首页

> 论文发表知识库

首页 论文发表知识库 问题

微分方程毕业论文方向

发布时间:

微分方程毕业论文方向

你好!你的先选一个题目,可以从微分方程、解析几何、概率论等科目里面选一个题目

信息方向,可以去遍软件数学史方面,可以吹牛

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学毕业论文

★ 大学生数学毕业论文  ★

大学毕业论文评语大全 ★

★ 毕业论文答辩致谢词10篇 ★

中学数学论文题目

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究

微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析

微分方程方向论文题目

1500字太夸张了,给你一下提示吧! 1、运用微分方程或微分方程组,可以描述经济系统的动态运行规律。2、运用微分方程,可以分析经济系统的均衡与稳定性。3、在微分方程中加入控制变量,将经济学问题转化为最优控制问题,可以分析经济系统的最优控制策略。目前比较常用的微分方程在经济学中的应用有:(1)最早的哈罗德-多马经济增长模型、索罗模型等均属于微分方程(或转化为差分方程)模型。(2)后来的经济增长的世代交替模型等也是运用的微分方程。(3)技术扩散的巴斯模型,以及分析竞争洛克塔-瓦塔利亚模型也是微分方程模型。(4)亚瑟的路径依赖与锁定模型是随机微分方程。(5)布莱克-斯科尔斯期权定价模型,源于随机微分方程和变分法。(6)各种进化博弈模型中的复制动态方程是微分方程。

根据你的要求,

举例说明常微分方程模型是各类数学建模竞赛中常见的模型, 并通过列举一些参考文献来说明此类模型的建模方法和求解求解技巧不仅相同. 从而得出"常微分方程在数学建模中的应用"是值得研究的.

微分方程方向论文答辩怎么说

应该先选一个题目做研究,有了研究成果,才可能产生论文。论文不是随心所欲编出来的。

1.高三自我陈述报告范文

我当时之所以选择研究积分因子的存在条件是因为一阶微分方程的求解是整个微分方程求解的基础,一般的有两种处理方式:一是以变量可分离的方程为基础,通过适当的变量代换把一阶微分方程化为可积型方程;另外就是以全微分方程为基础,采取积分因子法把一个一阶微分方程化为全微分方程求解。但是寻找积分因子不是容易的事情,一般的教科书只介绍了依据经验或者通过观察来寻找积分因子。在论文中我归纳并概括性的给出了几种积分因子的求法,有助于深刻的理解积分因子的相关内容,进一步学好常微分方程,使得求解一阶微分方程的过程更简便。

在大量阅读的相关方面各种资料,并对一些特定的积分因子有了大致了解,与老师商讨后,确定了论文大致思路和研究方向。在写论文的过程中,我收集了主要来自网上的论文期刊、图书馆的书目、学习教材的理论资料。在张飞羽老师的指导和帮助下从中选取了主要的参考资料,经过阅读主要参考资料,拟定提纲,写开题报告初稿,毕业论文初稿,修改等一系列程序,于xxxx年xx月底正式定稿。

具体来说,我的论文大致可以分为两大部分:首先介绍了恰当微分方程的概念及方程为恰当微分方程的充要条件,然后在了解了积分因子的概念的基础上,归纳并概括的讨论了一些特定的积分因子的存在条件。

经过本次论文写作,我学到了许多有用的东西,也积累了不少经验。但是,由于我的能力不足,在许多内容表述上存在着不当之处,许多问题还有待于进一步思考和探索,借此答辩机会,希望各位老师能够提出宝贵的意见,多指出错误和不足之处,我将虚心接受,从而进一步深入学习研究,使该论文得到完善和提高。谢谢!

2.高三自我陈述报告范文

学习是学生的基本,所以,我至始至终都把学习摆在第一位。三年里学校开的课很多,正因为这样,只有珍惜每一分每一秒的学习时间,坚决不迟到不早退不旷课,才对得住自己的高中学习生涯!

同时,我认为高中是一个不断完善自己,不断充实自己的时期。我本着立足专业,综合发展,做学问,学做人的准则从及全面发展的目标,积极主动参加了社会劳动实践课程,使我在文化知识,思想素质,社会实践和人际处理方面都得到了长足的进步。

虽然高中三年来,我在各方面都有显著进步,但我也清楚地认识到自己的不足之处:钻研精神还不够。在今后的学习中,我相信我一定能克服这个缺点,以自己的所学所长更好地报效祖国。

总的来说,高三这半年较高一高二在心态上有了明显的改变,比以前更加积极了,更感觉有动力了,似乎渐渐地找到了全新的方法,课堂上更加专注了,效率也提高了不少,感觉心态有所调整,反而比以往从心理上有少许轻松。能积极地面对每一天,以更加从容和成熟的心态去上好每天的课,也能更为主动的去问题。

也希望在成绩上能在原有基础上更进一步,弥补弱势学科和他人的差距,要在薄弱科目上更多下功夫。

依然用笑容面对每一件事,每一个人,还有几个月的时间,不能懈怠,要用更饱满的热情去学习,去奋发,尽的努力拥有一个美好的夏天。就没每一天来讲,还是要踏踏实实地干好自己的活,心如止水,始终不忘当前的'主要任务,不能放过任何一问题,一步一个脚印地走到六月!

3.高三自我陈述报告范文

在寻找解决困难方法的同时我从中会到很多。同时我把困难和挫折看成是人生中不可避免的磨练,如果没有困难和挫折的激励你的生活就不是完美的!

仅有不段的去经历才会使我在成长才会从中吸取到教训,从而更好的去应对不论是学习、生活以及工作中的没一个问题。我相信只要努力就会成功,只要我们有不段创新的精神我相信我必须能够把工作做好,即使不是也要努力去做好!

作为跨世纪的一代,我们即将告别中学时代的酸甜苦辣,迈入高校去寻找另一片更加广阔的天空。在这最终的中学生活里,我将努力完善自我,提高学习成绩,为几年来的中学生活划上完美的句号,也以此为人生篇章中光辉的一页。

在家里,我孝敬父母,帮忙他们做力所能及的家务事,关心体谅父母,使得家庭关系更加融洽,使我能更好地投入学习,为将来的事业打下坚实基础。

在社会上,我讲礼貌,懂礼貌,在车上主动为老人和小朋友让座,得到了不少街坊邻居的好评,我以后会继续努力。

珍爱友谊,拥有阳光一般灿烂的心境。在今后的学习中,相信会以执着的信念和勤奋的汗水争取属于我的成功!

是一个乐观的女孩,脸上总挂着自信的笑容;你是一个学习认真刻苦的学生,整齐的作业总是让教师赏心悦目。但人生之路还会遇到坎坷,愿你永远笑对一切,用自我的汗水和智慧赢得属于你的胜利。

4.高三自我陈述报告范文

通过在高三学的知识使我又成长了一步,转眼时间过去了,我还恋恋不舍的怀念。我要感谢老师传授给我知识,感谢同学给予我的关怀。让我在这个美丽的校园里茁壮成长,高三的第一个学期就这样结束了。迎来了盼望已久的寒假。

时光飞逝,斗转星移。转眼成为班级一员已半年多了。回首这半年的点点滴滴,朝朝暮暮,心中顿生了许多感触。这半年中经历的每一天,都已在我心中留下了永久的印记,因为这些印记见证我这样一个新生的成长。在过去半年的内,通过不断地学习,我收获了很多。时间就是这么无情头也不回的向前走着,而我们却在为了不被它丢下死命的追赶着。是的,谁都不想被时间丢下。而我们也随着时间的流逝一点一点的成长。而美好的纯真随着风雨的磨灭化成了成熟。或许这正是成长的代价。回想自己还是考生的那段日子,显得是那么的遥远。我在憧憬中懂得了来之不易的珍惜;在思索中了解了酝酿已久的真理;在收获后才知道努力的甜美。突然觉得自己似乎明白了许多事情,但是仔细琢磨后又不尽然……原来过去所见所识都是那么的偏见而又肤浅,以前的天真似乎在一瞬间幻化成无知和可笑,我想谁又不是这样的呢?或许在以后也回嘲笑现在的渺小……我们不得不笑着回首我们所走过的路。:

在学习上:我深知学习的重要性。面对二十一世纪这个知识的时代,面对知识就是力量,科学技术是第一生产力的科学论断,我认为离开了知识将是一个一无是处的废人。以资本为最重要生产力的"资本家"的时代将要过去,以知识为特征的"知本家"的时代即将到来。而高中时代是学习现代科学知识的黄金时代,我应该抓住这个有利的时机,用知识来武装自己的头脑,知识是无价的。

在纪律方面,基本可以做到:尊重教师,同学之间可以真诚相待;能遵守学校各项纪律,遵守公共秩序,遵守社会公德;不迟到、不早退、不旷课;上学穿校服;举止文明;有良好的卫生习惯,不乱扔废弃物。

以上是我对高三上学期期末一些方面的个人总结,我将结合这个小结回顾过去,确定未来的发展目标,我对未来充满信心。自然,这需要老师们的精心培养和同学们的真诚帮助。

5.高三自我陈述报告范文

宝剑锋从磨砺出,梅花香自苦寒来 ,本人坚信通过不断地学习和努力,使自己成为一个有理想、有道德、有文化、有纪律的学生,以优异的成绩迎接挑战,为社会主义建设贡献我毕生的力量。

我遵纪守法,尊敬师长,热心助人,与同学相处融洽。我有较强的集体荣誉感,努力为班为校做好事。作为一名团员,我思想进步,遵守社会公德,积极投身实践,关心国家大事。在团组织的领导下,力求更好地锻炼自己,提高自己的,提高自己的思想觉悟。

性格活泼开朗的我积极参加各种有益活动。高一年担任语文科代表,协助老师做好各项工作。参加市演讲比赛获三等奖。主持校知识竞赛,任小广播员。高二以来任班级文娱委员,组织同学参加各种活动,如:课间歌咏,班级联欢会,集体舞赛等。在校文艺汇演中任领唱,参加朗诵、小提琴表演。在校辩论赛在表现较出色,获 辩手 称号。我爱好运动,积极参加体育锻炼,力求德、智、体全面发展,校运会上,在800米、200米及4x100米接力赛中均获较好名次。

三年的高中生活,使我增长了知识,也培养了我各方面的能力,为日后我成为社会主义现代化建设的接班人打下了坚实的基础。但是,通过三年的学习,我也发现了自己的不足,也就是吃苦精神不够,具体就体现在学习上 钻劲 不够、 挤劲 不够。当然,在我发现自己的不足后,我会尽力完善自我,培养吃苦精神,从而保证日后的学习成绩能有较大幅度的提高。作为跨世纪的一代,我们即将告别中学时代的酸甜苦辣,迈入高校去寻找另一片更加广阔的天空。在这最后的中学生活里,我将努力完善自我,提高学习成绩,为几年来的中学生活划上完美的句号,也以此为人生篇章中光辉的一页。

微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析

你好!你的先选一个题目,可以从微分方程、解析几何、概率论等科目里面选一个题目

毕业论文常微分方程

要的话请联系我邮箱(点我可见)。13 【篇名】 偏微分方程组的对称群及其在弹性力学方程组中应用 CAJ原文下载 PDF原文下载 【作者】 张鸿庆. 朝鲁. 唐立民. 【刊名】 大连理工大学学报 1997年03期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 大连理工大学数学科学研究所. 大连理工大学工程力学研究所. 【关键词】 偏微分方程. 弹性力学. 对称群/不变向量场. 符号运算. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 给出了非退化线性偏微分方程组及二次型泛函对称群的不变向量场的一般形式和一类特殊形式非线性偏微分方程组对称群的简化计算条件;利用以上结论及作者以往工作,借助符号运算语言MathematicaTM计算了平面弹性力学方程组一阶Lie-Bactlund对称群的不变向量场,以及应力函数对应的三维弹性力学方程组的Lie代数.为构造弹性力学方程组的一类广泛精确解及守恒律提供了必要的基础,并说明了结论对计算偏微分方程组对称群时的简化作用 【光盘号】 SCTC9706 14 【篇名】 力学中一类变系数微分方程可调参数模型解法 CAJ原文下载 PDF原文下载 【作者】 赵文福. 封营儒. 连星耀. 黎明安. 【刊名】 西安理工大学学报 1995年02期 编辑部Email CJFD收录期刊 【机构】 西安理工大学机械工程系. 【关键词】 可调参数. 变系数微分方程. 非均匀控制参数. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 结合一种非均匀控制参数,提出了一种变系数微分方程的可调整参数模型解法,可以很方便地处理由于物理上、几何上的非均匀、非线性而导致数学上的变系数微分方程,应用这种模型可以用非常少的单元得到较满意的数值结果。 【光盘号】 SCTC9508 31 【篇名】 材料力学弯曲问题中集中量与分布量的统一处理 CAJ原文下载 PDF原文下载 【作者】 周锡勤. 张存道. 【刊名】 现代电力 1995年02期 编辑部Email CJFD收录期刊 【机构】 北京动力经济学院. 【关键词】 集中量. 分布量. 弯曲变形. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 介绍了利用δ函数统一处理集中量与分布量的一般方法。着重讨论了这种方法在建立含集中量的杆件弯曲时的平衡微分方程的应用,从而推广了材料力学中杆件弯曲时的平衡微分方程。该方程更全面更精确地反映了杆件弯曲这一物理现象。作者把它称为梁弯曲时的广义平衡微分方程。 【光盘号】 SCTC95S5 38 【篇名】 双相材料空间中平片界面裂纹问题的超奇异积分-微分方程 CAJ原文下载 PDF原文下载 【作者】 乐金朝. 汤任基. 【刊名】 科学通报 1996年15期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 郑州工学院道路检测与CAE技术研究中心. 上海交通大学工程力学系 郑州 450002 . 上海 200030. 【关键词】 双相材料. 平片界面裂纹. 超奇异积分-微分方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 <正> 随着复合材料的广泛应用,界面断裂力学成为国际断裂界的前沿研究课题,该领域的研究工作引起了国内外力学家、金属物理学家及材料科学家的广泛关注,并取得了许多新进展。据作者所知,目前的工作主要是研究二维问题,由于数学和力学等方面的困难,三维界面断裂力学方面的研究工作报道较少。本文利用双相材料空间在集中力作用下的弹性力学基本解,使用边界元法,在有限部积分的意义下将任意形状的平片界面裂纹问题归结为一组以裂纹面上的位移间断为未知函数的超奇异积分-微分方程。此组方程对于进一步开展三维界面断裂力学问题的研究具有重要意义。 【光盘号】 SCTA96S4 39 【篇名】 常微分方程的不变式在量子力学中的应用 CAJ原文下载 PDF原文下载 【作者】 杨进. 【刊名】 大学物理 1998年08期 编辑部Email 《中文核心期刊要目总览》来源期刊 CJFD收录期刊 【机构】 成都气象学院基础科学系. 【关键词】 常微分方程. 不变式. 库仑场. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 利用常微分方程的不变式,非常方便地求解了一些量子力学问题. 【光盘号】 SCTA9809 40 【篇名】 保守力系的变形拉格朗日方程及其应用 CAJ原文下载 PDF原文下载 【作者】 梁志强. 【刊名】 泰安师专学报 2000年06期 编辑部Email CJFD收录期刊 【机构】 泰安师专物理系!山东泰安271000. 【关键词】 Lagrandge方程. 轨道微分方程. 轨道方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 从保守力系的拉格朗日方程出发 ,导出一种用于求解保守系统轨道微分方程的变形拉格朗日方程。并将其应用于有心力问题及抛体问题 ,导出了有心力问题的轨道微分方程Binet公式及抛体轨道方程。保守力系的变形拉格朗日方程提供了求解运动物体轨道方程的新方法 ,同时也丰富了分析力学的教学内容。 【光盘号】 SOCI0105

学习常微分就是根据已经知道的原理、公式等自然规律,列出一个一阶或者高阶的式子,求解出通解,,发现新个规律。个人观点,仅供参考!!

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

任找一本数学手册查(我是认真的!!!!)

偏微分方程的毕业论文

你是数学专业的吗?

傅立叶(Fourier, Jean Baptiste Joseph, 1768-1830) 法国数学家及物理学家。 最早使用定积分符号,改进符号法则及根数判别方法。 傅立叶级数(三角级数)创始人。 法国数学家、物理学家。1768年3月21日生于欧塞尔, 1830年5月16日卒于巴黎。9岁父母双亡, 被当地教堂收养 。12岁由一主教送入地方军事学校读书。17岁(1785)回乡教数学,1794到巴 黎,成为高等师范学校的首批学员, 次年到巴黎综合工科学校执教。1798年随拿破仑远征埃及 时任军中文书和埃及研究院秘书,1801年回国后任伊泽尔 省地方长官。1817年当选为科学院院 士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委 员会主席。 主要 贡献是在研究热的传播时创立了一套数学理论。1807年向巴黎科学院呈交《热的传播》论文, 推导 出着名的热传导方程 ,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示 ,从而提出任一函数都可以展成三角函数的无穷级数。 1822 年在代表作《热的分析理论》中解 决了热在非均匀加热的 固体中分布传播问题,成为分析学在物理中应用的最早例证之一,对19 世纪数学和理论物理学的发展产生深远影响 。傅立叶级数(即三角级数)、傅立叶分析等理论 均由此创始。其他贡献有:最早使用定积分符号,改进了代数方 程符号法则的证法和实根个数 的判别法等。 还有一个网址是 傅立叶是一个法国数学家,他的论文“传热理论的分析与研究”对数学物理学产生的了很大影响。依据他的研究,固体中的导热现象能通过无穷数学级数来表示,即以他的名字命名的傅立叶级数。他通过对典型导热现象的分析研究,打打促进了数学物理学的发展。这些研究也就是围绕许多自然现象,比如太阳黑子、潮汐、大气气候等,一直以来我们说的边界问题的求解。他的研究对这个理论的实际应用产生很大的影响,其中,现代数学就是其中的一个分支。 傅立叶是一个裁缝的儿子,早在他小学时就对数学产生浓厚的兴趣。后来他也曾在他的母校担任数学教师。法国革命的浪潮中,他投身于政治,从此以后,它的生活一直充满了冒险。1794年,法国école Normale 学校建立,他成为该学校第一批学生之一。次年,他在该学校任教,同年加入学校教授会,并成为数学家协会的一成员。 1798年,傅立叶和其他队员一起,陪同拿破仑远征埃及。1801年,他开始着手大范围研究埃及古迹,并在1798年拿破仑建立于Cairo研究所担任三年秘书,他在工程技术以及外交任务方面都提出许多意见。回国后,他被任命出版了大量的有关埃及的刊物。1809年拿破仑封他为男爵。1815年,拿破仑垮台,此后傅立叶在巴黎过了一段平静的学术研究生活。1817年,他被选为科学院院士,1822年,担任科学院常任秘书。 傅立叶于1807年开始他的学术论文写作,并提出求解偏微分方程的分离变量法和可以将解表示成一系列任意函数的概念。于1822年完成论文,发表了著名论著“热的解析理论”,这一著作奠定了导热的理论基础,描述导热的定律就是以他的名字命名的。他论文的研究结果标明:可以用一个偏微分方程来表示固体中的二维导热现象现在地问题是要找出一个特定的温度,比如,对于一个无限大的导热平板,如果在t=0时刻给定了平板边界处的温度。这个问题可视为一个一维导热问题 傅立叶毕生都致力于导热现象的数学表示研究以及确定这些代数方程根的研究。傅立叶被公认为导热理论的奠基人。

微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析

这儿的数学博士应该很少.

相关百科

热门百科

首页
发表服务