化反应环境,强化反应条件
反应条件是化工生产中最为重要的环节,为了达到最高效的化工反应,提高生产效率,降低废料的出现量,反应条件就必须做到最好。所以,提升化工生产质量的关键点就在于提高化工生产中的反应条件。所使用的催化剂必须在一定反应时间之后才能够使用,进而保障生产过程中的高效性,降低化学废料的产出量。
做好废料环保处理工作
目前,我国法律明文规定,化工生产中产生的`重度污染物不能直接排放到自然环境当中。另外,还有我们常见的废气,这些化工生产废料都应该在经过处理之后才能够进行排放。化工生产废水的排放必须采用化学综合的方式来对其进行处理。其工作原理非常简单,就是通过化学反应的原理,将废水中的重金属物质通过沉淀的方式过滤出来,进而降低废水的污染度。
从化工生产技术入手
只有从化工生产技术入手,才能够从化工生产根本上解决环境污染问题。例如,生产氧气的方式有很多,那么哪一种生产方式才是最有效和最环保的呢?因此,我们应该针对生产环境的不同,选择科学的生产方式,对于原料的选择更是应该灵活应对。
3结论
化工生产中的工艺问题还有待进一步的研究,更多的技术点还有待进一步的强化,自然和化工生产之间的平衡点我们还未找到,因此,则应该更加努力的加强研究,对传统化工工艺进行优化。
参考文献
[1]李积云.化学工程中化工生产的工艺解析[J].中国石油和化工标准与质量,2013(2):22.
[2]王杲,吴晶.关于化学工程中化工生产的工艺的分析[J].化工管理,2015(18):167.
[3]刘伟,李霞.化学工程与工艺专业煤化工特色建设浅谈[J].河南化工,2014(5):61-63.
[4]高改轻.化学工程中化工生产的工艺解析[J].民营科技,2014(7):73.
题目:化学工程技术创新在石化工业装置实践研究
摘要: 化学工程技术是石油工业发展的重要基础,其技术的创新和发展对推动整个石化行业发展有着重要的意义。化学工程技术能有效解决石化工业装置建设中的问题,并且能对其进行改造,让石化工业得到更好的发展。本文主要通过讲述石化工业装置中关于工业炉的改造,以体现化学工程创新在其中的意义。
关键词:化学工程;技术创新;石化工业;装置建设
引言
化学工程是研究化学工业为代表的,是对石化工业的生产过程中有关化学过程与物理过程的原理和规律进行研究,并利用这些规律来解决工业装置的建设。随着石化工业的不断发展,石化工业所涉及的范围也越来越广,因此重视化学工程技术的创新,并在石化工业装置建设中得到实践与发展是非常必要的。而同时,随着石化工业装置建设的发展,化学工程技术创新提供了必要的条件。
一、石化工业装置建设中的主要改造的部分
在石化工业装置中,工业炉是整个生产工艺中的重点设备,无论是炼油、有机原料的炼成和合成树脂的工艺都需要借助不同工业炉完成。比如在炼油中,最为常见的石化工业装置有裂解炉、转化炉和加热炉等。它们能够按照不同的作用,不同的工艺要求,发挥不同的效果。但目前大多数的石化工业装置仍然是根据其外形将工业炉分为五类:
1.管式加热炉:按形状分为圆筒炉、立式炉、箱型炉。管式炉炉体一般由钢架及筒体(或箱体)组成,炉内衬有耐火材料和隔热材料,还有炉管系统、炉配件和烟囱等部分。根据其受热形式有纯辐射式和辐射-对流式。管式加热炉是石油化工行业最常用的炉型,以后各节主要围绕管式加热炉展开介绍。
2.立式反应炉:这类炉的炉体基本上是受压容器,如甲烷化炉、中(低)温变换炉、气化炉、二段转化炉等;另一部分类似平顶(底)或锥形顶(底)的常压容器,如沸腾炉、蓄热炉、煤气发生炉等,炉体多数均有复杂的内件和衬耐火材料,催化剂填料等。
3.卧式旋转反应炉:炉体呈卧式旋转筒体,内部装有螺旋输运器或加热炉管,外部有传动及减速装置,如HF旋转反应炉等。
4.带传动、升降投料装置的反应炉:这类炉设备类似容器,但外部有投料提升装置,炉内有内衬或砌筑耐火和隔热材料,如电热炉等。
5.其他工业炉:焚烧炉:用于废气、废液、废渣的焚烧。将其中有害物质经焚烧转化为无害物质排出。如污泥焚烧炉、硫磺回收装置焚烧炉。干燥炉:用于干燥工艺物料。热载体炉:塑料厂用的较多。当化学工程技术得到创新,石油化工装置也需要做出相应的改变,以发挥化学工程技术的作用,提升自我生产率。所以为了进一步提升我国石油工业事业的发展,并且配合化学工程技术的创新发展,石化工业装置的主体——工业炉也应该进行相应的改造。
二、化学工程技术创新在炼油方面的实践与进展
1.催化裂化技术
在炼油装置中的创新体现催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。催化裂化的主要工程需要在裂解炉中完成,裂解炉,主要以石油馏分为原料,进行热裂解生产烯烃,其结构特征为:立管加热裂解炉。裂解炉大多数为立式钢架结构炉体,将几种不同管径组合成一组,炉底有油气联合喷嘴;对流室在顶部,为卧式盘管,预热原料或燃料等。如今催化裂化技术已经成为石化工业装置建设中的核心技术,是石化工业炼油都需要用到的一种方式。在这项技术中就体现了许多化学工程技术的创新之处,如自动开发的高效雾化喷嘴,PV高效旋风分离器、油浆旋液除尘和烟气能量回收等。这些技术的创新与使用,很好的解决了炼油中长期存在的回收烟气压力、取出多余热量等难题。有效的提升了炼油的效率和环保性,让炼油取得了更好的经济效益。
2.炼油装置
炼油装置中的核心部分为常压装置,是处理炼油的重要装置。能有效提升其处理能力,降低能耗,提升拔除率。镇海炼化与SEI对炼油装置大型化开发应用了一系列化学工程创新技术,如在两段闪蒸、三级蒸馏节能型常压蒸馏技术应用其中,并使用真空技术来降低低压降、高减压的拔除率,是其研发出的炼油装置成为目前国内最大的长减压装置。经过实际的投入运用,该常减压设置的处理能力达到了102%,总拔除率达到了,整个装置的能耗量低至每吨11千克标油。
3.催化重整技术创新
在炼油装置中的体现催化重整是在催化剂的作用下,对油馏分中的烃类分子结构进行重新排列成新的分子结构的过程。石油在炼制的过程中需要在加热、氢压和催化剂发挥作用的共同环境中,让原油中蒸馏所得的轻汽油馏分转变成富含芳烃的高辛烷值汽油,并副产液化石油气和氢气的过程。催化重整中可以用作汽油调合组分,也可以使用芳烃抽提制取苯、甲苯和二甲苯,副产的氢气是炼油厂中重要的氢气来源。需要注意的是,制氢装置转化炉的结果与其他工业炉的结构不同,炉管里都装有催化剂,并在关于制氢反应过程是在炉管内完成的。炉内温度较高,达到1000°C,反应介质出口温度为800°C左右。而催化重整技术的创新主要是在其中应用了新型再生器催化剂分布器,能均匀的分布下料,有效提升反应器的利用率和催化剂的再生治疗。该技术在进气方式及气体分配流动技术也有所创新改进,通过改善气体的轴向及径向分流的均匀性及提升了气体在径向床成内的压力降和气体在轴向的压力分布情况。这些技术方面的创新都有助于提升整个催化重整技术的效果。
4.新型塔板、填料和冷换设备
在改进炼油中相关的化学工程技术中,选择合适的材料能有效保证创新技术的效果发挥,并能帮助炼油厂的合理成本管理。新型规整的填料或乱堆填料已经成为催化裂化中吸收稳定塔和常减压塔的主要材料。高效换热器也已经成为常减压装置的主要构件,其能很好的回收烟气热能,将热炉热效率提升到90%以上。此外,表面蒸发冷凝器、表面多孔管换热器也已经在炼油装置中得到广泛的应用与普及。
三、化学工程技术创新在有机原料方面
1.乙烯成套技术
自“九五”计划以来,我国乙烯事业就开始快速的发展,仅2000年中国石化集团公司的乙烯产量就达到287×104t,并且在乙烯成套技术方面有了很好的创新和发展。石化股份公司对裂解炉和分离工艺技术进行了创新改进,通过在文丘里管流量控制技术对裂解原料在众多的辐射段炉管中的流量实现了精密的均匀分布控制;应用“湿壁”模型解决了废热锅炉结焦的问题。此外,在底部供热和侧壁供热中是由辐射段,建立有效的供热模式系统,让供热更快、更为均匀。乙烯分离技术一直是化学工程技术集中度非常密集的一个范围,并且对于乙烯大型化节能效果与深冷条件都有着非常严苛的要求。通过对该技术的不断研究与创新,在通过多种考虑后,石化公司选择中型乙烯作为乙烯分离技术创新、改进的切入点。如今该项技术已经成功的在石油化工中得到使用。
2.甲苯歧化和烷基转移成套技术
甲苯歧化和烷基转移技术是芳烃技术中的一个重要组成单元,是满足石油化工对二甲苯需求的有效的措施之一。上海石油化工研究将HAT系列作为催化剂,并以此为基础研制出大型轴向固定床反应器和反应器进口气体分布器,以提升甲苯歧化反应的效率,并提升对二甲苯的回收率,满足了石油化工对二甲苯日渐增大的需求。如今一套甲苯歧化和烷基转移成套技术所使用的40×104t/a已经安全、稳定的使用了6年。
3.苯乙烯成套技术
在苯脱氢制成苯乙烯的成套技术中,乙苯脱氢轴径向反应器是该项技术的创新点。对反应器中的原料与反应物料流向进行更合理、更环保、更节约的改进,能降低对催化剂的使用量,并提升乙苯烯的制成率。华东理工大学在6×104t/a和10×4t/a的反应器中进行多次实验后,终于建立了两维气体的数学模型,并计算出反应器入口处轴向催化器的气封高度。另外,也有研究发现使用新型的高效静态混合器,是解决原有反应器入口处乙苯与水蒸气在高温和高速流动状态发生的质量偏离及乙苯脱氢转化率偏低的问题的最好方式。
4.化工型MTBE合成及裂解一体化成套技术
化工型MTBE合成及裂解一体化技术为制出高纯度的聚合级异丁烯,上海石油化工研究院就以下两点进行了创新:(1)使用带有环柱形催化剂装填构件,以实现深液层塔盘的催化蒸馏技术的使用;(2)在预反应器中是由外循环工艺,改变床层抽出的位置。这两点的创新抓住了化工型MTBE合成及裂成一体化技术的关键所在,因此其所发生的效果也是颠覆性的。在MTBE裂解单元中使用固体酸裂解工艺技术,并适当的放大固定床反应器,并对裂解产物分离和精馏塔系进行合理的设计。目前该项技术已经得到很好的使用,以燕化公司为例,其所生产的高纯度异丁烯很好的与丁基橡胶合成。
结论
化学工程技术的创新对石化工业装置建设的发展发挥着重要的促进作用,但也正是因为石化工程装置建设要不断满足市场的需求,不断自我发展,自我突破,才为化学工程技术提供了良好创新环境。二者相辅相成,相互促进。所以只有不断注重化学工程技术的创新,重视合理的引进、吸收国外的经验,并根据本国的国情与条件进行合理的研究,是能有发现好的创新点,大大提升化学工程技术的效率。