首页

> 论文发表知识库

首页 论文发表知识库 问题

图像特征比对毕业论文

发布时间:

图像特征比对毕业论文

(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法:一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行:第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。希望可以帮到你,有什么不懂的可以问我

网络系统的设计与管理 地信学生信息管理系统 基于单片机的多功能数字电子钟设计 导航模拟器设计 经验模态分解在地球物理资料中的应用 数字图像的中位数滤波设计 光猫的设计及优化 基于单片机的电子密码锁设计 激电仪驱动程序设计与实现 地信学院管理信息系统 ——学生管理子系统的设计与实现 普通电阻率测井实验装置的设计与实现 属性参数在地震解释中的应用 基于J2EE架构的物流管理系统的设计和实现 测温报警器 实时日历时钟显示系统的设计 网络通信中电子邮件加解密的研究 基于单片机的连续放射性测量仪的设计与实现 基于MATLAB 的数字滤波器设计 寻机机器人

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

中国知网也好!万方数据也好都有例子!甚至百度文库都有!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章通读一些相关资料,对这方面的内容有个大概的了解!参照你们学校的论文的格式,列出提纲,补充内容!实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了!最后,到万方等地进行检测,将扫红部分进行再次修改!祝你顺利完成论文!

基于灰度图像特征提取的毕业论文

matlab论文作者:佚名 转贴自:本站原创 点击数:21256 更新时间:2005-6-20 文章录入wuzechun基于MATLAB 的图像处理与分析X何希平1 , 张琼华2(1. 重庆工商大学实验实习中心,重庆400033 ; 2. 重庆工商大学图书馆,重庆400033)摘 要:介绍了MATLAB 图像处理工具箱中的函数,给出了图像处理与分析的技术实现,如用直方图均衡进行图像增强,通过形态学方法进行图像特征抽取与分析,借助于分水岭图像分割实现目标检测等。关键词:灰度图像;形态学变换;标记;分割;特征抽取中图分类号:TP 317. 4 文献标识码:AMATLAB6. 1(R12. 1) 是一套功能十分强大的工程计算及数据分析软件,其应用范围涵盖了数学、工业技术、电子科学、医疗卫生、建筑、金融、数字图像处理等各个领域。许多工程师和研究人员发现,MATLAB能迅速测试其构思,综合评测系统性能,并能借此快速设计出更多的解决方案,达到更高的技术要求。MATLAB 的图像处理工具箱,功能十分强大,支持的图像文件格式丰富,如3 . BMP , 3 . JPG, 3 . JPEG,3 . GIF , 3 . TIF , 3 . TIFF , 3 . PNG, 3 . PCX , 3 . XWD , 3 . HDF , 3 . ICO , 3 . CUR 等。利用MATLAB 所提理函数,并给出用MATLAB 实现图像处理与分析的应用技术实例。1 MATLAB 的图像处理工具概述MATLAB6. 1(R12. 1) 提供了20 类图像处理函数,涵盖了图像处理的包括近期研究成果在内的几乎所有的技术方法,是学习和研究图像处理的人员难得的宝贵资料和加工工具箱。这些函数按其功能可分为:图像显示;图像文件I/ O ;图像算术运算;几何变换;图像登记;像素值与统计;图像分析;图像增强;线性滤波;线性二元滤波设计;图像去模糊;图像变换;邻域与块处理; 灰度与二值图像的形态学运算;结构元素创建与处理;基于边缘的处理; 色彩映射表操作;色彩空间变换;图像类型与类型转换。2 应用MATLAB 工具箱进行图像分析处理2. 1 用直方图均衡实现图像增强当图像对比度较低,即灰度直方图分布区间较窄时,可用直方图均衡实现灰度分布区间展宽而达到图像增强的效果。下面是实现的源程序及相关功能的注解:%源程序:test1. mX 收稿日期:2003 - 02 - 27 ;修回日期:2003 - 03 - 30作者简介:何希平(1968 - ) ,男,四川人,博士生,重庆工商大学副教授,从事多媒体数据压缩、网络信息系统研究。. 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights , close all %清除所有内存变量、图形窗口I = imread(’pout. tif’); %将图像文件pout. tif 的图像像素数据读入矩阵Iimshow( I) %显示图像I ,图像对比度低,如图1afigure , imhist ( I) %在新图形窗口中显示图像I 的直方图,如图1c。可以注意到图像%亮度范围相当狭窄,并未完全覆盖可能的范围[0 ,255 ]I2 = histeq( I) ; %对图像I 做直方图均衡补偿在整个范围内展宽亮度值并输出到矩阵I2 ,因而改进了图像I 的对比度figure , imshow( I2) %在新图形窗口中显示新图像I2 , 如图1bfigure , imhist ( I2) %在新图形窗口中显示图像I2 的直方图, 如图1dimwrite ( I2 , ’pout2. png’); %将对比度调节的结果图像写入PNG格式的文件a 原图 b 直方图均衡结果图 c 原图像的直方图 d 结果图像的直方图图1 直方图均衡补偿消去图像噪声程序运行后,可得如图1 的对比图像。2. 2 用形态学方法进行图像处理与分析以rice. tif 为图像实例,介绍用形态学方法对灰度图像进行处理与分析的技术要点,即对灰度图像进行如下操作:去除图像的不均匀背景;用设置阈值的方法(thresholding) 将结果图像转换成二值图像;通过成分标记(components labeling) 返回图像中的目标对象属性,并计算目标对象的统计数字特征。其算法步骤描述如下:(1) 用工具箱函数imread 和imshow 读取和显示8 位灰度图,如图2a 。(2) 用形态学开运算(Morphological Opening) 估计背景。通过调用imopen 并对输入图像I 执行形态学开运算, 取半径为15 的圆盘结构元素,且结构元素通过函数strel 建立。形态学开运算有消除不能完全包含在半径为15 的圆盘内的目标对象的作用。注意到图像(如图2b) 中央的背景照度(background illumina2tion) 比底部要亮。(3) 用surf 指令察看背景图像。用Surf 指令创建近似背景的彩色表面图(如图2c) ,使人可以看到在一个矩形区域上的数学函数特征。在表面图中,[0 , 0 ] 表示原点, 或图像左上角,曲面图最高部分表示背景的最亮像素(从而rice. tif 的背景的最亮像素出现在图像中央行的附近,而最暗像素出现在图像的底部) 。(4) 从原图像中减去背景图像。须用图像处理工具箱的图像算术函数imsubtract 产生均匀的背景(如图2d) 。(5) 调节图像对比度。用imadjust 指令增大图像对比度(如图2e) 。imadjust 函数需要一个输入图像且也可带两个矢量: [ low high ] 和[ bottom top ] . 输出图像通过将输入图像中low 值映射到输出图像中的bot2tom 值、high 值映射到输出图像中的top 值,并将low 与high 间的值进行线性缩放而产生。(6) 对图像进行阈值处理。先调用graythresh ,自动计算一个适当的阈值;然后使用graythresh 返回的阈值,调用im2bw 执行阈值处理,将灰度图像转换成二值图像(如图2f) 。(7) 确定图像中的目标对象并予以标记。调用bwlabel 寻找连通成份而且用惟一的数字将他们分类标记。bwlabel 接受一个二值图像和指定各目标对象的连通性的值(4 或8 ,表示4 或8 连通) 作为输入。注意: 结果的准确性依赖于许多因素,包括: 目标对象的大小; 近似背景的准确程度; 是否设定连接3 2 第2 期 何希平等: 基于MATLAB 的图像处理与分析. 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights 原图b 背景性参数为4 或8 ; 是否任何目标对象均相接(在这种情况下他们可能被标记为同一目标对象) ;在该实例中, rice 的一些谷粒正好相接,因此bwlabel 把它们视为了同一目标对象。(8) 查看标记矩阵。看一看bwlabel 产生的标记的近似形状是有用的。调用imcrop 并用鼠标选择包含某一目标对象的一部分及其一些背景的部分图,则所选部分图的像素值会在MAT2LAB 窗口中返回。若查看上面的结果,你会看到c 背景的表面图d 原图与背景的差一个对象的一角标以某数字标记k ,这意味着它是第k 个被bwlabel 分类的目标对象。imcrop 函数也可带矢量指定剪裁矩形的坐标。在这种情况下,它不执行交互式操作。举例来说,rect = [15 25 10 10 ] ; roi = imcrop (labeled ,rect)这个调用指定一个剪裁矩形的左上角坐标始于(15 ,25) ,而且高度和宽度均为10 。一种查看标记矩阵的好方法是将它显示成e 图像对比度调节结果 f 阈值处理后的二值图一种假彩色索引图像(如图2g) 。在假彩色索引图像中,将标记矩阵中区分每一对象的数字映射成了相关色彩映射矩阵中的一种不同的颜色。当把一个标记矩阵看成一个RGB 图像时,图像中的对象是比较容易区别的。为此, 使用la2bel2rgb 函数。使用该函数时,可以指定色彩映射表,背景颜色,以及标记矩阵中的对象如何映射为色彩映射表中的颜色。(9) 测量图像中的对象属性。regionprops 指令可测量图像中的对象或区域的属性,并返回一g 假彩色标记图h 谷粒大小分布图图2 形态学图像处理的对比分析结果个结构数组。当将其作用于一个图像成分的标记矩阵时,它为每个成分建立一个结构元素,而每一结构元素包含一个标记成分的一些基本属性。regionprops 函数支持对许多不同的属性予以测量, 但是设定属性参数为’basic’旨在返回最常用的三个量: 面积(Area) , 质心或块中心(Centroid) 和边框(BoundingBox) 。边框Bounding2Box 表示能容纳一个区域(所举实例中的谷粒)的最小长方形, 为四元素矢量: [ left top widthheight ] 。(10) 在图像中计算目标对象的统计特性。使用MATLAB 函数max , mean , 和hist 可计算被阈值处理的目标对象的一些统计属性(如图2h) 。图像处理工具箱也有一些统计函数,如mean2 和std2 ,适用于图像数据,因为他们对二维空间的数据返回单一值。下面是算法实现的程序代码:%程序代码:test2. mclear , close all ,I = imread(’rice. tif’); imshow( I) %读取和显示8 位灰度图rice. tif4 2 重庆工商大学学报 (自然科学版) 第20 卷. 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights = imopen( I ,strel (’disk’,15) ) ; %取半径为15 的圆盘结构元素对图像用开运算估计背景figure ,imshow(background) %显示背景图figure , surf (double (background (1 :8 : end ,1 :8 : end) ) ) ,zlim( [ 0 255 ]) ; %显示背景的彩色表面图,对8 ×8 格点取样set(gca ,’ydir’,’reverse’);I2 = imsubtract ( I ,background) ; figure , imshow( I2) %从原图像中减去背景图像,并显示结果图I3 = imadjust ( I2 , stretchlim( I2) ,[0 1 ]) ;figure , imshow( I3) ; %调节图像对比度,并显示结果图level = graythresh( I3) ;bw = im2bw( I3 ,level) ; figure , imshow(bw) %将灰度图像转换成二值图像[ labeled ,numObjects ] = bwlabel(bw ,4) ; % 成分标记,4 具体指定4 - 连通成分.grain = imcrop (labeled) % 用鼠标选取实现交互式剪裁标记成分的一部分RGB-label = label2rgb(labeled , @spring , ’c’, ’shuffle’); %把一个标记矩阵转换成一个RGB 图像figure ,imshow(RGB-label) ;graindata = regionprops(labeled ,’basic’)%调用regionprops ,为rice 的每一经阈值处理%的谷粒返回一个基本属性的结构。由BoundingBox 的域返回四元素矢量: [ left top width height ]。graindata (51) . Area , graindata(51) .BoundingBox , graindata(51) . Centroidallgrains = [graindata. Area ] %用点号存取graindata 的所有元素的面积域并将该数据存入%新的矢量allgrains。这个步骤简化了对面积量的分析,因为不必使用域名存取面积。max(allgrains) %找最大谷粒的大小。allgrains 中的数据是一维的, 故函数mean 和std 是适用的。biggrain = find(allgrains = = ans) %使用find 指令返回该最大谷粒的成分标记mean(allgrains) %求平均粒径hist (allgrains ,20) %作包含20 个方柱的显示谷粒大小分布的直方图。直方图表明,在rice 图像中谷粒最通常的%大小在300 到400 个像素的范围内(如图2h) 。2. 3 用分水岭分割法检测连通目标在一个图像中检测目标是图像分割的一个例子。为分割连通目标,时常用Watershed 变换。如果把一幅图像看做一个具有山(高亮度) 和低谷(低亮度) 的表面,那么这个变换在一幅图像中找亮度低谷。实现包括下列步骤:(1) 读图像。读入图像afmsurf . tif , 它是一幅原子能显微镜下的衣料表面图像(如图3a) 。(2) 对比度最大化。注意到图像中有许多彼此连通的不同大小的对象。为使通过watershed 变换找到的低谷数目最小,我们使感兴趣的对象的对比度达到最大。对比度增强的一个常用的技术是综合应用top- hat 和bottom - hat 变换。top - hat 变换定义为原图像和它的开之差。图像的开是一与特定结构元素匹配的图像前景部分的集合(如图3b) 。bottom - hat 变换定义为在原图像和它的闭之间的差。图像的闭是一与特定结构元素匹配的图像背景的集合(如图3c) 。通用的结构元素是正方形,长方形,圆盘,菱形,球和线。既然图像中我们感兴趣的目标对象看起来像圆盘,我们用strel 函数建立一个半径为15 个像素的圆盘形结构元素。这个圆盘尺度是图像中的目标对象的平均半径的一个估计。(3) 图像相加减。看到top - hat 图像含有与结构元素匹配的对象的”巅峰”。相反,bottom - hat 图像显示出感兴趣的目标对象之间的间隙。为使目标对象与分隔它们的间隙之间的对比达到最大,用“原图+ top - hat 图像- bottom - hat 图像”得到增强的结果图(如图3d) 。(4) 转换感兴趣的对象。调用watershed 变换找出图像的亮度”低谷”,把imcomplement 函数作用于增强过的图像上,将感兴趣的目标对象转换为亮度低谷,得到增强图的补图(如图3e) 。(5) 检测亮度低谷。对所得补图运用imextendedmin 函数检测低于某特别阈值的所有亮度低谷。imextendedmin 函数的输出是一个二值(逻辑值) 图像(如图3f) 。二值图像中重要的是区域的位置而非区域的大小。用imimposemin 函数把补图改为只含有那些由imextendedmin 函数找到的低谷,并将低谷的像素值变为0 (8 位图像可能的深谷) (如图3g) 。(6) Watershed 分割。通过watershed 变换,可找出来所有含有强加给最小值的区域。用watershed 函数实现Watershed 分割。watershed 函数返回一个标记矩阵,它含有对应于watershed 区域的非负数。凡未落入5 2 第2 期 何希平等: 基于MATLAB 的图像处理与分析. 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.图3 用Watershed 分割法检测连通目标的图像渐近过程任何watershed 区域的像素均被赋予像素值0。用label2rgb把一个标记矩阵变为一幅图像(如图3h) 。(7) 从标记矩阵中抽取目标对象的特征。可用region2props 函数从标记矩阵中抽取特征。比如说,可以计算两个量(面积和方向) 并把他们看成彼此的一个函数。下面给出算法的实现代码:%程序代码:test3. mafm = imread (’afmsurf . tif’); figure , imshow(afm) , title (’surface im2age’);se = strel (’disk’, 15) ;Itop = imtophat (afm , se) ; figure , imshow( Itop , [ ]) , title (’top - hat im2age’);Ibot = imbothat (afm , se) ; figure , imshow( Ibot , [ ]) , title (’bottom - hatimage’);Ienhance = imsubtract (imadd ( Itop , afm) , Ibot) ; figure , imshow( Ien2hance) , title (’original + top - hat - bottom - hat’);Iec = imcomplement ( Ienhance) ; figure , imshow( Iec) , title (’complementof enhanced image’);Iemin = imextendedmin( Iec , 22) ; figure , imshow( Iemin) , title (’extend2ed minima image’);Iimpose = imimposemin ( Iec , Iemin) ; figure , imshow( Iimpose) , title ( ’imposed minima image’);wat = watershed( Iimpose) ;rgb = label2rgb(wat) ; figure , imshow(rgb) ;title (’watershed segmented image’);stats = regionprops (wat , ’Area’, ’Orientation’); area = [ stats ( :) .Area ] ; orient = [ stats( :) . Orientation] ;figure , plot (area , orient , ’b 3 ’); title (’Relationship of Particle Orienta2tion to Area’);xlabel (’particle area (pixels) ’); ylabel (’particle orientation (degrees) ’);参考文献:[1 ] 孙兆林.MATLAB 6. x 图像处理[M] . 北京:清华大学出版社,2002[2 ] 崔屹. 图像处理与分析———数学形态学方法及其应用[M] . 北京:科学出版社,2000[3 ] 张远鹏,董海,周文灵. 计算机图像处理技术基础[M] . 北京:北京大学出版社,1996Image processing and analysis based on MATLABHE Xi - ping1 , ZHANG Qiong - hua2(1. Center of Experiment and Practice ,ChongQing Technology and Business University ,ChongQing 400033 ,China ;2. Library , ChongQing Technology and Business University , ChongQing 400033 ,China)Abstract :This paper first introduces the functions of MATLAB image processing toolbox , then presents sometechniques in image processing and analysis , such as image enhancement by using histogram equalization , image fea2ture extracting and analysis with morphological methods , and objects detection through watershed image words : grayscale intensity image ; morphological transform; labeling ; segmentation ; feature extraction责任编辑:杨祖彬6 2 重庆工商大学学报 (自然科学版) 第20 卷. 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.收稿日期:2002208224MATLAB 及其在图像处理中的应用许志影,李晋平(中国矿业大学资源学院,江苏徐州 221008)摘要: 介绍了MATLAB 的特点和功能,分析了MATLAB 在图像处理中的应用,并结合实例说明了MATLAB 在图像处理中关键词: MATLAB ; 图像处理; 边缘提取中图分类号: TN911. 73 文献标识码: AMATLAB and Its Application to Digital Image ProcessingXU Zhi2ying ,LI Jin2ping(School of Resource & Geoscience ,China University of Mining and Technology ,Xuzhou 221008 ,China)Abstract :Introduces properties and functions of MATLAB ,and analyses its applications to digital image processing ,finally ,displays the a2bility of MATLAB in image processing with an :MATLAB ;image processing ;edge detectionMATLAB 软件由美国Math Works 公司于1984 年推出,历经十几年的发展和竞争,现已成为( IEEE) 国际公认的最优秀的科技应用软件之一。作为一个跨平台的软件,MATLAB 已推出Unix、Windows 9x/ NT、Linux 和Mac 等十多种操作系统平台下的版本,大大方便了在不同操作系统平台下的研究工作。目前基于Windows 系统的最新版本已上升到MATLAB6. 5 ,它继承了以往版本的优点,非常容易使用。现在,MATLAB 已经发展成为一个系列产品:MATLAB 主包和各种工具箱(TOOLBOX) 。目前已经推出了30 多个工具箱,这些工具箱可分为两大类:功能性工具箱和学科性工具箱。功能性工具箱主要用来扩充其符号计算功能、图示建模仿真功能、文字处理功能以及硬件实时交互功能,能用于多种学科。而学科性工具箱是专业比较强的,如控制工具箱、信号处理工具箱、图像处理工具箱和小波工具箱等多个学科的专业工具箱。借助于这些工具箱,各个层次的研究人员就可方便地进行研究工作,提高工作效率。本文将简要介绍MATLAB6. 5 及其在图像处理中的应用,希望对从事图像处理工作的研究人员有所帮助。1 MATLAB 概述MATLAB 最初是作为矩阵实验室(Matrix Labora2tory) 用来提供通往LINPACK和EISPACK矩阵软件包接口的。后来,它逐渐发展成为通用科技计算和图视交互系统的程序语言,其数据的基本单元是矩阵。它的指令表达与数学、工程中常用的习惯形式十分相似,从而使许多用C 或Fortran 实现起来十分复杂和费时的问题用MATLAB 就可以轻松地解决。MAT2LAB 的典型应用包括:数学计算、算法研究、数据分析和计算结果可视化、建模与仿真等。1. 1 MATLAB的特点MATLAB 有三大特点:一是功能强大。主要包括数值计算和符号计算、计算结果和编程可视化、数学和文字统一处理、离线和在线计算。二是界面友好,编程效率高。MATLAB 是一种以矩阵为基本单元的可视化程序设计语言,语法结构简单,数据类型单一,指令表达与标准教科书的数学表达式相近。三是开放性强。MATLAB 有很好的可扩充性,可以把它当成一种更高级的语言去使用。使用它很容易编写各种通用或专用应用程序。1. 2 MATLAB的主要功能MATLAB 之所以成为世界顶级的科学计算与数学应用软件,是因为它随着版本的升级与不断完善而具有愈来愈强大的功能。我的回答超过数字没办法

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

矩阵特征值特征向量毕业论文

matlab求解矩阵的最大特征值及对应的正规化特征向量:[V, D] = eig(A);D = diag(D); % 特征值[D, idx] = sort(D, 'descend');V = V(:, idx); % 特征向量矩阵这样,D(1)是最大特征值,V(:,1)是最大特征向量只会这些了。

用命令 [P,D]=eig(A)可求得方阵A的特征值与特征向量,上面命令中求得的P,D是两个方阵,满足AP=PD因此对角阵D的主对角线元素为A的特征值,P的每一列为A的特征向量,以列数相同相对应。

[V,D]=eig(a)a 为所求的矩阵V 为特征向量D特征值对角阵

你说的应该是层次分析中的一致性检验吧。下面是我准备美赛建模时提前写的一个程序。输入相应矩阵后自动判断是否通过一致性检验。若通过则给出最大特征值和标准化特征向量。结果为“pass”,恭喜通过一致性检验。输入要判定的矩阵A=[1,1/2,2,1/3,3,1/4;2,1,3,1/2,4,1/3;1/2,1/3,1,1/4,2,1/5;3,2,4,1,5,1/2;1/3,1/4,1/2,1/5,1,1/6;4,3,5,2,6,1]特征向量及特征值为:V = + - - + + - - + - + + - + - + - - + - + D = 0 0 0 0 0 0 + 0 0 0 0 0 0 - 0 0 0 0 0 0 + 0 0 0 0 0 0 - 0 0 0 0 0 0 CR = 权向量为B =

毕业论文的特征

毕业论文属科技论文,它应具有以下特点:

1、科学性

科学性――就描述对象而论,是指论文只涉及科学与技术领域的命题;就描述内容来看,是指它要求文章的论述具有可信性。科技论文不能凭主观臆断或个人好恶随意舍取素材或得出的结论。论点的推理要求严密、并正确可信。揭示的是普遍规律或特殊规律。

2、逻辑性

辩证逻辑揭示内在规律和联系。

形式逻辑揭示外部规律和联系。

逻辑性是文章的结构特点,它要求论文的脉络清晰、结构严谨、推论合理、演算正确、符号规范、文字通顺、前呼后应、自成系统。不论文章所涉及的专题大小如何,都应该有自己的前提或假说、论证素材和推断结论,不应该是一堆堆数据罗列或一串串现象的自然描绘。

3、首创性

首创性是对描述的内容区别于其它文献的一种特殊要求,创新是科技论文的灵魂。它要求论文所提示的事物现象、属性、特点、以及事物变化时所遵循的规律,必须是前所未见的、首创的、或部分是首创的,而不是对他人工作的复述或解释。

首创性就是要说出别人没有说过的话,道出别人没有道出的理,有新意,有独道。

4、继承性

就是要站在巨人的肩膀上去看旧问题发现新问题。

论文的特征就是论说、阐明道理,揭示某种规律和特征。因而不是记事状物,也不是叙述过程,更不是抒发情感。

毕业论文的主要特点是受导性、学术性、习作性、考核性。

理论性是毕业论文的主要特点,是毕业论文的灵魂所在。在形式上,它是由概念、判断、推理组成的一个体系。作者往往运用抽象思维的方法,对丰富、复杂的材料进行分析。如果一篇毕业论文仅停留在对事实的说明和描述上,没有必要的理论分析和论证,那就不能上升到理论的高度,写得再生动、再漂亮,也不能算是好论文。

创造性就是要求文章不能简单地重复前人的观点,而必须有自己独到的见解。毕业论文虽然只是学生从事科学研究的入门工作,但是也要注意对所研究的问题采取新的分析方法,得出新的观点。应鼓励学术创新,避免选择已经完全得到解决的常识性问题。

毕业论文是在导师指导下独立完成的科学研究成果。作为大学毕业前的最后一次作业,离不开教师的帮助和指导。对于如何进行科学研究,如何撰写论文,等等,教师都要给予具体的方法论指导。

在学生写作毕业论文的过程中,教师要启发引导学生独立进行工作,注意发挥学生的主动创造精神,帮助学生最后确定题目,指定参考文献和调查线索,审定论文提纲,解答疑难问题,指导学生修改论文初稿,等等。学生为了写好毕业论文,必须主动地发挥自己的聪明才智,刻苦钻研,独立完成毕业论文的写作任务。

女性特征毕业论文

你自己去看看 太多了啊1!!

一篇女性魅力为题的毕业论文 需要请联 系 Q 9212 984

楼主你好!拙见```请过目文章摘要:李清照词的婉转蕴藉,为历代评家所公认。仔细分析她的词作,无论从内容到形式无不带有明显的女性特征。首先体现在审美对象和情趣上;其二是抒写情感表达思想揭示了女性当时特有的心理状态;其三是通俗口语化的风格携带着女性喜好聊天的特征。关键词:婉转蕴藉---别是一家---女性特征作为婉约派的代表,李清照的词可谓“别是一家”。除了她所处时代的经济文化发展对她的直接影响、以及她本人高深的艺术修养造诣等诸多因素外,一个很重要的因素就是她是一位女词人。一、选择题材表现题材时--摄取女性特有审美对象二、抒写情感表达思想时——揭示女性特有的心理三、风格上,语言上——体现女性情愫四、本质上,社会学角度--解释“表现”女性现象产生原因

一、关于李清照个性意识的探寻对作者的个性特征和气质的研究和探讨,一直是易安研究的重要内容之一。庄慕萱《浅谈李清照的个性气质对其词创作的影响》(《浙江师范大学学报》1997年第2期)、诸葛忆兵《李清照个性成因及其表现》(《东岳论丛》1997年第3期)、康丽云《从李清照个性特征论易安体》(《宜春师专学报》1997年第6期)、何锡章《心灵与情感美的歌:读李清照的词》(《华中理工大学学报》1998年第2期)等数篇论文,即是对易安个性气质的继续探讨。但是,他们又与过去的文章稍有不同,主要试图以词人的个性气质为切入点,结合词人的生活经历,探寻词人的心灵世界和性格品质及其在词作中的表现。其中,诸葛一文是值得关注的一篇。文章认为,“自主、自强、自信”是李清照的性格品质,具有鲜明的叛逆个性。这种个性品质的形成,与李清照的生活环境和人生阅历密切相关:首先,良好的早期教育和自由的家庭环境,为李清照的身心发展和个性形成提供了一个宽松的环境;其次,美满、幸福的婚姻生活,使李清照对生活更加充满了信心,其“自主、自强、自信”的性格最后定型,并且终其一生,这种性格品质没有改变。在现实生活中,李清照处处流露出叛逆的个性,主要表现在五个方面:1、“作诗讥刺公公赵挺之”;2、“始终关切国事,不愿默守闺中”;3、“晚年再嫁和离异”;4、“敢于批评男人世界中之名流”;5、“文学创作独辟蹊径,自成一家。”从“自我意识”层面探讨李清照的深层心理,成了近几年李清照研究的热点。研究者们纷纷撰文,大小论文不下10余篇。刘淑丽的《试论李清照自我意识的觉醒》(《山西大学学报》1997年第3期)一文认为,“李清照自我意识的觉醒一扫以往文学中的女性迷失与臣妾意识,第一次将自我作为抒情主人公形象坦露在读者面前”;苏萍的《试论李清照的才女意识》(《山西大学学报》1999年第2期)一文,则从“博学与雅趣、真情与灵气、高傲与叛逆、忧郁与忧患”四个方面,分析探讨了李清照独特的才女意识;吴爱民的《试析李清照诗词中抒情主人公的自我形象》(《安徽大学学报》1999年第5期)一文,认为李清照词作在不同时期塑造了词人不同的自我形象(天真的少女、多情的少妇、有志的才女和抑郁的老妪)。以上数文,或从抒情形象方面,或从性格特征方面探讨李清照的“自我意识”,均各具特色,形成了易安研究的一个小高潮。陈武阳的《李清照主体创作中的自我张扬论略》(《江西社会科学》1998年第12期)、王金寿的《易安词女性意识再评价》(《西北师范大学学报》1999年第2期),是研究李清照“自我意识”较有影响的两篇文章。陈文别开生面,从爱情意识、女性意识和个性意识三个层面,针对李清照文学创作中自我主体意识的张扬作了概括的论述。文章认为,李清照词作爱情意识的表现,不在艺术上,而在思想上,即创作主体摆脱了封建宗法意识的束缚,大胆、真切地表露了自我的爱情意识;其女性意识的凸现,是通过在词作中表现深广的爱国情怀,并站在女性的角度,把女性和文化努力地结合起来;其个性意识的张扬,则通过对自我形象描述的强烈的个性化得以实现。文章最后指出:“李清照主体创作中对自我女性意识的张扬,在一定意义上是对封建宗法意识和历史的传统文化意识的背叛,她要在背叛中突立自我作为女性的尊严,在自我认识中,张扬人性和女性意识。”王文则自有见地,认为李清照独特的女性意识从以下三方面折射出来:1、“何须浅碧轻红色,自是花中第一流’的桂花形象——倜傥洒脱、自信乐观的‘丈夫’气质和崇尚淡雅高洁的意识”;2、“‘不如随分樽前醉,莫负东篱菊蕊黄’的菊花形象——旷达超逸的隐士风度和崇尚独立人格的意识”;3、“不效颦于汉魏,不学步于盛唐,应情而发’、‘风神气格,冠绝一时’的卓然才气、独创精神”。二、关于“易安体”内在结构的探索对“易安体”的研究,是李清照研究争论最多的专题之一。过去的专题文章,多从平易通俗的语言、精美的韵律、富有个性的抒情形象、婉转清新中不乏豪放矫健的风格等方面,来探求“易安体”的美感意蕴。而李正春的《易安体的内在结构和表达功能》一文(《江苏社会科学》1997年第1期),却不落窠臼,认为“易安词能在花团锦簇的宋代词坛上开径独行,自成一体,必有其独特的内在结构,把握其内在结构,无疑是获得审美效应的重要途径”。文章对“易安体”独特的结构形态和表达功能作了探讨。全文由三大部分构成。第一部分:流动性的时空结构。文章指出,易安词空间结构的流动有如下三种方式:1、“由室外广阔的空间层面→居室周围的空间层面→室内细小的空间层面”;2、“由室内细小的空间层面→小楼周围的空间层面→远处(高处)更广阔深远的空间层面”;3、“混合式”。就时间流动而言,“易安词的时间‘流域’是介乎‘春’与‘秋’两季,就具体时刻而言,在昼与夜的交替中”。第二部分:戏剧性的情绪结构。有如下几种常见的结构形态:1、“以悲音(景)发端,喜景(音)继其后,最终悲音复起(悲景复现)”,形成一个‘悲’——‘乐’——‘悲’的封闭式循环结构;2、“以喜景(音)发端,以悲景(音)作结,构成‘喜——悲’式的情绪结构”;3、“悲——喜”形态。第三部分:对比式的章法结构。主要有两种章法结构:1、“生活场景的对比——突出反差”;2、“人与物的对比——突出近性”。转贴于 中国论文下载中心

相关百科

热门百科

首页
发表服务