首页

> 论文发表知识库

首页 论文发表知识库 问题

哲学上如何做定量研究论文

发布时间:

哲学上如何做定量研究论文

论文中研究方法的应用

论文是一个汉语词语,古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。下面是我收集的论文中研究方法的应用,欢迎大家参考。

【摘要】:

硕士毕业论文是一个硕士研究生论文水平的重要表现,考察其论文的研究方法对于我们研究论文的研究方法有重要的帮助,本论文以华东师范大学思想政治教育专业20xx年和20xx年硕士毕业生硕士学位论文为研究对象。通过统计分析发现:马克思主义理论学科研究生的研究方法意识逐渐增强,呈现出多样化趋势,同时存在述而不用、理解不准确、运用不到位等问题。造成这些问题的主要原因就是缺乏研究方法的理论学习与实践训练。因此,应注重从增强研究生方法自觉、严格学位论文写作规范等方面不断提升学位论文研究方法运用水平。

【关键词】:

研究方法;硕士论文;思想政治教育

研究方法是科学研究的首要问题,贯穿科学研究的全过程。它上与认识论、方法论相连,下与理论性质、研究问题紧密相关,是保证研究成果科学性的前提和保障。

一、学位论文与研究方法

(一)研究生学位论文

研究生学位论文是衡量研究生科研能力和培养质量的重要手段。研究生学位申请者根据学位授予要求而撰写的研究论文。它是评判学位申请人学术水平的重要依据和获得学位的必要条件之一。学位论文质量的高低是衡量研究生科研水平高低的一个重要标志。

(二)研究方法

研究方法,也就是正确地提出问题、解决问题,是研究事实所不可缺少的理论原则、程序、手段、方式和技巧。是保证观察可靠、判断、推理得以正确形成的原则、程序、手段、方式。我国哲学社会科学学者秦宗熙和穆怀中、谢圣明认为社会研究方法的体系由三个不同层次构成,即一般方法、具体研究方法和具体的研究程序和研究技术。

首先,一般方法包括马克思主义哲学方法论、社会学的学科方法论以及逻辑方法论。其次,具体的研究方法包括文献法、个案法、访问法、问卷法、观察法、实验法、抽样法、社会测量法、典型法等。具体的研究程序和研究技术。最后,研究程序包括四个阶段即选题阶段、计划阶段、实施阶段和总结阶段。一般情况下,学生在论文写作上采取定性和定量研究相结合,采取文献法、历史法、比较法、统计分析法、问卷法、测验法、经验总结法等多种方法相结合使用。

二、思想政治教育硕士学位论文研究方法分析

硕士学位论文是一个硕士研究生写作水平的展现,而方法的运用则体现了作者研究过程中方法原则程序是否科学合理,这也就直接影响论文的质量和水平。通过分析得出思政研究生硕士学位论文以传统的理论思辨研究方法为主,缺乏科学的研究方法意识,缺少相应的实证与量化分析

(一)研究方法自陈状况分析

在抽样的华东师范大学2014、2015年30篇思想政治教育硕士学位论文中分析发现,从整体上而言,有的学位论文明确交代论文研究方法。能清晰单列“研究方法”部分并作“详细说明”和“简要说明”的学位论文的比例比较大,这说明,思想政治教育学科硕士论文的研究方法意识在已经比较高,研究的科学性从总体而言呈比较好的状态。当然,如果把自陈水平为详细说明和简要说明的论文判为“合格”的话,那么合格的比例仅仅有37%。

(二)研究方法的主要类别及其运用情况

总体分析后发现,马克思主义理论学科硕士学位论文运用的研究方法主要包括文献研究法、经验总结法、理论思辨法、比较研究法、历史研究法、调查研究法等。在30篇硕士学位论文中,以文献研究法为主要研究方法的占60%,排名第一;以思辨抽象法为主要研究方法的硕士论26%,排名第二;比较研究法为主占23%;其余还包括历史研究法、跨学科研究、调查研究等等占有一定比例。此外,100%的硕士论文的是融合两种方法以上的综合方法,融合的方式较为多样。

从以上可以看出,研究方法依然以经验研究和思辨研究等传统研究方法为主。文献研究法、思辨抽象法、历史研究法、比较研究法等传统研究方法备受青睐,其中文献研究法的使用率100%。新的实证研究方法,如调查研究、访谈法等开始进入马克思主义理论学科领域,使得研究方法更为丰富和多样化。

三、结论

(一)优点。通过分析30篇抽样可以得出思想政治教育专业硕士研究生在学位论文的写作中方法意识逐渐增强,通过本研究的调查分析发现过去单一的研究方法有所下降,对研究具有实际指导价值的学科层面方法论和原则层面方法论急剧增加,这表明高等教育研究的方法论出现了多元化趋向。从某种意义上可以说,研究方法论趋向多元化意味着研究者对研究方法论认识更加深人,这也意味着思想政治教育专业研究方法的多元化。

同时,具体研究方法和研究技术种类多样性,尽管定量与实证研究方法的整体运用中占比例不大,但从调查结果可以说明研究生们已经意识到定量与实证研究方法在研究中的重要性,通过定量与实证研究分析更能确定的各影响因素与结果之间的关系,从而得出科学的结论。研究技术的`这一层次是研究方法结构体系中与研究成果联系最为密切的层面。一定的研究方法论和研究方式最终必然要通过具体方法与技术才能展现出来。

(二)存在的不足。通过对样本的分析,可以得出,虽然在毕业论文中很多人都陈述了研究方法,但是研究方法陈述不够明确,甚至对研究方法本身并不是非常清楚,部分论文对研究方法敷衍了事,有的研究生将实证研究、思辨研究、定性研究、定量研究、定性与定量相结合、规范研究及跨学科研究、多学科研究当作研究方法。事实上,从哲学和科学方法的角度看,实证研究、定性研究、定量研究、定性与定量相结合及跨学科研究、多学科研究都是开展科学研究的一种指导思想,是方法论。如实证研究与之对应的有实验法、调查法等。

定性与思辩研究多,定量与实证研究少。定量研究与实证研究在研究科学性能够起到很重要的作用,从调查结果显示,虽然定量和实证研究有所增加,但从总体上而言,定量和实证研究还是很少。通过案例、实验、非实验、实地研究,用事实情况及真实数据更能有力地证实研究者的观点的文章少。调查数据显示,在研究生学位论文研究方法中以文献法、历史法、比较法这些以叙事性的定性研究为主导,从个人经验出发的感悟性、思辨性研究较多,说明定性研究仍是主要研究方法。虽然随着研究的深入及对研究的科学性的重视,定量与实证的方法逐步受到重视,但比较而言,运用的仍然较少。调查结果显示,在研究生学位论文中最常用的定量与实证的研究方法是调查法,最常用的统计分析方法是描述统计。方差分析、差异检验及显著性分析等定量方法在论文中少有出现。

综合上述分析,在培养学生论文写作方法上,我们应该更加注重方法意识,培养学生方法自觉,注重开设方法论课程的质量,提高研究质量,重视定量与实证研究,优化定性与思辨研究的结构,规范研究方法,树立科学研究意识,促进思想政教育学科理论发展。

定量研究的主要方式和哲学基础是实证主义。根据查询相关资料信息显示,定量研究的特点可从哲学基础、研究目标、分析方法、资料收集方法和技术等方面进行分析。从哲学基础上看,定量研究是基于实证主义的哲学基础。

经济学研究的定量与定性分析探究

研究是通过各种研究方法对事实或材料进行加工整理,以获取新的可靠知识的思维活动。研究方法的选择、运用和创新对研究工作至关重要。以下是我为您整理的经济学研究的定量与定性分析探究论文,以供参考。

摘要: 定性分析和定量分析是经济学研究的两种基本手段。前者是对经济事物本质及其属性的分析;后者是对经济事物进行量的考察。本文试图就定性、定量分析的定义其各自的特点入手,阐述学术研究界关于他们的争论,并分析经济学研究中定性分析与定量分析的关系。

关键词: 定量分析;定性分析;经济学研究

研究是通过各种研究方法对事实或材料进行加工整理,以获取新的可靠知识的思维活动。研究方法的选择、运用和创新对研究工作至关重要。在经济学的发展过程中,经济学家不断引进别的学科研究方法或开创一系列新的研究方法为之服务。这些研究方法的引进和创新都极大地推动了经济理论及相关科学理论的发展,拓展了经济学研究的深度和广度。然而我们也必须正确的认识和运用经济学方法论中的研究方法,把握正确的尺度和方向才能使我们的研究工作事半功倍。但由于经济研究对象的特殊性和复杂性,关于经济研究中的两种分析方法即定性分析与定量分析,哪一种方法更科学、更合理,学术界一直存在争议。

在经济学界,主张定量分析的观点认为,采用数学语言,遵循数学所固有的逻辑程序,有助于清晰地表达思想,使概念精确,论证富有逻辑性,避免曲解和混乱,混乱,如经济学家施蒂格勒认为这种转换不仅值得搞,而且非搞不可。其转换有助于经济学与数理经济学的发展。另一方面,与其对立的观点认为,虽然严格地遵循数学逻辑程序,能使混乱的思想呈清,但数学只是经济认识的辅助手段,不能取代质的分析,滥用数学手段,也会产生许多谬误。著名经济学家萨缪尔森就认为,这种转换不仅无益,而且涉及到一种陈腐的智力几何学。结合国内经济学研究中所出现的对于定性分析和定量分析的争论,本文试图就定性、定量分析的定义其各自的特点入手,分析定性分析与定量分析在经济学研究中的相互关系。

一、定性分析的定义及特点

定性分析是认识事物的质、寻找事物的本质联系,是对事物或事件的性质和特点的分析。所谓质,即指事物成为其自身并使之区别于其他事物的内部规定性。世间万物之所以能呈现出多样性,是其自身与他物相区别,具有自身的特定的质。只有正确地认识了事物的质,才能把不同的事物区别开来。

而只有清楚地认识事物本身并把握其发展变化的趋势,才能在实践中采取相应的政策措施。而定性分析正是在这一基础上,根据事物的现象、性质来确定概念,判断其未来的发展程度,对事物进行非数量化的分析。如对方针、政策的反映,某些商品的价格调整引起的生产和市场形势的变化,经济体制改革对市场形势的影响,国际化贸易带动下购买力投向的变化等,这些都难以准确地用数量来表示,只能用定性分析的方法,做出估计和判断。定性分析是建立在经验和逻辑思维的基础上的,主要依靠个人主观经验和直观材料来进行分析,从而确定未来事件和趋势的发展性质、发展程度。它对长期远规划、重大问题的发展前景、市场形势的估计和判断,以及制定工作计划和企业经营活动,都有一定的指导意义。

在经济研究中,定性分析主要通过运用历史和逻辑相统一的抽象方法,将研究的注意力集中在经济现象的本质上,归纳影响经济运行机制的主要因素,然后通过对主要因素的分析和综合,演绎出经济发展的一般规律。回答各主要因素对经济运行的影响,各主要因素间的抽象关系,经济发展的历史过程,以及未来的发展趋势等问题,比较适合个案在不同层面进行深入的和多侧面的分析研究。如专家调查法、主观概率法、意见集合法、相互关系分析法、历史经验分析法等等,都是属于定性分析的一些具体方法。

定性分析的特点是简便易行,在缺乏资料的情况下也可以加以引用。它的不足之处是,缺乏量的分析,是粗放性的,不够具体,有一定的主观成份因此容易受分析、判断者的情绪和形势气氛的影响。

二、定量分析的定义和特点

定量分析是指对事物进行量的方面的`分析和研究。量是指事物的规模、发展程度、速度,以及其构成成分在空间上的排列组合等可以数量表示的规定性。它是用数量指标来分析研究事物的实践结果和发展趋势及其程度的。定量分析是建立在数学、统计学、计量学、概率论、系统论、控制论、信息论、运筹学和电子学等学科的基础上,运用数字、方程、摸型、图表和计算机等进行分析研究的。

主要分析方法包括数理经济学和计量经济学两方面。它可以应用于经济活动中的市场预测、经营决策、经营动态分析、商品调运分析、库存分析、成本核算、费用效益、经济效果、劳动效率、市场动态分析等各个方面。随着科学技术的发展和管理水平的不断提高,经济学研究中数理与计量分析的应用将越来越广泛,其作用将越来越大。因素量、时间量和比例量的分析都属于定量分析的范畴。定量分析的特点在于它的敏感性,精确性和客观性。

定量分析相对于定性分析的主观性而言的,定量分析基于经验事实,可以通过数学或计量模型所具有的抽象性和逻辑结构的严谨性,对事物的发展变化及状态趋势给予客观的分析,并立刻做出相应的判断。但由于并非所有的经济现象都能够以数量或数值的形式表现出来,也必然造成了定量分析的局限性。

三、定性分析与定量分析的关系

综上所述,在经济学的研究中引入数学的方法是具有其必要性的。早在“边际革命”时期,新古典经济学派的瓦尔拉斯、帕累托、埃奇沃斯等人就大量的运用了数学方法对经济理论和经济现象进行研究分析。李嘉图在其代表作《经济学与赋税原理》中,对等级地租、工资、资本周转和比较成本等问题的论述,就多次运用了数学图表分析。

20世纪初,计量经济学鼻祖费里希·丁伯根也将经济理论、统计学和计量数学结合起来,运用数学模型研究经济周期,并获得了丰硕的成果。数学的抽象性可以使复杂的经济关系变得清晰。数学的精确性可使经济范畴之间的数量关系得到精确的研究和描述,也有助于经济范畴得到精确的定义。数学的严密的逻辑性可使经济学理论的推理得到事半功倍的效果,且使理论中的错误得到一定程度的匡正。但同时我们也必须正视数学方法所存在的缺陷,数学方法毕竟只是一种工具,它的好坏全在于人对它的使用。同时作为进行量的分析手段,数学分析的运用必须以质的分析为前提。

再者,在现实的经济领域中,有不少经济现象很难简单的运用数学模型加以解释和说明。强性使用数学模型将一些因素量化反会导致与经济想象的偏离、失真或者脱离研究的现实意义的状况。凯恩斯在其《通史》中,也批判了“将经济分析体系形式化了的符号伪数学方法”,认为“在令人自命不凡但却无所助益的符号迷宫里,作者会丧失对于真实世界中的复杂性与相互依赖的洞察力。”

然而,当今的经济学的研究领域中对于量的认识和处理出现了不少的偏差。国内外许多学者由于在经济学研究上很难迅速出成果,就纷纷在数学形式上大做文章,而忽略了所研究经济现象或事物的本质,缺乏对经济现象的直观判断和价值的认识,只注重数学分析的花哨的表面和模型的复杂性。更有甚者,为了使论文和研究满足数学逻辑一致性,编造经济数据,并拼凑参数范围,从而得到“理想”的实证结果,最终不是使经济研究的内容脱离现实或失去研究的真正意义。

定量分析虽具有一定的优越性,但它本身只是对大量样本的部分特征的精确研究,所以只能对经济现象的比较表层的、可以量化的部分进行测量,但无法对其深层的原因和具体的细节进行深刻剖析。经济研究的正确取向应建立在对经济学本身的内容和研究对象的本质有了一定认识的基础上。

马克思主义哲学认为,“任何事物都具有质的规定性与量的规定性两个方面,都是质与量的统一体。质是具有一定量的质,量是在一定质的基础上的量。不同质的事物拥有不同的量和量的界限范围。一方面,质决定着一定的量,规定着量的活动范围。另一方面,质必须以一定的量作为必要条件,它决定于数量的界限。量变超过了数量的界限,事物的质就会改变。所以,质和量是互相结合、互相规定的,并形成事物质与量的统一体,即度”。同样的,在经济研究中,定性分析与定量分析实质上是同一认识过程的两个方面。

定性分析是定量分析的基础,是认识的起点。定量分析是定性分析的深化,是认识的精确性。定性分析主要是通过理解和解释,来把握教育现象的整体意义和价值关系的,它揭示的是教育现象中的价值性、历史性和社会性。经济学研究的问题提出、理论建构、假设验证、结果评价都是在定性分析的基础上展开的。定量研究中的逻辑命题、数学模型和统计分析都自然应当建立在对基本问题或理论假设的理解和解释基础之上。定量方法研究的是事物的量变过程,并通过研究事物所具有的度,即事物保持自己质的限度和范围,来把握事物相对稳定的本质特征。因此,经济学研究中,不应把定性研究和定量研究割裂开来,对立起来,而应把它们统一起来,通过对经济学现象本身的量变以及数量关系的分析,来达到对于经济现象本质规律的认识。

四、结论

总之,经济学实质上是一门研究在既定资源约束下人类经济行为和经济现象的科学。人的行为往往具有盲目性、社会性和主观性等非理性特征,不是所有都可以用理性逻辑来进行量化分析并加以解释的。同时人类社会又是一个多变量、多因素和多层次的复杂的动态系统。经济学的研究对象决定了其研究方法不能单一,而应该容多角度的不同侧面进行求证分析,经济研究需要更加精密的研究理论加以深化。因此,决定了经济学必须兼容其他自然学科与社会学科,作到定性与定量分析想结合。

参考文献

[1][美]唐·埃思里奇.朱纲译.应用经济学研究方法论[ml.北京:经济科学出版社,1998.

[2]廖士祥.经济学方法论[m].上海:上海社会利学院出版社,1991.

[3]朱成全.经济学方法论[ml.大连:东北财经大学出版社,2003.

[4]卜卫.方法论的选择:定性还是定量[j].国际新闻界,1997(5).

[5]沃野.关于社会科学定量、定性研究的三个相关问题[j].学术研究,2005(4).

[6]董瑞华,傅尔基.经济学说方法论[ml.北京:

论文如何进行定量研究

首先你要确定一个定量的答案为研究目标. 设定实验方案,要测那些数据,要自己估计或假设那些数据(可能不需要),要查阅那些数据(可能不需要),规划后做实验. 然后用实验结果和你查阅的数据及估算的数据一起得出结果.这个结果可以几个数据,也可以是有参数的曲线等等. 例如有滚轮的凳子的滑动摩擦力,最大静摩擦力与承重的关系. 你自己可以设计实验,测几组数据,作出摩擦力与承重曲线,再假设曲线方程,再算出曲线参数.最后误差分析. 你网上随便搜搜,论文有的是,看看他们的结构就明白了.

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。

5、论文正文:

(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。(2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。

如何评价定量研究论文

定性和定量分析是两种不相同但是有潜在联系的分析方法。不同:定性就是用文字语言进行相关描述。它是主要凭分析者的直觉、经验,运用主观上的判断来对分析对象的性质、特点、发展变化规律进行分析的一种方法。定量就是用数学语言进行描述。它是依据统计数据,建立数学模型,并用数学模型针对数量特征、数量关系与数量变化去分析的一种方法。相同:它们一般都是通过比较对照来分析问题和说明问题的。正是通过对各种指标的比较或不同时期同一指标的对照才反映出数量的多少、质量的优劣、效率的高低、消耗的大小、发展速度的快慢等等,才能为作鉴别、下判断提供确凿有据的信息。优缺点:相比而言,定量分析方法更加科学,但需要较高深的数学知识,而定性分析方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用。在分析过程中通常会运用定性与定量相结合的分析方法。(定性分析与定量分析相结合的方法)拓展资料定性分析与定量分析的联系:定性分析与定量分析应该是统一的,相互补充的; 定性分析是定量分析的基本前提,没有定性的定量是一种盲目的、毫无价值的定量;定量分析使之定性更加科学、准确,它可以促使定性分析得出广泛而深入的结论 。

定量研究论文的主要方法是基于数据的统计分析方法,通过收集、整理和分析大量的数字数据,对研究问题进行定量描述和解释,从而形成客观、科学的研究结论。

定量研究的方法包括实验、调查、统计分析等,其中最典型的方法是问卷调查,这是基于统计学原理的定量研究方法。调查研究通过使用标准化的问题、选项和量表,收集大量的数据样本,使得研究结果更为客观、可靠。研究者可以通过分析收集到的数据,运用相关统计方法,如频率分布分析、相关性分析、回归分析、因子分析等,来探究研究问题,并得出结论。实验研究也是定量研究论文的常用方法之一。实验研究通过对被试者进行预设的干预操作,观察和测量被试者的反应和结果,从而探究变量之间的因果关系。

实验研究可以使用单一因素实验或多因素实验,也可以使用随机化实验设计来减少误差和提高信度。除了上述方法外,定量研究论文还可以使用其他统计分析方法,如贝叶斯统计、多层次模型等。这些高级统计方法能够更加精确地分析数据,探究变量之间的复杂关系,提高研究结论的可靠性和科学性。总之,定量研究论文的主要方法是基于数据的统计分析方法,通过收集、整理和分析大量的数字数据,对研究问题进行定量描述和解释,从而形成客观、科学的研究结论并得出科学推论。

优缺点:

相比而言,定量分析方法更加科学,但需要较高深的数学知识,而定性分析方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用。在分析过程中通常会运用定性与定量相结合的分析方法。

定性是用文字语言进行相关描述。它是主要凭分析者的直觉、经验,运用主观上的判断来对分析对象的性质、特点、发展变化规律进行分析的一种方法。

定量是用数学语言进行描述。它是依据统计数据,建立数学模型,并用数学模型针对数量特征、数量关系与数量变化去分析的一种方法。

定量研究意义

从量的方面分析研究事物,运用数学方法研究和考察事物之间的相互联系和相互作用的方法。任何事物都是质和量的统一体。有定性研究而没有定量研究只能对事物有一个大致的认识,这种认识既不精确,也不全面,甚至可能是错误的。因为没有数量就没有质量。量变到了一定程度,就会引起质变,所以对事物的基本数量分析是十分必要的。

以上内容参考:百度百科-定量研究

教育论文如何确定研究变量

一、变量的属性设计和尺度 概念名词界定清楚之后,接下来便是变量设计,变量设计包括三项内容:操作变量设计、变量的属性设计尺度选择。 变量是可测的名词。一项科学研究,特别是实证研究,需要定量的数据作为分析基础,总免不了处理许多变量。有些变量如温度、日产量,可以直接测量。另一些变量,内涵虽很清晰,但直接测量有困难。例如劳动生产率这个词,概念上是国内生产总值除以职工总数,但在收集数据计算时,还会有不同理解,需要作出具体说明,如职工总数,是指在册的职工人数,还是包括临时工、合同工。“职工总数”是名义变量,而操作变量可能是“企业在册职工数”,或“在册职工加合同工总数”。 将名义变量转换成操作变量是变量设计的重要内容。如1993年颁布的《中华人民共和国教师法》规定,“教师的平均工资水平应当不低于或者高于国家公务员的平均工资水平,并逐步提高”,但到现在还没有看到这项规定的执行情况报告,这些年教师与公务员比较起来,平均工资水平到底是高还是低,差别有多大,谁都说不清楚。究其原因,是按此规定表述的命题去测量和检验,操作有难度。“平均工资水平”是名义变量,要计算的话,还须转换成合理的操作变量,并要清晰界定每个变量的含义,如平均工资水平,是指所有教师和公务员而言,还是各类学校教师与相应类型的公务员比较。工资指基本工资还是包括绩效工资在内的实际工资,这些细节不交代清楚就无法统计。 变量必须可测。这意味着该名词(概念)的某种属性有量的差异,如“职工人数”这个变量指职工群体的数量,它的属性就是人数。“工人性别”这个变量的属性,只有男性或女性。“工人年龄”变量的属性可以设定为青年、中年、老年三种,也可以设定为18岁到60岁之间的数字。 变量是属性的集合,不同的属性要用不同的尺度来衡量属性之间的差异。“职工人数”的属性集合就是大于1的数,所用尺度是定比尺度。如“1000人”就是表示“职工人数”的一个属性。“工人性别”的属性集合只有男、女两种,属于定类尺度变量,将工人按男或女的属性分类。“工人年龄”如设定其属性为青年中年、老年,也属于定类尺度,如设定为18到60岁,则属定比尺度。如设定“职工学历”变量,可以采用定类尺度,分本科、硕士和博士等。如需要对各种属性排出优先顺序,可采用定序尺度,例如招聘职工中按学历指标优先排序,设定为本科、高中、硕士、博士、初中, 则定序尺度相应标为第一至第五。 研究工作总是离不开研究变量之间的关系,变量是可用数值来测度的名词、概念,有些变量只有两个数值,即0-1变量,如“性别”作为变量只有两个属性:“男”或“女”,炮弹的状态只有爆炸和不爆炸。当然属性也可增加,如个人所属民族,分别可用“1,2,3,4,5,..”表示“汉、回、蒙、藏....。.如表示汽车品牌,长安为1,吉利为2,捷达为3等。这些变量都属于离散型,一般不能用小数如来表示。另一类变量则是连续型,如年收入、考试成绩、年龄等,可以用小数表示。 工人总数、年龄、学历这类变量和属性的测度还比较直观,可以用单项指标来完成。有些情况下变量要求用多项指标来测度,涉及多维度属性。管理研究常遇到这类变量,如满意度、凝聚力、执行力等,不像长度、年龄、重量等变量能用单一指标测度,研究者往往要设计一套多项指标来间接测度这类变量,这是管理研究的难点,但也为管理研究者提供了特有的研究空间,设计出一套有效的测度指标,就是一项研究工作结果。 二、变量操作化过程 从假设到变量设计要经过一系列转换和细化的环节,这些环节构成了论文工作中有个人特色的实体研究内容。研究生不能忽视和轻视这个转换和细化过程,正确地完成各个环节的工作并非易事。下面举例来说明这个过程。 民间有谚语“红颜薄命”,这实际上是个假设,有人凭自己的观察和感悟提出这个论点,别人听了也觉得有道理,说得深刻,于是逐渐传播开来,但要作为科学结论,那就要论证。“红颜薄命”,按字面可以理解为“漂亮女人的命运不好”,如用假设的语言来表述,即“凡是够得上‘漂亮’的女人,命运都不好”。或者另一种表述:“女人的颜值与命运呈负相关”。不论何种解释,所研究的对象是“女人”,这个假设涉及两个变量:“颜值”和“命运”。这两个变量的属性可设置为离散型,比如,颜值的属性可以是“很漂亮、漂亮、一般、丑”;命运的属性可以是“好运、一般、薄命”。 如果属性设置为连续型,则可以按照颜值的漂亮程度和命运的好命程度用数值表示,如1...5。其中5为最漂亮,命运最好。为了实证,满足收集数据的要求,这个名义变量还须转化为可测的操作变量。尽管现实中还找不到科学仪器来测量颜值、命运,但作为科学研究,必须解决可测的问题。 这种情况下,有两种解决问题的途径。一种是逻辑推理的方法,另一种是直感判断法。 逻辑推理的方法是,找不出直接测度“颜值”或“命运”的办法,就要根据“颜值”或“命运”的外延,设计出几个指标来间接测度该变量。这里引出了指标这个名词。前面提到,论点树中衍生到操作层次的论点称为操作论点,其中的变量便属操作变量。这些操作变量,有的可以直接测度,有的不行,就要寻找一组能直接测度的变量来测度它,这种可据以直接收集数据的变量,在实用中常称之为“指标”,多个或多层指标便形成“指标体系”。 设想“颜值”可转换出容貌美、体态美和风度美三个变量,这离可操作性的要求接近了一步,但还不能直接测量,于是再分解出下一级变量,如体态美分为身高、体重身高比、三围腿长身高比等。身高等这类变量可以直接测度,可称之为指标,使用这套指标就能间接地测出体态美的量化值。变量设计到这一步才算基本结束,后续工作包括操作变量属性和尺度的设定。“命运”也是类似的情况,需设计一套可供操作的指标体系。 直感判断法是找一些专家,凭直感作出颜值和好命程度的主观判断。后面问卷法一节中将要讨论,即使是主观判断,让专家回答什么问题也是大有讲究的,不能直接问:“这个人命好吗”“这个人漂亮吗”。因为回答问题的专家,对好命和漂亮的概念有不同的理解,这些直接答案缺乏可比性和一致性,从统计上来说就没有多大意义。像已经很成熟的“智商”测试问卷,不是去问当事人,“你智商如何,请从7个等级中作出选择”,设计得好的智商问卷,应让被测者意识不到这是在测试智商。直感判断法同样要设计一套类似操作指标体系的问卷。 从以上讨论可以看出,像“红颜薄命”这类常见的假设,要按科学方法论证起来,可不简单。如真的把上例作为一项研究工作来做,能将“颜值”和“命运”这两个概念的可操作性指标体系设计出来,本身也就是一项有价值的研究工作。管理研究中,往往碰到这类抽象概念,如“凝聚力”“开放度”等。所以,管理类学位论文中,从假设提出到操作变量及测量指标的设计,其间的转换和细化工作是大有文章可做的。 从名义变量转换成可测的操作变量和指标的过程,有两个问题值得注意。 一是变量和属性不能混淆。 属性表示变量在类型或程度上的差异,总是有伴生的可比概念,而变量是相对独立概念。比如,性别是变量,属性有“男”,还有伴生的“女”。在一篇论文中,不能将同一概念既当作变量又当作属性处理。比如文章前面设定了“颜值”为变量,“漂亮”或“很漂亮”是属性,后面就不能又将“漂亮”视为变量,并赋予一套关于漂亮的属性。不过,这种混淆变量和属性的情况在学位论文中时有发生。 二是从名义变量转换到可直接测度的指标,要论证各环节的有效性, 有的论文涉及名义变量如“企业创新型”“企业绩效”等,在实证测度此变量时,却简单地依靠问卷中的一个认识性问项:“你认为本企业的创新性(绩效)属于:很强(很好),强(好),一般,差,很差。”面对这样的问题和选项,企业职工只能凭借个人印象给出答案。这些答案汇集成的数据,其有效性就难以令人信服 文章来源 | MBA学位论文研究及写作指导 文章作者 | 李怀祖

<strong>论文的变量可以在题目中写明。</strong>论文的变量是自己在写论文的时候确定的变量参数一般是实证分析的时候要使用到的,也就是自己在写论文的时候是已经确定了要研究哪些数量或者指标之间的关系,所以在具体分析的时候就应该根据实际情况去控制相应的变量。变量是一个研究中的主角和焦点。在一个研究中,研究者试图讲清一个故事,这个故事需要时以前的学者没讲过的,这个故事又需要是大家感兴趣和关注的,这个故事还需要是有理有据的。

毕业论文研究样本量如何确定

样本量大概在300~500左右最为合适。在毕业论文当中如果涉及到调查问卷,那么一定要有调查的样本,样本量不能太少,如果样本量太少的话是不足以说明问题的,所以基本的样本量应该控制在300~500左右。这样才能在论文当中作为数据的支撑,才能在评审过程中通过。

本科毕业论文问卷调查样本300-500合适。

一份标准点的问卷题目数普遍在30题以上,因为题目一共设置了11个,所以计算一下样本量大概要在55~110之间比较适合。考虑到问卷调研时可能出现的没有填清问卷,题目填错或样本不具备研究的背景性质(如研究对象为女性,部分样本为男性,则此部分为无效样本)等情况。发放的问卷数最好在100~200左右。

有时研究人员需要的样本比较特殊,比如需要样本具有企业高管背景,因而此时样本量要求会较少。从经验上看,作为硕士研究生,多数情况下样本需要大于200,如果作为本科生,样本量需要高于100。

问卷调查是指通过制定详细周密的问卷,要求被调查者据此进行回答以收集资料的方法。调查报告的主体:主要是对事实的叙述和议论。 一般把调查的主要情况、经验或问题归纳为几个问题,分为几个小部分来写。每个小部分有一个中心,加上序码来表明,或加上小标题来提示、概括这部分的内容,使之眉目清楚。

论文估算时样本量首先点击打开“样本量”计算表格。

然后点击输入公式“=”号。再输入目标总体数量的平方值,并乘以标准偏差。接着用1减去标准偏差,乘以误差幅度的平方值 。样本量计算方法:样本量=目标总体数量^2*标准偏差*(1-标准偏差)/(误差幅度)^最后按“Enter回车键”确定,计算得出样本量。这样就计算好了。

样本量的计算公式是n=z²σ²/d²。其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取。应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。样本量计算举例:样本量估算可以通过统计学公式,也可以通过专用软件进行,但首先仍需要确定研究背景、研究假设、主要评价指标和设计模型。目前常用的样本量估算软件有nQuery Advisor+nTerim、MedCalc、PASS、SAS、Stata、R语言等。

采用统计学公式进行样本量估算的相关要素一般包括临床试验的设计类型、评价指标的期望值、Ⅰ类和Ⅱ类错误率,以及预期的受试者脱落的比例等。评价指标的期望值根据(基于目标人群样本的)已有临床数据和小样本预试(如有)的结果来估算,应在临床试验方案中明确这些参数的确定依据。

样本量n=C²σ²/p² P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。 σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。 假设这组数据的平均值是m 方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2] 标准差是方差开方后的结果(即方差的算术平方根) 精度还是你看情况决定的 可以看看这个 样本量n=C²σ²/p² — 置信系数(Confidence Coefficient),也称置信水平、可信因子,是以百分比(90%、95%、99%等)表示的抽样结果能够代表总体的概率。一般而言,95%的置信水平则认为高度满意,置信水平越高,样本量越大。1减去置信系数为风险水平(Level of Risk),是样本结果不能代表总体的概率。例如C选95%,即抽样结果能够代表总体的概率为95% — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。比如你可以接受的样本与总体之间的误差范围是0~90%3.σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。 假设这组数据的平均值是m 方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2] 标准差是方差开方后的结果(即方差的算术平方根) 这个你会算吧所以 样本量n=C²σ²/p²你相应把数代进去

相关百科

热门百科

首页
发表服务