首页

> 论文发表知识库

首页 论文发表知识库 问题

数理方程毕业论文

发布时间:

数理方程毕业论文

数学系要写毕业论文的加群236123796大家一起讨论相互学习。。。。。

我不是数学系本科,也不甚了解。我觉得对我将来有用的数学分支是泛函分析,拓扑,微分数理方程等,偏向物理理论研究的。别的专业如计算机、信息技术很需要离散数学方面的知识,土木力学方面的连续介质力学,分析力学方面都对数学有很高要求。你将来应该会去读研究生吧,现在就是尽可能扩展视野,多去图书馆看看书,了解发展分支,寻找兴趣,究其是一些交叉学科的书籍挂的是别的学科名其实就适合搞数学的人看了。现在的确学得都是一些解题的理论,但我觉得一门学科一方面是为适应应用在发展,另一方面是学科本身在自我完善的过程中自发的发展。后者更有美感,或许吧。祝好运!

论文的内容不需要深刻,只需要让读者读懂,你想的太多了。

孩纸,四大苦系欢迎你~ 我们院的网站数学科学学院 复旦大学数学科学学院师资力量雄厚,图书资料齐全,在国内外享有盛名,是“国家教委理科基础科学研究和教学人才培养基地”。全院拥有中国科学院院士4名,教授39名,其中博士生导师25名,还有35名副教授,长江特聘教授4名。现建有国家教委数学科学开放实验室,中法应用数学研究所、数学金融研究所、AIA友邦-复旦精算中心等。在人才培养方面,本科生和研究生并重。本科生设有数学与应用数学、信息与计算科学2个专业。研究生设有基础数学、应用数学、计算数学、运筹学与控制论、概率论与数理统计5个专业,并均为博士点。其中基础数学、应用数学、运筹学与控制论是全国重点学科,计算数学是上海市重点学科。1994年成为国家理科科学研究和教学人才培养基地。在科学研究方面,曾获得国家自然科学奖二、三、四等奖;国家科技进步奖一、二等奖;华罗庚数学奖、何梁何利基金科学与技术成就奖和科技进步奖、陈省身数学奖等诸多科技奖励。数学与应用数学专业 该专业以基础数学和应用数学为主要方向。基础数学是数学科学的核心。它不仅是其它应用性数学分支的基础,而且也为自然科学、技术科学及社会科学提供必不可少的语言、工具和方法;应用数学则以数学方法和计算机技术及信息技术为主要工具,通过研究和建立数学模型,解决现代科学技术及信息、管理、经济、金融、社会和人文科学中提出的大量实际问题和理论问题。该专业的毕业生具有扎实的数学理论基础和借助数学和计算机技术解决实际课题的能力,从而具备了较广泛的适应性和较强的发展潜力。 该专业为高等院校和科研机构输送数学、应用数学及相关学科的研究生。毕业生可以在工农业、交通运输、天文气象、航空航天、地质矿产、财政金融、保险核算、军事等部门从事与应用数学相关的工作、在高等学院校担任基础数学或应用数学的教学与科研;在自然科学、技术科学、管理科学和工程设计等研究院所承担理论和实际课题;在计算中心、计算站承担数学模型和应用软件的研究与开发的工作。信息与计算科学专业 该专业是研究以信息产业(计算机、自动化、通讯等)为中心的基础理论、应用基础理论并密切联系实际的应用性学科,包括四个研究方向:计算数学、控制科学、信息科学和运筹科学。计算数学方向主要研究与各类科学计算相关的计算方法、对各种算法作理论研究和数值分析,设计数值模拟方法,研制专用或通用的应用软件和数值软件;控制科学方向以数学和计算机为主要工具,研究社会、经济、金融、军事等各种系统的建模、分析、设计和控制问题;信息科学方向研究用计算机对信号、语言、文字、图形、图像进行信息处理的原理、方法和相应的软硬件系统;运筹科学方向结合数学、计算机科学,为各类系统的规划设计、管理运行和优化决策提供理论依据。该专业为计算、控制、信息、运筹及相关学科输送研究生。毕业生适应于在科研单位、高等院校、企业集团、计算中心、经济信息等部门从事科学计算和软件研制、系统分析、计算机辅助管理和控制等。 主要课程设置:数学分析、高等代数、解析几何、程序设计、普通物理、常微分方法、数学模型、复变函数、数学模型、复变函数、数学物理方程、概率论、抽象代数、实变函数、泛函分析、基础力学、微分几何、应用几何、应用偏微分方程、拓扑学、 控制理论基础、数学金融学、生物学、动力系统、小波分析、数学模型与实验、数据结构、多媒体技术、计算机辅助几何设计、计算机图形学、计算机网络原理、数字信号理论、金融经济学、数理统计、精算概论等。 数学与应用数学专业教学培养方案 一 培养目标及培养要求: " 本专业培养掌握数学科学的基本理论和方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理管理部门从事实际应用、开发研究和管理工作的高级专门人才。要求学生掌握数学和应用数学的基本理论、基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有较好的科学素养和宽广的知识面;熟练掌握一门外语;并有较强的创新意识、开拓精神以及较强的实际应用能力和适应能力。" 二 学位及学分要求: 学生在学期间必须修满教学计划规定的142学分方能毕业。其中通识教育课程41学分,文理基础课程28学分,专业教育课程61学分(含毕业论文6学分),任意选修12学分。达到学位要求者授予理学学士学位。 三 课程设置:(142学分) (一) 通识教育课程(41学分) 修读要求:I类核心课程,修满24学分;II类专项教育课程,修满15学分(计算机Ⅱ组课程除外);III类通识教育选修课程,修满2学分。 (二) 文理基础课程(28学分) 学生应在文理基础课程中的数学类基础课程中修满28学分。 (三) 专业教育课程(61学分) 1.专业必修课(53学分) 课程名称 课程代码 学分 周学时 "开课学期" "应修学分" 备注 数学分析III MATH130001 5 4+2 3 5 高等代数II MATH130002 5 4+2 3 5 程序设计 MATH130003 4 4+2 3 4 常微分方程 MATH130004 3 3+1 3 3 抽象代数 MATH130005 3 3+1 4 3 复变函数 MATH130006 3 3+1 4 3 实变函数 MATH130007 3 3+1 4 3 数学模型 MATH130008 3 3 4 3 概率论 MATH130009 3 3+1 5 3 拓扑学 MATH130010 3 3+1 5 3 泛函分析 MATH130011 3 3+1 5 3 数理方程 MATH130012 3 3+1 6 3 微分几何 MATH130013 3 3+1 6 3 基础力学 MECH130084 3 3+1 6 3 毕业论文(含专题讨论) MATH130015 6 8 6 2.专业选修课程(8学分) 课程名称 课程代码 学分 周学时 "开课学期" 备注 微分流形 MATH130017 3 3 春秋 小波分析 MATH130018 3 3 春秋 运筹学A MATH130019 3 3 春秋 变分法与积分方程 MATH130020 3 3 春秋 计算几何 MATH130021 3 3 春秋 应用偏微分方程 MATH130022 3 3 春秋 计算机图形学A MATH130023 3 3 春秋 计算机辅助几何设计 MATH130024 3 3 春秋 系统模型选讲 MATH130025 3 3 春秋 生物数学 MATH130026 3 3 春秋 数学金融学 MATH130027 3 3 春秋 多媒体技术 MATH130028 3 3 春秋 应用几何 MATH130029 3 3 春秋 专题讨论 MATH130030 2 3 春秋 计算机网络原理 MATH130031 3 3 春秋 动力系统 MATH130032 3 3 春秋 利息理论 MATH130033 3 3 春秋 精算数学 MATH130034 3 3 春秋 编码理论 MATH130035 3 3 春秋 计算方法 MATH130036 3 3 5 非线性规划 MATH130037 3 3 春秋 组合优化 MATH130038 3 3 春秋 最优控制理论 MATH130039 3 3 春秋 分形几何 MATH130040 3 3 春秋 多复变函数论 MATH130041 3 3 春秋 积分方程及其应用 MATH130042 3 3 春秋 数论基础 MATH130043 3 3 春秋 随机过程 MATH130044 3 3 春秋 数学应用软件与实习 MATH130045 3 3 春秋 数理方程续论 MATH130047 3 3 春秋 人口数学 MATH130048 3 3 春秋 金融经济学 MATH130049 3 3 春秋 组合分析 MATH130050 3 3 春秋 人寿保险 MATH130051 3 3 春秋 Fourier分析 MATH130052 3 3 春秋 保险学引论 MATH130053 3 3 春秋 非寿险精算数学 MATH130055 3 3 春秋 复分析 MATH130056 3 3 春秋 控制理论基础 MATH130057 3 3 春秋 寿险精算数学 MATH130058 3 3 春秋 数据结构 MATH130059 3 3 春秋 数理统计 MATH130060 3 3 6 数字信号处理 MATH130061 3 3 春秋 线性规划 MATH130062 3 3 春秋 信息论基础 MATH130063 3 3 春秋 数据库系统基础 MATH130064 3 3 春秋 数学建模与实验(上) MATH130077 3 4 春秋 数学建模与实验(下) MATH130078 3 4 春秋 时间序列分析 MATH130067 3 3 春秋 抽象代数续论 MATH130068 3 3 春秋 微分方程数值解法 MATH130069 3 3 春秋 测度论 MATH130070 3 3 春秋 应用软件开发方法 MATH130071 3 3 春秋 现代数学讲座 MATH130079 3 3 春秋 科学计算 MATH130080 3 3 春秋 数学分析原理 MATH130084 4 4 春秋 风险理论 MATH130085 3 3 春秋 生存模型 MATH130086 3 3 春秋 概率模型选讲 MATH130087 3 3 春秋 特殊函数论 MATH130088 3 3 春秋 现代分析基础I MATH130089 3 3 春秋 现代分析基础II MATH130090 3 3 春秋 生产实习 MATH130014 1 7 (四) 任意选修(12学分)数学与应用数学专业指导性修读计划 "分类" 课程代码 课程名称 "学分" 周学时按学期分配 备注 一 二 三 四 五 六 七 八 通识教育 核心课程 思想政治理论课模块 12 2 4 3 3 "I类核心课程24学分" 六大模块 12 2 2 2 2 2 2 体育 4 2 2 2 2 II类课程15学分 军事理论 1 大学英语 大学英语 8 4+1 4+1 计算机应用基础I组 计算机应用基础I组 2 2+2 通识教育选修课程 其他综合教育选修课程 2 2 III类课程2学分 "基础教育" MATH120010 解析几何 解析几何 3 3+1 "数学类基础课程28学分" MATH120008 数学分析I 数学分析I 5 4+2 MATH120009 数学分析II 数学分析II 5 4+2 MATH120011 高等代数I 高等代数I 5 4+2 PHYS120001 大学物理(上) 大学物理(上) 4 4+1 PHYS120002 大学物理(下) 大学物理(下) 4 4+1 PHYS120004 普通物理实验 普通物理实验 2 3 "专业教育" MATH130001 数学分析III 5 4+2 "必修课程53学分" MATH130002 高等代数II 高等代数II 5 4+2 MATH130003 程序设计 程序设计 4 4+2 MATH130004 常微分方程 常微分方程 3 3+1 MATH130005 抽象代数 抽象代数 3 3+1 MATH130006 复变函数 复变函数 3 3+1 MATH130007 实变函数 实变函数 3 3+1 MATH130008 数学模型 数学模型 3 3 MATH130009 概率论 概率论 3 3+1 MATH130010 拓扑学 拓扑学 3 3+1 MATH130011 泛函分析 泛函分析 3 3+1 MATH130012 数理方程 数理方程 3 3+1 MATH130013 微分几何 微分几何 3 3+1 MECH130084 基础力学 基础力学 3 3+1 MATH130015 毕业论文(含专题讨论) 毕业论文(含专题讨论) 6 * MATH130022 应用偏微分方程 应用偏微分方程 3 3 "读研选修" "选修课程8学分" MATH130069 微分方程数值解法 微分方程数值解法 3 3 MATH130077 数学建模与实验(上) 数学建模与实验(上) 3 4 MATH130014 生产实习 生产实习 1 * 其它专业选修课 其它专业选修课 * * * * * * 任意选修 12 3 3 3 3 12学分 应修学分小计 142 26 24 25 20 17 18 6 6 周学时小计 32 30 32 24 20 21 5 0

数学函数方程毕业论文

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足00,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

摘要: 在历届高考试题解析与应注意的问题中,一元二次函数占有重要的地位,不管在代数中,解析几何中,利用此函数的机会特别多,同时各种数学思想如函数的 ...

一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变化。 1. 强调函数背景及对其本质的理解无论是引入函数概念,还是学习三类函数模型,课程标准都要求充分展现函数的背景,从具体实例进入知识的学习。以往教材中,将函数作为一种特殊的映射,学生对于函数概念的理解建立在对映射概念理解的基础上。学生既要面对同时出现的几个抽象概念:对应、映射、函数,还要理清它们之间的关系。实践表明,在高中学生的认知发展水平上,理解这些抽象概念及其相互之间的关系存在很大困难。而从函数的现实背景实例出发,加强概念的概括过程,更有利于学生建立函数概念。一方面,丰富的实例既是概念的背景又是理解抽象概念的具体例证;另一方面,在实例营造的问题情境下,学生能充分经历抽象概括的过程,理解概念内涵。2.加强函数思想方法的应用函数是刻画现实世界变化规律的重要数学模型。因此,函数在现实世界中有着广泛的应用。加强函数的应用,既突出函数模型的思想,又提供了更多的应用载体,使抽象的函数概念有更多的具体内容支撑。比如,新增加的内容“不同函数模型的增长”和“二分法”,前者通过比较函数模型的增长差异,使学生能够更深刻地把握不同函数模型的特点,在面对简单实际问题时,能根据它们的特点选择或建立恰当的函数模型反映实际问题中变量间的依赖关系;后者充分体现了函数与方程之间的联系,它是运用函数观点解决方程近似解问题的方法之一,通过二分法的学习,能使学生加深对函数概念本质的理解,学会用函数的观点看待和解决问题,逐渐形成在不同知识间建立联系的意识。二、函数内容编写的基本想法函数的内容包括:函数概念及其性质,基本初等函数(Ⅰ),函数与方程,函数模型及其应用。以理解函数概念本质为线索,既可以将这些内容有机地组织为一个整体,又可以让学生以它们为载体,逐步深入地理解函数概念1.内容组织的线索:函数概念本质的理解函数概念并非直接给出,而是从背景实例出发采用归纳式的教材组织形式引入。由于函数概念的高度抽象性,学生真正理解函数概念需要一个漫长的过程,需要在不同层次上、从不同角度给学生提供理解和巩固函数概念的机会。首先,在分析典型实例的共同特征的基础上概括出函数定义后,通过讨论函数的表示、基本性质初步理解函数。它们分别是从函数的表现形式和变化规律两个方面丰富对函数概念的认识。然后,以三类基本初等函数为载体巩固函数概念,在学习了函数定义、基本性质之后,从一般概念的讨论进入到具体函数的学习。指数函数、对数函数和幂函数的概念及其性质都是一般函数概念及性质的具体化。以一类具体函数为载体,在一般函数概念的指导下对其性质进行研究,体现了“具体──抽象──具体”的过程,是函数概念理解的深化。最后,从应用的角度再一次巩固并提升对函数的理解。对一个概念真正理解的一个判断标准就是看看是否可以运用概念解决问题。教材最后安排函数的应用,包括二分法、不同函数模型的增长差异以及建立函数模型解决实际问题,就是期望学生能在“用”的过程中提高对函数概念的理解。2.突破难点的主要方法:显化过程,加强联系函数概念的理解贯穿了函数内容学习的始终,同时它也是教与学的一个难点,在教材编写中应采用什么方法突破这个难点,帮助学生更好地理解函数概念?对于形成函数这样抽象的概念,应该让学生充分经历概括的过程。概括就是把对象或关系的某些共同属性区分和固定下来。这就要求我们在编写教材时充分展示概括过程,并要充分调动学生的理性思维,引导他们积极主动地观察、分析和概括。教材选择了三个有一定代表性的实例,先运用集合与对应的语言详细地分析前两个实例中变量间的依赖关系,给学生以如何分析函数关系的示范,然后要求学生仿照着自己给出第三个实例的分析,最后通过“思考”提出问题,引导学生概括三个实例的共同属性,建立函数的概念。在这样一个从具体(背景实例)到抽象(函数定义)的过程中,学生通过自己的思考从分析单个实例上升到概括一类实例具有的共同特征,更能理解概念内涵。作为中学数学的核心概念,函数与中学数学的许多概念都有内在联系,这种联系性为理解函数概念提供了众多的角度和机会,因此加强函数与其他数学知识的联系是函数概念教学的内在要求。例如,函数有多种表示方法,加强不同表示法之间的联系和转换,使学生学会在面临一个具体问题时能根据问题的特点灵活选择表示的方法,就是促进理解的一个手段。教材通过例题给出高一某班三位同学在六次测试中的成绩及相应的班平均分的数据,要求分析三位同学的学习情况。解决这个问题的关键就是根据函数的表格表示法与图象表示法的特点,将表格表示转化为图象表示。又如,函数与现实生活有着密切的联系,所以在编写教材时注重加强函数与现实生活的联系,像由背景实例引入概念,在例题和习题中安排一定量的应用问题(碳14的衰减,地震震级,溶液的酸度等)都体现了函数与实际生活的外部联系。再如,从运用函数观点解决方程问题的角度介绍二分法,体现出函数与方程间的联系等等。三、函数内容编写中的几个关键问题1.实例如何选择无论是加强概念背景,还是突出知识的联系与应用,能达到很好效果的重要因素就是要选择合适的实例。那么,如何选择实例才能有助于学生的学习呢?对于起到不同作用的背景实例和应用实例,标准并不完全相同。但总的来说,一是实例的背景知识应该尽量简单,这样可以避免因背景的复杂性而影响对数学知识本身的理解;二是实例应丰富,这样有利于全面、准确地理解知识,不会产生偏差;三是实例应贴近学生生活、具有一定的时代性,这样才会引起学生的共鸣,激发学习的兴趣。比如,介绍函数概念时,教材选择了用解析式表示炮弹飞行的问题、用图象表示南极臭氧空洞的问题、用表格表示恩格尔系数的问题,第一个问题是学生在物理中就很熟悉的,后两个问题是日常生活中经常提及的,背景相对来说比较简单,学生就不会因为需要了解过多的背景知识而冲淡对函数概念的学习。而且重要的是,这样的三个问题包括了不同的函数表现形式,利用它们概括函数概念,就可以消除初中学习中可能存在的一些认识偏差,使学生认识到无论表示形式如何,只要对于每一个x,都有一个y与之对应,就是函数,而这正是函数的本质特征。再如,根据汽车票价制定规则写出票价和里程间的解析式,并利用解析式为售票员制作出我们在汽车上经常看到的“阶梯形票价表”这类问题,贴近学生生活并具有现实的应用价值,能引发学生的兴趣和学习的积极性。2.概念如何展开对于突破函数概念这个难点,可以在整段函数内容的学习中采用显化过程、加强联系的方法。那么具体地,在从三个方向巩固函数概念理解时,如何展开像函数的单调性、二分法这些概念,才能让学生掌握它们,从而达到巩固理解函数概念的目的呢?函数的性质就是研究函数的变化规律,这种规律最直观的获得来自于图象,图象的上升、下降就是单调性。问题在于如何帮助学生从几何直观上升到严格的数学定义。同样地,二分法也需要经历一个由直观认识到数学定义的过程。为此,就需要将直观到严格数学定义的过程划分成几个层次,为学生搭建认识的台阶,使他们逐步地获得概念。比如,介绍函数单调性时,首先给出一次函数和二次函数的图象,观察它们的图象特征,即上升或下降;然后用问题“如何描述函数图象的‘上升’‘下降’呢”引导学生用自然语言描述出图象特征;最后思考“如何利用解析式f(x)=x2描述‘随着x的增大,相应的f(x)随着减小’……”,将自然语言的描述转化成数学符号语言的描述,并一般化得到单调性的数学定义。通过这样的三步,利用数形结合的方法展开单调性的概念,既有助于学生通过自己的努力获得概念,而且也从数和形两个方面理解了概念。3.函数内容中使用信息技术的点及方式在数学课程中使用信息技术已经毋庸置疑,同样地,信息技术的使用也是教材编写中最为关注的问题之一。那么,在函数中有哪些适合使用信息技术的内容,如何使用,以及在教材中使用的方式是怎样的?信息技术具有强大的图象功能、数据处理功能和良好的交互环境,利用这些优势,在函数这部分内容中可以使用信息技术的点主要有:求函数值、做函数图象、研究函数性质、拟和函数等。运用常见的一些软件,如excel、几何画板等就可以轻松地作出函数图象,这在讨论不同函数模型增长差异时发挥很大作用,从几幅图就能直观发现增长的差异;运用计算器可以解决二分法中计算量大的问题,从而将更多精力关注到二分法的思想上,认识到函数和方程间的联系;而计算机的交互环境则为学生的自主探究提供了强有力的平台,丰富了学习方式,如讨论指数、对数函数性质时,可以充分演示出图象的动态变化过程,这样就能在变化中寻求“不变性”,发现函数具有的性质。教材编写时一方面在适合使用信息技术的地方给予提示,如“可以用计算机……”等;另一方面通过拓展栏目详细地介绍一些信息技术应用的专题,如“用计算机绘制函数图象”重点介绍使用常用软件做函数图象的方法,“借助信息技术探究指数函数的性质”给出探究的情境,要求学生亲自利用信息技术发现规律,“收集数据并建立函数模型”介绍了如何用信息技术拟合函数,等等。通过这些方式,可以为教师和学生提供使用信息技术的机会和空间。

数学物理方程论文题目

简单粗暴的方式就是好别人发表的文章(应用物理)上的,把他们的格式套过去~

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

用Г函数求积分

贝塔函数的性质及应用

贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

对称性:=。事实上,设有

递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

由上式得以下几个简单公式:

用贝塔函数求积分

解:设有

(因是偶函数)

例贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

贝塞尔函数的性质及应用

贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

比如说数的历史,无理数的由来,还可以设计一个统计表按内容展开写,关于环保的,都行!

(一)广义惯性使牛顿力学进化爱因斯坦独具慧眼,从司空见惯的现象中及自由落体运动与质量因素无关的经验事实,总结出了等效原理,且明确与准确地说:物体的同一性质按照不同的处境或表现为"惯性",或表现为"重性"([3]第55页)。这个同一性就是广义惯性,这个处境就是空间。牛顿第二定律实质是其第一定律涵义的数学表达式。所以,广义惯性的发现,其革命意义是指动摇了牛顿第一定律的核心地位。广义惯性包含了牛顿惯性,所以,又是其进化。同时,也说明了需要建立一个取代牛二律的进化性质的核心命题系统的新力学理论。广义惯性又引出了两种空间及其区别的新问题。这个新问题困扰了爱因斯坦的一生,走了一大圈"弯"路后,在他晚年时,才看到了解决这个问题的曙光--物体具有空间的广延性([3]第十五版说明),由此"广延性"再往前走一步,就是[2]文说的ρ空间及其区别的标志是其梯度值的有否。这说明还需要一个新的涉及空间的基本概念及与其相对应的原来等效原理所没有涉及到的新的经验事实:物体质量部分的压强梯度现象(注:在固态的具体物体内部,此"压强梯度"表现为"胁强"),也就是爱因斯坦的物体的空间广延性的具体体现。同时也引出了物体的非刚性及其具有内部空间结构的抽象性质([4]第六章)。于是,"万事俱备",只欠建立一个新的核心命题系统了。可以说,惯三律就是这个系统。广义惯性是由于把"重性"也归于同牛顿惯性一样的物体属性,所以,其革命意义也主要体现在"重力"方面。"引力"是对重力本质的错误认识。广义惯性与场概念把原来引力中的两个平权的物体分离开来:一个是仅表现广义惯性的一般(非整体)物体;另一个是具有产生重力场的特殊性的中心物体。一般物体与中心物体之间已经没有"力"的关系了。但通过重力场(原来引力场与自转惯性离心力合成的重力场涵义需要改变)有"能"的关系(见此文的"ρ空间与能"一节)。到此为止,广义惯性已经完成了其逻辑任务,即取消了引力及导出了中心物体的特殊性(当然也具有广义惯性的一般性)。这个特殊性的中心物体就是整体天体。于是,广义惯性与整体天体就构成了理论的内部逻辑性(也就是"自圆其说")。广义惯性取消了惯性质量与引力质量的区别。当然,更没有质量的第三个属性--产生引力场。说重力场是特殊的ρ空间,也有其对应的经验事实,即具有重力场的质量部分的天体,一般都具有密度及压强(也有温度及磁场因素)与中心距离近似反比分布(中聚度)的现象。同时,其现象也表明了这个天体(中心物体)的特殊性。中聚度现象已经是整体性的一种体现。(二)再看牛顿力学为什么人们回避牛顿第二定律中的"力"(外力)的反作用力就是物体的惯性力的道理呢?就是因为把重力也当作外力(引力)时,物体本身没有反作用力 --惯性力(重力加速度与物体质量的大小无关),这正是牛顿力学理论内部的不能"自圆其说"的地方,这也正是爱因斯坦所注意的地方。为了回避这矛盾性(无意识的),不得不让其"外力"担当"广义"的力的重任。"力是物体加速运动的原因"这一没有条件限制的观念,是牛顿力学最主要的思维定势。不管是相对的加速运动还是"绝对"的加速运动,人们都在头脑中马上反映出来要乘上物体的质量,使力成为其运动的原因。于是,其直接错误后果就是把非牛顿惯性系内或重力场内的物体"自由"或有阻力的"不自由"的加速运动,也当作有外力(不包括阻力)正在作用之。之所以把非牛顿惯性系中的外力惯性力叫做虚构力,是说明牛顿力学中还有第二个观念:"力是物体对物体的直接作用"--这是作用方式力,但有的教材除了摩擦力外,把作用方式力几乎都归结于弹性力则是错误的。又从这第二个观念来看其外力惯性力时,真的不存在另一个物体来表现之,只得权宜称为虚构力。当把重力也当作外力时,发现确实有另一个物体(中心物体)与之对应,这可是"真实"的外力了。麻烦又出现了,这个引力是超距作用性质的力,从作用方式力的观念角度来看时,又难理解了。为了让引力回复到可理解的直接作用性,又引起了从牛顿时代起至今的许多人去虚构在两个超距的物体之间飞来飞去的各种"微粒子",以此物来担当引力成为直接作用性的重任。引力本来也是虚构力,还要为这虚构的"东西"再虚构一些东西,麻烦可就大了。因为凡是具有质量的物体都具有广义惯性,也可以说是"万有"惯性。之所以惯性力学在力学体系中占有主要及重要的地位,而其他属性(如弹性与磁性等)力学占次要地位,且以"惯性力"作为力的物理单位,也是由于其"万有"的原因。但作为表现广义惯性力的重力的空间(重力场)及场源物体(整体天体)可不"万有"。这两个角度分不开,还会认为重力(引力)"万有",这又会回到为什么会超距作用的难理解的怪圈。广义惯性使探索"引力作用机制"的研究方向成为毫无意义的方向,是徒劳无功的方向,因为引力本身是由牛二律的局限性而派生出来的虚构的力。(三)再看广义相对论爱因斯坦特有的知识结构(马赫哲学、狭义相对论、四维时空、光、场及黎曼几何),决定了他走上了一条充满荆棘的理论之路。马赫的功绩是看到了牛顿力学体系中有一个缺陷,就是物体的运动状态依参考系的不同而有所不同,于是,作为判断牛顿惯性运动的前提也就成为不确定的了(相对性)。不得已,马赫把现象世界的远处的恒星当作其绝对参考系了。马赫的错误就是把牛顿惯性定律中的物体的属性(保持性)与其运动状态问题混在一起了。爱因斯坦受马赫哲学的启发,又发现了等效原理,但同时又继承了马赫的错误。被夸大为改变人们时空观念意义的四维时空,只不过是用"运动"(还是光运动)角度来规定空间的一种方法。规定有结构的空间可有各种方法,其各种方法是平权的。用什么方法来规定空间则取决于理论与实践的需要。如果去掉了"光速"的弯曲时空还有力学意义的话,与牛顿引力定律正是互为补充的关系本体性的场的描述:一个是以广义惯性"运动"的角度的描述;一个是以广义惯性"力"的角度的描述。而牛顿引力势所包含的空间意义,正是中心结构的ρ非均匀空间(重力场)的经验性的描述。终究是"描述",都不能代替核心命题性质的"表述"。没有明确的命题表述,其描述也就没有明确的理解前提。惯三律与广义相对论都以等效原理为其经验基础。只不过爱因斯坦又走上了光速的等效原理之路。而光速的等效原理是由"思维"实验得来的,且唯一能验证其理论的星光在太阳附近偏转现象,爱因斯坦在具体计算其偏转角度时,实际上是"非常谨慎地用惠更斯原理"([5]第23页)。而惯三律所依据的" 低速"等效原理,连幼儿园里的儿童都可以感觉到坐滑梯时的加速度与坐汽车时的汽车加速度的区别,因其身体内有胁强的有否或大小之区别。战斗机飞行员已经体验了低速等效原理的所有内涵。所以,任何脱离与回避"低速"等效原理的力学理论,肯定是不会成功的理论,因为其现象普遍存在于客观世界,且与力学密切相关。爱因斯坦之所以对"光"情有独钟,也许是无意识的回避其理论中的一个内在矛盾:"产生"引力场的中心质量(中心物体)必须很大,而体现弯曲时空(引力场)作用的物体必须很小且产生与不产生引力场无关紧要,这与引力中的两个平权的物体涵义是矛盾的。而"光子"正好是最小的物体,也就回避了这个矛盾。只有"整体天体才产生重力场"的结论,才可以解决这个矛盾。引力波、黑洞与四种相互作用力的统一的课题,来源于爱因斯坦。引力已经不存在了,当然"引力"波也不存在了;如果重力场有边界,重力场就与电磁场不同,当然引力"波"也不存在了。如果以光线在重力场中弯曲的角度而导出的"黑洞",黑洞不存在,因为光线在重力场中弯曲的原理不是由于"引力";如果是由于"弯曲时空"原理而导出的"黑洞",黑洞也不存在,因为本来弯曲时空是由光线的弯曲(光子的广义惯性运动)而规定出来的,反过来又认为光线的弯曲是由弯曲时空所造成的,这是什么逻辑?如果光线在重力场中有红移效应,那么,由此原理而导出的黑洞,黑洞有可能存在。引力都不存在了,也就无所谓四种相互作用力的统一的问题。目前的"大统一理论"仅剩下"引力"没有被统一进去,也正说明了这个问题。经归纳的现象)再变为抽象层次的基本概念的过程,是人们最不习惯的过程,总不容易摆脱"具象"。之所以不习惯,其原因之一也是因为人们先有了原来理论的抽象及已经习惯了的思维方式,即使有了"具象"也看不到其抽象意义。而由抽象变为"具象"的过程,那可容易多了,但也往往"具象"出来客观世界不存在的东西。从逻辑学角度,基本概念是不能被其它概念来定义的概念,其内涵具有一定的模糊性。ρ空间也是如此,只能用"感觉"到的物体质量部分的压强梯度现象来说明之,但又不是压强梯度本身。"真空"是具象空间,真空里照样存在"重力场"的ρ梯度值的有否,可用具象的压强梯度来检验之。但不能认为真空是ρ均匀空间。ρ空间与压强梯度的关系可类比铁粉末直观表现磁场结构的关系。摆脱不了具象,不能变为一个基本概念,也是爱因斯坦的"一无所有"的空间怎能分出两种空间的困惑原因之一,而用"运动"规定出来的弯曲时空又不能区分出是表述了物体的广义惯性还是表述了场的属性。特别强调的是:物体内部空间只能指物体质量部分所占据的空间,也是爱因斯坦晚年醒悟的"物体具有空间广延性"的涵义;而重力场空间不仅包含质量部分(整体天体)的空间,也包含没有质量部分的空间。这样就避免了变为"一无所有"的无边界的抽象参考系而带来的"相对"不清的问题。总的说来,ρ空间仅在数学形式上是标量场(其梯度为矢量场),但在物理意义上,则包含了表述广义惯性、可变为物体内部空间及重力场的本体性场、势、能、熵与质量部分的压强梯度等涵义。

毕业论文的数据处理方法

毕业论文数据分析的做法如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

一般是毕业生是没有自己实验室的,所有很多实验数据是没有办法进行。不过有另外一个解决办法,就是找导师合作,论文里挂导师为通讯作者,这也是现在最常见的一种解决办法。

写作点拨:

一、 开题报告封面

论文题目、系别、专业、年级、姓名、导师

二、 论文的背景、目的和意义(目的要明确,充分阐明该课题的重要性):

论文的背景、理论意义、现实意义

三、国内外研究概况(应结合毕业设计题目,与参考文献相联系,是参考文献的概括):

理论的渊源及演进过程、国内有关研究的综述、国外有关研究的综述

四、论文的理论依据、研究方法、研究内容(思想明确、清晰,方法正确、到位,应结合所要研究内容,有针对性)

五、研究条件和可能存在的问题

六、预期的结果

七、论文拟撰写的主要内容 (论文提纲)

八、论文工作进度安排(内容要丰富,不要写得太简单,要充实,按每周填写,可2-3周,但至少很5个时间段,任务要具体,能充分反映研究内容)

开题报告的内容一般包括:题目、理论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)、课题负责人、起止时间、报告提纲等。

综述开题报告的综述部分应首先提出选题,并简明扼要地说明该选题的目的、相关课题研究情况、理论适用、研究方法。  提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。

可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。

毕业论文调查数据处理方式

毕业论文数据分析的做法如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

论文调查方法

4.文献研究法:通过对某一领域,某一专业或某一方面的课题、问题或研究专题收集大量相关资料,通过分析、阅读、整理,提炼当前课题、问题或研究专题的最新进展、学术见解或建议。

5.调查法:调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。一般是通过书面或口头回答问题的方式获得大量数据,进而对调查中收集的大量数据进行分析、比较、总结归纳,为人们提供规律性的知识。

相关百科

热门百科

首页
发表服务