首页

> 论文发表知识库

首页 论文发表知识库 问题

煤制甲醇气化工艺毕业论文

发布时间:

煤制甲醇气化工艺毕业论文

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

1.要有煤制甲醇流程配置,包括煤气化方式方法的选择,煤制气后的气体净化,甲醇合成、精馏等工艺过程的配置;2.相应的工艺计算和设备选型;3.工艺流程图、物料和热量平衡图的绘制;4.技术经济分析等。另外工艺设计不同的阶段有不同的深度要求,要注意。

煤的工业分析也称煤的实用分析、近似分析或技术分析,包括煤的外在水分、内在水分、全水分、分析煤样水分、灰分、挥发分、固定碳、全硫和各种硫及发热量等项目。作为校正挥发分、发热量和元素成分碳含量等需用的,碳酸盐中二氧化碳含量也属工业分析范围。一般把煤的水分、灰分、挥发分和固定碳称作煤的半工业分析,如包括硫分和发热量等分析项目,就称作煤的全工业分析。煤的工业分析是煤质分析中最基本的也是最重要的分析项目,因此凡是以煤为原料或燃料的工业部门都需要进行煤的工业分析。煤质分析化验分为两类,一类是测定煤所固有的成分如碳、氢、氧、氮等,称为元素分析,其测定结果是作为对煤进行科学分类的主要依据,在生产上,是计算发热量、热平衡、物料平衡的依据;另一类是在人为规定的条件下,(鹤壁市华诺电子科技有限公司)根据技术需要测定煤经转化生成的物质或呈现的性质如灰分、挥发分等,称作技术分, 根据水分、灰分、挥发分和固定碳含量四项基本测定结果,对煤中有机质、无机质的含量、性质等有了初步了解,并可初步判断煤的种类、加工利用效果及工业用途等。煤的工业分析是煤质分析中最基本的也是最重要的分析项目。

煤制甲醇工艺设计论文答辩

煤制甲醇工艺气化 a)煤浆制备由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。b)气化在本工段,煤浆与氧进行部分氧化反应制得粗合成气。煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应:CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2SCO+H2O—→H2+CO2反应在(G)、1350~1400℃下进行。气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。c)灰水处理本工段将气化来的黑水进行渣水分离,处理后的水循环使用。从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环使用。2)变换在本工段将气体中的CO部分变换成H2。本工段的化学反应为变换反应,以下列方程式表示:CO+H2O—→H2+CO2由气化碳洗塔来的粗水煤气经气液分离器分离掉气体夹带的水分后,进入气体过滤器除去杂质,然后分成两股,一部分(约为54%)进入原料气预热器与变换气换热至305℃左右进入变换炉,与自身携带的水蒸汽在耐硫变换催化剂作用下进行变换反应,出变换炉的高温气体经蒸汽过热器与甲醇合成及变换副产的中压蒸汽换热、过热中压蒸汽,自身温度降低后在原料气预热器与进变换的粗水煤气换热,温度约335℃进入中压蒸汽发生器,副产蒸汽,温度降至270℃之后,进入低压蒸汽发生器温度降至180℃,然后进入脱盐水加热器、水冷却器最终冷却到40℃进入低温甲醇洗1#吸收系统。另一部分未变换的粗水煤气,进入低压蒸汽发生器使温度降至180℃,副产的低压蒸汽,然后进入脱盐水加热器回收热量,最后在水冷却器用水冷却至40℃,送入低温甲醇洗2#吸收系统。气液分离器分离出来的高温工艺冷凝液送气化工段碳洗塔。气液分离器分离出来的低温冷凝液经汽提塔用高压闪蒸气和中压蒸汽汽提出溶解在水中的CO2、H2S、NH3后送洗涤塔给料罐回收利用;汽提产生的酸性气体送往火炬。3)低温甲醇洗本工段采用低温甲醇洗工艺脱除变换气中CO2、全部硫化物、其它杂质和H2O。a)吸收系统本装置拟采用两套吸收系统,分别处理变换气和未变换气,经过甲醇吸收净化后的变换气和未变换气混合,作为甲醇合成的新鲜气。由变换来的变换气进入原料气一级冷却器、氨冷器、进入分离器,出分离器的变换气与循环高压闪蒸气混合后,喷入少量甲醇,以防止变换气中水蒸气冷却后结冰,然后进入原料气二级冷却器冷却至-20℃,进入变换气甲醇吸收塔,依次脱除H2S+COS、CO2后在-49℃出吸收塔,然后经二级原料气冷却器,一级原料气冷却器复热后去甲醇合成单元。净化气中CO2含量约,H2S+COS<。来自甲醇再生塔经冷却的甲醇-49℃从甲醇吸收塔顶进入,吸收塔上段为CO2吸收段,甲醇液自上而下与气体逆流接触,脱除气体中CO2,CO2的指标由甲醇循环量来控制。中间二次引出甲醇液用氨冷器冷却以降低由于溶解热造成的温升。在吸收塔下段,引出的甲醇液大部分进入高压闪蒸器;另一部分溶液经氨冷器冷却后回流进入H2S吸收段以吸收变换气中的H2S和COS,自塔底出来的含硫富液进入H2S浓缩塔。为减少H2和CO损失,从高压闪蒸槽闪蒸出的气体加压后送至变换气二级冷却器前与变换气混合,以回收H2和CO。未变换气的吸收流程同变换气的吸收流程。b)溶液再生系统未变换气和变换气溶液再生系统共用一套装置。从高压闪蒸器上部和底部分别产生的无硫甲醇富液和含硫甲醇富液进入H2S浓缩塔,进行闪蒸汽提。甲醇富液采用低压氮气汽提。高压闪蒸器上部的无硫甲醇富液不含H2S从塔上部进入,在塔顶部降压膨胀。高压闪蒸器下部的含硫甲醇富液从塔中部进入,塔底加入的氮气将CO2汽提出塔顶,然后经气提氮气冷却器回收冷量后,作为尾气高点放空。富H2S甲醇液自H2S浓缩塔底出来后进热再生塔给料泵加压,甲醇贫液冷却器换热升温进甲醇再生塔顶部。甲醇中残存的CO2以及溶解的H2S由再沸器提供的热量进行热再生,混和气出塔顶经多级冷却分离,甲醇一级冷凝液回流,二级冷凝液经换热进入H2S浓缩塔底部。分离出的酸性气体去硫回收装置。从原料气分离器和甲醇再生塔底出来的甲醇水溶液经泵加压后甲醇水分离器,通过蒸馏分离甲醇和水。甲醇水分离器由再沸器提供。塔顶出来的气体送到甲醇再生塔中部。塔底出来的甲醇含量小于100PPm的废水送水煤浆制备工序或去全厂污水处理系统。c)氨压缩制冷从净化各制冷点蒸发后的-33℃气氨气体进入氨液分离器,将气体中的液粒分离出来后进入离心式制冷压缩机一段进口压缩至冷凝温度对应的冷凝压力,然后进入氨冷凝器。气氨通过对冷却水放热冷凝成液体后,靠重力排入液氨贮槽。液氨通过分配器送往各制冷设备。4)甲醇合成及精馏a)甲醇合成经甲醇洗脱硫脱碳净化后的产生合成气压力约为,与甲醇合成循环气混合,经甲醇合成循环气压缩机增压至,然后进入冷管式反应器(气冷反应器)冷管预热到235℃,进入管壳式反应器(水冷反应器)进行甲醇合成,CO、CO2和H2在Cu-Zn催化剂作用下,合成粗甲醇,出管壳式反应器的反应气温度约为240℃,然后进入气冷反应器壳侧继续进行甲醇合成反应,同时预热冷管内的工艺气体,气冷反应器壳侧气体出口温度为250℃,再经低压蒸汽发生器,锅炉给水加热器、空气冷却器、水冷器冷却后到40℃,进入甲醇分离器,从分离器上部出来的未反应气体进入循环气压缩机压缩,返回到甲醇合成回路。一部分循环气作为弛放气排出系统以调节合成循环圈内的惰性气体含量,合成弛放气送至膜回收装置,回收氢气,产生的富氢气经压缩机压缩后作为甲醇合成原料气;膜回收尾气送至甲醇蒸汽加热炉过热甲醇合成反应器副产的中压饱和蒸汽(),将中压蒸汽过热到400℃。粗甲醇从甲醇分离器底部排出,经甲醇膨胀槽减压释放出溶解气后送往甲醇精馏工段。系统弛放气及甲醇膨胀槽产生的膨胀气混合送往工厂锅炉燃料系统。甲醇合成水冷反应器副产中压蒸汽经变换过热后送工厂中压蒸汽管网。b)甲醇精馏从甲醇合成膨胀槽来的粗甲醇进入精馏系统。精馏系统由预精馏塔、加压塔、常压塔组成。预精馏塔塔底出来的富甲醇液经加压至、80℃,进入加压塔下部,加压塔塔顶气体经冷凝后,一部分作为回流,一部分作为产品甲醇送入贮存系统。由加压塔底出来的甲醇溶液自流入常压塔下塔进一步蒸馏,常压塔顶出来的回流液一部分回流,一部分作为精甲醇经泵送入贮存系统。常压塔底的含甲醇的废水送入磨煤工段作为磨煤用水。在常压塔下部设有侧线采出,采出甲醇、乙醇和水的混合物,由汽提塔进料泵送入汽提塔,汽提塔塔顶液体产品部分回流,其余部分作为产品送至精甲醇中间槽或送至粗甲醇贮槽。汽提塔下部设有侧线采出,采出部分异丁基油和少量乙醇,混合进入异丁基油贮槽。汽提塔塔底排出的废水,含少量甲醇,进入沉淀池,分离出杂醇和水,废水由废水泵送至废水处理装置。c)中间罐区甲醇精馏工序临时停车时,甲醇合成工序生产的粗甲醇,进入粗甲醇贮罐中贮存。甲醇精馏工序恢复生产时,粗甲醇经粗甲醇泵升压后送往甲醇精馏工序。甲醇精馏工序生产的精甲醇,进入甲醇计量罐中。经检验合格的精甲醇用精甲醇泵升压送往成品罐区甲醇贮罐中贮存待售。5)空分装置本装置工艺为分子筛净化空气、空气增压、氧气和氮气内压缩流程,带中压空气增压透平膨胀机,采用规整填料分馏塔,全精馏制氩工艺。原料空气自吸入口吸入,经自洁式空气过滤器除去灰尘及其它机械杂质。过滤后的空气进入离心式空压机经压缩机压缩到约(A),然后进入空气冷却塔冷却。冷却水为经水冷塔冷却后的水。空气自下而上穿过空气冷却塔,在冷却的同时,又得到清洗。经空冷塔冷却后的空气进入切换使用的分子筛纯化器空气中的二氧化碳、碳氢化合物和水分被吸附。分子筛纯化器为两只切换使用,其中一只工作时,另一只再生。纯化器的切换周期约为4小时,定时自动切换。净化后的空气抽出一小部分,作为仪表空气和工厂空气。其余空气分成两股,一股直接进入低压板式换热器,从换热器底部抽出后进入下塔。另外一股进入空气增压机。经过空气增压机的中压空气分成两部分,一部分进入高压板式换热器,冷却后进入低温膨胀机,膨胀后空气进入下塔精馏。另一部分中压空气经过空气增压机二段压缩为高压空气,进入高压板式换热器,冷却后经节流阀节流后进入下塔。空气经下塔初步精馏后,获得富氧液空、低纯液氮、低压氮气,其中富氧液空和低纯液氮经过冷器过冷后节流进入上塔。经上塔进一步精馏后,在上塔底部获得液氧,并经液氧泵压缩后进入高压板式换热器,复热后出冷箱,进入氧气管网。在下塔顶部抽取的低压氮气,进入高压板式换热器,复热后送至全厂低压氮气管网。从上塔上部引出污氮气经过冷器、低压板式换热器和高压板式换热器复热出冷箱后分成两部分:一部分进入分子筛系统的蒸汽加热器,作为分子筛再生气体,其余污氮气去水冷塔。从上塔中部抽取一定量的氩馏份送入粗氩塔,粗氩塔在结构上分为两段,第二段氩塔底部的回流液经液体泵送入第一段顶部作为回流液,经粗氩塔精馏得到,2ppmO2的粗氩,送入精氩塔中部,经精氩塔精馏在精氩塔底部得到纯度为的**氩作为产品抽出送入进贮槽。

摘 要:现代化的能源应用更倾向于清洁、无污染的方向,虽然乙醇作为原料消耗不可避免的仍旧会对自然资源出现一定的侵占和影响,但作为一种消耗向清洁的能源类型来说具有更高的优势。因此我们提出了如何提升煤制乙醇产出的思考,煤制乙醇能够在较大程度上满足能源应用的需求,并且具有更高的可开发性。所以,本文提出了从煤制乙醇工艺完善的角度思考,提升其产量、质量和安全性的分析。 关键词:煤制乙醇 生产工艺 设备 方案 中图分类号:TQ536 文献标识码:A 文章编号:1672-3791(2012)05(a)-0106-01 1 煤制甲醇的化学生成原理 煤制甲醇的转化过程是通过一氧化碳来进行过渡的,分为两个阶段:一是一氧化碳生成;二是甲醇合成。 一氧化碳生成是通过煤高温气化来实现的,煤在高温常压下和气化剂进行反应,从而生成一氧化碳、氢气、二氧化碳这三类气化产物,气化剂通常是水蒸气和空气混合气。经过高温气化反应促使煤的气化,最终产物中的一氧化碳和氢气都属于甲醇合成必须的原料,其中的二氧化碳在高温气化反应中能够部分的与碳进行再次反应而生产一氧化碳。当然在生产过程中产生的二氧化碳属于废气,但可以利用黑铁(四氧化三铁)作为催化剂,加入氢气进行高温催化循环反映,该反映可以再次将部分二氧化碳转化为生产所需的一氧化碳,并最终通过高压水吸收法去除残余的二氧化碳。 第二阶段是甲醇合成阶段,甲醇合成反映是应用了一样乎他和氢气的可逆化学反应来进行的,在实际大批量生产中,需要通过温度、压力和催化剂控制来实现最大化(将副反应程度将至最低)的生产。合成甲醇的反应温度低,所需压力低,能耗也低,但温度低,反应速度变慢,所以催化剂是关键因素。合成甲醇原料气H2/CO的化学计量比是2∶1。一氧化碳含量过高对温度控制有害,且能引起羰基铁在催化剂上的积聚,使催化剂失掉活性,故采用氢气过量过量,H2/CO摩尔比为~较好。 2 煤制甲醇的常规工艺流程 常规的煤制甲醇工艺流程主要分为三大阶段,分别为气化、转化和甲醇洗三个阶段,其主要流程如下。 首先是气化阶段。气化分为以下步骤:(1)煤浆生产,煤浆生产时确保气化反映水平的重要准备工作,煤浆的植被需要将焦煤原料磨细,植被成越65%的煤浆,磨煤通常采用湿法,可防止粉尘飞扬,环境好;(2)气化,气化阶段的反应时对煤浆进行简单粗制氧化反应获得粗制合成气的过程中,该过程中的温度应当控制在1350°C~1400°C,气压控制在(G),该企划反映属于书剑完成,反应生成的热气体和熔渣经过激冷水浴后,最终气体进入反映变化流程,熔渣被分离进行灰水处理;(3)灰水处理,该工作是对气化阶段中产生熔渣进行二次处理的过程,需要完成渣水分离、熔渣闪蒸过滤这亮相工作,分离后的水用作循环使用,闪蒸制作后过程中的热气体进回收热量用于后续生产,其他溶质进行出厂的再处理。 其次是转化阶段。该阶段是煤制甲醇原理中的第二步骤,由气化碳洗塔来的粗水煤气经气液分离器分离掉气体夹带的水分后,进入气体过滤器除去杂质,然后分成两股,一部分(约为54%)进入原料气预热器与变换气换热至305℃左右进入变换炉,与自身携带的水蒸汽在耐硫变换催化剂作用下进行变换反应,出变换炉的高温气体经蒸汽过热器与甲醇合成及变换副产的中压蒸汽换热、过热中压蒸汽,自身温度降低后在原料气预热器与进变换的粗水煤气换热,温度约335℃进入中压蒸汽发生器,副产蒸汽,温度降至270℃之后,进入低压蒸汽发生器温度降至180℃,然后进入脱盐水加热器、水冷却器最终冷却到40℃进入低温甲醇洗吸收系统。 最后是甲醇洗阶段。该阶段是完成能源应用型甲醇生产的必要阶段,通过吸收系统来处理转化阶段反映后气体中的二氧化碳、硫化物、水蒸汽和其他微量杂质,该阶段主要包括以下系统:(1)吸收系统,吸收系统是该阶段生产中最为核心的系统,完成非相关性气体和杂志的吸收,一般生产中会采用两套系统来分别处理变化气和为变化气;(2)溶液再生系统,该系统完成非相关性气体和杂质的最终处理,从高压闪蒸器上部和底部分别产生的无硫甲醇富液和含硫甲醇富液进入H2S浓缩塔,进行闪蒸汽提,甲醇富液采用低压氮气汽提,高压闪蒸器下部的含硫甲醇富液从塔中部进入,塔底加入的氮气将CO2汽提出塔顶,经气提氮气冷却器回收冷量后,作为尾气高点放空,富H2S甲醇液自H2S浓缩塔底出来后进热再生塔给料泵加压,甲醇贫液冷却器换热升温进甲醇再生塔顶部,分离出的酸性气体去硫回收装置,最终的废水进入污水系统进行处理;(3)甲醇最终合成。 3 煤制甲醇常规工艺的经济性和安全性考量 首先是生产流程的经济性问题,在不考虑目前甲醇最为能源引用的市场状态,仅考虑该类生产流程的经济性来说,可以从原料应用、生产过程能源的纯投入、设备成本投入、废物废料再处理成本投入几个角度来进行说明:(1)原料应用方面,能源用甲醇生产已经排除了传统的乙炔水合法和发酵法,利用煤作为原料进行规模化生产更具可行性,现阶段用煤作为原料进行甲醇生产是最经济、最可靠的一种方式;(2)生产能源的纯投入,目前煤制甲醇的研究已经逐步成熟,生产过程中对于高温气体余热的再利用已经相当完善,而且生产过程中的加高温加热过程所需的热量相对于煤炭其他类型的生产消耗更少,切废弃物的产出也更少;(3)设备成本投入,目前国内煤制甲醇技术已经毋庸置疑,技术性投资基本不属于需要考虑的问题,本身生产过程中的能源需求又很低,整体的设备运行和维护的成本相当低廉;(4)废物废料处理成本,从上述的工艺流程介绍中可以了解到,煤制甲醇生产过程中的废料是需要进行二次处理,其中部分用于二次生产,部分用于污染处理,相对于煤炭能源的直接利用来说,废料处理上的成本几乎可以忽略。 其次是安全性的考虑,煤制甲醇的安全性考虑主要在于环境安全因素方面,相对于类型相似的煤制天然气来说,煤制甲醇和煤制天然气中较为突出的煤制烯烃来说,生产过程中的副产水消耗较少、废气产出较少,无论从自然资源占用还是污染物产出方面,煤制甲醇都有更高的优势。 参考文献 [1] 曾纪龙.大型煤制甲醇的气化与合成工艺选择[J].化工技术经济,2005(7). [2] 李永生.煤制甲醇项目的可行性分析[J].同煤科技,2005(1). [3] 陈银生,应于舟.采用AspenPlus软件对德士古煤气合成甲醇工艺中CO变换工段的模拟[J].皮革化工,2005(6). [4] 李永生.煤制甲醇项目的可行性分析[J].同煤科技,2005(1). [5] 曾纪龙.大型煤制甲醇的气化与合成工艺选择[J].化工技术经济,2005(7).

煤制甲醇生产工艺的研究毕业论文

1、根据国情,从节能减排说起。 大家都清楚,我国的资源现状是:福煤贫油。如何充分利用资源优势,取得最大效益,是国家能源部门一直努力的问题。2、 煤制烯烃项目是国家新能源的发展方向。 传统上我国一直用石脑油催化裂解制烯烃,生产主要集中在中石化、中石油两大集团。如今,国内石油制烯烃已经不能满足需要,绝大部分烯烃直接来源于进口。为了改变现状,考虑新的技术支持和出路。利用煤质甲醇,搭建起煤和烯烃的桥梁。 甲醇可以作为烯烃的原料;而在我国,煤制甲醇在所制造甲醇方法中占有很大的比例(65%以上)。据统计, 2010年甲醇制烯烃项目,甲醇消费量仅有30万吨。意味着仅生产了10万吨乙烯。截止到2011年10月份,国内仅有三套烯烃装置已投产,分别是神华包头60万吨/年、神华宁煤52万吨/年和中原石化20万吨/年。后期计划建设的烯烃项目产能预计将会突破1800万吨。这是一个发展迅速、前景非常宏大的项目。3、甲醇制烯烃项目之所以以前没发展起来,本人想主要从项目投入考虑。一套100万吨装置,大概需要投入2300亿,成本高不是一般的企业能够承受。 在这里立足甲醇行业,仅仅为楼主展示一个课题的研究意义和目的。楼主如果论文写作完毕,希望有幸拜读一下。本人邮箱

煤制甲醇工艺气化 a)煤浆制备由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。b)气化在本工段,煤浆与氧进行部分氧化反应制得粗合成气。煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应:CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2SCO+H2O—→H2+CO2反应在(G)、1350~1400℃下进行。气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。c)灰水处理本工段将气化来的黑水进行渣水分离,处理后的水循环使用。从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环使用。2)变换在本工段将气体中的CO部分变换成H2。本工段的化学反应为变换反应,以下列方程式表示:CO+H2O—→H2+CO2由气化碳洗塔来的粗水煤气经气液分离器分离掉气体夹带的水分后,进入气体过滤器除去杂质,然后分成两股,一部分(约为54%)进入原料气预热器与变换气换热至305℃左右进入变换炉,与自身携带的水蒸汽在耐硫变换催化剂作用下进行变换反应,出变换炉的高温气体经蒸汽过热器与甲醇合成及变换副产的中压蒸汽换热、过热中压蒸汽,自身温度降低后在原料气预热器与进变换的粗水煤气换热,温度约335℃进入中压蒸汽发生器,副产蒸汽,温度降至270℃之后,进入低压蒸汽发生器温度降至180℃,然后进入脱盐水加热器、水冷却器最终冷却到40℃进入低温甲醇洗1#吸收系统。另一部分未变换的粗水煤气,进入低压蒸汽发生器使温度降至180℃,副产的低压蒸汽,然后进入脱盐水加热器回收热量,最后在水冷却器用水冷却至40℃,送入低温甲醇洗2#吸收系统。气液分离器分离出来的高温工艺冷凝液送气化工段碳洗塔。气液分离器分离出来的低温冷凝液经汽提塔用高压闪蒸气和中压蒸汽汽提出溶解在水中的CO2、H2S、NH3后送洗涤塔给料罐回收利用;汽提产生的酸性气体送往火炬。3)低温甲醇洗本工段采用低温甲醇洗工艺脱除变换气中CO2、全部硫化物、其它杂质和H2O。a)吸收系统本装置拟采用两套吸收系统,分别处理变换气和未变换气,经过甲醇吸收净化后的变换气和未变换气混合,作为甲醇合成的新鲜气。由变换来的变换气进入原料气一级冷却器、氨冷器、进入分离器,出分离器的变换气与循环高压闪蒸气混合后,喷入少量甲醇,以防止变换气中水蒸气冷却后结冰,然后进入原料气二级冷却器冷却至-20℃,进入变换气甲醇吸收塔,依次脱除H2S+COS、CO2后在-49℃出吸收塔,然后经二级原料气冷却器,一级原料气冷却器复热后去甲醇合成单元。净化气中CO2含量约,H2S+COS<。来自甲醇再生塔经冷却的甲醇-49℃从甲醇吸收塔顶进入,吸收塔上段为CO2吸收段,甲醇液自上而下与气体逆流接触,脱除气体中CO2,CO2的指标由甲醇循环量来控制。中间二次引出甲醇液用氨冷器冷却以降低由于溶解热造成的温升。在吸收塔下段,引出的甲醇液大部分进入高压闪蒸器;另一部分溶液经氨冷器冷却后回流进入H2S吸收段以吸收变换气中的H2S和COS,自塔底出来的含硫富液进入H2S浓缩塔。为减少H2和CO损失,从高压闪蒸槽闪蒸出的气体加压后送至变换气二级冷却器前与变换气混合,以回收H2和CO。未变换气的吸收流程同变换气的吸收流程。b)溶液再生系统未变换气和变换气溶液再生系统共用一套装置。从高压闪蒸器上部和底部分别产生的无硫甲醇富液和含硫甲醇富液进入H2S浓缩塔,进行闪蒸汽提。甲醇富液采用低压氮气汽提。高压闪蒸器上部的无硫甲醇富液不含H2S从塔上部进入,在塔顶部降压膨胀。高压闪蒸器下部的含硫甲醇富液从塔中部进入,塔底加入的氮气将CO2汽提出塔顶,然后经气提氮气冷却器回收冷量后,作为尾气高点放空。富H2S甲醇液自H2S浓缩塔底出来后进热再生塔给料泵加压,甲醇贫液冷却器换热升温进甲醇再生塔顶部。甲醇中残存的CO2以及溶解的H2S由再沸器提供的热量进行热再生,混和气出塔顶经多级冷却分离,甲醇一级冷凝液回流,二级冷凝液经换热进入H2S浓缩塔底部。分离出的酸性气体去硫回收装置。从原料气分离器和甲醇再生塔底出来的甲醇水溶液经泵加压后甲醇水分离器,通过蒸馏分离甲醇和水。甲醇水分离器由再沸器提供。塔顶出来的气体送到甲醇再生塔中部。塔底出来的甲醇含量小于100PPm的废水送水煤浆制备工序或去全厂污水处理系统。c)氨压缩制冷从净化各制冷点蒸发后的-33℃气氨气体进入氨液分离器,将气体中的液粒分离出来后进入离心式制冷压缩机一段进口压缩至冷凝温度对应的冷凝压力,然后进入氨冷凝器。气氨通过对冷却水放热冷凝成液体后,靠重力排入液氨贮槽。液氨通过分配器送往各制冷设备。4)甲醇合成及精馏a)甲醇合成经甲醇洗脱硫脱碳净化后的产生合成气压力约为,与甲醇合成循环气混合,经甲醇合成循环气压缩机增压至,然后进入冷管式反应器(气冷反应器)冷管预热到235℃,进入管壳式反应器(水冷反应器)进行甲醇合成,CO、CO2和H2在Cu-Zn催化剂作用下,合成粗甲醇,出管壳式反应器的反应气温度约为240℃,然后进入气冷反应器壳侧继续进行甲醇合成反应,同时预热冷管内的工艺气体,气冷反应器壳侧气体出口温度为250℃,再经低压蒸汽发生器,锅炉给水加热器、空气冷却器、水冷器冷却后到40℃,进入甲醇分离器,从分离器上部出来的未反应气体进入循环气压缩机压缩,返回到甲醇合成回路。一部分循环气作为弛放气排出系统以调节合成循环圈内的惰性气体含量,合成弛放气送至膜回收装置,回收氢气,产生的富氢气经压缩机压缩后作为甲醇合成原料气;膜回收尾气送至甲醇蒸汽加热炉过热甲醇合成反应器副产的中压饱和蒸汽(),将中压蒸汽过热到400℃。粗甲醇从甲醇分离器底部排出,经甲醇膨胀槽减压释放出溶解气后送往甲醇精馏工段。系统弛放气及甲醇膨胀槽产生的膨胀气混合送往工厂锅炉燃料系统。甲醇合成水冷反应器副产中压蒸汽经变换过热后送工厂中压蒸汽管网。b)甲醇精馏从甲醇合成膨胀槽来的粗甲醇进入精馏系统。精馏系统由预精馏塔、加压塔、常压塔组成。预精馏塔塔底出来的富甲醇液经加压至、80℃,进入加压塔下部,加压塔塔顶气体经冷凝后,一部分作为回流,一部分作为产品甲醇送入贮存系统。由加压塔底出来的甲醇溶液自流入常压塔下塔进一步蒸馏,常压塔顶出来的回流液一部分回流,一部分作为精甲醇经泵送入贮存系统。常压塔底的含甲醇的废水送入磨煤工段作为磨煤用水。在常压塔下部设有侧线采出,采出甲醇、乙醇和水的混合物,由汽提塔进料泵送入汽提塔,汽提塔塔顶液体产品部分回流,其余部分作为产品送至精甲醇中间槽或送至粗甲醇贮槽。汽提塔下部设有侧线采出,采出部分异丁基油和少量乙醇,混合进入异丁基油贮槽。汽提塔塔底排出的废水,含少量甲醇,进入沉淀池,分离出杂醇和水,废水由废水泵送至废水处理装置。c)中间罐区甲醇精馏工序临时停车时,甲醇合成工序生产的粗甲醇,进入粗甲醇贮罐中贮存。甲醇精馏工序恢复生产时,粗甲醇经粗甲醇泵升压后送往甲醇精馏工序。甲醇精馏工序生产的精甲醇,进入甲醇计量罐中。经检验合格的精甲醇用精甲醇泵升压送往成品罐区甲醇贮罐中贮存待售。5)空分装置本装置工艺为分子筛净化空气、空气增压、氧气和氮气内压缩流程,带中压空气增压透平膨胀机,采用规整填料分馏塔,全精馏制氩工艺。原料空气自吸入口吸入,经自洁式空气过滤器除去灰尘及其它机械杂质。过滤后的空气进入离心式空压机经压缩机压缩到约(A),然后进入空气冷却塔冷却。冷却水为经水冷塔冷却后的水。空气自下而上穿过空气冷却塔,在冷却的同时,又得到清洗。经空冷塔冷却后的空气进入切换使用的分子筛纯化器空气中的二氧化碳、碳氢化合物和水分被吸附。分子筛纯化器为两只切换使用,其中一只工作时,另一只再生。纯化器的切换周期约为4小时,定时自动切换。净化后的空气抽出一小部分,作为仪表空气和工厂空气。其余空气分成两股,一股直接进入低压板式换热器,从换热器底部抽出后进入下塔。另外一股进入空气增压机。经过空气增压机的中压空气分成两部分,一部分进入高压板式换热器,冷却后进入低温膨胀机,膨胀后空气进入下塔精馏。另一部分中压空气经过空气增压机二段压缩为高压空气,进入高压板式换热器,冷却后经节流阀节流后进入下塔。空气经下塔初步精馏后,获得富氧液空、低纯液氮、低压氮气,其中富氧液空和低纯液氮经过冷器过冷后节流进入上塔。经上塔进一步精馏后,在上塔底部获得液氧,并经液氧泵压缩后进入高压板式换热器,复热后出冷箱,进入氧气管网。在下塔顶部抽取的低压氮气,进入高压板式换热器,复热后送至全厂低压氮气管网。从上塔上部引出污氮气经过冷器、低压板式换热器和高压板式换热器复热出冷箱后分成两部分:一部分进入分子筛系统的蒸汽加热器,作为分子筛再生气体,其余污氮气去水冷塔。从上塔中部抽取一定量的氩馏份送入粗氩塔,粗氩塔在结构上分为两段,第二段氩塔底部的回流液经液体泵送入第一段顶部作为回流液,经粗氩塔精馏得到,2ppmO2的粗氩,送入精氩塔中部,经精氩塔精馏在精氩塔底部得到纯度为的**氩作为产品抽出送入进贮槽。

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

煤制甲醇毕业论文范文

煤的工业分析也称煤的实用分析、近似分析或技术分析,包括煤的外在水分、内在水分、全水分、分析煤样水分、灰分、挥发分、固定碳、全硫和各种硫及发热量等项目。作为校正挥发分、发热量和元素成分碳含量等需用的,碳酸盐中二氧化碳含量也属工业分析范围。一般把煤的水分、灰分、挥发分和固定碳称作煤的半工业分析,如包括硫分和发热量等分析项目,就称作煤的全工业分析。煤的工业分析是煤质分析中最基本的也是最重要的分析项目,因此凡是以煤为原料或燃料的工业部门都需要进行煤的工业分析。煤质分析化验分为两类,一类是测定煤所固有的成分如碳、氢、氧、氮等,称为元素分析,其测定结果是作为对煤进行科学分类的主要依据,在生产上,是计算发热量、热平衡、物料平衡的依据;另一类是在人为规定的条件下,(鹤壁市华诺电子科技有限公司)根据技术需要测定煤经转化生成的物质或呈现的性质如灰分、挥发分等,称作技术分, 根据水分、灰分、挥发分和固定碳含量四项基本测定结果,对煤中有机质、无机质的含量、性质等有了初步了解,并可初步判断煤的种类、加工利用效果及工业用途等。煤的工业分析是煤质分析中最基本的也是最重要的分析项目。

巨野煤田煤质分析及科学利用评价摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。[关键词]煤质分析;煤质特点;科学利用;评价1巨野煤田煤质分析煤的工业分析工业分析是确定煤组成最基本的方法。在指标中,灰分可近似代表煤中的矿物质,挥发分和固定碳可近似代表煤中的有机质。衡量煤灰分性能指标主要有灰分含量、灰分组成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是动力用煤和气化用煤的重要性能指标。一般以煤灰软化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖触及底板变成球形时的温度;半球温度(HT)为灰锥形变至近似半球形,即高约等于底长的一半时的温度;流动温度(FT)为煤灰锥体完全熔化展开成高度< mm薄层时的温度。彭庄矿钻孔煤样工业分析结果(表2)2煤质特点及科学利用评价巨野煤田煤质特点由煤炭科学研究总院《巨野矿区煤质特征及菜加工利用途径评价》可以看出巨野煤田煤质有如下特点:①灰分含量低,属于中、低灰煤层。②挥发分含量高,各煤层原煤的挥发分含量在33%以上,且差异不大,均属于高挥发分煤种。③磷含量特低;硫分含量上低下高。④干燥基低位热值高。各层煤的都比较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量在~之间,氢含量在~之间,C/H比值<16。⑦灰熔点上高下低。成浆性实验评价2008年1月,华东理工大学对巨野煤田龙固矿(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验及评价。成浆浓度实验成浆浓度是指剪切速率100 s-1,粘度为1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作为添加剂,用量为煤粉质量的1%。制成一系列浓度的水煤浆,测量其流动性,观察水煤浆的表观粘度随成浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度也明显升高。本实验3种煤样成浆浓度分别为龙固矿66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。流变性实验水煤浆流变特性是指受外力作用发生流动与变形的特性。良好的流变性和流动性是气化水煤浆的重要指标之一。将实验用煤制成适宜浓度的水煤浆,然后用NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表观粘度随剪切变化的规律绘制成曲线,观察水煤浆的流变特性,见表11。从表11可以看出,3种煤制成的水煤浆中,随着剪切速率增大,表观粘度都随之降低,均表现出一定的屈服假塑性。屈服假塑性有利于气化水煤浆的储存、泵送和雾化。实验结论煤粉粗粒度(40~200目)和细颗粒(<200目)质量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加压气流床水煤浆气化技术对水煤浆浓度的要求。原料煤的应用适合于制备水煤浆水煤浆不但是煤替代重油的首选燃料,而且是加压气流床水煤浆气化制备合成气的重要原料。同时它又是一种很有前途的清洁工业燃料。实践上,华东理工大学“巨野煤田原煤成浆性实验评价报告”表明:巨野煤田各矿井原料煤均适合于制备高浓度稳定水煤浆。用于煤气化合成氨、合成甲醇及后续产品巨野煤田原煤属于高发热量的煤种(弹筒热平均值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高(>1 300℃),有利于固态排渣。根据鞍钢和武钢分别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。煤气化得到的合成气既可通过变换用于合成氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲醇为基础可进一步合成其他约120余种化工产品。另外,还可利用甲醇制备醇醚燃料及合成液体烃燃料等。用作焦化原料焦化用于生产冶金焦、化工焦,其副产焦炉煤气可用于合成甲醇或合成氨,副产煤焦油进行分离和深加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可以供将来的400万t/a焦化厂或者上海宝钢等大型钢铁企业生产I级焦炭时作配煤炼焦使用;灰分≤的8级精煤(2#),也可供华东地区的中小型焦化企业生产2级和3级冶金焦的配煤炼焦使用。此外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏高,最好进行配煤炼焦。远景目标———煤制油煤直接液化可得到汽油、煤油等多种产品。巨野煤田的大部分煤层均为富油煤,尤其是15煤层平均焦油产率>12%,属高油煤;根据元素分析计算的碳氢比各煤层均<16%;大部分煤层挥发分>35%的气煤和气肥煤通过洗选后的精煤挥发分>37%,而其灰分<10%。因此,巨野煤田的煤炭都是较好的液化用原料煤。煤间接液化可制取液体烃类。煤经气化后,合成气通过F-T合成,可以制取液体烃类,如汽油、柴油、石腊等化工产品及化工原料。3结语综上所述,巨野煤田第三煤层大槽煤属于低灰、低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的重要原料。因此,菏泽大力发展煤气化合成氨和甲醇并拉长产业链搞深度加工是必然的正确选择。

1、根据国情,从节能减排说起。 大家都清楚,我国的资源现状是:福煤贫油。如何充分利用资源优势,取得最大效益,是国家能源部门一直努力的问题。2、 煤制烯烃项目是国家新能源的发展方向。 传统上我国一直用石脑油催化裂解制烯烃,生产主要集中在中石化、中石油两大集团。如今,国内石油制烯烃已经不能满足需要,绝大部分烯烃直接来源于进口。为了改变现状,考虑新的技术支持和出路。利用煤质甲醇,搭建起煤和烯烃的桥梁。 甲醇可以作为烯烃的原料;而在我国,煤制甲醇在所制造甲醇方法中占有很大的比例(65%以上)。据统计, 2010年甲醇制烯烃项目,甲醇消费量仅有30万吨。意味着仅生产了10万吨乙烯。截止到2011年10月份,国内仅有三套烯烃装置已投产,分别是神华包头60万吨/年、神华宁煤52万吨/年和中原石化20万吨/年。后期计划建设的烯烃项目产能预计将会突破1800万吨。这是一个发展迅速、前景非常宏大的项目。3、甲醇制烯烃项目之所以以前没发展起来,本人想主要从项目投入考虑。一套100万吨装置,大概需要投入2300亿,成本高不是一般的企业能够承受。 在这里立足甲醇行业,仅仅为楼主展示一个课题的研究意义和目的。楼主如果论文写作完毕,希望有幸拜读一下。本人邮箱

焦炉煤气制甲醇的研究现状论文

其成分主要是由铜、锌、铝的氧化物组成, 其中CuO 54% ~60%、ZnO 20% ~30%、Al2O3 5% ~10%、H2O 3% ~6%

甲醇是多种有机产品的基本原料和重要的溶剂,广泛用于有机合成、染料、医药、涂料和国防等工业。

一、甲醇产量逐年上升,2019年前三季度达到3683万吨

近年来,我国甲醇产量逐年上升。目前,我国由焦炉气等原料制造甲醇的产能出现富余,开发甲醇替代石油燃料具有充足的产量和产能保障。2018年,我国甲醇产量4756万吨,同比增长。截至2019年三季度中国甲醇产量为3683万吨。

二、甲醇市场快速扩充,需求持续增长

从需求方面来看,过去10多年来,我国的甲醇行业经过了高速发展,一方面下游应用产品的自给程度不断提升,带来了原料需求的快速增长,同时MTP/O项目的不断兴建亦拓展了大量的甲醇市场需求,我国甲醇市场快速扩充,需求持续增长。2018年甲醇表现消费量为万吨,同比增长了。

三、甲醇进口大于出口,对外依存度有所下降

根据海关总署的统计数据,2018年1-12月,中国甲醇月均进口量达万吨,累计达万吨,同比减少。2019年1-10月份我国甲醇进口总量共计万吨。

根据海关总署的统计数据,2018年1-12月,中国甲醇出口量累计万吨,同比增加万吨。2019年1-10月份我国甲醇出口量为万吨。

从进口依存度来看,2014-2016年,进口依存度逐渐增加,2016年由于烯烃工厂的大量需求,进口依存度达到17%,随着国产甲醇产能投放,我国甲醇依存度不断降低,2018年进口依存度已下降至。

四、受宏观经济下行影响,甲醇未来表观需求将保持微副增长趋势

甲醇的诸多优势使得其成为后石油时代最具可行性的替代能源,由甲醇作为基础能源,其所具有的优势是其他能源无法比拟的。当化学回收自然界或者工业二氧化碳制备甲醇及其衍生物被广泛实施,通过“碳中和”与再生使用,甲醇经济的全部潜力将得以实现。2017-2018年甲醇行业表观消费量增速均在附近,前瞻预计由于受宏观下行的影响,2019-2025年我国甲醇行业表观消费量复合增速约为3%,预计到2025年我国甲醇表观消费量约为6724万吨。

——以上数据来源于前瞻产业研究院《中国甲醇行业市场调研与投资预测分析报告》。

甲醇是新的能源和基础化工原料,以焦炉气制甲醇体现了以煤为原料代替石油发展化工方向,可减轻化工生产对石油的依赖,投资省、能耗低,对经济的可持续发展,具有重要的现实及深远意义。 焦炉煤气制甲醇具有很强的市场竞争力和抗风险能力,只要焦炉能够生存,焦炭能够生存,焦炉煤气制甲醇就能生存。2007年我国生产焦炭亿吨。焦化企业在炼焦过程中每生产1吨焦炭,产生焦炉煤气400立方米。由于建设一套年产10万吨的甲醇装置仅需焦炉煤气2亿标准立方,因此在焦炭行业控制产量、调整产业结构和实施清洁生产的新形势下,焦炉煤气制甲醇具有广阔的生命力和发展前景。甲醇的主要下游需求领域是甲醛、羰基法醋酸、甲醇燃料、二甲醚等,其中甲醛、羰基法醋酸产业呈现稳定增长态势,这并不足以消化增长过快的甲醇产能。而不容忽视的是甲醇燃料、二甲醚对甲醇的需求。但甲醇燃料、二甲醚则受政策影响较大。分别来讲,首先,根据国务院的部署,现在国家标准化管理委员会正在组织制定高配比甲醇汽油产品国家标准,另外今年还要制定低配比的甲醇汽油产品国家标准,国内奇瑞、华晨等汽车厂家也在加紧研制使用高配比甲醇汽油的汽车。可以预计,在规范运作的前提下,国家对甲醇汽油的市场限制可能会放宽。其次,由于甲醇制二甲醚生产技术不复杂,产品的市场前景也很好,二甲醚近期可替代石油液化气,远期可替代柴油,这都是国内市场需求量大而又短缺的产品,国内已经建成20多套甲醇制二甲醚装置。甲醇制烯烃和甲醇制丙烯可替代石脑油生产乙烯、丙烯。对醇醚燃料、甲醇制烯烃、甲醇制丙烯产业的发展,国家已出台相关政策予以支持。现在国家发改委已核准了国内建设两套甲醇制烯烃项目。06年8月,由中科院大连化物所联合另外两家公司共同完成的甲醇制取低碳烯烃技术开发项目通过了技术鉴定,从而为神华集团建设60万吨/年甲醇制烯烃装置提供了可靠的工艺技术。而国内甲醇制丙烯的技术研发也进展顺利,由大唐公司引进鲁奇技术建设的国内第一套甲醇制丙烯项目,已快要建成。这些产业的发展都将有力地保证我国甲醇市场的刚性需求。

煤化工是指以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。下面是我整理了煤化工生产技术论文,有兴趣的亲可以来阅读一下!

煤化工及甲醇生产技术探索

摘要:甲醇是一种有机化工原料,它的用途非常广泛,普遍运用于燃烧材料、合成金属、工程涂料、医学消毒、日常生火等多个方面,在甲醇的制造方面,一般都遵循着煤气化碳――变换气体物质――精细蒸馏三大工序,在化工厂生产活动中一般将生产甲醇的工序称为“工段”。难点在于如何去调控操作所需的参数,本文通过对煤化工作的特性解析来引申出甲醇生产的要点,同时对生产技术进行一个流程上的模拟,更全面地去了解甲醇生产中需要多加注意的关键。

关键词:煤化工;甲醇;温度;化学反应;化学式

中图分类号:Q946文献标识码: A

1煤气化原理

在甲醇生产的流程中,煤气化是第一步,它是一种化学反应,将气化剂和煤炭资源中的可燃物质放置在一个高位环境下,然后使其发生中和反应,产生一氧化碳、氢气等可燃气体。在煤气化工段里使用的气化剂包括水蒸气、氧气等,在加入这些气化剂后,煤炭就会发生一系列化学反应,从而生成所需的气体。煤炭在加入气化剂后,经历了干燥、热裂解等热力反应,该反应中生成的气体包括一氧化碳、二氧化碳、氢气、甲烷等,这些化学反应的速度取决于煤气化工段中的温度、热压、气化炉质量以及煤炭的种类,以下是煤气化过程中会出现的化学式:

吸收热量:C - H2O → C O + H2C + C O2→ 2C O

发散热量:C + O2→ C O2C +12O2→ C O

变换反应:C O + H2O → C O2+ H2

从大体上来说,煤气化反应是化学中的强吸热效应,如果以动力和热力的角度来解析这类中和现象,重点在于对温度的把握,温度过高会造成气体流失,温度过低则无法产生完整的化学反应,导致生成的气体数量少、质量差。同时在增压方面应该适当地增加对煤炭的压力值,这样可以使化学反应的速度提高,对甲醇的生产效率起积极作用。

2变换工段

甲醇产品在合成时,一般调整碳元素与氢元素的比例的方法是通过一氧化碳的变换反应来实现的,在甲醇生产的流程中,碳元素与氢元素的分离都在催化剂的影响下进行,在此需要注意的是,碳氧分离工序对水蒸气的需求量相当大,水蒸气的生产成本在这道工段中会激增不少,所以,如何最大限度地利用水蒸气,节约生产成本,这将直接考验生产部门的气体生产技术和操作人员的工作效率。在变换工段中,煤气化之后的煤气物质含有大量的一氧化碳和水蒸气,在催化剂的效果影响到位之后,就可以生成氢与二氧化碳,在此时还会有小部分的一氧化硫转化为氰化硫,此时化学式表现如下:

C O + H2O → C O2+ H2

这是一个主要反应式,但是在主反应进行的同时,还有一部分副反应也会产生,生成甲醇的副产品,这些化学反应包括:

2C O + 2H2→ C O2+ C H

2C O → C + C O2

C O + 3H2→ C H4+ H2O

C O + H2→ C + H2O

C O2+ 4H2→ C H4+ 2H2O

C O2+ 2H2→ C + 2H2O

化学反应在化工产业中要求平衡,在主要变换的化学反应中是一种发散热量反应的类型,这里的化学反应会使煤气化后的温度降低,温度适当降低有利于化学反应的平衡作用,但是如果温度太低,就会导致化学反应时间过长,效率越低,当煤气化工段的生成气体慢慢消耗殆尽时,就会浪费前一道工段的时间和成本,造成浪费。同时,温度还与催化剂的适应性挂钩,如果温度没有调整到位,催化剂的效力就无法发挥到最大值,这就会造成碳氧分离程度不足,必须加大催化剂的剂量,这也会增加生产成本。

3甲醇生产中的注意事项

1.)气化压力的大小在其他的生产条件没有变化的情况下,如果改变气化压力,就会产生非常细微但是关键的变化。通常气压定格在2M Pa以上的范围时,在煤气化工段里基本上不会产生影响,但是如果气压低于2M Pa就会使气化炉的气化效果变低。所以,在煤气化工段中,一定要保证气化压力控制在2M Pa以上,而且可以视实际情况适当提高,这样可以增加气体数量,提高生产效率。

2.)氧气与煤量的比例氧煤比例的提高,指的是在煤炭中氧气流量的增多,直观反映为在煤炭高温加热时,煤炭的燃烧反应量明显提升。同时因为氧气流量的增加,使气化炉的温度也得以升高,煤炭的气化反应会更加强烈,一氧化碳和氢气的数量会增加不少,但是生成的气化产物中,二氧化碳和水分的含量占了很大比例,而一氧化碳和氢气的含量会变少,所以,如果不仔细控制氧煤比例,就会使气化炉中的气化反应过强而导致生产甲醇所需的气体成分变少。

4 甲醇生产工艺模拟

传统的烧煤方式已经不能满足人们对甲醇的需求量,而且单纯的燃烧煤炭既是对资源的浪费,也会造成环境污染。所以,当务之急是要尽快找到新的甲醇提取方法和更快捷有效的甲醇生产技术,在这方面,煤气化生产流程已经被初步运用于各大化工厂中,作为目前提取甲醇的有效方式,煤气化工段还需要更多的模拟和分析来增强其效率,简化其工序。

在模拟中我们假设煤浆和高压后的氧气依照固定比例放置在气化炉中,然后在高温作用下因气温及气压生成各种气体,其中包括一氧化碳、氢气、二氧化碳等,其中高压后的氧气进入气化炉可以通过设置烧嘴的中心管道和外环管道,而煤浆可以通过烧嘴的中环管道进入气化炉。在模拟环境下,我们还设置了激冷室,位于气化炉下段,激冷室主要是处理煤炭中的灰份。在煤气化工段进行到末尾后,会残留一些灰份物质,这些物质会在气化炉的高温中熔融,熔渣和热量汇聚,合成了气体,然后结合离开气化炉的燃烧室部分,经由反应室,进入气化炉下段的激冷室。这些气体在激冷室中将被极寒温度降低到200摄氏度左右,熔渣会立即固体化,然后生成大量的水蒸气,经水蒸气饱和后带走了灰份,从激冷室的排出口派排

出。

需要进行变换的水煤气在预热器中加入一部分进行换气和换热步骤,然后进入模拟的变换炉,这部分水煤气在经过煤气化工段后,自身携带了不少的水蒸气,变换炉中的催化剂进行催化作用进行变换反应,在第一部分结束后,另一部分的水煤气也进入变换炉,变换炉这时就会需要新的高温气体,模拟的变换工段里加入了预热装置,提前储存并加热生成高温气体,然后连入变换炉中与另一部分的水煤气进行变换反应,然后进入气液分离器进行分离,分离成功后的气体将进入低压蒸汽室内降温,再次进入气液分离器进行分离,再喷入冷水来清洗掉气体中的三氢化氮,最后气体进入净化系统,生产气态甲醇。

精馏工段的流程为四塔工作方式,首先甲醇气态材料在预热器中进行高温加热,再传输进预塔中部,在这里去除粗甲醇里的残留溶解气体与二甲醚等,这些属于低沸点物质。在加热后,气体进入冷却器进行气体降温,形成甲醇蒸气后进入预塔的回流管道。甲醇蒸气在经过回流后进入换热器,加热后进入加压塔,甲醇在加压塔中进行冷凝化处理,其中小部分送回加压塔顶部作为回流液。剩余的甲醇气体进入精度甲醇管道,最后由加压塔提供压力与热量,将冷凝的高精度甲醇视需求定制成液态或固态储存,然后将杂质或者甲醇残留物通过排污口排入废水处理器进行净化提取处理。

参考文献:

[1] 韩雅楠. 煤制甲醇的研究进展与发展前景分析 [J]. 中国科技投资. 2013(17) :229.

[2]刘喜宏.浅谈煤制甲醇的前景与工艺流程[J]. 中国石油和化工标准与质量 . 2013(10) :22.

[3] 陈倩,李士雨,李金来. 甲醇合成及精馏单元的能效优化[J]. 化学工程. 2012(10) :1-5.

[4] 金建德. 煤制甲醇工业装置工艺改造措施[J]. 天然气化工2011 36(3):67-69.

[5] 李雅静,张述伟,管凤宝等. 煤制甲醇过程低温甲醇洗流程的模拟与改造 [J]. 化工设计通讯. 2013(2) :15-18.

点击下页还有更多>>>煤化工生产技术论文

相关百科

热门百科

首页
发表服务