首页

> 论文发表知识库

首页 论文发表知识库 问题

二氧化碳激光论文参考文献

发布时间:

二氧化碳激光论文参考文献

· 二氧化碳的是非功过 二氧化碳是植物光合作用的必备原料,其含量增多,对植物的生长有好处。二氧化碳在大棚蔬菜栽培中可作为化肥来施放,使作物增产。 二氧化碳在潜水、航空中可作为氧气的来源。 液态二氧化碳有广阔的应用前景,把液态二氧化碳作为从某些植物或植物源中提取天然存在的化合物的媒质,不仅不会破坏原料所含的生物活性物质,而且产品中不含残留的媒质,用喷洒液态二氧化碳的方法为飞机场除雾,除雾效率比固态二氧化碳高几百倍。用二氧化碳代替传统的有机溶剂进行喷漆,能有效地减少喷漆过程中释放到大气中的有害物质的数量。 在高科技中,二氧化碳也有它的用武之地,用二氧化碳代替氦氖进行激光治疗,可以减少病人的痛苦,并且节省费用,用二氧化碳萃取蛋黄卵磷脂,经济效益可观。二氧化碳可用来洗衣服,并且不污染环境,而且来源广泛。 二氧化碳增多引起的温室效应,使两极冰川融化,致使海平面升高,危及沿海城市,使海岸地区土地盐碱化,增加开发难度,温度升高还使一些山顶的积雪融化,使以积雪融化为水资源的河流水量减少,甚至发生断流现象,影响这些地区的生产活动。 大气温度的升高,造成海洋中吸收二氧化碳的某些藻类植物 大肆繁殖,致使吸收二氧化碳的浮游藻类死亡,间接地影响渔业的繁殖,并使大气中的二氧化碳的增多走向恶性循环。 综上所述:二氧化碳的增多是好是坏,关键看人类如何利用。只要我们因势利导,化害为益、一定会使二氧化碳成为人类的有用功臣。

关键词是从论文的题名、提要和 正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《 汉语主题词表》和《世界汉语主题词表》)。论文正文(1) 引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出问题- 论点; b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d. 结论。参考文献一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。论文装订论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。2要求编辑题名1.题名规范 题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。2.命题方式 3. 撰写 英文题名的注意事项 ①英文题名以短语为主要形式,尤以名词短语最常见,即题名基本上由一个或几个名词加上其前置和(或)后置定语构成;短语型题名要确定好中心词,再进行前后修饰。各个词的顺序很重要,词序不当,会导致表达不准。②一般不要用陈述句,因为题名主要起标示作用,而陈述句容易使题名具有判断式的语义,且不够精炼和醒目。少数情况(评述性、综述性和驳斥性)下可以用疑问句做题名,因为疑问句有探讨性语气,易引起读者兴趣。③同一篇论文的英文题名与中文题名内容上应一致,但不等于说词语要一一对应。在许多情况下,个别非实质性的词可以省略或变动。④国外科技期刊一般对题名字数有所限制,有的规定题名不超过2行,每行不超过42个印刷符号和空格;有的要求题名不超过14个词。这些规定可供我们参考 。 ⑤在论文的英文题名中。凡可用可不用的冠词均不用。作者1.作者署名的规范作者署名置于题名下方,团体作者的执笔人,也可标注于篇首页地脚位置。有时,作者姓名亦可标注于正文末尾。示例:王军1,张红2,刘力1(1.××师范大学物理系,北京 100875 2.××教育学院物理系,北京100011)翻译作者及其单位名称的注意 [事项 ①]翻译单位名称不要采取缩写,要由小到大写全,并附地址和邮政编码,确保联系方便。 ②翻译单位名称要采用该单位统一的译法。③作者姓名按汉语拼音拼写,采用姓前名后,中间为空格,姓氏的全部字母均大字,复姓连写;名字的首字母大字,双名中间加连字符,姓氏与名均不缩写。例如: LI Hua(李华),ZHANG Xi-he(张锡和),ZHUGE Ying(诸葛颖)关键词1.关键词规范 关键词是反映论文主题概念的词或词组,通常以与正文不同的字体字号编排在摘要下方。一般每篇可选3~8个,多个关键词之间用分号分隔,按词条的外延(概念范围)层次从大到小排列。关键词一般是名词性的词或词组,个别情况下也有动词性的词或词组。应标注与中文关键词对应的英文关键词。编排上中文在前,外文在后。中文关键词前以“关键词:”或“[关键词]”作为标识;英文关键词前以“Key words:”作为标识。 关键词应尽量从国家标准《汉语主题词表》中选用;未被词表收录的新学科、新技术中的重要术语和地区、人物、文献等名称,也可作为关键词标注。关键词应采用能覆盖论文主要内容的通用技术词条。2.选择关键词的方法 关键词的一般选择方法是:由作者在完成论文写作后,从其题名、层次标题和正文(出现频率较高且比较关键的词)中选出来。正文1.正文规范 为了做到层次分明、脉络清晰,常常将正文部分分成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个小逻辑段,一个小逻辑段可包含一个或几个自然段,使正文形成若干层次。论文的层次不宜过多,一般不超过五级。 1.参考文献的规范及其作用 为了反映文章的科学依据、作者尊重他人研究成果的严肃态度以及向读者提供有关信息的出处,正文之后一般应列出参考文献表。引文应以原始文献和第一手资料为原则。所有引用别人的观点或文字,无论曾否发表,无论是纸质或电子版,都必须注明出处或加以注释。凡转引文献资料,应如实说明。对已有学术成果的介绍、评论、引用和注释,应力求客观、公允、准确。伪注、伪造、篡改文献和数据等,均属学术不端行为。致谢一项科研成果或技术创新,往往不是独自一人可以完成的,还需要各方面的人力,财力,物力的支持和帮助。因此,在许多论文的末尾都列有"致谢"。主要对论文完成期间得到的帮助表示感谢,这是学术界谦逊和有礼貌的一种表现。

发酵工程是生物技术的重要组成部分,是利用微生物的特殊功能生产激光技术在食品包装中的运用

----------------------------------------------------------------------



食品包装在包装行业里的要求是最高的,也是与人们的日常生活息息相关的,所以一直以来都受到人们的高度关注。随着生活水平的不断提高,在人们消费能力不断增长的同时,对于包装的要求也在不断的强化着。其实食品的包装对食品的销量有着不可忽视的作用,毕竟人人都喜欢看上去漂亮,使用方便的东西......

在消费品工业领域,包装一直是被特别关注的一个重要方面,尤其是食品安全更是食品包装的重中之重。但是在重视食品安全以及包装精美的外表的同时,人们往往忽略了很多细节问题,例如忽视了人们在打开食物包装时的感受。以目前最常用的封口式包装来说,常会出现问题,有些时候甚至会造成一些小伤害,比如:在打开花生或沙拉酱包装时,包装内容物很容易溢出,尤其是一些封口过紧或设计不合理的包装最容易出现这种状况。还有因为疏忽漏做了撕开线,或用机械方法做出的撕开线通常要用很大的力气才能撕开,于是在打开某些食品包装时很难控制力度。

目前先进的激光技术给了我们解决问题的方案,激光系统能够做到选择软包装中某个单独薄膜层进行划线。这样做就实现了软包装的完美易撕开效果,并且能够保持薄膜的完整性,使得外层薄膜完好不受损,从而使得我们能够有效防止包装内商品的见光和受潮等问题的出现。

其次如今先进的激光系统完全能够随意的按自由组合方式划线,例如目前很多零食包装所采用的,以按照包装上印刷图案的轮廓来划线的设计风格,这样的划线方式正是激光划线系统的优势所在。还有当包装带需要有孔时,激光系统可对包装做"通风保鲜"打孔,这是目前世界上最为领先的技术,通过打孔能增加包装内商品的保鲜期,或迎合产品经微波炉加热后对食品包装所产生的压力。现在,激光打孔线已经能够达到沿虚线撕开整个包装的效果。与螺旋刀或冲压机等机械工具不同,激光工作无须直接接触,只有极小的磨损和切割就可以提供最佳的加工方式。

激光划线技术的应用

激光划线是一种在多层复合包装材料上使用激光来实现"易撕开"效果的技术。传统工具容易将线划的太深,导致产品包装的复合层受到损坏;或者划线太浅,使得消费者需要花很大的力气来撕开包装。这里我想每个人都或多或少对打开那些"固若金汤"的食品包装而恼火的经历吧!

激光划线技术是一种更先进、灵活的技术,激光划线技术将激光能量集中在需要划线的薄膜层上,而不损坏整个薄膜。因为,复合膜例如PET、PP或PE,它们都具有不同的吸收和发射二氧化碳激光波长的特性,所以当一层薄膜吸收激光能量而消失后,其他的材料薄膜层则100%的保持完好受不到任何影响。另一方面,铝箔层或着其他镀上金属层的薄膜,则成为了阻挡激光通向其它材料层的屏障。所以这些材料的特性可以使得激光技术能在包装材料上进行精确的定位、划线。同时,撕开线通过人的人眼清晰可见,于是撕开包装对消费者来说就显得轻而易举了。此为,值得注意的是,激光划线技术对于食品包装来说是非接触式的且无磨损的过程,所以也保证了包装内的商品不会因为包装过程而受到损坏,确保了商品的稳定性与可靠性。

激光打孔技术的应用

众所周知,易腐食品的质量和保存期取决于产品包装中空气循环和包装内湿度的平衡。因此,为了达到包装具有足够的小孔,使用激光技术打孔成为了易腐食品的首选。

以目前在激光划线及激光打孔技术领域拥有领先地位的ROFIN公司为例:ROFIN公司的加工设备可以使用高脉冲的而二氧化碳激光对包装材料的各个薄膜层进行打孔作业,通过ROFIN公司的特殊技术,每个小孔周围都具有熔融,能够有效的阻止小孔的扩大并避免了对包装完整性的破坏,并能够同时拥有良好的透气、保湿效果。

目前先进的激光设备可以更具产品的产量或工艺要求来提供各种解决方案,可以提供分光器配合多个聚焦头来控制打孔的方向,通过使用多角棱镜将光速分配到多个聚焦头上来实现高速走卷。现在,最佳的软包装气候管理包装的孔径在60到300微米之间,小孔的排列可以更具实际的需要来自行改变,并且可以与印刷同步进行。激光打孔技术也适用于存在压力变化的包装,如需要通过微波加热的食品包装等等。而对于一些比较坚硬的包装材料,如PE/PE复合材料,激光打孔技术可以做出每1厘米内包含5-50个小孔的打孔线,完全可以达到沿虚线撕开包装的效果。

食品包装采用激光划线技术的优点

●只对选中的薄膜层划线,其它薄膜层不受影响

●可以自由选择划线的形状

●生产过程中损耗少,可靠性高

食品包装采用激光打孔技术的优点

●对孔的尺寸和孔的数量可以精确控制

●可以打出细孔且细孔的边缘防断裂

●可用高密度的小孔制作出沿虚线撕下的包装

●生产过程中损耗小,可靠性高

食品发酵工程

随着人们消费能力的提高,对于消费品的质量提出了更好的要求,人性化的食品包装更容易使客户接受,对于提高产品的销售情况也起着一定的作用。如今食品包装领域的激光技术已经相当的成熟,并且肯定能够在未来的市场中占据重

用物质或直接将微生物应用于工业生产的一种技术体系。这项技术包括菌种

选育、菌种生产、代谢产物的发酵以及微生物的利用技术等。到目前为止,

全世界食品工业中发酵技术产业的总产值约为2000亿美元。维生素、氨基酸

、酵母制剂、微生物多糖、环状糊精、低聚糖、不饱和脂肪酸、糖醇、核酸

类鲜味剂、有机酸味剂、低热量甜味剂和乳酸菌类等产品的开发,均是发酵

技术在食品工业领域中的新应用,这些均属于食品发酵工程的研究范围。本

书对现代发酵工程共性的关键技术、优良菌种的选育、工艺的控制与优化、

生物反应器、下游分离纯化、各类发酵产品的理论和工艺以及食品废水处理

等作了详细阐述,力求体现理论结合实际

二氧化碳论文的参考文献

[编辑本段]什么是全球变暖 全球变暖指的是在一段时间中,地球的大气和海洋温度上升的现象,主要是指人为因素造成的温度上升。原因很可能是由于温室气体排放过多造成。 全球气候变暖是一种“自然现象”。由于人们焚烧化石矿物以生成能量或砍伐森林并将其焚烧时产生的二氧化碳等多种温室气体,由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。近100多年来,全球平均气温经历了冷-暖-冷-暖两次波动,总的看为上升趋势。进入八十年代后,全球气温明显上升。全球变暖的后果,会使全球降水量重新分配,冰川和冻土消融,海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。[编辑本段]全球气候变暖的背景 全球变暖是指全球气温升高。近100多年来,全球平均气温经历了冷-暖-冷-暖两次波动,总的看为上升趋势。进入八十年代后,全球气温明显上升。 1981~1990年全球平均气温比100年前上升了℃。导致全球变暖的主要原因是人类在近一个世纪以来大量使用矿物燃料(如煤、石油等),排放出大量的CO2等多种温室气体。由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。 全球变暖的后果,会使全球降水量重新分配,冰川和冻土消融,海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。 出现全球变暖趋势的具体原因是,人们焚烧化石矿物以生成能量或砍伐森林并将其焚烧时产生的二氧化碳进入了地球的大气层。政府间气候变化问题小组根据气候模型预测,到2100年为止,全球气温估计将上升大约摄氏度(华氏度)。根据这一预测,全球气温将出现过去10,000年中从未有过的巨大变化,从而给全球环境带来潜在的重大影响。 为了阻止全球变暖趋势,1992年联合国专门制订了《联合国气候变化框架公约》,该公约于同年在巴西城市里约热内卢签署生效。依据该公约,发达国家同意在2000年之前将他们释放到大气层的二氧化碳及其它“温室气体”的排放量降至1990年时的水平。另外,这些每年的二氧化碳合计排放量占到全球二氧化碳总排放量60%的国家还同意将相关技术和信息转让给发展中国家。发达国家转让给发展中国家的这些技术和信息有助于后者积极应对气候变化带来的各种挑战。截止2004年5月,已有189个国家正式批准了上述公约。[编辑本段]全球变暖的历史与预测 全球变暖是真实的,而且正在进行! 主流科学界一致对全球变暖是越来越清楚了,每天在改变我们的气候都是真实的,他们也正在进行中。在20世纪末年初以来,表面平均温度的地球增加了约 ( 摄氏度) 。在过去的40年中,气温上升约 ( 摄氏度) 。在过去400-600年,全球变暖,在20世纪是更超过历史上任何一个时间, 7分之10的年,在20世纪发生在20世纪90年代,由于其中一个最强劲的下午1998是最热的一年,因为可靠的温度测量开始的。 此外,变化,在自然环境支持的事实,即地球正在变暖; 山区giaciers也在逐渐消退; 在过去四十年里,北极冰厚度已经下跌了大约40 % ; 全球海平面上升了约快三倍超过了过去的100年相比在以前的3000年里 有越来越多的研究显示,植物和动物改变其范围和行为回应气候。 根据仪器记录,相对于1860年至1900年期间,全球陆地与海洋温度上升了摄氏度。自1979年,陆地温度上升速度比海洋温度快一倍(陆地温度上升了摄氏度,而海洋温度上升了摄氏度)。根据卫星温度探测,对流层的温度每十年上升摄氏度至度。在1850年前的一两千年,虽然曾经出现中世纪温暖时期与小冰河时期,但是大众相信全球温度是相对稳定的。 根据美国国家航空航天局戈达德太空研究所的研究报告估计,自1800年代有测量仪器广泛地应用开始,2005年是最温暖的年份,比1998年的记录高了摄氏百分之几度。 世界气象组织和英国气候研究单位也有类似的估计,曾经预计2005年是仅次于1998年第二温暖的年份。 在人类近代历史才有一些温度记录。这些记录都来自不同的地方,精确度和可靠性都不尽相同。在1860年才有类似全球温度仪器记录,相信当年的记录很少受到城市热岛效应的影响。从最近的千禧年内的多方记录所展示的长远展望,在过去1000年的温度记录中可以看到有关的讨论及其中的差异。最近50年的气候转变的过程是十分清晰,全赖详细的温度记录。到了1979年,人类更开始利用卫星温度测量来量度对流层的温度。 在2000年后,各地的高温记录经常被打破。譬如:2003年8月11日,瑞士格罗诺镇录得摄氏度,破139年来的记录。同年,8月10日,英国伦敦的温度达到摄氏,破了1990年的记录。同期,巴黎南部晚上测得最低温度为摄氏度,破了1873年以来的记录。8月7日夜间,德国也打破了百年最高气温记录。在2003年夏天,台北、上海、杭州、武汉、福州都破了当地高温记录,而中国浙江省更快速地屡破高温记录,67个气象站中40个都刷新记录。2004年7月,广州的罕见高温打破了五十三年来的记录。2005年7月,美国有两百个城市都创下历史性高温记录。2006年8月16日,重庆最高气温高达43度。台湾宜兰在2006年7月8日温度高达度,破了1997年的记录。2006年11月11日是香港整个十一月最热的一日,最高气温高达度,比1961年至1990年的平均最高温度还要高。 据新华社电美国科学家研究发现,古代农业活动曾使世界避免进入新冰川期。这说明,人类活动引起全球气候变暖可能持续了数千年。研究人员说,砍倒大树并开垦第一片田地的史前农民使大气中甲烷和CO 2等温室气体含量发生了很大变化,全球气温因此逐渐回升。 美国弗吉尼亚大学教授拉迪曼说:“要不是早期农业带来的温室气体,目前地球气温很可能还是冰川时期的气温。”拉迪曼承认,研究结果非常容易引起争议。 美国国家大气研究中心17日说,科学家通过两项最新研究预测,即使现在全世界温室气体的排放量稳定在2000年的水平,本世纪全球变暖和海平面上升的趋势已经不可逆转。 国家大气研究中心的科学家在18日出版的《科学》杂志上连续发表两篇论文,从不同角度预测了全球气候变化的趋势。他们的成果将由联合国下属的政府间气候变化专家委员会评估,收录到2007年公布的下一份全球气候变化报告中。 在第一篇论文中,国家大气研究中心的魏格雷提出了一个较简单的数学模型来理解全球气候变化。他认为,由于海洋存在“热惯性”,对温室气体等外界影响的反应有所滞后,本世纪全球变暖的趋势只不过是以前排放温室气体的后果。 据魏格雷预测,到2400年,已存在于大气中的温室气体成分,将至少使全球平均气温升高1摄氏度;不断新排放的温室气体,又将导致全球平均气温额外升高2至6摄氏度。这两个因素还会分别引起海平面每世纪上升10厘米和25厘米。 他在论文中说,要遏制气候变暖的趋势,现在就必须将全球温室气体排放控制在极其低的水平,即使这样海平面上升的趋势恐怕也难以避免,每世纪10厘米的上升速度可能是最乐观的预测。 由杰拉尔德·梅尔等人发表的第二篇论文则预测,由于“热惯性”的存在,即使本世纪中人类不向大气排放任何温室气体,到2100年全球平均气温也将至少升高摄氏度,海平面将上升11厘米以上,其中海平面上升的速度比科学家早先的预测值高了一倍多。梅尔对此解释说,这是因为以前的预测没有考虑到冰川融化等的影响。 梅尔的研究小组用两套数学模型,借助超级计算机模拟了全球温室气体排放量分别为低、中、高时的气候和海平面变化情况。[编辑本段]全球变暖的条件 地球气候变暖和人类大量排放温室气体导致温室效应有关。但日本和丹麦科研人员近日指出,温室气体增加并非导致气候变暖的惟一原因,太阳活动变化在其中也起到了推动作用。 据《日本经济新闻》报道,日本横滨国立大学环境信息研究院的伊藤公纪教授制作了一张图表。从图上看,过去200年间地球平均气温和太阳磁场强度的变化曲线基本吻合。伊藤公纪由此推断,太阳活动对气候变暖也有影响,仅用温室气体增加解释气候变暖可能不够全面。 太阳活动对地球气温的影响已被专家们关注了很长时间。一般来说,太阳黑子多的时候,太阳活动剧烈。比如史料曾记载,公元17世纪时太阳黑子很少出现,当时的地球气候也相对寒冷。但地面获得的探测信息也显示,太阳活动强弱变化引起的太阳辐射能量变化幅度仅为,如此微小的变化似乎不足以对气候造成太大影响。 然而,最近国际空间科学界出现了一种假说,认为太阳活动的变化会改变地球上空的云量,“放大”太阳对地球的影响,从而左右气候变化。提出这种假说的丹麦科学家推测,射向地球的宇宙射线可较稳定地使部分大气离子化,使云容易生成,从而吸收太阳的大量辐射,降低地球温度。但是,太阳活动高峰时释放出的高速带电粒子流,能干扰宇宙射线射向地球,使云不易形成,进而导致地球温度升高。目前,丹麦科研人员正在研究与云形成有关的各种因素,以论证上述假说。 也有日本专家提出,虽然太阳辐射能量的变化幅度只有,但他们发现这种能量变化能使地球大气对于太阳紫外线的吸收量变化幅度达到百分之几,这种吸收量的增加会使大气臭氧层温度升高。日本气象研究所第二研究部负责人小寺邦彦表示,臭氧层温度的变化会波及对流层,从而对寒流和季风造成影响,但目前尚不清楚上述机制能对地球气候变暖产生多大影响。为了继续研究这个课题,小寺邦彦等人组成的国际研究小组已于去年开始工作。[编辑本段]全球变暖的原因 全球变暖的原因很多,概括以后有以下几点: 1.人口剧增因素 近年来人口的剧增是导致全球变暖的主要因素之一。同时,这也严重地危肋着自然生态环境间的平衡。这样多的人口,每年仅自身排放的二氧化碳就将是一惊人的数字,其结果就将直接导制大气中二氧化碳的含量不断地增加,这样形成的二氧化碳“温室效应”将直接影响着地球表面气候变化。 2.大气环境污染因素 目前,环境污染的日趋严重已构成一全球性重大问题,同时也是导致全球变暖的主要因素之一。现在,关于全球气候变化的研究已经明确指出了自上个世纪末起地球表面的温度就已经开始上升。 3.海洋生态环境恶化因素 目前,海平面的变化是呈不断地上升趋势,根据有关专家的预测到下个世纪中叶,海平面可能升高50cm。如不采取及对措施,将直接导致淡水资源的破坏和污染等不良后果。另外,陆地活动场所产生的大量有毒性化学废料和固体废物等不断地排入海洋;发生在海水中的重大泄(漏)油事件等以及由人类活动而引发的沿海地区生态环境的破坏等都是导致海水生态环境遭破坏的主要因素。 4.土地遭侵蚀、沙化等破坏因素 5.森林资源锐减因素 在世界范围内,由于受自然或人为的因素而造成森林面积正在大幅度地锐减。 6.酸雨危害因素 酸雨给生态环境所带来的影响已越来越受到全世界的关注。酸雨能毁坏森林,酸化湖泊,危及生物等。目前,世界上酸雨多集中在欧洲和北美洲,多数酸雨发生在发达国家,一些发展中国家,酸雨也在迅速发生、发展。 7.物种加速绝灭因素 地球上的生物是人类的一项宝贵资源,而生物的多样性是人类赖以生存和发展的基础。但是目前地球上的生物物种正在以前所未有的速度消失。 8.水污染因素 据全球环境监测系统水质监测项目表明,全球大约有10%的监测河水受到污染,本世纪以来,人类的用水量正在急剧地增加,同时水污染规模也正在不断地扩大,这就形成了新鲜淡水的供与需的一对矛盾。由此可见,水污染的处理将是非常地迫切和重要。 9.有毒废料污染因素 不断增长的有毒化学品不仅对人类的生存构成严重的威胁,而且对地球表面的生态环境也将带来危害。 10地球周期性公转轨迹的变动 地球周期性公转轨迹由椭圆行变为圆形轨迹,距离太阳更近。根据某科学家的研究地球的温度曾经出现过高温和低温的交替,是有一定的规律性的。

[编辑本段]什么是全球变暖全球变暖指的是在一段时间中,地球的大气和海洋温度上升的现象,主要是指人为因素造成的温度上升。原因很可能是由于温室气体排放过多造成。全球气候变暖是一种“自然现象”。由于人们焚烧化石矿物以生成能量或砍伐森林并将其焚烧时产生的二氧化碳等多种温室气体,由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。近100多年来,全球平均气温经历了冷-暖-冷-暖两次波动,总的看为上升趋势。进入八十年代后,全球气温明显上升。全球变暖的后果,会使全球降水量重新分配,冰川和冻土消融,海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。[编辑本段]全球气候变暖的背景全球变暖是指全球气温升高。近100多年来,全球平均气温经历了冷-暖-冷-暖两次波动,总的看为上升趋势。进入八十年代后,全球气温明显上升。1981~1990年全球平均气温比100年前上升了℃。导致全球变暖的主要原因是人类在近一个世纪以来大量使用矿物燃料(如煤、石油等),排放出大量的CO2等多种温室气体。由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。全球变暖的后果,会使全球降水量重新分配,冰川和冻土消融,海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。出现全球变暖趋势的具体原因是,人们焚烧化石矿物以生成能量或砍伐森林并将其焚烧时产生的二氧化碳进入了地球的大气层。政府间气候变化问题小组根据气候模型预测,到2100年为止,全球气温估计将上升大约摄氏度(华氏度)。根据这一预测,全球气温将出现过去10,000年中从未有过的巨大变化,从而给全球环境带来潜在的重大影响。为了阻止全球变暖趋势,1992年联合国专门制订了《联合国气候变化框架公约》,该公约于同年在巴西城市里约热内卢签署生效。依据该公约,发达国家同意在2000年之前将他们释放到大气层的二氧化碳及其它“温室气体”的排放量降至1990年时的水平。另外,这些每年的二氧化碳合计排放量占到全球二氧化碳总排放量60%的国家还同意将相关技术和信息转让给发展中国家。发达国家转让给发展中国家的这些技术和信息有助于后者积极应对气候变化带来的各种挑战。截止2004年5月,已有189个国家正式批准了上述公约。[编辑本段]全球变暖的历史与预测全球变暖是真实的,而且正在进行!主流科学界一致对全球变暖是越来越清楚了,每天在改变我们的气候都是真实的,他们也正在进行中。在20世纪末年初以来,表面平均温度的地球增加了约(摄氏度)。在过去的40年中,气温上升约(摄氏度)。在过去400-600年,全球变暖,在20世纪是更超过历史上任何一个时间,7分之10的年,在20世纪发生在20世纪90年代,由于其中一个最强劲的下午1998是最热的一年,因为可靠的温度测量开始的。此外,变化,在自然环境支持的事实,即地球正在变暖;山区giaciers也在逐渐消退;在过去四十年里,北极冰厚度已经下跌了大约40%;全球海平面上升了约快三倍超过了过去的100年相比在以前的3000年里有越来越多的研究显示,植物和动物改变其范围和行为回应气候。根据仪器记录,相对于1860年至1900年期间,全球陆地与海洋温度上升了摄氏度。自1979年,陆地温度上升速度比海洋温度快一倍(陆地温度上升了摄氏度,而海洋温度上升了摄氏度)。根据卫星温度探测,对流层的温度每十年上升摄氏度至度。在1850年前的一两千年,虽然曾经出现中世纪温暖时期与小冰河时期,但是大众相信全球温度是相对稳定的。根据美国国家航空航天局戈达德太空研究所的研究报告估计,自1800年代有测量仪器广泛地应用开始,2005年是最温暖的年份,比1998年的记录高了摄氏百分之几度。世界气象组织和英国气候研究单位也有类似的估计,曾经预计2005年是仅次于1998年第二温暖的年份。在人类近代历史才有一些温度记录。这些记录都来自不同的地方,精确度和可靠性都不尽相同。在1860年才有类似全球温度仪器记录,相信当年的记录很少受到城市热岛效应的影响。从最近的千禧年内的多方记录所展示的长远展望,在过去1000年的温度记录中可以看到有关的讨论及其中的差异。最近50年的气候转变的过程是十分清晰,全赖详细的温度记录。到了1979年,人类更开始利用卫星温度测量来量度对流层的温度。在2000年后,各地的高温记录经常被打破。譬如:2003年8月11日,瑞士格罗诺镇录得摄氏度,破139年来的记录。同年,8月10日,英国伦敦的温度达到摄氏,破了1990年的记录。同期,巴黎南部晚上测得最低温度为摄氏度,破了1873年以来的记录。8月7日夜间,德国也打破了百年最高气温记录。在2003年夏天,台北、上海、杭州、武汉、福州都破了当地高温记录,而中国浙江省更快速地屡破高温记录,67个气象站中40个都刷新记录。2004年7月,广州的罕见高温打破了五十三年来的记录。2005年7月,美国有两百个城市都创下历史性高温记录。2006年8月16日,重庆最高气温高达43度。台湾宜兰在2006年7月8日温度高达度,破了1997年的记录。2006年11月11日是香港整个十一月最热的一日,最高气温高达度,比1961年至1990年的平均最高温度还要高。

百度百科上有

· 二氧化碳的是非功过 二氧化碳是植物光合作用的必备原料,其含量增多,对植物的生长有好处。二氧化碳在大棚蔬菜栽培中可作为化肥来施放,使作物增产。 二氧化碳在潜水、航空中可作为氧气的来源。 液态二氧化碳有广阔的应用前景,把液态二氧化碳作为从某些植物或植物源中提取天然存在的化合物的媒质,不仅不会破坏原料所含的生物活性物质,而且产品中不含残留的媒质,用喷洒液态二氧化碳的方法为飞机场除雾,除雾效率比固态二氧化碳高几百倍。用二氧化碳代替传统的有机溶剂进行喷漆,能有效地减少喷漆过程中释放到大气中的有害物质的数量。 在高科技中,二氧化碳也有它的用武之地,用二氧化碳代替氦氖进行激光治疗,可以减少病人的痛苦,并且节省费用,用二氧化碳萃取蛋黄卵磷脂,经济效益可观。二氧化碳可用来洗衣服,并且不污染环境,而且来源广泛。 二氧化碳增多引起的温室效应,使两极冰川融化,致使海平面升高,危及沿海城市,使海岸地区土地盐碱化,增加开发难度,温度升高还使一些山顶的积雪融化,使以积雪融化为水资源的河流水量减少,甚至发生断流现象,影响这些地区的生产活动。 大气温度的升高,造成海洋中吸收二氧化碳的某些藻类植物 大肆繁殖,致使吸收二氧化碳的浮游藻类死亡,间接地影响渔业的繁殖,并使大气中的二氧化碳的增多走向恶性循环。 综上所述:二氧化碳的增多是好是坏,关键看人类如何利用。只要我们因势利导,化害为益、一定会使二氧化碳成为人类的有用功臣。

光催化还原二氧化碳研究进展论文

科学家们找到了一种有效利用来自太阳的可见光来分解二氧化碳的方法,为缓解全球变暖的新方法打开了大门。 在过去的一个半世纪里,人类活动产生的二氧化碳(CO2)排放量急剧上升,被视为全球变暖和异常天气模式的主要原因。因此,许多领域的研究重点是降低我们的二氧化碳排放及其在大气中的水平。

一个有希望的策略是利用光催化剂--吸收光能并将其提供给反应、加速反应的化合物来进行化学分解,或被称为"还原"二氧化碳。有了这种策略,在不使用其他人工能源的情况下,以太阳能为动力减少二氧化碳成为可能,为通往可持续发展的未来打开了大门。

由日本名古屋工业大学的川崎真司博士和石井洋介博士领导的科学家团队,一直处于实现高效的太阳能辅助二氧化碳减排的努力的前沿。他们最近的突破发表在《自然》的《科学报告》上。

科学家们试图通过将AgIO3与碘化银(AgI)相结合来解决这一效率问题,后者可以有效地吸收和利用可见光。然而,AgIO3-AgI复合材料有复杂的合成过程,使其大规模制造不切实际。此外,它们的结构没有为光激发电子(由光吸收激发的电子)从AgI到AgIO3的转移提供有效途径,而这是复合材料催化活性的关键。

"我们现在开发了一种新的光催化剂,它将单壁碳纳米管(SWCNTs)与AgIO3和AgI结合在一起,形成一种三组分复合催化剂,"川崎博士说,"SWCNTs的作用是多模式的。它同时解决了合成和电子转移途径的问题"。这种三组分复合材料的合成过程很简单,只涉及两个步骤。1. 使用电化学氧化方法将碘分子封装在SWCNT内;以及2. 通过将上一步骤的结果浸入硝酸银(AgNO3)的水溶液中制备复合材料。

使用该复合材料的光谱观察显示,在合成过程中,封装的碘分子从SWCNT中获得电荷并转化为特定的离子。然后这些离子与AgNO3反应,形成AgI和AgIO3微晶体,由于封装的碘分子的初始位置,这些微晶体均匀地沉积在所有的SWCNT上。用模拟太阳光进行的实验分析表明,SWCNTs也作为导电途径,光激发的电子通过它从AgI移动到AgIO3,使二氧化碳有效地还原成一氧化碳(CO)。

SWCNTs的加入也使得复合分散体可以很容易地被喷涂在薄膜聚合物上,从而产生灵活的光催化电极,这种电极用途广泛,可用于各种应用。

Ishii博士对他们的光催化剂的潜力充满希望。他说:"它可以使太阳能减少工业二氧化碳排放和大气中的二氧化碳成为一种易于规模化和可持续的基于可再生能源的解决方案,解决全球变暖和气候变化问题,使人们的生活更安全和更 健康 。"

该团队说,下一步是 探索 将他们的光催化剂用于太阳能制氢的可能性。

喜欢就 关注我们吧,订阅更多最新消息

第一作者:钮峰

通讯作者:涂文广教授,周勇教授,邹志刚教授

通讯单位:香港中文大学(深圳)理工学院

论文DOI:

全文速览

通过醇和胺的C-N偶联是工业中合成不同有机胺的重要反应路径,而这一过程往往需要在高温高压等较苛刻的条件下进行。因此,本工作中,我们设计了一种基于CdS-Pd单原子体系催化剂用于实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得二级胺。通过实验研究发现,Pd与CdS表面的悬挂S原子原位配位形成单一Pd-Sx物种。该催化剂的可见光催化C-N偶联的二级胺产率接近100%,同时释放出可观的绿色能源氢气( mmol gcat-1h-1)。机理研究与分析表明,苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种而形成H-Pd-Sx中间体。最后,吸附的H又容易脱附,加成到苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后所需要的二级胺产物苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx配位物种可以作为有效的氢转移的桥梁实现加氢过程。此外,该光催化剂体系具有较好的底物适应性和循环能力。这一工作将为温和条件下实现高效C-N偶联反应提供一种新的思路。

背景介绍

随着工业的发展与进步,有机胺广泛应用于农业、医药、家居、军工等领域,其合成在工业生产中有着越来越明显的重要性。基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联被认为是一种较为绿色的合成有机胺的理想路径。这一过程主要包含醇的脱氢、亚胺的生成以及亚胺的加氢这三个主要步骤。其中醇的脱氢是整个反应的决速步骤。然而,基于这一机制,在热催化合成有机胺的过程中存在一些缺点:(1)醇的脱氢决速步骤需要较苛刻的条件(高温高压);(2)易发生过度偶联,使得产物分布广,不利于分离;(3)反应中使用的催化剂多为高负载量的负载型贵金属催化剂(如Ru/Al2O3、Pd/Al2O3、Rh/Al2O3等),成本较高。因此,开发出高效低成本的催化剂具有一定的挑战性。近年来,利用光氧化还原技术实现常温常压条件下有机胺的合成引起了广泛的关注。研究者们通常采用一些贵金属有机配合物分子进行均相催化反应,但反应后催化剂难以进行分离,在实际工业生产中难以大规模应用。而采用传统的半导体光催化剂进行多相催化反应,则可以有效解决这一难题。然而仅仅依靠半导体本身的催化能力,很难达到较高的催化活性,实际应用过程中往往需要通过负载一些助催化剂或表面修饰来提高催化性能。近些年,单原子催化被认为是较有前景的领域。单原子催化剂由于其独特的电子结构和较高的原子利用效率而表现出优异的催化活性,被广泛应用于光催化水分解制氢、二氧化碳还原、固氮和有机物降解等领域。因此,我们课题组设计开发了一种单原子光催化剂CdS-Pd,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。这一工作将为温和条件下实现C-N偶联反应提供一种新的途径。

本文亮点

1. 本工作通过Pd原子与CdS表面的悬挂S原子原位配位制备了一种CdS-Pd的单原子光催化剂,该催化剂可以实现高效可光催化苯甲醇和苯胺的C-N偶联反应获得近100%产率的二级胺N-苄基苯胺以及较高的产氢活性。

2. 实验和理论计算结果证实了,相比于Pd纳米颗粒助催化剂负载的CdS,单一Pd-Sx物种能够有效捕获光生电子,使其具有较长的寿命,而且氢在Pd-Sx物种上的吸脱附能力较强,从而可以作为有效的氢转移载体实现亚胺的加氢,得到目标产物二级胺。

3. 此外,在优化的反应条件下,该催化剂具有较好的稳定性,以及对不同醇类和取代胺的C-N偶联反应具有良好的底物适应性。

图文解析

本工作中,首先我们采用水热法制备了六方晶系结构,颗粒尺寸约为50 nm的纳米球形CdS,其带宽约为( 图1 a )。随后,在可见光催化C-N偶联反应过程中加入PdCl2溶液原位合成单原子催化剂CdS-Pd SAs。作为对比,我们采用浸渍法制备了Pd纳米颗粒负载的CdS催化剂CdS-Pd NPs。从图1b的XPS图谱可以看出,光催化反应后的CdS中事实上存在Pd元素。结合能 eV和342 eV分别对应Pd 3d5/2和Pd 3d3/2,表明Pd以2+价态形式存在,而非单质态。因此,我们可以初步推测反应后,Pd与CdS进行了一定的配位。

图1 CdS和CdS-Pd SAs单原子催化剂的结构表征

为了进一步确定反应后Pd的状态以及与CdS的配位环境,我们对样品分别进行了X射线精细结构谱(XAFS)和球差电镜的表征。从图3d可以明显看出反应后的CdS表面上的Pd物种既不是二价态也不是单质态,而是以一定配位的形式存在。通过对样品CdS-Pd SAs中Pd的K-edge EXAFS图谱进行拟合,可以得出Pd-S的配位数约为3( 表1 )。通过进一步的HAADF-STEM和 EDS mapping图可以清晰地看到Pd以单原子形式均匀地分散在CdS上( 图1 e-j )。因此,综合上述表征方法,我们可以初步证实在光催化反应过程中,PdCl2以Pd-S配位键的形式将Pd原子锚定在了CdS载体上,为光催化反应过程提供一定的反应活性中心。

表1 样品CdS-PdSAs中Pd的EXAFS拟合数据

CN , coordination number; R , bonding distance; σ 2, Debye-Waller factor; Δ E0 , inner potential shift.

为了进一步研究CdS表面的S对催化反应的影响,我们首先对CdS进行了不同程度的表面修饰(400 oC高温煅烧:CdS-400;双氧水表面腐蚀:CdS-H2O2)。从图2 a可以看出,采用不同的手段修饰后,CdS的结构并未发生明显变化,仍然是结晶度较好的六方晶系结构。CdS、CdS-400和CdS-H2O2的能带分别为、和 eV,即能带结构也未发生明显变化( 图2 b )。从图2 c和d可以明显看出, CdS通过表面修饰之后,Cd 3d和S 2p均向高结合能偏移,而且偏移程度随着修饰强度增强而增大。这主要是由于CdS修饰后产生了一定的S空位,使得表面部分Cd暴露,从而改变了Cd和S的周边电子云密度分布。

图2 修饰前后的CdS结构表征

在常温常压氮气气氛下,我们采用苯甲醇和苯胺的C-N偶联作为模型反应对所制备的催化剂进行可见光催化活性评价( 图3 )。首先我们确定了暗反应、无光催化剂以及只有PdCl2的情况下该模型反应没有任何催化活性。在添加PdCl2的条件下,我们对不同的半导体光催化剂进行了活性筛选,发现只有CdS能有效地进行光催化C-N偶联生成二级胺(N-苄基苯胺),产率高达 mmolgcat-1h-1。而其他半导体催化剂在反应过程中只能催化生成亚胺(N-苄烯苯胺),且普遍产率较低(< mmolgcat-1h-1)。

图3 可见光催化C-N偶联反应的催化剂活性筛选

基于CdS对该反应的催化特异性,我们测试了其苯胺的转化率及产物的选择性随时间的变化曲线。从图4b可以看出,随着反应的进行,苯胺的转化率不断提高,当反应达到16 h后,底物苯胺几乎完全转化。随着反应的进行,亚胺(N-苄烯苯胺)的选择性不断降低,而二级胺(N-苄基苯胺)的选择性不断提高,表明反应过程中逐步完成了亚胺的加氢过程。

为了进行对比,我们采用浸渍法提前将Pd纳米颗粒沉积到CdS表面上并进行光催化活性评价。从图4c我们发现,沉积Pd纳米颗粒的CdS催化活性是单一CdS活性的4倍。这主要是由于Pd纳米颗粒作为助催化剂可以有效地提高光生载流子的分离效率。而当我们将Pd以PdCl2的形式加入到反应体系中时,催化活性是单一CdS活性的约倍。而且产物中出现了二级胺(N-苄基苯胺)。也就是说反应体系中原位加入PdCl2能够促使该反应完成加氢过程,有效实现氢转移。因此,我们可以初步推断,光催化反应过程中Pd和CdS表面悬挂的S作用产生的Pd-S物种对实现C-N偶联起到至关重要的作用。此外,在反应过程中我们可以检测到氢气的生成。从图4d可以看出,单一的CdS在反应过程中几乎不产生氢气。而CdS-Pd SAs产氢速率达到 mmolgcat-1h-1,是CdS-Pd NPs的约倍,CdS的近10倍。这一结果也与苯胺转化率的差异相吻合。

为了验证CdS表面的S与Pd作用形成了Pd-S物种,从而提高了C-N偶联反应性能,我们对CdS进行了不同程度的表面修饰。从图4e可以明显看出,随着表面修饰的增强,反应的活性逐渐下降,而且产物苄基苯胺的选择性也随之下降。这也就意味着,当我们遮盖或者去除部分S位点,反应底物在催化剂表面的吸附性能下降,从而导致反应活性降低。另一方面,由于S空位的增多,使得Pd原子很难与S进行配位产生Pd-S物种,从而无法完成C-N偶联反应过程中的氢转移,也就不能得到饱和的目标产物二级胺N-苄基苯胺。

图4 可见光催化活性评价

为了研究在光催化反应过程中不同自由基的作用,我们进行了捕获实验。从图5a可以看出,当体系中加入叔丁醇和苯醌来分别捕获•OH和•O2-,反应的活性基本没有发生变化,说明体系中的这两种自由基对反应基本没有贡献。而当体系中加入草酸铵捕获光生空穴后,产率降为原来的1/3,加入过硫酸钾捕获光生电子后,产率降为0。这一结果表明,光生电子和空穴在光催化C-N偶联反应中有着重要作用。

接着,我们采用超快光谱(TAS)来揭示光照下不同催化剂的载流子衰减动力学。图5b为不同催化剂的瞬态吸收图谱以及拟合曲线。采用双指数模型拟合可获得两个弛豫时间τ1和τ2。Τ1代表导带电子到过渡态的捕获时间,τ2代表电子与过渡态或者价带空穴复合的时间。通过对比,CdS-Pd Sas的弛豫时间明显要长,也就是说,在反应过程中CdS表面单原子态的Pd配位物种Pd-Sx可以作为电子陷阱来捕获光生电子,提高载流子的分离效率,从而加速光催化C-N偶联。另外,从CdS导带转移到过渡态Pd-Sx中间体的弛豫时间更长,更利于氢原子的吸附。

为了研究不同催化剂对于H的吸附以及转移能力,我们做了一个N-苄烯苯胺加氢的模型反应。从图5c可以明显看出,对于单原子态的CdS-Pd SAs催化剂,N-苄烯苯胺较容易实现光催化加氢到苄基苯胺产物,而单质态的Pd(CdS-Pd NPs)催化剂无法实现加氢过程。这也证明了单原子态的CdS-Pd SAs可以很好地吸附H并完成氢转移,从而实现加氢过程得到二级胺N-苄基苯胺。

基于以上的机理表征分析,我们可以给出一个可能的反应机理和路径( 图5d )。光催化反应前,当体系中同时加入CdS催化剂和PdCl2时,PdCl2很快吸附到CdS表面上与表面悬挂的S原子形成Pd-Sx的配位物种。当CdS被光激发后,表面的Pd-Sx配位物种可以有效捕获光生电子,形成•Pd-Sx中间态物种,同时光生空穴能够脱去苯甲醇上的质子,将其氧化成苯甲醛。然后生成的苯甲醛与苯胺进行亲核加成反应,产生醇胺中间体。由于醇胺非常不稳定,很快脱水生成亚胺。苯甲醇上脱去的H+较容易吸附到长寿命的•Pd-Sx中间态物种形成H-Pd-Sx。最后,吸附的H又容易脱附,加成到N-苄烯苯胺的N上,实现氢转移,完成亚胺的加氢过程,得到最后的目标产物N-苄基苯胺。整个过程中,H的吸脱附可以循环进行,因此Pd-Sx物种可以作为有效的氢转移的桥梁实现加氢过程。此外,过多的吸附H可以从H-Pd-Sx上脱附产生H2。

图5 反应机理表征及推测

我们通过DFT模拟计算进一步验证了为什么单原子态的CdS催化剂CdS-Pd SAs可以很好地实现光催化C-N偶联生成N-苄基苯胺( 图6 )。结合EXAFS拟合结果,我们以Pd-S三配位的形式作为计算模型来研究H吸附和反应过程。对于催化剂CdS-Pd NPs来说,在位点1和2的H吸附能分别为 eV和,而催化剂CdS-Pd SAs的H吸附能为 eV。通过过渡态能量搜索,可以得出,Pd纳米颗粒负载的CdS-Pd NPs的加氢能垒为 eV,而对于单原子态的CdS-Pd SAs来说,由于形成的Pd-Sx配位物种能够有效地吸附和脱附H,因此脱附的H直接加成到亚胺的不饱和C上,完成加氢过程。

图6 DFT模拟计算

总结与展望

总的来说,我们设计开发了一种CdS-Pd单原子光催化剂,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。结合实验以及模拟计算,我们推测Pd在光催化反应过程中与CdS表面的S原位配位形成Pd-Sx中间物种,而这一中间体可以提高载流子分离效率以及有效地进行H的吸脱附,构成Pd-Sx •Pd-Sx H-Pd-Sx Pd-Sx的循环过程,实现氢转移,完成亚胺的加氢过程,得到目标产物N-苄基苯胺。整个过程中,Pd-Sx中间体可以作为有效氢转移的桥梁实现加氢过程。此外,该催化剂体系具有较好循环能力和底物适应性。这一工作将为温和条件下实现C-N偶联反应提供一种新的思路。

作者介绍

钮峰 ,博士毕业于法国里尔大学(法国国家科学研究中心)(导师Andrei Khodakov教授和Vitaly Ordomsky研究员)。2020年8月加入香港中文大学(深圳)邹志刚院士团队从事博士后研究。以第一作者在ACS Catalysis,Green Chemistry,Solar Energy Materials & Solar Cells等期刊上发表SCI论文12篇。目前主要研究方向为多相热催化、光催化能源转化。

涂文广 ,2015年获南京大学物理学院博士学位。2015至2020年在新加坡南洋理工大学从事研究博士后研究工作。2020年6月起任职于香港中文大学(深圳)理工学院。主要从事于低维光电材料表界面结构的精准设计与构建,实现太阳能驱动下的小分子转换,取得了一系列重要成果,迄今为止已在Nature Communications, Advanced Material, Advanced functional Material, ACS Catalysis, ACS Energy Letters等期刊上发表论文70余篇, SCI被引超过8000次,H指数为44。

周勇 ,香港中文大学(深圳)兼职教授。2009 年9月被南京大学物理学院按海外人才引进回国工作,加入南京大学环境材料与再生能源研究中心,聘为教授。主要从事:1、人工光合成二氧化碳转化为可再生碳氢燃料;2、光电材料的设计和构建;3、高效、低成本钙钛矿太阳能电池产业化应用研究。近五年来,以第一作者或通讯作者在 国际重要期刊上发表论文超过 60 篇,其中包括 J. Am. Chem. Soc. (1 篇)、Adv. Mater. (2 篇)、Adv. Funct. Mater. (1 篇)和 Nano Lett. (1 篇),受邀以第一作者或通讯作者撰写 2 篇综述论文。近五年论文他引超过 1600 次,5 篇论文入选 Web of Science 统计的“过去十年高被引论文”, H 指数 46。光催化还原 CO2 研究成果作为主要研究内容,荣获 2014 年国家自然科学二等奖(排名第四)。主编三本英文专著(Springer 等出版社出版)。多次受邀在国内外相关学术会议上做邀请报告或主持会议。担任 Current Nanoscience 中国地区编辑和 Mater. Res. Bull.编委。主持承担国家基金委、 科技 部 973 项目等项目。入选教育部新世纪人才(2010 年)、江苏省首届杰出青年基金(2012年)。

邹志刚 ,2003年凭为教育部“长江学者奖励计划”特聘教授,国家重点基础研究发展计划“973”项目首席科学家,教育部创新团队带头人,2015 年当选中国科学院院士,2018 年当选发展中国家科学院院士。主要从事新型可再生能源与环境材料方面的研究,邹院士在光催化领域做出了卓越的贡献,被媒体称为“光催化领域的前行者”。邹志刚院士已在 Nature等国际一流期刊上发表论文 602 多篇,H指数 74,连续 5年入选爱思唯尔材料科学高被引学者,是材料领域有国际影响力的学术带头人。申请中国发明专利 200 多项,其中 83 项已获授权;承担两届国家重大基础研究计划 973 项目、国家自然科学基金中日合作项目、 科技 部国际合作重大项目等多项科研项目;获国家自然科学二等奖 1 项、江苏省科学技术一等奖 2 项,作为第一完成人获第 46 届日内瓦国际发明展金奖及阿卜杜拉国王大学特别奖各 1项。

西班牙加泰罗尼亚化学研究学院公布了一项最新技术,仅仅通过一个步骤,成功将二氧化碳转化为化工业燃料甲醇,这项技术如投入工业实用不但可缓解困扰全球的温室效应,同时还可能解决国际能源危机。

西班牙加泰罗尼亚化学研究学院是在美国业内权威期刊《催化学报》上刊登这一最新研究成果的。据介绍,该学院研究小组在高压条件下对二氧化碳进行催化加氢,仅仅一个步骤之后,95%的二氧化碳就可以成功转化为甲醇。而甲醇则是化工行业中重要的燃料,可以直接转化为电力能源。目前,加泰罗尼亚化学研究学院已就此项技术申请了专利。

据分析,西班牙科学家发现的这项最新技术将为遏制全球气候变化起到关键作用,有可能成为控制和降低大气层中二氧化碳含量的主要途径,而最终产生的甲醇作为电力来源将为解决能源危机做出重要贡献。此外,世界气象组织在其最新报告中指出,目前二氧化碳全球排放量仍在不断上升并再次刷新历史记录。随着温室效应日益严重,全球气候变化现象在接下来的几年里将愈演愈烈,将会出现更多的极端天气。

如果能将二氧化碳转化成碳氢化合物燃料,将有助于减少人类对化石燃料的依赖,使用太阳光驱动的光催化剂可以将二氧化碳还原成其他产物,然而,不幸的是,二氧化碳的分子结构非常稳定,其碳氧键解离能高达C=O解离能高达750kJ/mol,因此二氧化碳的光还原非常困难和复杂

近些年来,伴随着人类经济的发展,工业排放出来的温室气体增多,地球植被面积却在不断减少,导致了大气中二氧化碳含量的急剧上升,随之而来的全球变暖也成为了国际上热切关注的话题,再加上世界人口的急剧增长,地球的资源也正在面临着枯竭的危机。如果能将过多的二氧化碳转化为人类所需要的资源,未免不是一举两得的事,但是这种转化过程却是非常挑战科学家们的水平,二氧化碳之所以能够大量存在于空气中,是因为其分子结构非常稳定,碳氧键解离能高达C=O解离能高达750kJ/mol,想要让二氧化碳发生反应,是一件非常难的事,这对于科学家来说是一项很大的技术挑战。

可喜可贺的是,中国科学家在这方面有了新的突破,近期,题为:Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers 的研究论文在 国际著名杂志Nature 子刊 Nature Energy 杂志(IF=54)发表,其研究主力是来自中国科学技术大学的孙永福和谢毅及其团队,他们在CO2光还原的方面取得了新的进展。

该团队开发了一种催化剂,单原子层薄的CuIn5S8层催化剂,将二氧化碳进行还原反应,拆分并保留原来的原子成分,最终形成新的物质甲烷(CH4),其最终的产物纯净度几乎达到100?甲烷是人们重要的燃料之一,如果这种技术能被广泛运用,可以说是解决了资源短缺这一大难题。

这次还原反应还有一个难点则是在于如何保证最终产物的单一性。CO2的光还原会产生大量的副产物,在还原过程中,必须保持高效率的还原速率,还需要保证控制产物的纯度,这对于反应中催化剂的控制则提出了很高的技术要求。

单原子层CuIn5S8对可见光驱动的CO2还原为CH4有着高的选择性,几乎接近100%,速率达到μmol/g/h。甲烷(CH4)属于典型的烷烃类物质,而稳定的反应中间体有利于这种物质的形成,并不是转化为一氧化碳(CO)。这种二氧化碳还原技术不仅仅是降低了整体的解离障碍,并且还从很大程度上保证了最终产物的单一性。

该项技术目前也还处于研发阶段,如果能够成熟并且被广泛运用,这不仅仅是在应对全球气候异常的现象上,还是在缓解地球资源短缺的问题中,都起到了很大的帮助作用。

二氧化碳合成淀粉论文

以二氧化碳为原料,不依赖植物光合作用,直接人工合成淀粉——看似科幻的一幕,真实地发生在实验室里。我国科学家首次实现了二氧化碳到淀粉的从头合成,相关成果北京时间24日由国际知名学术期刊《科学》在线发表。

从“0到1”的巨大突破

论文通讯作者、中科院天津工业生物所所长马延和介绍,此次研究中,科研人员用一种类似“搭积木”的方式,从头设计、构建了11步反应的非自然二氧化碳固定与人工合成淀粉新途径。核磁共振等检测发现,人工合成淀粉分子与天然淀粉分子的结构组成一致。

相比而言,自然界的淀粉合成依赖植物光合作用,涉及约60步代谢反应以及复杂的生理调控。

论文第一作者、天津工业生物所副研究员蔡韬介绍,实验室初步测试显示,人工合成淀粉的速率是自然淀粉合成速率的倍。在充足能量供给的条件下,按照目前的技术参数推算,理论上1立方米大小的生物反应器年产淀粉量相当于我国5亩玉米地的年产淀粉量。

这一突破得到该领域一批国际知名专家的高度评价。德国科学院院士曼弗雷德·雷兹表示,将二氧化碳固定并转化为有用的有机化学品是一项重大的国际挑战,本项工作将该领域研究向前推进了一大步。美国工程院院士延斯·尼尔森表示,这是利用合成生物学解决当今 社会 面临的若干重大挑战的惊人案例,将为日后更多相关研究铺平道路。

合成淀粉的巨大意义

淀粉由许多葡萄糖单元通过糖苷键连接而成,是粮食的主要成分,是人和畜禽重要的食物能量来源,也是广泛应用的工业原料(造纸、塑料等),目前主要由玉米、小麦、红薯等农作物通过光合作用固定二氧化碳产生。在植物体内,这个过程涉及大约60步生化反应、复杂的生理调节,理论上总体能量转换效率在2%左右。

人工合成淀粉是 科技 领域一个重大课题,吸引了多国科学家深入 探索 ,但一直未取得实质性重要突破。

合成生物学被认为是影响未来的颠覆性技术。模拟自然作物光合作用,重新设计生命合成代谢过程,设计人工生物系统,不依赖植物种植进行淀粉制造,潜藏着惊人的变革前景。

步骤简单 速度快,效率高

这次合成只需要了不多的步骤,而与之对比,自然界中生物从二氧化碳合成淀粉,需要大约60步生化反应,且需要复杂的生理调节。而这个人工合成,大概11个步骤。

并且这次实验室合成的速率是玉米淀粉合成速率的倍。此外,根据报道,其效率也高,自然界合成淀粉的效率约为2% (玉米),而工业合成效率可以达到10%以上。

合成淀粉应用前景

在科学家眼里,人工合成淀粉未来如果进入实际应用,不仅能节约耕地和淡水资源、进一步保障粮食安全,还将带来诸多想象空间。

人工合成淀粉对于解决农业问题有着巨大意义。民以食为天,一直以来,农业问题关乎了人类的生死存亡。而采用这种工业办法,可以解决农业所需的耕地、淡水资源,也能够避免农药和化肥等的使用,改善粮食安全。

我国的耕地面积为150多万平方千米,占国土面积的16%左右,也就是说,不到五分之一,剩下五分之四的国土面积都是不能作为耕地的,这也使得我国的粮食问题一直非常严峻。有了这种技术,高山峡谷、沙漠、冰原,这些地方都可以成为农业产地。

同时,这项技术可以直接固定二氧化碳,效率远高于植物,对于缓解全球变暖问题也有着巨大意义。

甚至在更为遥远的未来,这项技术很可能成为人类 探索 遥远宇宙时的食物来源。

中科院副院长周琪说,成果目前尚处于实验室阶段,离实际应用还有距离,后续需尽快实现从“0到1”概念突破到“1到10”的转换。

淀粉技术的合成,对于当下及未来的影响非常的大,特别是合成大米可能会实现,那么对于粮食问题的发展有很大的帮助。

在9月24号,国际学术期刊科学上发表了二氧化碳人工合成淀粉的论文。该论文通过短短的11步就可以完成二氧化碳到淀粉全过程,远远比自然界60多步的淀粉合成路线简便,大大提高了淀粉合成的速度和效率。作为一项全新的技术,笔者认为它对当代会产生以下几点影响。

第一,二氧化碳合成淀粉可以降低粮食压力。根据实验室测定,人工合成淀粉的效率是农业生产淀粉的倍。这一巨大的差距代表着更高的粮食生产速度,而这可以缓解我们当前人口快速增长所需要的粮食压力。因为我们人所需的能量大部分来自于植物中的淀粉,我们通过对淀粉的分解,将其转变为葡萄糖,最后合成ATP,为我们机体提供能量。而植物的生长需要很长的周期,但我们人体每天都需要进食,这就形成了供需的矛盾,而二氧化碳合成淀粉高效可以缓解这个矛盾,是非常棒的技术。

第二,二氧化碳固定合成淀粉能够解决环境危机。由于工业的发展,二氧化碳的排放量逐年升高,过量的二氧化碳造成了温室效应,让全球温度升高,造成了两极冰川融化,海平面升高,威胁沿海城市。面对这些二氧化碳造成的危机,二氧化碳合成淀粉技术能够利用大气中丰富的二氧化碳资源,将这些对环境产生破坏的气体转变成对人体有利用价值的淀粉,可以极大地延缓温室效应的逼近,保护环境。

第三,二氧化碳合成淀粉技术提高了能量的利用效率。由于自然界中合成淀粉需要六十多步,这其中会造成不少能量的浪费。而该技术简化了这些步骤,可以有效避免更多的能量浪费,提高能量利用效率。

以上就是笔者对这个问题的回答,如果大家有其他观点,欢迎在评论下方留言。

应该就是用两种不一样的物质进行合成,然后就变成了淀粉。

二氧化碳分离研究现状论文

空气分离技术论文篇二 深冷技术在空气分离设备设计中的应用 摘 要:随着国民经济的迅速发展及科学技术水平的不断提高,各种新型空气分离设备不断出现,作为空气分离技术中最早出现的技术,深冷技术在其发展中得到了广泛的应用。文章主要对深冷技术的概念、空气分离设备的含义及深冷技术在空气分离设备设计中的应用进行了简要的分析与探究。 关键词:深冷技术;空气分离设备;设计;应用;概念 中图分类号: 文献标识码:A 文章编号:1006-8937(2014)23-0063-02 空气分离技术起源于1985年与1903年德国卡尔・林德教授创造的第一套空气液化设备及10 m3/h(氧)空气分离设备,在其100多年的发展历程中,随着新型技术的不断发展,空气分离设备及技术得到了极大的发展,深冷分离技术在空气分离出现最早的一种技术,经人们的不断研究及革新,在工业生产实践及设备更新中愈加成熟,在国民经济发展中的应用范围也随之更加广泛。 1 深冷技术的概念 深冷技术是指采用冷媒介质作为冷却介质,把淬火后的金属材料的冷却过程继续下去,达到远低于室温的某一温度(-196 ℃),进而实现金属材料性能发送的目的。近年来,随着空气分离设备设计的不断发展,作为金属工件性能发送的新型工艺技术,深冷技术是现阶段最有效、最经济实用的技术。 在深冷加工中,金属里残余的大量奥体转化为马氏体的形式,尤其是从-196 ℃到室温的过程中过饱和的亚稳定马氏体的过饱和度会下降,析出弥散,超微细碳化物其与基体保持共格关系,电流只有20~60 A,这种现象的产生可以减少马氏体晶格畸变,降低微观应力,在材料塑性变形中细小弥散的碳化物可以对位错运动造成阻碍,进而起到基体组织强化的作用。与此同时,析出超微细碳化物颗粒后要在马氏体基体上进行均匀分布,对晶界脆化作用进行有效减弱,细化基体组织不仅可以对杂质元素在晶界的偏聚程度进行有效减弱,还可以充分发挥晶界强化的作用,进而对工模具性能进行极大改善,提高其硬度、抗冲击韧性及耐磨性。深冷技术的应用不仅体现于工作表面,还在工件内部进行渗入,展现的是整体性效果,基于此,可以对工件进行重模,多次使用。在工件方面,深冷技术的应用还可以对淬火应力进行有效降低及起到尺寸稳定性增强的作用。 2 空气分离设备的含义 随着社会经济的迅速发展及科学技术的不断进步,在空气分离研究等行业的发展中,其装备发展已呈现出大型化的趋势,对空气分离设备配套的要求也越来越高。现阶段,在空气分离设备自主化发展中我国的水平等级已达6万等级,与世界先进水平十分接近。2002年,杭氧的3万等级国产空气分离设备在宝钢集团成功运转,使得我国空气分离设备的竞争力得到了极大的提升,促使国产大型空气分离设备成功对国内市场进行了大范围地占领。 3 深冷技术在空气分离设备设计中的应用 空气深冷分离工艺是采用多塔低温精馏的方式,从压缩空气中制取高纯度的氧、氮等产品。目前在空气分离设备设计中主要有两种存在形式,第一种是常温空气分离设备,这种设备主要是在常温及非低温的状态下进行的,这种常温空气分离设备又可以分为两种不同的形式:变压吸附分离与膜分离。这里要进行分析的就是另一种空气分离设备设计形式,深冷空气分离,这种设备主要应用于温度非常低的情况下。在20世纪50年代,为提升我国国防力量,满足国防需求,我们的深冷空气分离技术及设备都是从苏联引进和仿制,当时仿制的企业为杭州铁工厂。在1953年左右时,我国才成功仿制出了属于自己的深冷空气分离设备。直至今日,我国的空气分离技术及设备制造水平已经得到了极大的发展,并为国民经济的增长贡献着自己的一份力量。目前,深冷空气分离技术主要应用于以下几方面。 压缩空气净化组件 压缩空气净化组件主要的组成成份有高效除油器、冷冻式干燥机、精密过滤器及活动性过滤器。首先空气要在空气压缩机里进行压缩,再在空气缓冲罐中进行作业,然后经过高效除油器将大部分的杂质进行有效去除,杂质主要包括油、水及尘等,在水分进一步去除中可以采用冷冻式干燥机进行,再次进行去油、去尘时可以选用精密过滤器实施操作,最后选用活性炭过滤器进行更深层次地去油工作。 空气缓冲罐 空气缓冲罐组件主要的构成成份有空气缓冲罐与附属阀门仪表。空气缓冲罐在空气分离设备设计中起到的主要作用就是缓冲,对气流脉动起到有效降低。进而使系统压力波动得到降低,使压缩空气能够顺利在压缩空气净化组件中通过,最大限度地将尤、水等杂物进行有效排除。与此同时,在进行吸附塔工作切换过程中,还可以帮助氧氮分离系统在极少时间中得到大量所需的压缩空气,这种技术的应用,可以可以帮助吸附塔中的压力进行迅速上升并达到工作压力,还可以确保机械设备运行的可靠性与稳定性。 氧氮分离系统 构成氧氮分离系统组件主要的成份有吸附塔、压紧装置、附属阀门与仪表电器。选用复合床结构设计中的吸附塔,主要分为两种塔:A塔与B塔,将进口碳分子筛填装进塔内(为提高碳分子筛装填的均匀性可以选用伸展扭转式振动填充方式进行操作)。清洁的压缩空气要先从A塔入口端在碳分子筛的作用下流向出口端,这个时候被其吸附的主要成分有氧气、二氧化碳及水,在吸附塔出口端流出的只有产品氮气。经过时间的不断推移,当A塔内的碳分子筛吸附达到饱和前将会出现自动吸附停止的现象,在B塔中流入清洁压缩空气在进行吸氧产氮,并进行A塔分子筛的再生。通过将吸附塔快速降低到常压脱附的氧气、二氧化碳就水来实现分子筛的再生。在进行A、B塔交替吸附塔再生时,不仅可以促使氧氮分离的完成,还可以不断产生氮气。 氧氮缓冲系统 氧氮缓冲系统组件主要的构成成份有氮气缓冲罐、精密过滤器、流量计、调压阀、放空部件等,氮气缓冲罐主要是将氮氧分离系统中分离出来的氮气压力及纯度进行均衡作用,确保氮气的稳定性并保障连续供给。与此同时,在进行吸附塔切换工作之后,将自身的一些气体进行吸附塔回充作业,这种方式可以有效起到提升吸附塔压力的作用,还能起到对床层的有效保护,在空气分离设备工作时还能起到极大的保护作用。最后进行再次过滤,主要采用精密过滤器进行工作,这样可以最大限度地确保氮气的质量。 作为一种传统的制氮方式,深冷空气分离制氮已经有几十年的发展历程。这种方式主要以空气作为原料,为使空气液化变为液体空气,必须进行严格的压缩、净化,并进行热交换。液体空气主要构成的混合物分两部分组成:液态氧气与液态氮气,通过两者不同的沸点进行液态空气的精馏,将两者进行有效分离并获取氮气。在整个工作操作中深冷空气分离制氮设备及过程十分繁杂,需要占用大范围的土地面积,基础建设成本很高,气体产生的速度很慢,在安装过程中,具有较高要求及较长工作周期。对深冷空气分离设备、安装与基层建筑等方面的因素进行综合分析,当设备低于3 500 N m3/h时,规格一样的PSA装置与深冷空气分离装置在成本投资方面相比,要低出20%~50%之间。在经济适应方面,深冷空气分离制氮装置并不适应中、小规模的工业制氮,主要适应于规模较大的工业制氮。 4 结 语 综上所述,随着科学技术水平的不断提升,我国空气分离设备及技术越来越向大型化、专业化、规模化的发展趋势迈进。深冷技术作为空气分离最重要的分离技术,在确保企业利益最大化的基础上,将深冷技术的能耗量进行有效降低,是空气分离工作的主要任务。 参考文献: [1] 叶必楠.杭氧应用新技术开发系列新产品[J].深冷技术,1996,(4). [2] 姜润民.空气分离设备及低温液化设备的模块化设计和制造[J].深冷技术,1997,(4). [3] Helmut Springmann,毛捷.空气分离设备的现状和展望[J].深冷技术,1974,(3). 看了“空气分离技术论文”的人还看: 1. 化工分离技术论文 2. 大气污染控制技术论文 3. 化工企业技术论文3000字 4. 化工分离技术论文(2) 5. 金属技术论文2000字

二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。目前国内外正在致力于发展一种新型的二氧化碳利用技术——CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。 二氧化碳在温度高于临界温度Tc=℃、压力高于临界压力Pc=的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。 传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理 (一). 超临界流体定义 任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。 超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。 目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理 超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。 在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力 超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点 超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为℃,临界压力为,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。 因此,CO2特别适合天然产物有效成分的提取。二、超临界流体萃取的特点 1.萃取和分离合二为一,当饱含溶解物的二氧化碳超临界流体流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不存在物料的相变过程,不需回收溶剂, 操作方便;不仅萃取效率高,而且能耗较少,节约成本。 2.压力和温度都可以成为调节萃取过程的参数。临界点附近,温度压力的微小变化,都会引起CO2密度显著变化,从而引起待萃物的溶解度发生变化,可通过控制温度或压力的方法达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离;因此工艺流程短、耗时少。对环境无污染,萃取流体可循环使用,真正实现生产过程绿色化。 3.萃取温度低, CO2的临界温度为℃ ,临界压力为 , 可以有效地防止热敏性成分的氧化和逸散,完整保留生物活性,而且能把高沸点,低挥发渡、易热解的物质在其沸点温度以下萃取出来。 4. 临界CO2 流体常态下是气体, 无毒, 与萃取成分分离后, 完全没有溶剂的残留, 有效地避免了传统提取条件下溶剂毒性的残留。同时也防止了提取过程对人体的毒害和对环境的污染, 100%的纯天然。 5.超临界流体的极性可以改变, 一定温度条件下, 只要改变压力或加入适宜的夹带剂即可提取不同极性的物质, 可选择范围广。三、超临界流体萃取技术的应用 (一).超临界流体技术在国内天然药物研制中的应用 目前,国内外采用CO2超临界萃取技术可利用的资源有:紫杉、黄芪、人参叶、大麻、香獐、青蒿草、银杏叶、川贝草、桉叶、玫瑰花、樟树叶、茉莉花、花椒、八角、桂花、生姜、大蒜、辣椒、桔柚皮、啤酒花、芒草、香茅草、鼠尾草、迷迭香、丁子香、豆蔻、沙棘、小麦、玉米、米糠、鱼、烟草、茶叶、煤、废油等。 在超临界流体技术中,超临界流体萃取技术(Supercritical fluid extraction,SFE)与天然药物现代化关系密切。SFE对非极性和中等极性成分的萃取,可克服传统的萃取方法中因回收溶剂而致样品损失和对环境的污染,尤其适用于对温热不稳定的挥发性化合物提取;对于极性偏大的化合物,可采用加入极性的夹带剂如乙醇、甲醉等,改变其萃取范围提高抽提率。(二). 超临界CO2萃取技术在中药开发方面的优点 用超临界CO2萃取技术进行中药研究开发及产业化,和中药传统方法相比,具有许多独特的优点: 1、二氧化碳的临界温度在℃ ,能够比较完好地保存中药有效成分不被破坏或发生次生化, 尤其适合于那些对热敏感性强、容易氧化分解的成分的提取。 2、流体的溶解能力与其密度的大小相关, 而温度、压力的微小变化会引起流体密度的大幅度变化, 从而影响其溶解能力。 所以可以通过调节操作压力、温度, 从而可减小杂质使中药有效成分高度富集,产品外观大为改善, 萃取效率高, 且无溶剂残留。 3、根据中医辨证论治理论, 中药复方中有效成分是彼此制约、协同发挥作用的。超临界二氧化碳萃取不是简单地纯化某一组分, 而是将有效成分进行选择性的分离, 更有利于中药复方优势的发挥。 4. 超临界CO2还可直接从单方或复方中药中提取不同部位或直接提取浸膏进行药理筛选,开发新药,大大提高新药筛选速度。同时,可以提取许多传统法提不出来的物质,且较易从中药中发现新成分,从而发现新的药理药性,开发新药。 5、二氧化碳无毒、无害、不易燃易爆、粘度低 ,表面张力低、沸点低, 不易造成环境污染。 6、通过直接与GC、IR、MS、LC等联用 ,客观地反映提取物中有效成分的浓度,实现中药提取与质量分析一体化。 7. 提取时间快、生产周期短。超临界CO2提取(动态)循环一开始,分离便开始进行。一般提取10分钟便有成分分离析出,2一4小时左右便可完全提取。同时,它不需浓缩等步骤,即使加入夹带剂,也可通过分离功能除去或只是简单浓缩。 8. 超临界CO2萃取,操作参数容易控制,因此,有效成分及产品质量稳定。 9. 经药理、临床证明,超临界CO2提取中药,不仅工艺上优越,质量稳定且标准容易控制,而且其药理、临床效果能够得到保证。 10. 超临界CO2萃取工艺,流程简单,操作方便,节省劳动力和大量有机溶剂,减小三废污染,这无疑为中药现代化提供了一种高新的提取、分离、制备及浓缩新方法。 另外,超临界流体结晶技术中的RESS过程、GAS过程等可制备粒径均匀的超细颗粒,从而可制备控释小丸等剂型,可用来制备中药新剂型。 超临界萃取技术除了在中药有效成分的提取方面有着明显的优势之外,它还在食品、化工和生物工程方面有着广泛的应用。(三).超临界流体技术在其他方面的应用 1. 在食品方面的应用 目前已经可以用超临界二氧化碳从葵花籽、红花籽、花生、小麦胚芽、可可豆中提取油脂,这种方法比传统的压榨法的回收率高,而且不存在溶剂法的溶剂分离问题。 2. 在医药保健品方面的应用 在抗生素药品生产中,传统方法常使用丙酮、甲醇等有机溶剂,但要将溶剂完全除去,又不是要变质非常困难。若采用SCFE法则完全可符合要求。 另外,用SCFE法从银杏叶中提取的银杏黄酮,从鱼的内脏,骨头等提取的多烯不饱和脂肪酸(DHA,EPA),从沙棘籽提取的沙棘油,从蛋黄中提取的卵磷脂等对心脑血管疾病具有独特的疗效 3. 天然香精香料的提取 用SCFE法萃取香料不仅可以有效地提取芳香组分,而且还可以提高产品纯度,能保持其天然香味,如从桂花、茉莉花、菊花、梅花、米兰花、玫瑰花中提取花香精,从胡椒、肉桂、薄荷提取香辛料,从芹菜籽、生姜,莞荽籽、茴香、砂仁、八角、孜然等原料中提取精油,不仅可以用作调味香料,而且一些精油还具有较高的药用价值。 啤酒花是啤酒酿造中不可缺少的添加物,具有独特的香气、清爽度和苦味。传统方法生产的啤酒花浸膏不含或仅含少量的香精油,破坏了啤酒的风味,而且残存的有机溶剂对人体有害。超临界萃取技术为酒花浸膏的生产开辟了广阔的前景。4. 在化工方面的应用 在美国超临界技术还用来制备液体燃料。以甲苯为萃取剂,在Pc=100atm, Tc=400-440℃条件下进行萃取,在SCF溶剂分子的扩散作用下,促进煤有机质发生深度的热分解,能使三分之一的有机质转化为液体产物。此外,从煤炭中还可以萃取硫等化工产品。 美国最近研制成功用超临界二氧化碳既作反应剂又作萃取剂的新型乙酸制造工艺。俄罗斯、德国还把SCFE法用于油料脱沥青技术。 此外,朝临界萃取还可以用于提取茶叶中的茶多酚;提取银杏黄酮、内酯;提取桂花精和米糖油。四、超临界流体萃取技术的展望 中药为我国传统医药,用中药防病治病在我国具有悠久的历史。由于化学药品的毒副作用逐渐被人们所认识及合成一个新药又需巨大的投资,西医西药对威胁人类健康的常见病、疑难病的治疗药物还远远不能满足临床的需要,因此,全世界范围内掀起了中医中药热。 中药在我国作为天然药物不但应用历史悠久。产量又居世界第一,然而,就目前世界天药物的贸易额看.我国仅占18%左右。究其原因,主要是产业现代化工程技术水平不高,制备工艺和剂型现代化水平还很落后等因素所制约。为此,要改变现状必需从提取分离工艺、制剂工艺现代化。质量控制标准化、规范化上下手。面对科学技术,特别是医药工业的迅猛发展,国际间医药学术交流活动的日益频繁以及药品市场竞争越来越激烈,实现中药现代化,与国际接轨,已成为中医药工作者的共识。 在现代社会,中药生产中的大桶煮提、大锅蒸熬及匾、勺、缸类生产器具当家的状况大为改善,进而出现不锈钢多功能提取罐、外循环蒸发、多效蒸发器,流化干燥器等设备,中成药的剂型也有较大的发展,由丸、散、膏、丹剂为主发展成为具有颗粒剂、片剂、胶囊剂、口服液及少量粉针等剂型。然而,我国现阶段创制的中成药还难以在国外注册、合法销售与使用。从目前全世界天然药物的贸易额来看,中国仅占l%左右,与天然药物主产国的地位极不相称。其原因主要是产业现代工程技术水平不高,制备工艺和剂型现代化方面还很落后;生产过程的许多方面缺乏科学的、严格的工艺操作参数,不仅导致了消耗高、效率低,而且还出现有效成分损失、疗效不稳定、剂量大服用不方便、产品外观颜色差、内在质量不稳定;同时还出现缺少系统的量化指标,大多数产品缺乏疗效基本一致的内在质量标准;许多复方制剂还难以搞清楚其作用的物质基础。"丸、散、膏、丹,神仙难辨" 的状况尚未根本改变。要改变这种现状,让西方医药界接受中药,增强中药在国际市场上的竞争地位,主要途径是,以中药理论为指导,采用先进的技术,实现中药现代化。中药产品现代化的重点可简单地用8个字来描述,即"有效、量小、安全、可控"。实际上,它涉及范围十分广泛,要解决的问题比较复杂,但首先最关键的问题就是要提取分离工艺、制剂工艺现代化,质量控制标准化、规范化。为此,许多医药专家多次提出要采用超临界流体技术、膜分离技术、冷冻干燥技术、微波辐射诱导萃取技术、缓控释制剂技术、各种先进的色谱、光谱分析等先进技术,进行中药研究开发及产业化。 中药生产现代化和质量标准科学化是发展中药,走向世界的关键.在中药研制和开发中,必须遵循“三效“(速效、高效、长效),"三小"(剂量小、副作用小、毒性小),"五方便"(生产、运输、储藏、携带、使用方便)为目的之原则.为此,必须选用一些现代高新工艺技术.近年发展的SFE技术用于提取天然药物中的有效成分,特别适合对湿热不稳定的物质,又无残留溶剂、无回收溶剂造成环境污染的缺陷,而且提取速度快、可缩短生产周期。无疑是既可提高收率及产品纯度、又可降低成本的一种高新技术可推广使用.但是因为本法采取的萃取剂均为脂溶性,所以对极性偏大或分子量偏大(一般大于500时)的有效成分提取收率较差,今后必须在选用合适夹带剂加入方面下功夫.当然,国外已有报道应用全氟聚醚碳酸铵可使SFE法扩展到水溶性体系,使难以提取的强极性化合物如蛋白等成分由SFE法萃取.近年来SFE技术又与色谱、质谱、高压液相色谱等高新分析仪器联用,成为一种有效的分离、分析手段,能高效、快速地进行药物成分的分析。使一些中药制剂能借此制订出能指导生产操作和反映产品内在质量均一性、有效性、稳定性、重现性的可控指标,实施质量标推科学化. 目前 SFE主要用在天然药物中有效成分的萃取,而且多用于单个药物中纯天然成分提取.我们认为对我国应用历 史悠久的古方中一些中成药复方制剂,以及许多中药中具很强药理活性,参与生命功能活动的多糖成分.也应该进行采用SFE提取工艺的研究与新药开发,这也是使中药与国际接轨,实现中药现代化的必经之路。 在超临界流体技术中,研究及开发应用较多的是超临界流体萃取技术,由于其自身的特点,国内外已广泛应用于食品、香料等领域。我国有丰富的自然资源,超临界萃取技术有极大的推广价值。有些交通不发达的山区,特产资源十分丰富,尤其盛产中草药材。处理这些药材,要用相当大的装置,且运输不便,如能在这些山区建立CO2超临界萃取设备,可用以提取中药中最为有用的精华部分,这不仅减少了大量的运输成本,而且大大增强了重要的附加值。 而目前的中药领域,国外或国内大多数从事SFE技术的单位研究开发应用虽有报道,但缺乏系统性,大多只停留在中药有效成分或中间原料提取方面,这仅仅是用于中药的一个方面。中药的研究与开发具有特殊性,即必须具有药理临床效果,因此,SFE技术用于中药必须结合药理临床研究。只有工艺上优越,药理临床效果又保证或更好,SFE技术在该领域的生命力或潜力才能真正体现。

· 二氧化碳的是非功过 二氧化碳是植物光合作用的必备原料,其含量增多,对植物的生长有好处。二氧化碳在大棚蔬菜栽培中可作为化肥来施放,使作物增产。 二氧化碳在潜水、航空中可作为氧气的来源。 液态二氧化碳有广阔的应用前景,把液态二氧化碳作为从某些植物或植物源中提取天然存在的化合物的媒质,不仅不会破坏原料所含的生物活性物质,而且产品中不含残留的媒质,用喷洒液态二氧化碳的方法为飞机场除雾,除雾效率比固态二氧化碳高几百倍。用二氧化碳代替传统的有机溶剂进行喷漆,能有效地减少喷漆过程中释放到大气中的有害物质的数量。 在高科技中,二氧化碳也有它的用武之地,用二氧化碳代替氦氖进行激光治疗,可以减少病人的痛苦,并且节省费用,用二氧化碳萃取蛋黄卵磷脂,经济效益可观。二氧化碳可用来洗衣服,并且不污染环境,而且来源广泛。 二氧化碳增多引起的温室效应,使两极冰川融化,致使海平面升高,危及沿海城市,使海岸地区土地盐碱化,增加开发难度,温度升高还使一些山顶的积雪融化,使以积雪融化为水资源的河流水量减少,甚至发生断流现象,影响这些地区的生产活动。 大气温度的升高,造成海洋中吸收二氧化碳的某些藻类植物 大肆繁殖,致使吸收二氧化碳的浮游藻类死亡,间接地影响渔业的繁殖,并使大气中的二氧化碳的增多走向恶性循环。 综上所述:二氧化碳的增多是好是坏,关键看人类如何利用。只要我们因势利导,化害为益、一定会使二氧化碳成为人类的有用功臣。

相关百科

热门百科

首页
发表服务