首页

> 论文发表知识库

首页 论文发表知识库 问题

大学数学史论文

发布时间:

大学数学史论文

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报..

[4].数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。这样的例子在数学史上不胜枚举。在此奋斗的过程中所蕴涵的深刻的哲理,也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出的数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。由此可见,数学史并不是单纯的数学成就的编年记录。 那么是不是只有研究数学的人才需要了解数学史呢?或者说了解了数学史只是对学习和研究数学的人才有好处呢? 数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。著名的哲学家在批评以往思想史家们忽视数学的地位时,曾打了一个比喻来说明数学是人类思想史的要素之一。他说:“假如有人说:编著一部思想史而不深刻研究每一个时代的数学概念,就等于是在《哈姆雷特》这一剧本中去掉了哈姆雷特这一角色,这一说法也许太过分了,我不愿说的这样过火。但这样做却肯定地等于是把奥菲莉这一角色去掉了。奥菲莉对整个剧情来说,是非常重要的[2]。”他仅是就思想史而言。实际上我们可以说:不了解数学史,就不可能全面了解整个人类文明史。 研究数学史对数学自身的发展所起的作用也是不可估量的。众所周知,2000年荣获首届国家最高科学技术奖的吴文俊院士是数学机械化研究的倡导者。他在示性类和示嵌类研究中取得了根本重要性的结果,在多种问题中被广泛应用。他提出的用计算机证明几何定理的方法,与常用的基于数理逻辑的方法根本不同,显现了无比的优越性,改变了国际上自动推理研究的面貌,被称为自动推论领域的先驱性工作,并因此获得Herbrand自动推论杰出成就奖。吴文俊教授在分析所取得的成绩时指出,“我们是遵循我国古代机械化数学的启示,把几何代数化,把非机械化的几何定理证明转化为多项式方程的处理,从而实现了几何定理的机器证明。”像这样认真研究数学思想将之用以指导数学研究并取得重大成绩的例子不胜枚举。即使对于高等数学的教学来说,数学史所起的作用也是不可低估的。 如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。由此体现出了微积分的重要性以及它和各科之间的关系。因此,《微积分》总是作为高等院校理工类的一门重要的必修课。一般制订为两学期教学计划。它包含了微分学,积分学,空间解析几何,无穷级数和常微分方程的基础知识。我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。并由于受传统教学课时和内容上的安排的影响,高等数学的教学往往存在课时少,内容多的矛盾。所以,广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注意进行数学知识的传授,忽视了数学的思想性和趣味性。当代著名数学家Courant曾指出:“微积分,或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具。遗憾的是,微积分的教学方法有时流于机械,不能体现出这门学科乃是一种撼人心灵的智力奋斗的结晶。” 作为高等数学的教师,我们也有过这样的经验,虽然仔细备课全面讲解下来,却发现教学效果并不理想,对一些抽象的概念难以理解,普遍反映听不懂。长此以往,个别同学甚至失去了能学好高等数学的信心,对学习失去了兴趣。经过几代人对高等数学教学方法的不断研究,数学史在高等数学教学中的所起的作用已被大家所认可。那些认为在教学中讲述数学史是华而不实的多余之举,是在浪费时间,任为应该多把“宝贵的时间”用在习题训练上的思想已经成为过去。在教师教学里,引进与主题相关的数学史题材,对学生的学习会有很正面的意义,不仅能调动了同学们的学习热情,尤其能协助学生将抽象观念具体化。因为不论在科技应用层面或思想突破方面,数学重要概念的演进确有其实用面的意义,因此具有启发性的数学史方面的教学实属必要。 基于以上的认识,近来,关于这方面已经取得了不少的研究成果。国内,国际上的交流活动也日益频繁。在一些学校已经将数学史设为一门选修课。系统的介绍数学的起源与发展。这对高等数学的教学起到了很好的辅助作用。但是由于这方面人材的短缺,也有一些学校并不能开出这门选修课。再者作为一门单独的选修课,它要系统的体现出数学的起源与发展,并不能做到与高等数学所授内容适时匹配。所以,这就要求我们广大教授高等数学的教师在平时高等数学的教学中就应该做到与数学史的有机结合。 怎样才能在繁重的教学任务和紧张的课堂教学时间里将数学知识的传授和数学史的介绍有机的结合起来呢?怎样才能在有限的课堂时间里既做到保证了教学任务的完成又做到通过数学史的介绍提升了大家的学习兴趣,传递了数学思想呢? 综观历史发展的长河,重要思想的诞生离不开重要的人物。对数学的发展也是如此。德国著名数学家说过:“如果不知道各位前辈所建立和发展的概念,方法和成果,我们就不能理解近50年数学的目标,也不能理解它的成就。”由此可见,研究数学人物在数学史的研究中的重要性。 在高等数学的教材中我们会接触到一些根本重要性的定理和概念。如“牛顿——莱布尼兹定理”、“拉格朗日中值定理”、“富里叶三角级数等等。”这些定理和概念的学习不仅对于学习高等数学知识来说是重要的,并且对于提高数学素质也是及其必要的。它们是微积分的精华,是高等数学教学的必讲内容。这些定理和概念大都是以重要数学人物的名字命名的。他们也恰恰是微积分的创立者和先驱们。这就提醒了广大教师,在课堂教学过程中适当的加入先驱们的生平和业绩的介绍就不仅能在有限的时间里完成我们的教学任务还可以起到提升大家的学习兴趣,传递了数学思想的作用。对我们的课堂教学起到了画龙点睛的作用。 牛顿[3](1642~1727)是英国数学家、物理学家、天文学家。他出身于农民家庭。1661年考入剑桥大学三一学院。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明,微积分,万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”牛顿的微积分理论主要体现在《运用无穷多项方程的分析学》、《流数术和无穷级数》、《求曲边形的面积》三部论著里。在《运用无穷多项方程的分析学》这一著作里,他给出了求瞬时变化率的普遍方法,阐明了求变化率和求面积是两个互逆问题,从而揭示了微分与积分的联系,即沿用至今的所谓微积分的基本定理。在《流数术和无穷级数》里,牛顿对他的微积分理论作出了更加广泛而深入的说明。例如,他改变了过去静止的观点,认为变量是由点、线、面连续运动而产生的。而在《求曲边形的面积》这一篇研究可积曲线的经典文献里,牛顿试图排除由“无穷小”造成的混乱局面。把求极限的思想方法作为微积分的基础在这里已出露端倪。牛顿还曾说过:“如果我之所见比笛卡儿等人要远一点,那只是因为我是站在巨人肩上的缘故。” 莱布尼兹[3](1646~1746)是德国数学家、自然主义哲学家、自然科学家。他的第一篇微分学论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》是历史上最早公开发表的关于微分学的文献。他也是历史上最伟大的符号学家。他曾说:“要发明,就得挑选恰当的符号,要做到这一点,就要用包义简明的少量符号来表达或比较忠实地描绘事物的内在本质,从而最大限度减少人的思维劳动。”例如,dx、dy、∫、log等等,都是他创立的。他的优越的符号为以后分析学的发展带来了极大的方便。 以上只是我们在浩瀚的数学人物的海洋中,采摘的两颗最耀眼的明珠,对他们的生平与业绩只进行了一些简介。这些内容的介绍在课堂上占用不了多少“宝贵”的时间,然而通过这些,使我们活生生的看到了数学的发展是曲折的,一个重要概念的产生是离不开实际问题的,只有对实际问题进行精力的思索,就可以找出问题的本质,抽象出数学思想。还有作者在解决实际问题时频繁运用的“无穷小”、“流数”等概念,使我们体会到正确、熟练掌握基本概念对于理解数学思想的重要性。对于平时我们视为枯燥的数学符号,却正是它是最直接、最简练表达数学思维的工具。并且从先驱们的言行里我们能感受到科学家的治学态度和对知识的执着追求,这往往能激发大家刻苦钻研,勇往直前的奋斗精神。 最后,我们相信,作为高等数学的教师,我们的目的不仅是为大家传授数学知识,更重要的是使大家在学习数学知识的过程中掌握数学思想,提高大家的数学素养。将数学史与数学知识的传授有机地结合起来就能很好地达到以上的目的。经过多年的教学实践,在高等数学的教学中适时地加入数学人物的介绍就能对高等数学的教学起到很好的辅助作用。我们相信,对于高等数学的教师,如果熟悉了数学人物的生平、业绩、治学态度、治学方法、趣闻轶事等等,对高等数学的教学来说有百利而无一害,一定会把高等数学讲授得更生动、有趣和富有哲理。而对于很多正在学习高等数学的学生,一旦了解了这些数坛前辈们的学术成就和道德风范,也必将从中受到鼓舞,继而提高学习兴趣,做出更大的成绩。

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

数学的发展史世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”就这些了!O(∩_∩)O~

大学数学史论文题目

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报..

[4].数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

1、数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算 函数图像中的对称性问题 泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用 “1”的妙用“数形结合”在解题中的应用 “数学化”及其在数学教学中的实施 “一题多解与一题多变”在培养学生思维能力中的应用 《几何画板》与数学教学 《几何画板》在圆锥曲线中的应用举例 Cauchy中值定理的证明及应用 Dijkstra最短路径算法的一点优化和改进 Hamilton图的一个充分条件 HOLDER不等式的推广与应用 n阶矩阵m次方幂的计算及其应用 R积分和L积分的联系与区别 Schwarz积分不等式的证明与应用 Taylor公式的几种证明及若干应用 Taylor公式的若干应用 Taylor公式的应用 Taylor公式的证明及其应用 Vandermonde行列式的应用及推广

数学史论文函数演变史

物理学发展史(从1638年至1962年) 公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研究发表于1802年。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。 公元1799年,英国科学家戴维做真空中的摩擦实验,以证明热是物体微粒的振动所致。 公元1800年,英国科学家赫休尔从太阳光谱的辐射热效应发现红外线。 公元1801年,德国科学家里特尔从太阳光谱的化学作用,发现紫外线。 公元1801年,英国科学家托马斯·杨用干涉法测光波波长。 公元1802年,英国科学家沃拉斯顿发现太阳光谱中有暗线。 公元1808年,法国科学家马吕斯发现光的偏振现象。 公元1811年,英国科学家布儒斯特发现偏振光的布儒斯特定律。 公元1815年,德国科学家夫琅和费开始用分光镜研究太阳光语中的暗线。 公元1819年,法国科学家杜隆与珀替发现克原子固体比热是一常数,约为6卡/度·克原子,称杜隆·珀替定律。 公元1820年,丹麦科学家奥斯特发现导线通电产生磁效应。 公元1820年,法国科学家毕奥和沙伐由实验归纳出电流元的磁场定律。 公元1820年,法国科学家安培由实验发现电流之间的相互作用力,1822年进一步研究电流之间的相互作用,提出安培作用力定律。 公元1821年,爱沙尼亚科学家塞贝克发现温差电效应(塞贝克效应)。 公元1827年,英国科学家布朗发现悬浮在液体中的细微颗粒作不断地杂乱无章运动,是分子运动论的有力证据。 公元1830年,诺比利发明温差电堆。 公元1831年,法拉第发现电磁感应现象。 公元1834年,法国科学家珀耳帖发现电流可以致冷的珀耳帖效应。 公元1835年,美国科学家亨利发现自感,1842年发现电振荡放电。 公元1840年,英国科学家焦耳从电流的热效应发现所产生的热量与电流的平方、电阻及时间成正比,称焦耳-楞茨定律(楞茨也独立地发现了这一定律)。其后,焦耳先后于1843,1845,1847,1849直至1878年测量热功当量,历经四十年,共进行四百多次实验。 公元1842年,法国科学家勒诺尔从实验测定实际气体的性质,发现与波义耳定律及盖·吕萨克定律有偏离。 公元1843年,法拉第从实验证明电荷守恒定律。 公元1845年,法拉第发现强磁场使光的偏振面旋转,称法拉第效应。 公元1849年,法国科学家斐索首次在地面上测光速。 公元1851年,法国科学家傅科做傅科摆实验,证明地球自转。 公元1852年,英国科学家焦耳与威廉·汤姆逊发现气体焦耳-汤姆逊效应(气体通过狭窄通道后突然膨胀引起温度变化)。 公元1858年,德国科学家普吕克尔在放电管中发现阴极射线。 公元1859年,德国科学家基尔霍夫开创光谱分析,其后通过光谱分析发现铯、铷等新元素,他还发现发射光谱和吸收光谱之间的联系,建立了辐射定律。 公元1866年,德国科学家昆特做昆特管实验,用以测量气体或固体中的声速。 公元1869年,德国科学家希托夫用磁场使阴极射线偏转。 公元1871年,英国科学家瓦尔莱发现阴极射线带负电。 公元1875年,英国科学家克尔发现在强电场的作用下,某些各向同性的透明介质会变为各向异性,从而使光产生双折射现象,称克尔电光效应。 公元1876年,德国科学家哥尔德茨坦开始大量研究阳极射线的实验,导致极坠射线的发现。 公元1879年,英国科学家克鲁克斯开始一系列实验,研究阴极射线。 公元1879年,奥地利科学家斯忒藩发现黑体辐射经验公式。 公元1879年,美国科学家霍尔发现电流通过金属时,在磁场作用下产生横向电动势的霍尔效应。 公元1880年,法国科学家居里兄弟发现晶体的压电效应。 公元1881年,美国科学家迈克耳逊首次做以太漂移实验,得到零结果。由此产生迈克耳逊干涉仪,灵敏度极高。 公元1885年,迈克耳逊与莫雷合作改进斐索流水中光速的测量。 公元1887年,迈克耳逊与莫雷再次做以太漂移实验,又得零结果。 公元1887年,德国科学家赫兹作电磁波实验,证实了英国科学家麦克斯韦的电磁场理论。同时,赫兹发现光电效应。 公元1890年,匈牙利科学家厄沃作实验证明惯性质量与引力质量相等。 公元1893年,德国科学家勒纳德研究阴极射线时,在射线管上装一薄铝窗,使阴极射线从管内穿出进入空气,射程约l厘米,人称勒纳德射线。 公元1895年,P.居里发现居里点和居里定律。 公元1895年,德国科学家伦琴发现x射线。 公元1896年,法国科学家贝克勒尔发现放射性。 公元1896年,荷兰科学家塞曼发现磁场使光谱线分裂,后称塞曼效应,并证实了荷兰科学家洛仑兹关于电子论的推测。

对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。 当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。 那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子: 0、1、2、3、4 、5 、6 、7 、8 、9 、10 、11 、12 、13 、14 、…… 1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。 比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。 纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗? 经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。 所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国著名的数学家、天文学家拉普拉斯(Pierre Simon Laplace,1749-1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. (一) ��马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽. ��自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源. (二) ��早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. ��1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx. ��当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”. ��18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延. (三) ��函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究. ��后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.” ��在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由 �表示出,其中 ��富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍. ��通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义. ��1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分. ��1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.” ��根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数): f(x)= 1���(x为有理数), 0���(x为无理数). ��在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数. ��狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义. (四) ��生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数, 即�ρ(x)= 0,x≠0, ∞,x=0. 且 ��δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是 ��P(0)=压力/接触面=1/0=∞. ��其余点x≠0处,因无压力,故无压强,即�P(x)=0.另外,我们知道压强函数的积分等于压力,即 �函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元. ��函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系. ��函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”. ��设集合X、Y,我们定义X与Y的积集X×Y为 ��X×Y={(x,y)|x∈X,y∈Y}. ��积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系. ��现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了. ��从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.

对数即指数的逆运算

数学史学杂志

数学是人类的第二语言。社会自然科学的发展都离不开数学。商业航海、历法计算、桥梁、寺庙、宫殿建造、武器与工事的设计等等,数学往往能对所有的这些问题做出令人满意的解决。数学对人类物质文明的影响,最突出的是反映在它与能根本改变人类物质生活方式的产业革命的关系上:人类历史上先后共有三次重大产业革命,这三次产业革命主体技术都与数学的新理论、新方法的应用有直接或间接的关系。数学对人类认识自然和改造自然起着重要作用,数学是研究世界的空间形式和数量关系的科学。意大利数学家伽利略说“数学是书写宇宙的文字”,物理学家狄拉克说:“上帝使用了美丽的数学来创造这个世界”。 作为人类精神、智慧与理性的最高代表之一,数学文化是人类文化的重要组成部分,是促进物质文明和强化精神文明的重要基础,因而在文化发展中占据着举足轻重的地位,是推进人类文明的不可或缺的重要因素。

数学天地中学数学教学中都有的

一篇有关数学史的论文(中国上搜索不到) 研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同。具体地说,它所研究的内容是: ①数学史研究方法论问题;②总的学科发展史——数学史通史;③数学各分支的分科史(包括细小分支的历史);④不同国家、民族、地区的数学史及其比较;⑤不同时期的断代数学史;⑥数学家传记;⑦数学思想、数学概念、数学方法发展的历史;⑧数学发展与其他科学、社会现象之间的关系;⑨数学教育史;⑩数学史文献学;等等。按其研究的范围又可分为内史和外史。 内史 从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史; 外史 从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。 数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 人们研究数学史的历史,由来甚早。古希腊时就曾有人写过一部《几何学史》,可惜未能流传下来,但在5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。中世纪阿拉伯国家的一些传记作品和数学著作中,曾讲述到一些数学家的生平以及其他有关数学史的材料。一二世纪时,大量的古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是当时的数学研究,也是对古典数学著作的整理和保存。 近代西欧各国的数学史研究,是从一吧世纪,由J.É.蒙蒂克拉、C.博絮埃、.克斯特纳同时开始,而以蒙蒂克拉一漆5吧年出版的《数学史》(一漆99~一吧0二年又经拉朗德增补)为代表。从一9世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,一9四5年以后,更有了新的发展。一9世纪末叶以后的数学史研究可以分为下述几个方面。 ①通史研究 代表作可以举出.康托尔的《数学史讲义》(四卷,一吧吧0~一90吧)以及.博耶(一吧9四、一9一9)、.史密斯(二卷,一9二三~一9二5)、洛里亚(三卷,一9二9~一9三三)等人的著作。法国的布尔巴基学派也写了一部数学史收入《数学原理》丛书之中。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。一9漆二年美国M.克莱因所著《古今数学思想》一书,被认为是漆0年代以来的一部佳作。 ②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有.海贝格、胡尔奇、.希思等人。洛里亚和希思还写出了古希腊数学通史。二0世纪三0年代起,著名的代数学家范?德?瓦尔登在古希腊数学史方面也作出成绩。陆0年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。 ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(一9三5、一9三漆)、《楔形文字数学书》(与萨克斯合著,一9四5)都是这方面的权威性著作。他所著《古代精密科学》(一95一)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范?德?瓦尔登的《科学的觉醒》(一95四)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。 ④断代史和分科史研究 德国数学家(C.)F.克莱因著的《一9世纪数学发展史讲义》(一9二陆~一9二漆)一书,是断代体近现代数学史研究的开始,它成书于二0世纪,但其中所反映的对数学的看法却大都是一9世纪的。直到一9漆吧年法国数学家J.迪厄多内所写的《一漆00~一900数学史概论》出版之前,断代体数学史专著并不多,但却有(.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特二三个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于()H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。” ⑤历代数学家的传记以及他们的《全集》、《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。 ⑥专业性学术杂志 最早出现于一9世纪末,.康托尔(一吧漆漆~一9一三,三0卷)和洛里亚(一吧9吧~一9二二,二一卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(一吧吧四~一9一5,三0卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。 中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书?律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书?律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。 在中国古算书的序、跋中,经常出现数学史的内容。如刘徽注《九章算术》序 (二陆三)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位 《算法统宗》(一59二)书末附有“算经源流”,记录了宋明间的数学书目。 以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(一漆二四~一漆漆漆)、李潢(?~一吧一一)、阮元(一漆陆四~一吧四9)、沈钦裴(一吧二9年校算《四元玉鉴》)、罗士琳(一漆吧9~一吧5三)等人。②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(一漆95~一漆99)。其后,罗士琳作“补遗”(一吧四0),诸可宝作《畴人传三编》(一吧吧陆),黄钟骏又作《畴人传四编》(一吧9吧)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。 利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的。经过半个多世纪,李俨的论文自编为《中算史论丛》(一~5集,一95四~一955),钱宝琮则有《钱宝琮科学史论文集》(一9吧四)行世。从二0世纪三0年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(一9三漆)、《中国数学大纲》(一95吧);钱宝琮有《中国算学史》(上,一9三二)并主编了《中国数学史》(一9陆四)。钱宝琮校点的《算经十书》(一9陆三)和上述各种专著一道,都是权威性著作。 从一9世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。二0世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。 参考资料: 数学史 自建国以来,由於中算史专家李俨教授、钱宝琮教授、严敦杰教授的提倡,在国内有不少自发的人员从事于数学史研究,这些人员都是各自独立地进行研究,相互之间,在学术上很少进行磋商,但是,在中国数学史、外国数学史上确有许多中国需解决的疑难问题,也就是由於当时形势的需要,中国需把这些“个体户”组织起来,按“互助组”的形式进行研究。 自一9漆漆年“互助组”成立以来,已有十五年了。在这期间,相互切磋、相互提携、相互支援、相互协助共同为中国科学、技术史作了不少可喜工作。例如,一9吧四年受国家教委的委托,在北京师范大学举办了“中、外数学史讲习班”,除有百余所高等院校派员参加学习外,还有当代著名数学家江泽涵教授、吴文俊教授、王梓坤教授光临“讲习班”,进行指导并讲话,“讲习班”还邀请了全国十多名著名数学史家前来授课或作专题讲演;在“讲习班”期间,不但播放了中国数学古籍的幻灯片、故宫博物院库藏科、技文物幻灯片,而且有幸参观了故宫博物院库藏数百种科、技文物的实物。这次“讲习班”的活动,收到非常丰硕的效果,之后,有很多人对数学史产生了浓厚兴趣,加入了数学史的行列,从而对数学史进行学习、探讨、研究;也有人积极进行准备,拟开设数学史课,从而改变了全国只有十一所高校开设数学史课的极不相称之局面。 在中国古典数学中,《九章算术》及《数书九章》是两部著名学术著作,其中有许多千古未解之谜及疑难问题,为了解决这些研究中以及教学中的难题,受国家教委的委托,于一9吧陆年在徐州师范学院举办了“《九章算术》暨《数书九章》暑期讲习班”,全国有四、五十所高等院校派员参加了这次“讲习班”。一致认为这次“讲习班”解决了在中国数学史的研究中、教学中的实际困惑和难点。“讲习班”期间,除讲授课程、专题报告外,还组织了多次“专题讨论”;在“专题讨论”中,可以自由发言,讲述个人的不同观点,并可以进行辩论和答问;因而“专题讨论”收到了意想不到的效果。之后,还参观了徐州地区的古迹和出土文物展览。 原先,由开设数学史课程的十一所高校,后来逐渐扩展为六十多所高校,但是这种大范围的扩展,使得数学史的教材成了当务之亟的问题,因而组织有关人员进行教材的编撰工作;于一9吧陆年、一9吧漆年分别出版了《中国数学简史》、《外国数学简史》两部高校教材,不止解决了一些高校缺少数学史教材问题,也可供给某些研究生作为业余的读物,这两部教材现已被广大高校所采用。 为了统一各高校数学史的教学要求,为了划一数学史研究生的培养方案,受国家教委的委托,于一9吧四年在北京师范大学召集了八所高等学校,共同制定了《高校中、外数学史教学大纲(草案)》、《数学史研究生培养方案(草案)》,并呈报给国家教委备案。 在培养研究生方面,不但使研究生互访“互助组”各校的有关人员,而且还相互邀请“互助组”各校的有关人员前来授课,从而促进各校之间对研究生培养的联系;至於前来北京师大进修的德国慕尼黑大学进修生、日本东海大学高级进修生、日本东北大学进修生,也得到“互助组”各校有关人员的支持。 为了深入探讨中国古典数学名著,制定了《中国数学史研究丛书》的规划,于一9吧二年、一9吧漆年分别出版了两部学术专著,即《〈九章算术〉与刘徽》、《秦九韶与〈数书九章〉》。这两部书出版后,在国内、外引起强烈反应,得到国内、外许多专家的高度评价,认为中国数学史的研究,不但不是没有可深入研究的问题,而相反的是,认为中国数学史的研究前景,是非常广阔而大有作为的。因之,使得国内、外许多学者从事于中国数学史的研究。由於这两部专著的专题性很强,有些其他方面的学术论文不便收录,所以于差不多同时,先后出版了《中国数学史论文集(一)》、《中国数学史论文集(二)》、《中国数学史论文集(三)》;从而为广大学者和读者,提供了学术园地。 为了弘扬中国古代优秀科技文化,经国家教委批准,并经国家自然科学基金委两次资助以及其他五单位资助,分别于一9吧漆年、一99一年在北京师范大学举办了“秦九韶《数书九章》成书漆四0周年纪念暨学术研讨国际会议”、“《九章算术》暨刘徽学术思想国际研讨会”,像这样的专题性学术研讨会在国际上并不多见,因而受到国际学术界的重视,会前收到不少国际学术界知名人士的贺电,会后分别寄赠会议论文集,前来参加会议的学者,包括十多个国籍,分别为50余人、陆0余人;这两次专题性的国际会议,在国际学术界产生了巨大影响。 为了深入钻研中国古典数学,原拟计划先后出版《中国数学史论文集(四)》、《刘徽研究》、《中国数学史大系》、《南北朝数学》以及《隋唐数学》等书。其中《中国数学史论文集(四)》,早已发稿,由於技术上的原因,推迟了发排的时间;《中国数学史大系》,正在加紧撰写稿件;是国家“八五”期间重点图书,任重而道远,各位执笔者有信心完成任务。《刘徽研究》一书,是《〈九战算术〉与刘徽》一书的继续和发展。经过六年准备,克服了许多困难,终至与读者见面,由于种种原因,还有许多不尽人意的地方,请作者和读者们谅解和批评、指正。《刘徽研究》能得以出版,还是与台湾九章出版社、陕西人民教育出版社、孙文先先生、杨益先生的鼎力相助和大力支持分不开的,在此,特致以由衷的谢意。原来计划全面而深入地探讨刘徽的各项成就,但是,由於发稿较晚、发排较迟、校对也费了不少时日,在这里特向读者致以深切的歉意。 到现在,“互助组”已不适合当前形势的需要,乃代替以“才团”,我们实事求是,继续前进,争取新的成绩。 参考资料: 希望对你有帮

高中:人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。 如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。 但是,在数字的发展过程中,一件不愉快的事发生了。让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为"数"是万物的本源,支配整个自然界和人类社会。因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。他们所说的数是指整数。分数的出现,使"数"不那样完整了。但分数都可以写成两个整数之比,所以他们的信仰没有动摇。但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。如果设这个数为X,既然,推导的结果即x2=2。他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。而希帕索斯还是忍不住将这个秘密泄露了出去。据说他后来被扔进大海喂了鲨鱼。然而真理是藏不住的。人们后来又发现了很多不能用两整数之比写出来的数,如圆周率就是最重要的一个。人们把它们写成 π、等形式,称它们为无理数。 有理数和无理数一起统称为实数。在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。这时人类的历史已进入19世纪。许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了。"i "成了虚数的单位。后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数。在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了。 数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念。所谓四元数,就是一种形如的数。它是由一个标量(实数)和一个向量(其中x 、y 、z 为实数)组成的。四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。与此同时,人们还开展了对"多元数"理论的研究。多元数已超出了复数的范畴,人们称其为超复数。 由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。到目前为止,数的家庭已发展得十分庞大。古代数学史: ①古希腊曾有人写过《几何学史》,未能流传下来。 ②5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。 ③中世纪阿拉伯国家的一些传记作品和数学著作中,讲述到一些数学家的生平以及其他有关数学史的材料。 ④12世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是数学研究,也是对古典数学著作的整理和保存。 近代西欧各国的数学史: 是从18世纪,由J.蒙蒂克拉、C.博絮埃、.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。 ①通史研究 代表作可以举出.康托尔的《数学史讲义》(4卷,1880~1908)以及.博耶(1894、.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派写了一部数学史收入《数学原理》。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所著《古今数学思想》一书,是70年代以来的一部佳作。 ②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有.海贝格、胡尔奇、.希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。 ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。 ④断代史和分科史研究 德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于()H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。” ⑤历代数学家的传记以及他们的全集与《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。 ⑥专业性学术杂志 最早出现于19世纪末,.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。 中国数学史: 中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。 在中国古算书的序、跋中,经常出现数学史的内容。 如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。 以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人 ②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。 利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的 经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。 从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。采纳啊!!!!!!!!!!!!!!!

数学史论文

数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。这样的例子在数学史上不胜枚举。在此奋斗的过程中所蕴涵的深刻的哲理,也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出的数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。由此可见,数学史并不是单纯的数学成就的编年记录。 那么是不是只有研究数学的人才需要了解数学史呢?或者说了解了数学史只是对学习和研究数学的人才有好处呢? 数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。著名的哲学家在批评以往思想史家们忽视数学的地位时,曾打了一个比喻来说明数学是人类思想史的要素之一。他说:“假如有人说:编著一部思想史而不深刻研究每一个时代的数学概念,就等于是在《哈姆雷特》这一剧本中去掉了哈姆雷特这一角色,这一说法也许太过分了,我不愿说的这样过火。但这样做却肯定地等于是把奥菲莉这一角色去掉了。奥菲莉对整个剧情来说,是非常重要的[2]。”他仅是就思想史而言。实际上我们可以说:不了解数学史,就不可能全面了解整个人类文明史。 研究数学史对数学自身的发展所起的作用也是不可估量的。众所周知,2000年荣获首届国家最高科学技术奖的吴文俊院士是数学机械化研究的倡导者。他在示性类和示嵌类研究中取得了根本重要性的结果,在多种问题中被广泛应用。他提出的用计算机证明几何定理的方法,与常用的基于数理逻辑的方法根本不同,显现了无比的优越性,改变了国际上自动推理研究的面貌,被称为自动推论领域的先驱性工作,并因此获得Herbrand自动推论杰出成就奖。吴文俊教授在分析所取得的成绩时指出,“我们是遵循我国古代机械化数学的启示,把几何代数化,把非机械化的几何定理证明转化为多项式方程的处理,从而实现了几何定理的机器证明。”像这样认真研究数学思想将之用以指导数学研究并取得重大成绩的例子不胜枚举。即使对于高等数学的教学来说,数学史所起的作用也是不可低估的。 如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。由此体现出了微积分的重要性以及它和各科之间的关系。因此,《微积分》总是作为高等院校理工类的一门重要的必修课。一般制订为两学期教学计划。它包含了微分学,积分学,空间解析几何,无穷级数和常微分方程的基础知识。我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。并由于受传统教学课时和内容上的安排的影响,高等数学的教学往往存在课时少,内容多的矛盾。所以,广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注意进行数学知识的传授,忽视了数学的思想性和趣味性。当代著名数学家Courant曾指出:“微积分,或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具。遗憾的是,微积分的教学方法有时流于机械,不能体现出这门学科乃是一种撼人心灵的智力奋斗的结晶。” 作为高等数学的教师,我们也有过这样的经验,虽然仔细备课全面讲解下来,却发现教学效果并不理想,对一些抽象的概念难以理解,普遍反映听不懂。长此以往,个别同学甚至失去了能学好高等数学的信心,对学习失去了兴趣。经过几代人对高等数学教学方法的不断研究,数学史在高等数学教学中的所起的作用已被大家所认可。那些认为在教学中讲述数学史是华而不实的多余之举,是在浪费时间,任为应该多把“宝贵的时间”用在习题训练上的思想已经成为过去。在教师教学里,引进与主题相关的数学史题材,对学生的学习会有很正面的意义,不仅能调动了同学们的学习热情,尤其能协助学生将抽象观念具体化。因为不论在科技应用层面或思想突破方面,数学重要概念的演进确有其实用面的意义,因此具有启发性的数学史方面的教学实属必要。 基于以上的认识,近来,关于这方面已经取得了不少的研究成果。国内,国际上的交流活动也日益频繁。在一些学校已经将数学史设为一门选修课。系统的介绍数学的起源与发展。这对高等数学的教学起到了很好的辅助作用。但是由于这方面人材的短缺,也有一些学校并不能开出这门选修课。再者作为一门单独的选修课,它要系统的体现出数学的起源与发展,并不能做到与高等数学所授内容适时匹配。所以,这就要求我们广大教授高等数学的教师在平时高等数学的教学中就应该做到与数学史的有机结合。 怎样才能在繁重的教学任务和紧张的课堂教学时间里将数学知识的传授和数学史的介绍有机的结合起来呢?怎样才能在有限的课堂时间里既做到保证了教学任务的完成又做到通过数学史的介绍提升了大家的学习兴趣,传递了数学思想呢? 综观历史发展的长河,重要思想的诞生离不开重要的人物。对数学的发展也是如此。德国著名数学家说过:“如果不知道各位前辈所建立和发展的概念,方法和成果,我们就不能理解近50年数学的目标,也不能理解它的成就。”由此可见,研究数学人物在数学史的研究中的重要性。 在高等数学的教材中我们会接触到一些根本重要性的定理和概念。如“牛顿——莱布尼兹定理”、“拉格朗日中值定理”、“富里叶三角级数等等。”这些定理和概念的学习不仅对于学习高等数学知识来说是重要的,并且对于提高数学素质也是及其必要的。它们是微积分的精华,是高等数学教学的必讲内容。这些定理和概念大都是以重要数学人物的名字命名的。他们也恰恰是微积分的创立者和先驱们。这就提醒了广大教师,在课堂教学过程中适当的加入先驱们的生平和业绩的介绍就不仅能在有限的时间里完成我们的教学任务还可以起到提升大家的学习兴趣,传递了数学思想的作用。对我们的课堂教学起到了画龙点睛的作用。 牛顿[3](1642~1727)是英国数学家、物理学家、天文学家。他出身于农民家庭。1661年考入剑桥大学三一学院。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明,微积分,万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”牛顿的微积分理论主要体现在《运用无穷多项方程的分析学》、《流数术和无穷级数》、《求曲边形的面积》三部论著里。在《运用无穷多项方程的分析学》这一著作里,他给出了求瞬时变化率的普遍方法,阐明了求变化率和求面积是两个互逆问题,从而揭示了微分与积分的联系,即沿用至今的所谓微积分的基本定理。在《流数术和无穷级数》里,牛顿对他的微积分理论作出了更加广泛而深入的说明。例如,他改变了过去静止的观点,认为变量是由点、线、面连续运动而产生的。而在《求曲边形的面积》这一篇研究可积曲线的经典文献里,牛顿试图排除由“无穷小”造成的混乱局面。把求极限的思想方法作为微积分的基础在这里已出露端倪。牛顿还曾说过:“如果我之所见比笛卡儿等人要远一点,那只是因为我是站在巨人肩上的缘故。” 莱布尼兹[3](1646~1746)是德国数学家、自然主义哲学家、自然科学家。他的第一篇微分学论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》是历史上最早公开发表的关于微分学的文献。他也是历史上最伟大的符号学家。他曾说:“要发明,就得挑选恰当的符号,要做到这一点,就要用包义简明的少量符号来表达或比较忠实地描绘事物的内在本质,从而最大限度减少人的思维劳动。”例如,dx、dy、∫、log等等,都是他创立的。他的优越的符号为以后分析学的发展带来了极大的方便。 以上只是我们在浩瀚的数学人物的海洋中,采摘的两颗最耀眼的明珠,对他们的生平与业绩只进行了一些简介。这些内容的介绍在课堂上占用不了多少“宝贵”的时间,然而通过这些,使我们活生生的看到了数学的发展是曲折的,一个重要概念的产生是离不开实际问题的,只有对实际问题进行精力的思索,就可以找出问题的本质,抽象出数学思想。还有作者在解决实际问题时频繁运用的“无穷小”、“流数”等概念,使我们体会到正确、熟练掌握基本概念对于理解数学思想的重要性。对于平时我们视为枯燥的数学符号,却正是它是最直接、最简练表达数学思维的工具。并且从先驱们的言行里我们能感受到科学家的治学态度和对知识的执着追求,这往往能激发大家刻苦钻研,勇往直前的奋斗精神。 最后,我们相信,作为高等数学的教师,我们的目的不仅是为大家传授数学知识,更重要的是使大家在学习数学知识的过程中掌握数学思想,提高大家的数学素养。将数学史与数学知识的传授有机地结合起来就能很好地达到以上的目的。经过多年的教学实践,在高等数学的教学中适时地加入数学人物的介绍就能对高等数学的教学起到很好的辅助作用。我们相信,对于高等数学的教师,如果熟悉了数学人物的生平、业绩、治学态度、治学方法、趣闻轶事等等,对高等数学的教学来说有百利而无一害,一定会把高等数学讲授得更生动、有趣和富有哲理。而对于很多正在学习高等数学的学生,一旦了解了这些数坛前辈们的学术成就和道德风范,也必将从中受到鼓舞,继而提高学习兴趣,做出更大的成绩。

数学史选讲的新课标要求:通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。教师应鼓励学生对数学发展的历史轨迹、自己感兴趣的历史事件与人物,写自己的研究报告。为此,结合新课程内容,我简要总结了中国数学史的发展过程,主要分为以下七个阶段: 第一时期:中国数学的萌芽(远古~春秋) 古希腊学者毕达哥拉斯有这样一句名言:“凡物皆数”。在7000年以前,我们的祖先甚至连2以上的数字还数不上来,在逐步摸索中,先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。《周髀算经》是周代传下来有关测量的理论和方法,其中就有中国最早的勾股定理。 春秋时代,诸子百家中的墨家的思想《墨经》中的几何学与逻辑、无限分割思想,体现出理性思维。孔子修改过的古典书籍之一《周易》中含有组合学知识,坐标系思想,二进制思想,还出现了八卦,这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。 第二时期: 中国古代数学框架的形成(战国~秦汉) 到了战国时期,在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在《管子》、《荀子》、《周逸书》等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。 秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。 《九章算术》集先秦到西汉数学知识之大成,确定了中国古代数学的框架、内容、形式、风格和思想方法的特点。全书有90余条抽象性算法、公使,246道例题及其解法,基本上采用算法统率应用题的形式,包括丰富的算术、代数和几何。从体系方面,归纳的,开放的,以计算为中心的算法体系,体现实用性,如“出南北门求邑方”。 第三时期:数学理论的奠基(魏晋~唐初) 在这一时期,数学教育的正规化和数学人才辈出,为数学理论奠定了基础。 赵爽,三国时代吴国人,全面注《周髀算经》,其中的“勾股圆方图注”是对勾股定理的最早证明。 刘徽,三国时代魏国人,是中国古代最伟大的数学家之一。他为《九章算术》做注,《九章算术注》集中了秦汉以来的创造发明,把中国古代数学提高到了一个新的水平,奠定了中国数学教育体系的坚实的基础.其中主要成果:(1)求得圆周率为157/50,(2)出入相补法,棋验法,齐同原理等;(3)数学概念的严格定义.例如幂,率,方程,正负数等;(4)割圆术,反映了数学的极限思想.(5)“重差”之法.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.祖冲之是我国南北朝时期杰出的数学家、天文学家。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践。他在数学上的杰出成就是关于圆周率的计算。祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理". 中国从隋建立起数学专科教育,开设算学馆.学习内容主要是算经十数;学制七年;三位一体(读书,考试,做官)的体制;学生来源整个大众,任何人可以报。 第四时期:中国传统数学的高潮(宋元时期) 数学内容在宋元达到高峰:数学教育家出现,专门研究数学教育制度。在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,如宋元五大数学家是:贾宪、秦九韶、杨辉、李冶、朱世杰。 贾宪,北宋数学家。他继承了《九章算术》以来的诸多方法,扬弃了他们的不足,在算法机械化方面做出了贡献。他构造贾宪三角的“增乘方求廉法”,把中国古代数学的程序化思想又提高到一个新的阶段。 秦九韶,南宋著名数学家。他在数学上的贡献主要有:1、一般高次方程的解法;2、建立一般线性方程组严整规范的算法;3、一次同余式组完整解法程序的建立;4、三斜求积公式(等价于海伦公式)。 杨辉,南宋末年著名的数学家和数学教育家。在教学过程中,他搜集、阅读了大量数学著作,先后完成数学著作15种21卷。为普及日常所用的数学知识,他专门写了《日用算法》一书,书中的题目全部取自社会生活,多为简单的商业问题,也有土地丈量、建筑和手工业问题。他还为初学者制定了《习算纲目》,主要数学教育思想有:由浅入深,循序渐进;重视解题能力的培养,强调精讲多练,举一反三;充分利用直观材料,抽象与具体相结合;理论结合实际,注重应用能力的培养;循循善诱,指导学生学法。他的现金的教育思想和数学方法对后世也有深刻的影响。 元代著名数学家李冶和朱世杰私人传授数学的教育实践。李冶以《益古演段》教材,从最简单的方程,不等式,算术一直到四元术;朱世杰著有《算学启蒙》和《四元玉鉴》传世。 第五时期:中国传统数学的衰落(明初~清中1840年) 满清统治者为了维护其部族的统治压抑民智,如同黑暗的欧洲中世纪一样,思想领域实行强控制,不光政治文化的书籍要禁,就连包括数学在内的科学技术也不放过。《几何原本》、《天工开物》大批明代的科技成果或毁或弃,只要和官方的程朱理学不统一的,都要禁止。满清统治不支持西方传教士向中国的学者介绍西方科学知识和数学知识,不鼓励中国学人参与中西文化交流。学习西方科技不是国策,也没有形成社会风气。中国数学日渐衰落。 第六时期:中西数学的合流(清中~清末1911年) 自明末西方数学开始大规模传入中国以来,直到20世纪初中国数学与西方数学合流,这300多年间中国数学的发展实际上就是中国数学由传统走向近代的过程。以三角学、天元术和垛积术为纲具体研究数学研究内容的西化过程,中国数学家对西方数学的“拒斥”与“吸纳”之间的微妙关系在改变。中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。然而,即使是这样,在世界的同行们之中,我国也仍然没达到领先的地位。 第七时期:现代数学的奠基与发展(公元1911年~公元1976年) 19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。从1847年,形成了一个出国留学的高潮。这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。其中在数学方面做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。 1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。在文化大革命的十年中,社会失控,人心混乱,科学衰落,在数学的园地里除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。 中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究…

从算法教学管窥中国古代数学史俞 昕( 浙江湖州市第二中学 313000) 关于算法的涵义, 人们有着不同的界定. 普通高中数学课程标准( 实验) 在学生算法目标达成度上,重在算法思想的理解与应用,界定现代算法的意义就是解决某一类问题的办法. 确切地说,就是对于某一类特定的问题,算法给出了解决问题的一系列(有穷) 操作, 即每一操作都有它的确定性的意义( 使计算机能够按照它的指令工作) ,并在有限时间( 有穷步骤)内计算出结果.普通高中数学课程标准( 实验) 对! 算法部分∀进行说明时,突出强调! 需要特别指出的是, 中国古代数学中蕴涵了丰富的算法思想∀. 吴文俊先生曾经说过! 我们崇拜中国传统数学,决非泥古迷古、 为古而古. 复古是没有出路的. 我们的目的不仅是要显示中国古算的真实面貌, 也不仅是为了破除对西算的盲从,端正对中算的认识,我们主要的也是真正的目的, 是在于古为今用. ∀算法教学中蕴涵着丰富的数学史教育价值, 作为新时代的高中数学教师是有必要了解这一点的.1 中国古代数学的特点古代数学思想分为两大体系, 一个是以欧几里得的几何原本 为代表的西方数学思想体系,这个体系以公理化的思想、 抽象化的方法、 封闭的演绎体系为特色. 另一个则是以我国的九章算术 为代表的东方数学思想体系,这个体系以算法化的思想、 构造性的方法、 开放的归纳体系为特色.我国传统数学在从问题出发,以解决问题为主旨的发展过程中, 建立了以构造性与机械化为其特色的算法体系, 这与西方数学以欧几里得几何原本 为代表的所谓公理化演绎体系正好遥遥相对.中国古代数学中的! 术∀相当于现代数学术语中的! 公式∀,两者虽有相同点(都可以用来解决一类有关问题) , 其差异也非常之大. 主要表现在,! 公式∀只提供了几个有关的量之间的关系, 指明通过哪些运算可由已知量求出未知量,但并没有列出具体的运算程序,一般地,认为这种程序是已知的了. 但! 术∀则由怎样运算的详细程序构成的,可以说它是为完成公式所指出的各种运算的具体程序,即把! 公式∀展开为使用某种计算工具的具体操作步骤. 从这点看, ! 术∀正是现代意义上的算法, 是用一套! 程序语言∀所描写的程序化算法,可以照搬到现代计算机上去. 我国古代数学包括了今天初等数学中的算术、 代数、 集合和三角等多方面的内容.由于受实用价值观的影响, 中国传统数学的研究遵循着一种算法化思想,这种思想从九章算术 开始一直是中国古代数学著作大都沿袭的模式:实际问题# # # 归类# # # 筹式模型化# # # 程序化算法即将社会生产生活中的问题,先编成应用问题,按问题性质分类, 然后概括地近似地表述出一种数学模型, 借助于算筹, 得到这一类问题的一般解法. 把算法综合起来, 得到一般原理, 分别隶属于各章,人们按照书中的方法、 原理和实例来解决各种实际问题. 可以说,中国传统数学以确定算法为基本内容,又以创造和改进算法为其发展的方向.受九章算术 的影响,在之后的几个世纪,一些数学家的著作都以算法为主要特点,包括王孝通的辑古算经 、 贾宪的黄帝九章算法细草 、 刘益的议古根源 、 秦九韶的数书九章 、 李冶的测圆海镜 和益古演段 、 杨辉的详解九章算法 、 日用算法 和杨辉算法 , 这些著作中包括了增乘开方术、 贾宪三角、 高次方程数值解法、 内插法、 一次同余式组解法等一些著名的算法,进一步发展了中国古代数学算法化的特点,使得算法的特点得到了进一步的强化和发展.1 1 中国古代数学的算法化思想算法化的思想是中国古代数学的重要特点,并贯穿于中国古算整个发展过程之中.即使是与24 数学通报 2010 年 第49 卷 第2 期图形有关的几何问题也不例外,中算家们将几何方法与算法有机地结合起来,实现了几何问题的算法化.这样,从问题出发建立程序化的算法一直是古代中国数学研究的传统,也是中算家们努力的方向.这种算法化的思想着重构造实践,更强调! 经验∀、 ! 发现∀和构造性思维方式下从无到有的发明,对今天的算法教学与研究具有重要的启迪作用.中国古代数学算法化的思想具体表现如下:第一步,把实际中提出的各种问题转化为数学模型;第二步,把各种数学模型转化为代数方程; 第三步,把代数方程转化为一种程序化的算法; 第四步,设计( 并逐步改进)、 归纳、 推导(寓推理于算法之中)出各种算法; 第五步,通过计算回溯逐步达到解决原来的问题.1 2 中国古代数学的构造性方法所谓构造性方法是解决数学问题的一种方法,是创造性思维方式直接作用的结果.按照现代直觉主义者,特别是构造主义者的观点,对于一个数学对象,只有当它可以通过有限次的操作而获得,并且在每步操作之后都能有效地确定下一步所需要采取的操作, 才能说它是存在的.按照这种思维方式,可以使概念和方法按固定的方式在有限步骤内进行定义或得以实施,或给出一个行之有效的过程使之在有限步骤内将结果确定地构造出来.换言之,就是能用有限的手段刻画数学对象并针对问题提出具体的解法.中国古代数学的算法化思想与构造性的方法紧密相连.由于古代中算家所关心的大多是较为实用的问题,他们在解决问题时首先考虑是如何得到可以直接应用的、 可以方便操作的解,而不会满足于仅仅知道解在理论上的存在性. 因为这种纯粹的理论解对于受实用价值观影响的中算家来说是没有多大意义的.从而我们推断,构造性方法的产生是算法化思想直接作用的结果.从我国许多经典算书中可以发现, 数学构造性方法在算法中有许多精彩的体现. 例如就! 方程∀的筹算图阵及其程序设计而言,首先, ! 群物总杂,各列有数,总言其实∀,这是对每行中未知数的系数和常数项的安排,其次, ! 令每行为率,二物者再程,三物者三程,皆如物数程之∀,这是对诸行关系的安排, ! 并列为行∀又说明了什么叫! 方程∀. 这为中国古代数学的构造性方法提供了一个具有说服力的样板.由于构造性的方法特别强调运算的可操作程度, 所以构造出的! 术∀可以通过一系列有限的运算求出解来, 具有一般性.时至今日我国古算家所设计的许多算法几乎都可以整套照搬到现代的电子计算机上实现.这也是我国古算在算法上长期居于领先地位的一个重要原因.2 中国古代数学中的优秀算法案例2. 1 中国古代的代数学代数学是中国传统数学中一个值得骄傲和自豪的领域.中小学数学中的算术、 代数内容, 从记数以至解联立的线性方程组, 实质上都是中国古代数学家的发明创造.结合新课程的算法教学,笔者选取我国古代著名算法进行分析.2. 1. 1 求最大公约数的算法(更相减损术)中国古代数学中,未曾出现素数、 因数分解等概念,但是发明了求两整数的最大公约数的方法# # # 更相减损术: ! 可半者半之,不可半者,副置分母子之数, 以少减多, 更相减损,求其等也.以等数约之. ∀事实上此术中包含了三个步骤:第一步, ! 可半者半之∀, 即进行观察, 若分子、分母都是偶数,可先取其半;第二步, ! 不可半者, 副置分母、 子之数, 以少减多,更相减损,求其等也∀;第三步, ! 以等数约之∀.其中第二步! 以少减多, 更相减损∀是关键,又是典型的机械化程序.在中国古代数学中, 将最大公约数称作! 等∀.由于! 更相减损∀过程终可以在有限步骤内实现, 所以它是一种构造性的方法.若用现代语言翻译即为:第一步,任意给定两个正整数, 判断它们是否都是偶数. 若是,用2 约减,若不是, 执行第二步. 第二步, 以较大的数减去较小的数, 接着把所得的差与较小的数比较, 并以大数减小数.继续这个操作, 直到所得的数相等为止, 则这个数( 等数)或这个数与约简的数的乘积就是所求的最大公约数.下面运用 QBA SIC 语言来编写相应的程序( 见程序1) .25 2010 年 第49 卷 第2 期 数学通报程序 1INPUT! m, n= ∀ ; m, nIF m< n T HEN a= m m= n n= aEND IFk= 0WHILE m MOD 2= 0 AND n MOD2= 0 m= m/ 2 n= n/ 2 k= k+ 1WENDd= m- nWHILE d< > n IF d> n TH EN m= d ELSE m= n n= d END IF d = m- nWENDd= 2 ∃ k * dPRINT dEND程序 2INPUT A, BWHILE A < > B IF A> B T H EN A = A- B ELSE B= B - A END IFWENDPRINT BEND程序 3INPUT ! M, N (M> N )∀ ; M, NDOR= M- N IF R> N TH EN M= R ELSE M= N N= R END IFLOOP UNTIL R= 0PRINT MEND程序 4INPUT ! n= ∀ ; nINPUT! an= ∀; aINPUT! x= ∀ ; xv= ai= n- 1WH ILE i> = 0 PRINT ! i= ∀; i INPUT! ai= ∀ ; a v= v * x+ a i= i- 1WENDPRINT vEND程序 2和 3 是两个简化的参考程序, 是从不同的角度来实现更相减损的过程.! 更相减损术∀提供了一种求两数最大公约数的算法, 这是九章算术 的一个重要成就, 与古希腊欧几里得的几何原本 中用来求最大公约数的! 欧几里得算法∀, 即辗转相除法, 有异曲同工之妙. 欧几里得在几何原本 中针对这个问题引入了许多概念, 给出了冗长的逻辑证明. 尽管如此,他还是暗用了一条未加说明的公理, 即如果 a, b都被c 整除, 则a- mb也能被c 整除.中国古算采用的! 更相减损∀方法,实际上也暗用了一条未加说明的公理, 即若 a- b 可以被c 整除,则 a, b 都能被c 整除. 正如刘徽在九章算术注 中! 其所以相减者, 皆等数之重叠∀. 从形式上看! 更相减损术∀比! 辗转相除法∀更复杂, 循环次数要比辗转相除法多, 但对于计算机来说, 作乘除运算要比作加减运算慢得多, 因此更相减损术在计算机上更为好用.26 数学通报 2010 年 第49 卷 第2 期2. 1. 2 求一元 n 次多项式值的算法(秦九韶算法)秦九韶,南宋著名数学家,其学术思想充分体现在数书九章 这一光辉名著中,该著作不仅继承了九章算术 的传统模式, 对中算的固有特点发扬光大,而且完全符合宋元社会的历史背景, 是中世纪世界数学史上的光辉篇章. 书中记载了! 正负开方术∀、 ! 大衍求一术∀等著名算法.在数书九章 卷五第 17 个问题以! 尖田求积∀为例的算法程序中,可以看出秦九韶对于求一元n 次多项式f ( x ) = anxn+ an- 1 xn- 1+ %+ a1x+ a0 的值所提出的算法.秦九韶算法的特点在于通过反复计算n 个一次多项式,逐步得到原多项式的值. 在欧洲, 英国数学家霍纳( Horner ) 在1819 年才创造了类似的方法, 比秦九韶晚了572年.秦九韶算法把求f ( x ) = anxn+ an- 1 xn- 1+ %+ a1x + a0 的 值 转 化 为 求 递 推 公 式v0= anvk= vk- 1x+ an- k k= 1, 2, %, n中 v n 的值. 通过这种转化, 把运算的次数由至多( 1+ n) n2次乘法运算和n 次加法运算,减少为至多 n 次乘法运算和n 次加法运算,大大提高了运算效率.这种算法的QBASIC 语言程序如程序 4 所示.算法步骤是如下的五步: 第一步, 输入多项式次数 n、 最高次项的系数an 和x 的值;第二步,将 v 的值初始化为a v ,将i 的值初始化为n- 1; 第三步, 输入 i次项的系数ai ;第四步, v= v x+ ai , i= i- 1; 第五步,判断i 是否大于或等于 0, 若是, 则返回第三步,否则输出多项式的值v .2. 2 中国古代的几何学中国古代的几何学从田亩丈量等生产生活中的一些实际问题中产生, 并为生产生活服务. 基于传统实用价值观的影响, 中国古代的几何学并没有发展成为像欧氏几何那样严密的公理化演绎体系,所以中国古代几何学在整个数学史上的地位并不突出,但在许多几何问题的处理上也突出了算法化这一特色. 下面以! 割圆术∀为例作简要分析.中国古代数学家刘徽创立! 割圆术∀来求圆的面积及其相关问题. 刘徽! 瓤而裁之∀,即对与圆周合体的正多边形进行无穷小分割,分成无穷多个以正多边形每边为底、 圆心为顶点的小等腰三角形, 这无穷多个小三角形的面积之和就是圆的面积. 这样通过对直线形的无穷小分割, 然后求其极限状态的和的方式证明了圆的面积公式.刘徽的算法! 割之弥细,所失弥少,割之又割, 以至于不可割, 则与圆合体而无所失矣∀体现出程序化的过程, 可以看出圆内接正多边形逐渐逼近圆的变化趋势,并且刘徽依此开创了求圆周率精确近似值的方法, 将这种极限思想用于近似计算.其中包含有迭代过程和子程序,是一种典型的循环算法,充分体现了程序化的特点.中算家的几何学,并不追求逻辑论证的完美,而是着重于实际计算问题的解决, ! 析理以辞, 解体用图∀, 以建立解决问题的一般方法和一般原则. 但另一方面,这种几何学又是以面积、 体积、 勾股相似等为基本概念,以长方形面积算法、 长方形体积算法、 相似勾股形的性质为出发点的, 整个几何理论建立在! 出入相补原理∀等基本原理之上.例如,由勾股定理自然地引起平方根的计算问题,而求平方根和立方根的方法, 其步骤就是以出入相补原理为几何背景逐步索骥而得.这方面内容的介绍, 不仅可以丰富学生的算法知识,而且可以通过揭示蕴藏其中的数学背景和文化内涵, 激发学生学习算法的兴趣,体会算法在人类发展史中的作用.3 中国古代数学算法的教学价值3. 1 培养正确数学观的良好平台中国传统算法尽管与现代算法在具体形式上差别很大,但是重要的是形式后面的认识论发展线索可以为现代算法教学的体系、 教学层次提供依据.它的具体数学知识载体也是现代算法教学的重要源泉. 各种算法的创立就是创造性劳动的产物,即是创造思维的一种! 凝固∀和! 外化∀. 其次, 通过把一部分问题的求解归结为对于现成算法的! 机械应用∀, 这就为人们积极地去从事新的创造性劳动提供了更大的可能性. 从而算法化也就意味着由一个平台向更高点的跳跃.吴文俊先生的研究使中国传统数学的算法重见天日, 开拓了数学机械化的新领域, 吴先生提出! 数学教育的现代化就是机械化∀.他在研究中这样写道: 数学问题的机械化, 就要求在运算和证明过程中, 每前进一步之后,都有一个确定的必须选27 2010 年 第49 卷 第2 期 数学通报择的下一步, 这样沿着一条有规律的, 刻板的道路,一直达到结论.证明机械化的实质在于, 把通常数学证明中所固有的质的困难,转化为计算的量的复杂性.计算的量的复杂性在过去是人力不可能解决的,而计算机的出现解决了这种复杂性.吴先生的理论和实践已经表明,证明和计算是数学的两个方面, 且又是统一的,这在数学教育中具有重要意义.我们应当引导学生了解古人对问题思考的角度,学会站在巨人的肩膀上,比如按照中国古代开方术的思路就可以编造程序在现代计算机上实现开方.培养学生在学习数学知识的同时更多地关心所学知识的社会意义和历史意义,力图在面向未来的同时,通过同传统上的哲学、 历史和社会学的思想结合起来, 形成正确的数学观.算法教学就为此搭建了一个良好的平台, 并且承载丰富的历史底蕴.3. 2 渗透爱国主义教育的最佳契机与西方相比, 中算理论具有高度概括与精练的特征, 中算家经常将其依据的算理蕴涵于演算的步骤之中, 起到! 不言而喻, 不证自明∀的作用,可以认为中国传统数学乃是为建立那些在实际中有直接应用的数学方法而构造的最为简单, 精巧的理论建筑物. 因此, 中算理论可以说是一种! 纲目结构∀:目是组成理论之网的眼孔;纲是联结细目的总绳.以术为目, 以率为纲,即是依算法划分理论单元,而用基本的数量关系把它们连结成一个整体. 纲举目张,只有抓住贯串其中的基本理论与原理, 才能看清算法的来龙去脉.下面是吴文俊先生总结的! 关于算术代数部分发明创造的一张中外对照表∀.从算法教学管窥中国古代数学史中国 外国位值制十进位记 最迟在九章算术 成书时已十分成熟 印度最早在 6 世纪末才出现分数运算 周髀算经 中已有, 在九章算术 成书时已成熟 印度最早在 7 世纪才出现十进位小数 刘徽注中引入, 宋秦九韶 1247年时已通行 西欧 16 世纪时始有之, 印度无开平方、 立方 周髀算经 中已有开平方, 九章算术 中开平、 立方已成熟西方在 4 世纪末始有开平方, 但还无开立方, 印度最早在 7 世纪算术应用 九章算术 中有各种类型的应用问题 印度 7 世纪后的数学书中有某些与中国类似的问题与方法正负数 九章算术 中已成熟 印度最早见于 7 世纪,西欧至 16 世纪始有之联立一次方程组 九章算术 中已成熟 印度 7 世纪后开始有一些特殊类型的方程组, 西方迟至 16 世纪始有之二次方程 九章算术 中已隐含了求数值解法,三国时有一般解求法 印度在 7 世纪后,阿拉伯在 9世纪有一般解求法三次方程 唐初( 公元 7 世纪初) 有列方程法, 求数值解已成熟西欧至 16 世纪有一般解求法, 阿拉伯 10 世纪有几何解高次方程 宋时( 12 # 13 世纪)已有数值解法 西欧至 19 世纪初始有同样方法联立高次方程组与消元法 元时( 14 世纪初) 已有之 西欧甚迟,估计在 19 世纪28 数学通报 2010 年 第49 卷 第2 期3. 3 品位数学美学思想的美妙境界中国古代数学不但具有实用性特征, 还蕴涵着丰富的美学思想. 比如九章算术 中列方程的方式,相当于列出其增广矩阵,其消元过程相当于矩阵变换,而矩阵是数学美学方法中对称最典型的表现形式之一; 九章算术 中用几何方法巧妙地解决了很多代数问题, 这是数形结合的统一: 把数学问题改编成歌诀,以便于掌握和传授,这是文学艺术与数学的统一. 总之, 在算法教学中, 应努力把握和利用自己文化传统中的积极因素进行教学,这对数学教育的发展具有重要的意义.参考文献1 中学数学课程教材研究开发中心. 普通高中课程标准实验教材书(数学) [ M] . 北京: 人民教育出版社, 20072 中华人民共和国教育部. 普通高中数学课程标准(实验) [ M] .北京: 人民教育出版社, 20033 李文林. 数学史概论(第二版) [ M ] . 北京: 高等教育出版社, 20024 王鸿钧, 孙宏安. 中国古代数学思想方法[ M] . 南京: 江苏教育出版社, 19885 张维忠. 数学, 文化与数学课程[ M] . 上海: 上海教育出版社, 19996 吴文俊. 吴文俊论数学机械化[ M ] . 济南: 山东教育出版社, 19957 代钦. 儒家思想与中国传统数学[ M] . 北京: 商务印书馆, 20038 费泰生. 算法及其特征[ J] . 数学通讯, 2004, 79 张奠宙. 算法[ J] . 科学, 2003, 55( 2)10 李建华. 算法及其教育价值[ J ] . 数学教育学报, 2004, 311 李亚玲. 算法及其学习的意义[ J ] . 数学通报, 2004, 2(上接第23 页) 实验教师对课改实验进行探索、 总结、 反思、 调整, 推广比较成熟的经验,同时纠正实验过程中的偏颇与极端行为,教学过程逐步进入新的稳定阶段.教学过程逐步过渡到以问题为主线、 以活动为主线的! 无环节∀模式.( 2)受不同的教学理念影响, 教师角色、 学生角色、 教学目标、 教学过程关注点等方面, 在教学过程中有很大差异.教师角色 学生角色 教学目标 教学过程关注领导者(权威)接 受 者(被动)让 学 生 掌握 数 学 知识技能知识 引入, 讲 解本质, 巩固练习主导者(决定)观 察 者(协助)让 学 生 观摩 数 学 产生过程展示 过程, 注 重建构, 强化训练引导者(组织)参 与 者(主动)让 学 生 参与 探 究 数学 生 成 过程问题 情境, 提 出问题, 学生活动( 3) 2004 年高中数学课程改革后, 课堂教学发生一定的变化,广泛地进行! 创设情境∀! 提出问题∀!引导学生探究探索∀, 出现了以! 问题主线∀、! 活动主线∀为主的课堂, 出现了! 问题情境学生活动建立数学运用数学同顾反思∀的整体课堂构思.这些改变对于揭示数学的内在本质, 发展学生的思维能力起到积极的作用.( 4) 由于受多种因素制约(特别是高考) ,与初中相比, 本次课改后高中数学课堂教学变化幅度不大,近半数的课堂教学模式仍然以五环节为主.对于课改倡导的教学理念, 只是渗透在传统的教学模式中,目前高中数学课堂教学改革的力度、 深度与课改的预期目标还有一定的距离.我们看到2008 年的赛课教案的创新、 探索力度, 远没有1990 年的名师授课录 大, 那时还没有明确提出课改理念,但他们却进行积极的探索, 关注学生主体. 而今天,课改的理念已经系统培训 5 年, 许多教师仍停留在形式层面,未能变成自觉的行为.参考文献1 李善良. 我国数学教学设计的探索与评析# # # 兼及十年初中数学教师说课评比活动[ J ] . 中国数学教育(初中版) , 2007, 92 编委会. 名师授课录(中学数学高中版) [ M] , 上海教育出版社, 19913 2000 年全国首届高中青年数学教师优秀课观摩与评比的教案(会议资料)4 2008 年全国第四届高中青年数学教师优秀课观摩与评比的教案(会议资料)5 李善良. 关于数学教学中问题的设计[ J] . 高中数学教与学,2008, 129 2010 年 第49 卷 第2 期 数学通报

数学史上出现的三次数学危机,与其说是“数学的危机”,不如说是“数学哲学的危机”.下面我给你分享三次数学危机论文,欢迎阅读。

摘要:本文主要通过数学史上的三次危机的产生与消除,针对它们的本质浅谈自己的认识,实际导致这三次危机原因在与人的认识。第一次数学危机是人们对万物皆数的误解,随着无理数的发现,把第一次数学危机度过了。第二次数学危机是人们对无穷小的误解,微积分的出现产生了一种新的方法,即分析方法,分析方法是算和证的结合。是通过无穷趋近而确定某一结果。罗素悖论的发现,给数学界以极大的震动,导致了数学史上的第三次危机。为了探求其根源和解决难题的途径,在数学界逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。

关键词:危机;万物皆数;无穷小;分析方法;集合

一、前言

数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。本文回顾了数学上三次危机的产生与发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。

二、数学史上的第一次“危机”

第一次数学危机是发生在公元前580-568年之间的古希腊。那时的数学正值昌盛,忒被是以毕达哥拉斯为代表的毕氏学派对数的认识进行了研究,他们认为“万物旨数”。所谓数就是指整数,他们确定数的目的是企图通过揭示数的奥秘来探索宇宙的永恒真理,信条是:宇宙间的一切现象都能归结为整数或整数之比,即世界上只存在整数与分数,除此之外他们不认识也不承认别的数。在那个时期。上述思想是绝对权威、是“真理”。但是不久人们发现即使边长为1的正方形对角线不是可比数。这样毕达哥拉斯“万物皆数”是不成立的,绝对的权威受到了严重的挑战:一方面证明单位正方形对角线的长不是整数分数,按照他们的观点,这种长度不是数!另一方面,他们不承认自己的观点有问题,这就陷入了极大的矛盾之中,这是第一次数学危机。

三、第二次数学危机

第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到很多年后。牛顿和莱布尼兹开辟了新的天地――微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。

四、数学史上的第三次危机

1.悖论的产生及意义

(1)什么是悖论

悖论来自希腊语,意思是“多想一想”。这个次的意义比较丰富,它包括一切与人的知觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论是自相矛盾的命题,即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出原命题成立。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,他们震撼了逻辑学和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。

(2)悖论产生的意义

疏忽学悖论是在数学学科理论体系发展到相当高的阶段才出现的。它是对数学学科理论体系可能存在的内在矛盾的揭示。虽然暂时引起人们的思想混乱,对正常的科学研究可能会形成一定的冲击,但它对于揭露原有理论体系中的逻辑矛盾,对于揭露原有理论的缺陷或局限性,对于这一步深入理解,任何和评价原有科学理念,对于原有的科学概念或理论的进一步充实完善和促进科学管理的产生都有相当重要的意义,同时也为科学研究提供新的课题和研究方向。

2.第三次数学危机的产生与解决

(1)第三次数学危机的产生

第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。

罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有RR。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则,否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。

(2)第三次数学危机的解决

罗素的悖论产生后,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓zF公理系统),这场数学危机到此缓和下来。

现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集,在经过一系列一元和二元运算而得来的。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。

三次数学危机是我们数学史发展中的一个奠基,他为我们日后更详细、深入的研究数学做了很好的铺垫,我我想以后也许会有第四次数学危机,但数学家也会把它化解掉,只有出现危机,才能使我们的数学研究达到更高的境界。

数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的教育价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。

一、集合论的诞生

一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(,1845-1918)在给戴德金(JuliusWilhelmRichardDedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇文章标志着集合论的诞生。

二、集合论成为现代数学大厦的基础

康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。

集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(JulesHenriPoincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊!

三、罗素(BertrandRussell,1872-1970)悖论导致第三次数学危机

1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。

罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。

罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。

四、消除悖论,化解危机

罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。

在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,ErnstFriedrichFerdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。

解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔()和斯科伦()的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。

五、危机的启示

从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。

矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。”

参考文献:

1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社

2.胡作玄,《第三次数学危机》

中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,以下是我搜集的一篇关于三次数学危机探讨的论文范文,供大家阅读参考,

从我国数学的发展看三次数学危机。

1 引言

数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。

2 三次数学危机

第一次数学危机发生在古希腊,源于毕达哥拉斯的以数为基础的宇宙模型和数是可公度的信条。毕达哥拉斯认为,事物的本质是由数构成的,并以数为基础,构造了宇宙模型[1].在毕达哥拉斯看来,数就是整数或整数之比。但这一信条后来遇到了困难。因为有些数是不可公度的。这一矛盾,导致了毕达哥拉斯关于数的信条的破产,并进一步导致了毕达哥拉斯以数为基础的宇宙模型的破产。这在当时产生的震动太大了,因此历史上称之为第一次数学危机。

17、18世纪关于微积分发生的激烈的争论,被称为第二次数学危机[2].在17世纪晚期,形成了微积分学。牛顿和莱布尼茨被公认为微积分的奠基者。他们的功绩主要在于把各种有关问题的解法统一成微积分,有明确的计算步骤,微分法和积分法互为逆运算[3].由于新诞生的微积分方法中隐含着逻辑推理上的严重缺陷,导致了无穷小悖论[4].当时牛顿等人不能自圆其说,而且,其后一百年间的数学家也未能有力的回答贝克莱的质问,由此而引起数学界甚至哲学界长达一个半世纪的争论,造成第二次数学危机.

19世纪末分析严格化的最高成就--集合论,似乎给数学家们带来了一劳永逸摆脱基础危机的希望。庞加莱甚至在1900年巴黎国际数学大会上宣称:现在我们可以说,完全的严格性已经达到了![5]但就在第二年,一场摇撼整个数学大厦基础的暴风雨来临了,英国数学家罗素以一个简单明了的集合论悖论打破了人们的上述希望,引起了关于数学基础的新争论。他把关于集合论的一个着名悖论用故事通俗地表述出来。

它和其它一些集合论悖论一样,对数学发展的影响是十分深刻、巨大的,甚至可以说是动摇了整个数学的基础,并导致了第三次数学危机。

3 从我国数学的发展看三次数学危机

中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,这是我们国家社会主义建设的需要,也是我们党和国家非常重视科学技术的结果,

数学论文《从我国数学的发展看三次数学危机。中国科学院于1950年开始筹建数学研究所,1952年正式成立。全国各高等院校普遍设置了数学系,《数学学报》和《数学通报》复刊。1958年~1960年的大跃进时期,在极左思潮影响下,数学基础理论研究受到很大冲击,积极的一面是明确了向世界先进水平看齐的奋斗目标,也重视理论联系实际,线性规划得到大力推广并创造了切实可行的图上作业法,运筹学由此在我国发展起来。在发展我国高科技过程中,例如1965年9月17日,我国科学工作者在世界上首次用人工方法合成结晶牛胰岛素。

我们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。

4 总结

综上所述三次数学危机对数学的发展影响是巨大的。第一次数学危机中产生的欧几里德几何对树立天文学的发展起了很大的推动作用,第一次数学危机使古希腊数学基础发生了根本性的变化,使古希腊的数学基础转向几何。第二次数学危机中波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西指出无穷小量和无穷大量都是变量,并且定义了导数和积分;狄利克雷给出了函数的现代定义;美国数理逻辑学家罗宾逊又利用无穷小量引进超实数的概念,建立了非标准分析,同样也能精确的描述微积分,解决无穷小悖论。第三次数学危机建立了实数理论,且在此基础上建立了极限的基本定理,使数学分析建立在实数理论的严格基础之上,康托尔创立了集合论。而且还产生了公理化方法论和数理逻辑等一批新颖学科。我国以至世界各国的数学发展也都依赖于三次数学危机中产生的数学的新内容。整个数学的发展是一个层层深入、层层递进的过程。

参考文献:

[1]人民教育出版社中学数学室着.现代数学概论[M].北京:人民教育出版社,2003.

[2]张光远.现代化知识文库:二十世纪数学史话[M].知识出版社,

[3]袁小明.数学史话[M].山东教育出版社,1985.

[4]于寅.近代数学基础[M].华中理工大学出版社,.

相关百科

热门百科

首页
发表服务