首页

> 论文发表知识库

首页 论文发表知识库 问题

多元统计分析论文主题撞了

发布时间:

多元统计分析论文主题撞了

提供一些经济统计类的学年论文题目,供写作参考。 1. 某省各地市经济发展水平的综合评价 2. 工业企业经济效益综合评价的应用研究 3. 某省市经济发展水平分区研究 4. 某省市消费拉动第三产业增长的实证分析 5. 某省市城镇居民消费结构变化趋势研究 6. 某省普通高等教育生源变动趋势与对策研究 7. 某省城镇居民消费结构比较研究 8. 某高校学生的心理健康统计分析 9. 课堂教学评估体系与方法研究 10. 某市各区县经济综合实力评价研究 11. 基于多元统计的某省经济分区研究 12. 因子分析在某省利用外资效果评价中的应用 13. 因子分析在居民消费结构变动分析中的应用 14. 因子分析在企业竞争力评价中的应用 15. 深沪股市收益率分布特征的统计分析 16. 某省市农民收入问题的调查与思考 17. 最优加权组合法在GDP预测中的运用研究 18. 最优加权组合法在粮食产量预测中的运用研究 19. 最优加权组合法在能源消耗预测中的运用研究 20. 我国(某省)实际人均GDP的趋势分析及预测 21. 某省市工业经济效益的综合评价 22. 工业企业科技竞争力的综合评价 23. 某省市城镇居民消费结构的地区差异分析 24. 某省市各地区经济综合实力的评价 25. 基于因子分析法的上市公司财务状况评价研究 26. 某省工业化进程统计测度及实证分析 27. 某省城市化进程统计测度及实证分析 28. 某省城市规模发展水平分析与比较研究 29. 某省市工业行业结构特征的因子分析 30. 城镇居民消费的典型相关分析 31. 我国(某省)各地区人口素质差异的统计分析 32. 我国(某省)三次产业结构变动的统计分析 33. 某省农业产业化发展的实证研究 34. 某省外贸出口与经济发展关系的实证研究 35. 县域经济发展综合评价的实证研究 36. 某省各县市经济发展的聚类分析 37. 某省各县市产业结构的聚类分析 38. 某省(市)信息化实现程度实证评价 39. 某省(市)环境保护综合评价 40. 我国科技进步贡献率的测度 41. 某省(市)居民生活水平与质量实证评价 42. 某省(市)经济外向度实证研究 43. 县级政绩考核指标体系与方法研究 44. 我国城乡居民收入差距实证研究 45. 我国东西部城镇居民收入差距实证研究 46. 某省市城镇居民消费水平与结构变化趋势研究 47. 某省市投资拉动GDP增长的实证研究 48. 耐用品需求预测模型及其应用研究 49. 某省市GDP周期波动实证研究 50. 某省市工业周期波动实证研究 51. 某省市零售市场周期波动实证研究 52. 某省市农民收入周期波动实证研究 53. 某省市人口最优预测模型与应用研究 54. 某省市人口老龄化趋势与对策研究 55. 某省市财政收支变化趋势与对策研究 56. 某省市城镇居收入差距变化趋势与对策研究 57. 某省市农民收入差距变化趋势与对策研究 58. 长江水质的综合评价与预测 59. 多元统计分析方法在股票市场板块中的应用研究 60. ARCH族波动模型研究及其在我国股市中的应用研究

浅议中小企业薪酬激励问题

大三下了,学的是财务管理专业,老师要求我们写五千字的学年论文,题目自拟,但最好是写经济类的,说是从掌握的经济咨询里面总结出自己的观点就有东西可写了,而且如果这次写的好,直接可以和毕业论文相关联。 拜求各位童鞋们给点建议,或者给个思路,题目之类的 小女子不甚感激……给各位鞠躬了```3Q

你可以上网上看一下赵国庆教授写的论文,我觉得还不错。 求采纳

韩国词性分析,比如阴性词阳性词 韩国助词分析例如이/가 은/는 词尾之类的分析 还可以比如说韩国泡菜看韩国人 韩国电视剧的发展 韩国电影 韩国语汉字词分析都可以 韩国韩服 韩国韩服和中国旗袍 韩国礼仪等等 总之文化类的范围广,词性之类的引用很多~

《股票价格的影响因素》这题目比较有吸引力

运筹学知识 论我来写的 的

好像没有类似设计类的专业。 经济类的专业有:经济学、国际经济与贸易、金融学、风险管理与保险学、财政学、环境资源与发展经济学(一般的院校有前三个专业,后三个专业在重点院校才有)。 (1)经济学专业:该专业课程设置与国外大学经济学专业接轨,为有志成为经济理论研究者、宏观经济管理者和职业经理的青年学生提供一个成长和发展的舞台。毕业生既适合到 *** 经济决策部门、金融研究机构、教学研究机构和公司企业工作,也为在国内或出国继续深造打下坚实的基础。 (2)国际经济与贸易专业:该专业主要培养适应经济全球化趋势,具备国际经济基本理论与较高的外语和电子商务运用等实践技能的,能从事国际经济、贸易、金融、商务工作的高级专门人才。毕业生以深厚的理论基础与开阔的创新思维为竞争优势,有较为自由的选择空间。 (3)金融学专业:该专业在与国际上金融学专业教学接轨的同时,也提供实践应用性课程,从而全面提升学生个人的竞争能力。毕业生既有去国外名校留学深造的,也有选择到咨询管理公司、投资银行、中央银行、外资或国有商业银行、保险公司、国家部委机关等工作的。 (4)风险管理与保险学专业:该专业致力于培养"有专长、基础宽、素质高",能够胜任国内外风险管理与保险经营管理工作的复合型人才及风险管理与保险教学科研工作的学术人才。毕业生或者去国外名校留学,或者供职于各大保险公司、保险监督管理机构、金融证券机构。 (5)财政学专业:该专业顺应公共管理事务在中国的勃兴,旨在培养具有宽厚扎实的经济学理论基础,熟悉财政税务、财务会计知识,具备较高的外语和计算机运用水平、较强的研究能力、决策能力和管理能力的高级专门人才。毕业生可从事 *** 部门的公共经济研究和政策制定工作,可任职于各类大型企业、会计师事务所、律师事务所等中介机构的资产评估、税务代理等工作,还可以留在大学或是研究机构,从事研究教学工作。 (6)环境资源与发展经济学专业:该专业是一门兼有文、理、工三栖特点的综合型经济学科,侧重于环境、资源与可持续性发展的研究,毕业生将能胜任在 *** 部门、大中型企业、跨国公司、科研机构、高等院校及国际组织等的管理与研究工作。 经济学、国际经济与贸易、金融学一般大学都会有的。

与版式设计有关的

后期会把每一章的学习笔记链接加上

多元统计分析 是研究多个随机变量之间相互依赖关系及其内在统计规律的一门学科

在统计学的基本内容汇总,只考虑一个或几个因素对一个观测指标(变量)的影响大小的问题,称为 一元统计分析 。

若考虑一个或几个因素对两个或两个以上观测指标(变量)的影响大小的问题,或者多个观测指标(变量)的相互依赖关系,既称为 多元统计分析 。

有两大类,包括:

将数据归类,找出他们之间的联系和内在规律。

构造分类模型一般采用 聚类分析 和 判别分析 技术

在众多因素中找出各个变量中最佳的子集合,根据子集合所包含的信心描述多元系统的结果及各个因子对系统的影响,舍弃次要因素,以简化系统结构,认识系统的内核(有点做单细胞降维的意思)

可采用 主成分分析 、 因子分析 、 对应分析 等方法。

多元统计分析的内容主要有: 多元数据图示法 、 多元线性相关 与 回归分析 、 判别分析 、 聚类分析 、 主成分分析 、 因子分析 、 对应分析 及 典型相关分析 等。

多元数据是指具有多个变量的数据。如果将每个变量看作一个随机向量的话,多个变量形成的数据集将是一个随机矩阵,所以多元数据的基本表现形式是一个矩阵。对这些数据矩阵进行数学表示是我们的首要任务。也就是说,多元数据的基本运算是矩阵运算,而R语言是一个优秀的矩阵运算语言,这也是我们应用它的一大优势。

直观分析即图示法,是进行数据分析的重要辅助手段。例如,通过两变量的散点图可以考察异常的观察值对样本相关系数的影响,利用矩阵散点图可以考察多元之间的关系,利用多元箱尾图可以比较几个变量的基本统计量的大小差别。

相关分析就是通过对大量数字资料的观察,消除偶然因素的影响,探求现象之间相关关系的密切程度和表现形式。在经济系统中,各个经济变量常常存在内在的关系。例如,经济增长与财政收人、人均收入与消费支出等。在这些关系中,有一些是严格的函数关系,这类关系可以用数学表达式表示出来。还有一些是非确定的关系,一个变量产生变动会影响其他变量,使其产生变化。这种变化具有随机的特性,但是仍然遵循一定的规律。函数关系很容易解决,而那些非确定的关系,即相关关系,才是我们所关心的问题。

回归分析研究的主要对象是客观事物变量间的统计关系。它是建立在对客观事物进行大量实验和观察的基础上,用来寻找隐藏在看起来不确定的现象中的统计规律的方法。回归分析不仅可以揭示自变量对因变量的影响大小,还可以用回归方程进行预测和控制。回归分析的主要研究范围包括:

(1) 线性回归模型: 一元线性回归模型 , 多元线性回归模型 。 (2) 回归模型的诊断: 回归模型基本假设的合理性,回归方程拟合效果的判定,选择回归函数的形式。 (3) 广义线性模型: 含定性变量的回归 , 自变量含定性变量 , 因变量含定性变量 。 (4) 非线性回归模型: 一元非线性回归 , 多元非线性回归 。

在实际研究中,经常遇到一个随机变量随一个或多个非随机变量的变化而变化的情况,而这种变化关系明显呈非线性。怎样用一个较好的模型来表示,然后进行估计与预测,并对其非线性进行检验就成为--个重要的问题。在经济预测中,常用多元回归模型反映预测量与各因素之间的依赖关系,其中,线性回归分析有着广泛的应用。但客观事物之间并不一定呈线性关系,在有些情况下,非线性回归模型更为合适,只是建立起来较为困难。在实际的生产过程中,生产管理目标的参量与加工数量存在相关关系。随着生产和加工数量的增加,生产管理目标的参量(如生产成本和生产工时等)大多不是简单的线性增加,此时,需采用非线性回归分析进行分析。

鉴于统计模型的多样性和各种模型的适应性,针对因变量和解释变量的取值性质,可将统计模型分为多种类型。通常将自变量为定性变量的线性模型称为 一般线性模型 ,如实验设计模型、方差分析模型; 将因变量为非正态分布的线性模型称为 广义线性模型 ,如 Logistic回归模型 、 对数线性模型 、 Cox比例风险模型 。

1972年,Nelder对经典线性回归模型作了进一步的推广,建立了统一的理论和计算框架,对回归模型在统计学中的应用产生了重要影响。这种新的线性回归模型称为广义线性模型( generalized linear models,GLM)。

广义线性模型是多元线性回归模型的推广,从另一个角度也可以看作是非线性模型的特例,它们具有--些共性,是其他非线性模型所不具备的。它与典型线性模型的区别是其随机误差的分布 不是正态分布 ,与非线性模型的最大区别则在于非线性模型没有明确的随机误差分布假定,而广义线性模型的 随机误差的分布是可以确定的 。广义线性模型 不仅包括离散变量,也包括连续变量 。正态分布也被包括在指数分布族里,该指数分布族包含描述发散状况的参数,属于双参数指数分布族。

判别分析是多元统计分析中用于 判别样本所属类型 的一种统计分析方法。所谓判别分析法,是在已知的分类之下,一旦有新的样品时,可以利用此法选定一个判别标准,以判定将该新样品放置于哪个类别中。判别分析的目的是对已知分类的数据建立由数值指标构成的 分类规则 ,然后把这样的规则应用到未知分类的样品中去分类。例如,我们获得了患胃炎的病人和健康人的一些化验指标,就可以从这些化验指标中发现两类人的区别。把这种区别表示为一个判别公式,然后对那些被怀疑患胃炎的人就可以根据其化验指标用判别公式来进行辅助诊断。

聚类分析是研究 物以类聚 的--种现代统计分析方法。过去人们主要靠经验和专业知识作定性分类处理,很少利用数学方法,致使许多分类带有主观性和任意性,不能很好地揭示客观事物内在的本质差别和联系,特别是对于多因素、多指标的分类问题,定性分类更难以实现准确分类。为了克服定性分类的不足,多元统计分析逐渐被引人到数值分类学中,形成了聚类分析这个分支。

聚类分析是一种分类技术,与多元分析的其他方法相比,该方法较为粗糙,理论上还不完善,但应用方面取得了很大成功。 聚类分析 与 回归分析 、 判别分析 一起被称为多元分析的三个主要方法。

在实际问题中,研究多变量问题是经常遇到的,然而在多数情况下,不同变量之间有一定相关性,这必然增加了分析问题的复杂性。主成分分析就是一种 通过降维技术把多个指标化为少数几个综合指标 的统计分析方法。如何将具有错综复杂关系的指标综合成几个较少的成分,使之既有利于对问题进行分析和解释,又便于抓住主要矛盾作出科学的评价,此时便可以用主成分分析方法。

因子分析是主成分分析的推广,它也是一种把多个变量化为少数几个综合变量的多元分析方法,但其目的是 用有限个不可观测的隐变量来解释原变量之间的相关关系 。主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多元分析中,变量间往往存在相关性,是什么原因使变量间有关联呢? 是否存在不能直接观测到的但影响可观测变量变化的公共因子呢?

因子分析就是寻找这些公共因子的统计分析方法,它是 在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别 。例如,在研究糕点行业的物价变动中,糕点行业品种繁多、多到几百种甚至上千种,但无论哪种样式的糕点,用料不外乎面粉、食用油、糖等主要原料。那么,面粉、食用油、糖就是众多糕点的公共因子,各种糕点的物价变动与面粉、食用油、糖的物价变动密切相关,要了解或控制糕点行业的物价变动,只要抓住面粉、食用油和糖的价格即可。

对应分析又称为相应分析,由法国统计学家于 1970年提出。对应分析是在因子分析基础之上发展起来的一种多元统计方法,是Q型和R型因子分析的联合应用。在经济管理数据的统计分析中,经常要处理三种关系,即 样品之间的关系(Q型关系)、变量间的关系(R型关系)以及样品与变量之间的关系(对应型关系) 。例如,对某一行业所属的企业进行经济效益评价时,不仅要研究经济效益指标间的关系,还要将企业按经济效益的好坏进行分类,研究哪些企业与哪些经济效益指标的关系更密切一些,为决策部门正确指导企业的生产经营活动提供更多的信息。这就需要有一种统计方法, 将企业(样品〉和指标(变量)放在一起进行分析、分类、作图,便于作经济意义.上的解释 。解决这类问题的统计方法就是对应分析。

在相关分析中,当考察的一组变量仅有两个时,可用 简单相关系数 来衡量它们;当考察的一组变量有多个时,可用 复相关系数 来衡量它们。大量的实际问题需要我们把指标之间的联系扩展到两组变量,即 两组随机变量之间的相互依赖关系 。典型相关分析就是用来解决此类问题的一种分析方法。它实际上是 利用主成分的思想来讨论两组随机变量的相关性问题,把两组变量间的相关性研究化为少数几对变量之间的相关性研究,而且这少数几对变量之间又是不相关的,以此来达到化简复杂相关关系的目的 。

典型相关分析在经济管理实证研究中有着广泛的应用,因为许多经济现象之间都是多个变量对多个变量的关系。例如,在研究通货膨胀的成因时,可把几个物价指数作为一组变量,把若干个影响物价变动的因素作为另一组变量,通过典型相关分析找出几对主要综合变量,结合典型相关系数对物价上涨及通货膨胀的成因,给出较深刻的分析结果。

多维标度分析( multidimensional scaling,MDS)是 以空间分布的形式表现对象之间相似性或亲疏关系 的一种多元数据分析方法。1958年,Torgerson 在其博士论文中首次正式提出这一方法。MDS分析多见于市场营销,近年来在经济管理领域的应用日趋增多,但国内在这方面的应用报道极少。多维标度法通过一系列技巧,使研究者识别构成受测者对样品的评价基础的关键维数。例如,多维标度法常用于市场研究中,以识别构成顾客对产品、服务或者公司的评价基础的关键维数。其他的应用如比较自然属性(比如食品口味或者不同的气味),对政治候选人或事件的了解,甚至评估不同群体的文化差异。多维标度法 通过受测者所提供的对样品的相似性或者偏好的判断推导出内在的维数 。一旦有数据,多维标度法就可以用来分析:①评价样品时受测者用什么维数;②在特定情况下受测者可能使用多少维数;③每个维数的相对重要性如何;④如何获得对样品关联的感性认识。

20世纪七八十年代,是现代科学评价蓬勃兴起的年代,在此期间产生了很多种评价方法,如ELECTRE法、多维偏好分析的线性规划法(LINMAP)、层次分析法(AHP)、数据包络分析法(EDA)及逼近于理想解的排序法(TOPSIS)等,这些方法到现在已经发展得相对完善了,而且它们的应用也比较广泛。

而我国现代科学评价的发展则是在20世纪八九十年代,对评价方法及其应用的研究也取得了很大的成效,把综合评价方法应用到了国民经济各个部门,如可持续发展综合评价、小康评价体系、现代化指标体系及国际竞争力评价体系等。

多指标综合评价方法具有以下特点: 包含若干个指标,分别说明被评价对象的不同方面 ;评价方法最终要 对被评价对象作出一个整体性的评判,用一个总指标来说明被评价对象的一般水平 。

目前常用的综合评价方法较多, 如综合评分法、综合指数法、秩和比法、层次分析法、TOPSIS法、模糊综合评判法、数据包络分析法 等。

R -- 永远滴神~

问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解

多元统计分析论文旅游

多元统计分析论文各省市数据可以在国家统计局下设省统计局,市统计局,均可获取各地的数据资料。多元统计分析是从经典统计学中发展起来的一个分支,是一种综合分析方法,它能够在多个对象和多个指标互相关联的情况下分析它们的统计规律,很适合农业科学研究的特点。

1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。 因子分析的基本思想: 把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。 (2)F = (F1,F2,…,Fm)¢ (m

多元统计分析:多元统计分析是从经典统计学中发展起来的一个分支,是一种综合分析方法,它能够在多个对象和多个指标互相关联的情况下分析它们的统计规律,很适合农业科学研究的特点。主要内容包括多元正态分布及其抽样分布、多元正态总体的均值向量和协方差阵的假设检验、多元方差分析、直线回归与相关、多元线性回归与相关(Ⅰ)和(Ⅱ)、主成分分析与因子分析、判别分析与聚类分析、Shannon信息量及其应用。简称多元分析。当总体的分布是多维(多元)概率分布时,处理该总体的数理统计理论和方法。数理统计学中的一个重要的分支学科。多元正态分布:是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。参数估计:在已知系统模型结构时,用系统的输入和输出数据计算系统模型参数的过程。18世纪末德国数学家.高斯首先提出参数估计的方法,他用最小二乘法计算天体运行的轨道。20世纪60年代,随着电子计算机的普及,参数估计有了飞速的发展。参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。在一定条件下,后面三个方法都与极大似然法相同。最基本的方法是最小二乘法和极大似然法。SPSS统计软件由国家中医药管理局宏观指导,全国中医药高等教育学会、全国高等中医药教材建设研究会组织编写的新世纪全国高等中医药院校规划教材。

多元统计分析期末论文

后期会把每一章的学习笔记链接加上

多元统计分析 是研究多个随机变量之间相互依赖关系及其内在统计规律的一门学科

在统计学的基本内容汇总,只考虑一个或几个因素对一个观测指标(变量)的影响大小的问题,称为 一元统计分析 。

若考虑一个或几个因素对两个或两个以上观测指标(变量)的影响大小的问题,或者多个观测指标(变量)的相互依赖关系,既称为 多元统计分析 。

有两大类,包括:

将数据归类,找出他们之间的联系和内在规律。

构造分类模型一般采用 聚类分析 和 判别分析 技术

在众多因素中找出各个变量中最佳的子集合,根据子集合所包含的信心描述多元系统的结果及各个因子对系统的影响,舍弃次要因素,以简化系统结构,认识系统的内核(有点做单细胞降维的意思)

可采用 主成分分析 、 因子分析 、 对应分析 等方法。

多元统计分析的内容主要有: 多元数据图示法 、 多元线性相关 与 回归分析 、 判别分析 、 聚类分析 、 主成分分析 、 因子分析 、 对应分析 及 典型相关分析 等。

多元数据是指具有多个变量的数据。如果将每个变量看作一个随机向量的话,多个变量形成的数据集将是一个随机矩阵,所以多元数据的基本表现形式是一个矩阵。对这些数据矩阵进行数学表示是我们的首要任务。也就是说,多元数据的基本运算是矩阵运算,而R语言是一个优秀的矩阵运算语言,这也是我们应用它的一大优势。

直观分析即图示法,是进行数据分析的重要辅助手段。例如,通过两变量的散点图可以考察异常的观察值对样本相关系数的影响,利用矩阵散点图可以考察多元之间的关系,利用多元箱尾图可以比较几个变量的基本统计量的大小差别。

相关分析就是通过对大量数字资料的观察,消除偶然因素的影响,探求现象之间相关关系的密切程度和表现形式。在经济系统中,各个经济变量常常存在内在的关系。例如,经济增长与财政收人、人均收入与消费支出等。在这些关系中,有一些是严格的函数关系,这类关系可以用数学表达式表示出来。还有一些是非确定的关系,一个变量产生变动会影响其他变量,使其产生变化。这种变化具有随机的特性,但是仍然遵循一定的规律。函数关系很容易解决,而那些非确定的关系,即相关关系,才是我们所关心的问题。

回归分析研究的主要对象是客观事物变量间的统计关系。它是建立在对客观事物进行大量实验和观察的基础上,用来寻找隐藏在看起来不确定的现象中的统计规律的方法。回归分析不仅可以揭示自变量对因变量的影响大小,还可以用回归方程进行预测和控制。回归分析的主要研究范围包括:

(1) 线性回归模型: 一元线性回归模型 , 多元线性回归模型 。 (2) 回归模型的诊断: 回归模型基本假设的合理性,回归方程拟合效果的判定,选择回归函数的形式。 (3) 广义线性模型: 含定性变量的回归 , 自变量含定性变量 , 因变量含定性变量 。 (4) 非线性回归模型: 一元非线性回归 , 多元非线性回归 。

在实际研究中,经常遇到一个随机变量随一个或多个非随机变量的变化而变化的情况,而这种变化关系明显呈非线性。怎样用一个较好的模型来表示,然后进行估计与预测,并对其非线性进行检验就成为--个重要的问题。在经济预测中,常用多元回归模型反映预测量与各因素之间的依赖关系,其中,线性回归分析有着广泛的应用。但客观事物之间并不一定呈线性关系,在有些情况下,非线性回归模型更为合适,只是建立起来较为困难。在实际的生产过程中,生产管理目标的参量与加工数量存在相关关系。随着生产和加工数量的增加,生产管理目标的参量(如生产成本和生产工时等)大多不是简单的线性增加,此时,需采用非线性回归分析进行分析。

鉴于统计模型的多样性和各种模型的适应性,针对因变量和解释变量的取值性质,可将统计模型分为多种类型。通常将自变量为定性变量的线性模型称为 一般线性模型 ,如实验设计模型、方差分析模型; 将因变量为非正态分布的线性模型称为 广义线性模型 ,如 Logistic回归模型 、 对数线性模型 、 Cox比例风险模型 。

1972年,Nelder对经典线性回归模型作了进一步的推广,建立了统一的理论和计算框架,对回归模型在统计学中的应用产生了重要影响。这种新的线性回归模型称为广义线性模型( generalized linear models,GLM)。

广义线性模型是多元线性回归模型的推广,从另一个角度也可以看作是非线性模型的特例,它们具有--些共性,是其他非线性模型所不具备的。它与典型线性模型的区别是其随机误差的分布 不是正态分布 ,与非线性模型的最大区别则在于非线性模型没有明确的随机误差分布假定,而广义线性模型的 随机误差的分布是可以确定的 。广义线性模型 不仅包括离散变量,也包括连续变量 。正态分布也被包括在指数分布族里,该指数分布族包含描述发散状况的参数,属于双参数指数分布族。

判别分析是多元统计分析中用于 判别样本所属类型 的一种统计分析方法。所谓判别分析法,是在已知的分类之下,一旦有新的样品时,可以利用此法选定一个判别标准,以判定将该新样品放置于哪个类别中。判别分析的目的是对已知分类的数据建立由数值指标构成的 分类规则 ,然后把这样的规则应用到未知分类的样品中去分类。例如,我们获得了患胃炎的病人和健康人的一些化验指标,就可以从这些化验指标中发现两类人的区别。把这种区别表示为一个判别公式,然后对那些被怀疑患胃炎的人就可以根据其化验指标用判别公式来进行辅助诊断。

聚类分析是研究 物以类聚 的--种现代统计分析方法。过去人们主要靠经验和专业知识作定性分类处理,很少利用数学方法,致使许多分类带有主观性和任意性,不能很好地揭示客观事物内在的本质差别和联系,特别是对于多因素、多指标的分类问题,定性分类更难以实现准确分类。为了克服定性分类的不足,多元统计分析逐渐被引人到数值分类学中,形成了聚类分析这个分支。

聚类分析是一种分类技术,与多元分析的其他方法相比,该方法较为粗糙,理论上还不完善,但应用方面取得了很大成功。 聚类分析 与 回归分析 、 判别分析 一起被称为多元分析的三个主要方法。

在实际问题中,研究多变量问题是经常遇到的,然而在多数情况下,不同变量之间有一定相关性,这必然增加了分析问题的复杂性。主成分分析就是一种 通过降维技术把多个指标化为少数几个综合指标 的统计分析方法。如何将具有错综复杂关系的指标综合成几个较少的成分,使之既有利于对问题进行分析和解释,又便于抓住主要矛盾作出科学的评价,此时便可以用主成分分析方法。

因子分析是主成分分析的推广,它也是一种把多个变量化为少数几个综合变量的多元分析方法,但其目的是 用有限个不可观测的隐变量来解释原变量之间的相关关系 。主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多元分析中,变量间往往存在相关性,是什么原因使变量间有关联呢? 是否存在不能直接观测到的但影响可观测变量变化的公共因子呢?

因子分析就是寻找这些公共因子的统计分析方法,它是 在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别 。例如,在研究糕点行业的物价变动中,糕点行业品种繁多、多到几百种甚至上千种,但无论哪种样式的糕点,用料不外乎面粉、食用油、糖等主要原料。那么,面粉、食用油、糖就是众多糕点的公共因子,各种糕点的物价变动与面粉、食用油、糖的物价变动密切相关,要了解或控制糕点行业的物价变动,只要抓住面粉、食用油和糖的价格即可。

对应分析又称为相应分析,由法国统计学家于 1970年提出。对应分析是在因子分析基础之上发展起来的一种多元统计方法,是Q型和R型因子分析的联合应用。在经济管理数据的统计分析中,经常要处理三种关系,即 样品之间的关系(Q型关系)、变量间的关系(R型关系)以及样品与变量之间的关系(对应型关系) 。例如,对某一行业所属的企业进行经济效益评价时,不仅要研究经济效益指标间的关系,还要将企业按经济效益的好坏进行分类,研究哪些企业与哪些经济效益指标的关系更密切一些,为决策部门正确指导企业的生产经营活动提供更多的信息。这就需要有一种统计方法, 将企业(样品〉和指标(变量)放在一起进行分析、分类、作图,便于作经济意义.上的解释 。解决这类问题的统计方法就是对应分析。

在相关分析中,当考察的一组变量仅有两个时,可用 简单相关系数 来衡量它们;当考察的一组变量有多个时,可用 复相关系数 来衡量它们。大量的实际问题需要我们把指标之间的联系扩展到两组变量,即 两组随机变量之间的相互依赖关系 。典型相关分析就是用来解决此类问题的一种分析方法。它实际上是 利用主成分的思想来讨论两组随机变量的相关性问题,把两组变量间的相关性研究化为少数几对变量之间的相关性研究,而且这少数几对变量之间又是不相关的,以此来达到化简复杂相关关系的目的 。

典型相关分析在经济管理实证研究中有着广泛的应用,因为许多经济现象之间都是多个变量对多个变量的关系。例如,在研究通货膨胀的成因时,可把几个物价指数作为一组变量,把若干个影响物价变动的因素作为另一组变量,通过典型相关分析找出几对主要综合变量,结合典型相关系数对物价上涨及通货膨胀的成因,给出较深刻的分析结果。

多维标度分析( multidimensional scaling,MDS)是 以空间分布的形式表现对象之间相似性或亲疏关系 的一种多元数据分析方法。1958年,Torgerson 在其博士论文中首次正式提出这一方法。MDS分析多见于市场营销,近年来在经济管理领域的应用日趋增多,但国内在这方面的应用报道极少。多维标度法通过一系列技巧,使研究者识别构成受测者对样品的评价基础的关键维数。例如,多维标度法常用于市场研究中,以识别构成顾客对产品、服务或者公司的评价基础的关键维数。其他的应用如比较自然属性(比如食品口味或者不同的气味),对政治候选人或事件的了解,甚至评估不同群体的文化差异。多维标度法 通过受测者所提供的对样品的相似性或者偏好的判断推导出内在的维数 。一旦有数据,多维标度法就可以用来分析:①评价样品时受测者用什么维数;②在特定情况下受测者可能使用多少维数;③每个维数的相对重要性如何;④如何获得对样品关联的感性认识。

20世纪七八十年代,是现代科学评价蓬勃兴起的年代,在此期间产生了很多种评价方法,如ELECTRE法、多维偏好分析的线性规划法(LINMAP)、层次分析法(AHP)、数据包络分析法(EDA)及逼近于理想解的排序法(TOPSIS)等,这些方法到现在已经发展得相对完善了,而且它们的应用也比较广泛。

而我国现代科学评价的发展则是在20世纪八九十年代,对评价方法及其应用的研究也取得了很大的成效,把综合评价方法应用到了国民经济各个部门,如可持续发展综合评价、小康评价体系、现代化指标体系及国际竞争力评价体系等。

多指标综合评价方法具有以下特点: 包含若干个指标,分别说明被评价对象的不同方面 ;评价方法最终要 对被评价对象作出一个整体性的评判,用一个总指标来说明被评价对象的一般水平 。

目前常用的综合评价方法较多, 如综合评分法、综合指数法、秩和比法、层次分析法、TOPSIS法、模糊综合评判法、数据包络分析法 等。

R -- 永远滴神~

多元统计分析论文各省市数据可以在国家统计局下设省统计局,市统计局,均可获取各地的数据资料。多元统计分析是从经典统计学中发展起来的一个分支,是一种综合分析方法,它能够在多个对象和多个指标互相关联的情况下分析它们的统计规律,很适合农业科学研究的特点。

多元统计案例分析论文范文

SPSS软件是“统计产品与服务解决方案”软件,是数据统计分析的一个重要的工具。下文是我为大家整理的关于spss统计分析论文的 范文 ,欢迎大家阅读参考!

统计分析软件SPSS的特点和应用分析

【摘要】通过文献资料法,介绍了统计分析软件SPSS的特点,并通过实例:用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的应用做了详细的介绍,旨在为学习SPSS软件的人们提供参考。

【关键词】统计分析软件;SPSS;独立样本;非参数检验

一、前言

统计分析软件SPSS是一款统计产品与服务解决方案的软件,其全称为“统计产品与服务解决方案(Statistical Product and Service Solutions)”。该软件是一款在统计中应用很广的统计分析软件,目前在各专业 毕业 论文经常可以看到它的身影,其应用范围广、方便快捷等特点吸引着众多的 爱好 者。本文通过对统计分析软件SPSS的功特点进行介绍,通过举例用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的操作用做了详细的介绍,为学习SPSS软件的人们提供参考。

二、SPSS软件的特点

(一)操作简便

SPSS软件的界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

(二)编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计 方法 的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

(三)功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

(四)全面的数据接口

能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件, Excel 的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt,word,PPT及html格式的文件。

(五)灵活的功能模块组合

SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。

(六)针对性强

SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。

三、实例分析――两个独立样本的检验(Test for Two Independent Sample)

例题:为了调查甲、乙两地土壤对 种植 同一种西瓜有没有影响,从这两个产地分别随机抽取同种的8只和7只西瓜,称重后得重量(市斤)如下:

甲(斤):、、、、、、、

乙(斤):、、、、、、

问:根据样本数据检验两地的土壤对种植西瓜在重量上是否有显著差异?

解:建立假设 H0:甲乙两地的西瓜重量没有显著差异;

H1:甲乙两地的西瓜重量有没有显著差异。

然后根据上面给出的数据建立数据文件,注意数据文件中有一个表示重量数据的变量和一个表示地区分组的变量。最后在数据编辑窗口进行检验。检验的具 体操 作过程如下:

第一步:单击Analyze Nonparametric Test 2 Independent Sample,打开Two-Independent-Sample对话框(见图1)。

第二步:选择检验的变量进入检验框中,选择分组变量进入Grouping Variable框中,单击Define Group键,打开Define Group对话框,将分组变量值分别键入两个框中,单击Continue返回主对话框(见图2):

第三步:在Test Type栏中,确定检验方法。

SPSS中提供了四种检验方式,几种检验方法侧重点不同,但都是先把两样本数据混合排序,再从不同的角度分析并检验两个独立总体的分布是否有显著的差异。有时这几种检验结果可能不一样,所以要结合数据的探索分析考察数据的分布状况作出结论。本文选择了常用的Mann-Whitney U曼―惠特尼检验和Kolmogorov-Smirnov Z K-S检验。

第四步:选择输出的结果形式及缺失值处理方式;

第五步:单击OK,得输出结果。

所以,以上两种检验结论是一致的。也就是说在两地种植的同一种西瓜地重量没有显著差异。

参考文献

[1]杜志渊.常用统计分析方法―SPSS应用[M].山东人民出版社,2011.

[2]刘宁元.运用SPSS对高职专业课程成绩进行相关分析[J].电脑与电信,2007(3).

[3]井海立.SPSS在数学试卷统计分析中的应用[J].科技信息(学术版),2006(10).

试谈SPSS软件在考试数据统计分析中的应用

摘要: SPSS软件是数据统计分析的一个重要的工具。本文作者利用SPSS软件对考试数据的相关性、检验假设进行了统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤,文中的方法对考试研究人员具有一定的指导意义。

关键词: SPSS软件 考试数据 统计分析 操作步骤

1. 引言

一份好的试卷须有好的测量指标来表明它的优良程度,试题有难度和区分度指标,试卷有效度和信度指标,这些是评价考试最主要的测量指标,但是仅有这些指标不足以反映一份试卷的实际测量效果,考试研究人员希望从考生的试卷统计分析中获取更多的信息来评价一份试卷。在计算机未普及的年代,考试成绩统计主要依靠人工阅卷,考试数据无法电子化存储,对考试数据分析统计难以实现。随着计算机的普及和信息化的推广,各种分析数据的软件应运而生,这些软件中汇集了统计学和测量学的分析工具,使得应用电子信息技术分析统计考试成绩数据成为可能,这些统计信息可以为教研部门、考试行政部门进行行政决策等提供非常重要的帮助。在众多的统计分析软件当中,SPSS是应用最多、影响最广泛的分析工具之一。在本文中,我们以SPSS软件为工具,对 教育 招生考试成绩的数据进行统计分析,分析主要着重于考试数据的相关性、假设检验等几个方面。

2. SPSS分析软件简介

“SPSS统计分析软件”的英文名称为“Statistical Package for the Social Science”,中文名称为“社会科学统计软件包”,它是世界著名的统计分析软件之一,在自然科学、社会科学的各个领域均有非常广泛的应用。SPSS是一个组合式软件包,它集数据整理、分析于一身,主要功能包括数据管理、统计分析、图表分析、输出管理等,该软件的统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。

下面我们利用SPSS软件对考试数据的相关性、检验假设进行统计分析,介绍使用SPSS进行统计分析的一般方法和步骤。

3. 相关性分析

教育考试中,考试结果的信度,试题的区分度,每个题目得分与试卷总分的关系,以及题目之间的关系,等等,都是考试研究的重要内容,最主要的研究方法就是数据的相关性分析。在众多的教育考试数据的相关性分析方法中,Pearson相关系数法、Spearman相关系数法和Cronbach α信度系数法是比较常用的几种方法。

Pearson相关系数法计算公式:

式中x为第i个考生第j题的得分,y为第i个考生第k题的得分,为第j题的平均分,为第k题的平均分,n为测试样本量。该公式既可以计算两个连续变量之间的相关性,又可以计算一个双歧变量与一个连续变量之间的相关性。

Spearman相关系数法计算公式:

r=1-(2)

式中D为两个变量的秩序之差,n为样本容量。

Cronbach a信度系数法计算公式:

α= 1-(3)

式中n为试题数,s为第i题的标准差,s为总分的标准差。该公式实际上就是将考试中所有试题间相关系数的平均值(又称内部一致性)作为α信度系数。

对于给定的一组考生成绩数据,利用SPSS统计分析软件可以非常容易地定量分析考生某学科试卷总分和该学科某道题的相关性,以及各个题目之间的相关性。我们以Pearson相关系数分析为例,利用SPSS软件进行统计分析。

数据统计分析的对象是某省高考数学6道解答题的得分情况(不是整张试卷),数据源于该省的高考数据成绩。研究的目的是测量6道解答题每两个题目之间的相关性。

我们以SPSS 版本的软件为例,介绍利用SPSS进行数据统计分析的步骤(以Pearson相关系数法为例):

(1)将考试数据导入SPSS软件,在SPSS数据窗口中,顺序点击【Analyze】→【Correlate】→【Bivariate...】,系统弹出变量相关系数设置对话框。

(2)在该对话框中,将待计算的变量从左侧的变量列表中导入到右侧的“Variables”变量列表中,在本例中导入t1、t2、t3、t4、t5、t6共6个变量(t1―t6是6道解答题的变量名称)。在“Correlation Coefficients”相关系数选项中,选取“Pearson”复选框。

(3)在该对话框的“Test of Significance”设置区域,可以点选“Two-tailed”选项或者“One-tailed”,我们采用系统默认值。

(4)对话框中的 其它 选项取软件系统的默认值,点击【OK】,开始相关系数计算,系统弹出新的窗体输出运算的结果。本次输出的情况如下:

上表的统计结果可用于题目之间相关性的分析。表中的大部分题目的相关系数都比较适中,但题目T4和题目T5之间的相关程度远高于其它几个题目,我们可以确信这两者之间一定存在着比其他题目之间更紧密的关系,这是我们通过分析获取的重要信息,该信息表明这两个题目之间的相关性高于其他几个题目之间的相关性,这在大规模考试中是不应该出现的,需要在以后的命题考试中加以改进。

Spearman相关系数分析方法和上述分析方法类似,只需要在上述SPSS操作的第二个骤中选取“Pearson”复选框,程序就会按Pearson相关系数法进行统计分析,如果同时选中“Spearman”和“Pearson”复选框,程序将会同时计算按两种分析方法统计分析的数据,并会以不同的图表进行显示,而Cronbach a信度系数法计算方法与上述方法略有不同,其操作步骤如下:

(1)在SPSS数据窗口中,顺序点击【Analyze】→【Scale】→【Reliability Analysis...】,系统弹出“Reliability Analysis”信度分析设置对话框。

(2)将待计算的变量从左列的变量列表中导入到右侧的“items”变量中,在左下列的“model”选择项的下拉列表中确保选中“Alpha”(信度系数),点击“Statistics”选择项可以进行更为详细的参数设置,我们采用系统的默认值即可。

(3)参数设置完毕之后,点击【OK】,软件开始相关系数计算并输出运算结果。

4. 选择题的选项分析

在目前的教育招生考试中选择题是一种较常见的题型,考试研究人员关注较多的是对选择题基本特征、测量功能及其优缺点的理论探讨[1][2],对选择题干扰项的设计及其施测后的实际效果关注甚少,事实上施测后对题目各选项的有效性作出判断可为评价试题质量提供重要参考依据。我们利用统计中χ检验假设,对试卷中常见的选择题选择项进行统计分析。

教育考试的单项选择项一般设置为4个,其中仅有1个选择项是正确的。命题人员在设计选择项时,应当也必然对每道题目所有的选择项(正确选择项和干扰选择项)的考生作答情况作出预测,对考生作答的分布情况作出预估。考试结束后,研究人员应该对实测的情况与命题教师预测的情况进行对比分析,以检验考试效果是否达到了预测的目标。这和χ拟合度检验的思想具有一致性,因此可以尝试使用χ检验假设进行分析。

我们依据文献[3][4]的方法来介绍χ检验假设在考试数据分析中应用的基本原理,设变量E是命题者对某道试题的期望值,E=nP,n为样本容量,P为期望的相对频率,引入以下统计量:∑(O-E)/E,其中O为观察频数。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

我们需要进行的假设检验是:零假设H:选项的实测分布与期望分布相同;非零假设H:选项的实测分布与期望分布不同。

检验假设的思想:拟合度检验的统计量在确定的某种显著性水平下如果零假设是真,则检验统计量∑(O-E)/E呈近似χ分布,其自由度为研究变量的可能值减1;如果实测分布与期望的分布相当吻合,就不排除零假设,否则就排除零假设;最后对检验假设的结果进行解释。

数据分析的目的是判断考生实际的应答结果(实测数据)与命题期望的选择概率(期望数据)是否一致。我们随机抽取某省5542个高考考生的数学有效数据构成分析样本,利用SPSS进行统计分析。

SPSS数据统计分析的步骤如下:

(1)将考试数据导入SPSS软件,依次点击【Analyze】→【Nonparametric Tests】→【Chi-Square...】,弹出“Chi-Square Tests”对话框。

(2)将变量列表中待分析的题目序号导入到“Test Variables List”(检验变量列表)中,本例中题目的序号为t7。

(3)将对选择试题的每个选项的期望值依次输入到“Expected Values”所属的方框,具体操作方法是选中单选框“Values”,输入具体的期望数值,点击“Add”按钮,依次重复上述的步骤直至所有的选项的期望值输入完毕。

(4)点击【OK】,输出软件运算结果。

我们需要进行的假设检验,H:选项的实测分布与期望分布相同;H:选项的实测分布与期望分布不同。

假设检验的显著性水平为α=,χ=∑(O-E)/E,自由度为df=4-1=3,查χ分布表或利用相关软件可得P=,由于P>α,因此不能拒绝零假设,即选项的实测分布与期望分布相同。因此,检验结果在显著性水平时,没有足够的证据拒绝零假设,即可认为本题选项的实测分布与期望分布相同,也就是说本题的实际测试效果与命题教师预测的效果是一致的,命题教师准确地估计了考生的实际水平,这是分析获得的很重要的结论。

5. 结语

SPSS软件在考试数据统计分析中应用广泛,但大部分是集中在试题难度、均值、方差统计、考试数据的图表显示等几个方面,本文从一个新的角度利用SPSS软件对考试数据的相关性、检验假设等几个方面进行了尝试性统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤。从上述分析来看,软件操作步骤和统计分析过程十分简单、快捷,对于测量学和统计学基础不太好的数据分析统计人员来说,只要遵循一定的操作步骤,就可以进行分析。

参考文献:

[1]王孝玲.教育测量(修订版)[M].上海:华东师范大学出版社,2006.

[2]雷新勇.大规模教育考试:命题与评价[M].上海:华东师范大学出版社,2006.

[3]李伟明,冯伯麟,余仁胜.考试的统计分析方法[M].北京:高等教育出版社,1990.

[4]雷新勇.考试数据的统计分析和解释[M].上海:华东师范大学出版社,2007.

猜你喜欢:

1. 统计学数据分析论文

2. spss统计分析实习心得

3. 统计学学年论文

4. 统计学分析论文

统计在国家实行科学决策和现代管理中发挥着非常重要的作用,准确可靠的统计数据是统计学信用的基石。下文是我为大家整理的关于统计优秀论文 范文 的内容,欢迎大家阅读参考!

试谈统计安全与统计法治

摘要:本文对统计法治问题进行了讨论,阐述了统计数据质量与国家统计安全、统计法治和统计体制之间的关系,并且探讨了如何实现统计法治。

关键词:统计数据;统计安全;统计法治

由于现阶段我国的统计法还不是很完善,在某些方面统计数据还是会受到人为因素的干扰。我们知道一个法治的基础是这个法治的建设,统计法治也一样,由此,我国推出了更具有可操作性的《处分规定》,这种规定的推出具有十分重要的意义。

一、统计数据质量与国家统计安全

国家统计安全从字面上的意义理解就是保证国家的统计工作安全地进行,不受到外界的干扰。具体表现在数据的安全性、活动的安全性、技术手段的安全性。

在国家统计工作中所受到的威胁主要来自三个方面:内在威胁、外在威胁、技术威胁。这三方面对统计工作的影响是相互关联的。总的来看,人为因素对国家统计工作所带来的影响最严重,这种影响直接使统计数据发生变化。国家设立统计部门的目的是为了为国家的管理和决策服务,通过对数据的采集和分析给国家的管理和决策提供可靠的科学依据。因此不合理的数据会影响到国家的决策,是国家对各个部门的管理缺乏依据。如果一个国家的统计数据不真实,那么会对这个国家造成多么大的危害我们可想而知。

第一,国家的经济发展和统计数据密切相关,统计数据失真会严重影响我国经济的健康发展。例如上次全球性的全球危机,给人们都留下了深刻的印象。但我们知道一个国家一个地区的经济发展是具有周期性的,我们能做的只能是控制经济周期的波动大小,延长周期的长度,最重要的就是在经济发展的过程中正确的判断经济发展所处的发展阶段。

第二,一个国家的社会安全与统计数据也有一定的必然联系,统计数据失真会对国家的社会安全造成很大的威胁。除此之外,统计数据同样制约着社会的稳定。比如,在中国的六十年代发生的“大跃进”每亩地的粮食产量超过万斤的严重失真数据,冲晕了老百姓的头脑,向上级部门谎报粮食产量数据,导致领导对国家粮食的生产形势产生了错误的评估,对粮食征收额度大大的超出了农民的承受范围,造成了中国大部分地区闹粮荒,大量老百姓因饥饿而死亡,在很大程度上给社会带来了负面影响。

第三,一个国家的政治安全与统计数据也有密切的关系,统计数据失真会严重影响一个国家的政治稳定。数据统计管理人员凭借虚假的数据来谋取利益,这种行为在当今社会非常多见,我们称这种行为是数据腐败。这一现象明显的反映出领导干部的思想觉悟存在着问题,深层次的反应了党风和政风问题。

二、统计的本质与统计法治

正如我们所想,统计就是有目的地去搜集数据,然后对这些数据进行研究讨论,从这些数据中得到一定的客观规律。当我们进行某一项的统计活动时我们要明确统计的目的,统计的内容和统计 方法 这三项最基本的步骤,其中“统计的原因”是数据统计的根本,只有知道统计的是什么,统计的思想,下面的统计工作才能顺利的进行。毫无疑问,统计目的决定着统计结果。

总的来说,统计的本质就是通过数据整理来制定一些法制法规来适应社会的发展,虽然在不同的阶段统计目的有所不同,但在统计过程中所得到的数据都是人类的需求。因为,在各个社会阶段,人类都是在寻求自己的真理,而统计则是得到真理的有效途径之一。如果在一个社会阶段统计数据失真,那么会严重影响社会的发展,因此我们可以说统计数据的真实性就是统计活动的生命线。

三、统计法治需要多管齐下

第一,领导干部必须遵守统计法制,领导干部要给大家起着榜样的作用,值得人们去效仿。如果在领导干部中出现了错误,在数据上弄虚作假不能保证统计数据的真实性,不能给大家起着模范作用,这样就会引起大家的效仿,时间长了,在整个社会中就没有良好的统计环境,那么统计法治就会在人们的脑中渐渐的淡去。

第二,统计法治需要每个人的积极响应,也就是说要搞好统计法治就要以提高人民的统计素养为前提条件。这里的统计素养指的是人民对统计相关知识的了解程度和他们的统计理论水平,更主要的是人民能否恰当的运用统计理论于实际生活中。我们知道,统计知识是统计法治的基础,统计观念是统计法治的灵魂。因此,统计法治是以人民的统计素养为前提条件,如果人民对统计知识了解甚少,那么他们在实际生活中就不能确切的理解统计的意义和对过程的重要程度,甚至会随意的编造数据,这样会严重影响统计活动的正常进行,统计数据的真实度也会大打折扣。因此我们要提高人民的统计素养,在实际生活中通过典型的案例去引导民众对统计法治认识性,让民众意识到统计违法会给自身和社会带来的负面影响,使《统计法》和《处分规定》深入人心。

第三,舆论对于统计法治具有重要的作用。舆论既具有正面的宣传引导作用也具有负面的监督批评作用。如果我们正确的使用舆论会给统计法治带来重要的意义。我们知道舆论的力量是强大的,随着社会的发展,网络、电视等各种传媒设施已经普及到家家户户,我们可以通过这些媒介来对统计法规进行宣传,对老百姓进行统计知识的普及,对于那些违反统计法律法规的人和事要大胆的曝光。使公众都参与到统计法治的舆论范围中,揭发检举周围违反统计法律法规的人,对于那些对统计法律法规有贡献的人要给予物质和精神奖励。此外,要争取到各个大网站和报社的支持,利用这些强有力的 渠道 做好统计工作的宣传工作。目前最重要的部分就是做好《处分规定》的宣传工作,为《处分规定》的宣传工作营造一个良好的环境,并进行有力的监督。

除此之外,我们要对传统的统计管理体制进行改革,形成一个集中统一的国家统计系统,能够克服人为因素的干扰,给统计法治一个更加良好的发展环境。

参考文献:

[1]李金昌.浅论官方统计的本质[J].中国统计,2005(12).

[2]李金昌.浅论国家统计安全[J].中国统计,2006(08).

[3]李金昌.论统计素养[J].浙江统计,2006(01).

浅论提高企业统计质量优化统计服务

摘要:统计工作是经济社会发展的“晴雨表”,是 企业管理 中的一项重要基础工作。 文章 分析了企业统计工作现状中存在的四方面问题,从五方面提出加强统计管理工作,确保统计数据准确的 措施 ,以期提高统计质量,优化统计服务的建议。

关键词:统计 质量 现状 存在问题 建议

统计工作作为经济社会发展的“晴雨表”,是认识国情、研究国力、制定国策、监督国是,实行国家宏观管理的重要工具。其中工业统计是统计的一个分支,而作为工业统计基本单位的企业,其统计又是企业认识再生产过程及其规律的一种工具,是企业加强管理和提高经济效益的一项重要基础工作。企业的诸多重大决策依据均来自于统计数据,因此提高统计质量,优化统计服务,强化统计工作对企业强化管理,实现经济效益最大化所产生不可替代的巨大作用正为愈来愈多的企业所重视。

一、正视企业统计工作的现状

目前,大部分国有发电企业大都脱胎于计划经济管理体制之下,虽已建立比较完备和成熟的统计工作管理体系和运行机制,但在适应新的市场竞争要求面前,仍存在着诸多弊端。一是基础设施薄弱,需进一步加大投资力度,完善电厂计量等设施建设。如某厂是一个建厂五十余年的老厂,设备陈旧落后,目前统计数据的取得还停留在运行人员的运行记录表纸阶段,这就造成了多方面的问题:一方面因运行考核主要依据被考核的人所记录的各项统计指标,形成了运行人员既当“运动员”,又当“裁判员”的管理上的缺陷,造成统计数据的可靠性下滑和统计职能上的缺失。

比如其老厂主蒸汽系统为母管制,由于小集体利益的驱使,锅炉运行人员为提高锅炉效率会将锅炉蒸汽流量虚大记录,汽机运行人员为降低汽机汽耗率会将汽机侧主蒸汽流量虚小记录,这样就造成了计算中从锅炉到汽机的管道损失的增大,与实际运行情况不符;另一方面由于运行记录为一小时记录一次,由点之和代表全天情况难免有失偏颇。

因此迫切需要一方面加快网络等现代化技术的建设,实现数据的在线采集;另一方面在计量设备上,尽量将一些需要总量的数据如锅炉、汽机主蒸汽流量及给水流量的表计设为积算器,避免点记出现的误差。二是统计数据严重滞后于企业市场化管理,需进一步规范统计指标。随着电力体制的改革深入,原有的部分统计指标已不能适应新形势的要求,比如在电厂的产成品上,过去强调的多是发电量完成的多少,而现在则更多强调上网电量——即最后进入电网的电量,最终能形成收入的电量,并且具备上网电量关口计量表计。

目前一些财务指标如发电单位成本已同上网电量接轨,变为单位上网电量所耗用的成本,同步诸如发电煤耗、供电煤耗等指标也需同上网电量发生关系,改为统计上网电量标准煤耗率,即单位上网电量所耗用的标煤量,这样才能真正反映电厂的综合能耗水平,更好地适应新形势的要求。三是统计人员素质参差不齐,需进一步强化统计队伍建设。由于历史原因,人们普遍认为统计工作只是简单的数字加减,因此对统计工作的重视程度不够,对统计人员的培训倾斜力度小。老厂存在的情况大多是统计人员没有正规学历,只靠老师傅“传、帮、带”来开展统计工作,但对于新建发电企业来说,要么是新 毕业 的大学生,要么是从生产线上退下来的职工,大多专业不对口,统计人员的素质仍然参差不齐,有待加大培训力度。

这就需要采取多种形式解决统计人员的素质问题,比如派统计人员到专业学校去学习相关专业知识;或者请统计方面的专家、学者到企业为统计人员讲课,现场指导,解难答疑等。四是数据上报渠道混乱,需进一步统一上报口径。目前需要基层统计报表的部门主要有国家及政府统计部门、行业部门、企业上级及内部各相关领导及部门。

这些部门所需报表数目繁多,而且很多是一个部门一个系统,这就造成同一指标统计人员要输入多次的现象,既增加了统计人员的工作量又增加了统计数据出现误差的概率。因此还需将对政府及上级行业部门的报表与厂内所编的报表程序进行链接,直接取数,这样就理顺了内部管理和外部提供资料的关系,把向外部 报告 资料和内部管理融为一体,不重不漏,既方便了统计工作,又能杜绝统计数据的主观造假及无意的出错。

二、加强统计管理工作,提高统计质量

企业统计工作是一项系统性的工作,必须按照科学、严谨和实事求是的态度,进行全方位、多角度深化,制度化、规范化推进,确保统计数据准确、真实、可靠、有效。

1.必须深入贯彻执行统计法,杜绝违法统计现象的发生。

统计工作,首先必须严格贯彻执行统计法,保证统计数据的真实、可靠。因此,一方面统计人员在日常工作中应时时、处处、刻刻注意宣传统计法,尤其是针对原始数据的来源——运行人员的记录, 教育 督促他们要尊从实际,一切从实际出发,反映机组的真实情况;另一方面,积极响应国家、省、市统计局的号召,定期开展“统计执法大检查活动”,利用活动时间认真学习统计法并进行重点抽查,对虚记、估记数据的人员严格考核,确保原始数据的真实性。

2.完善统计管理办法,规范统计工作秩序。

为搞好企业统计工作,保障统计资料的准确性和及时性,发挥统计在生产和经营管理中的作用,更好地为发展电力市场经济服务,根据统计法,必须编制企业统计管理制度,从统计工作的主要任务、统计工作的分工和内容、统计管理、统计工作的质量要求、全厂各专业之间的联系制度等方面进行严格规定,尤其是要将统计工作详细分解到各个部门、各个人员,并明确规定各相关部门完成工作并相互报送报表的时间,以减少统计工作中的推诿扯皮现象,规范并理顺各部门的统计工作,全厂的统计工作才能得以有条不紊地进行。

3.认真编报各类报表,确保报表报送的时效性:目前基层统计部门的报表按时间可分为五类:

第一类为快报,即在事件发生24小时以内必须上报的报表,主要是针对一些异常、障碍及事故等方面的安全情况制定的,目的是为了上级部门及时了解事件真相。

第二类为日报,即反映前一天全厂机组的运行情况,包括发电量、上网电量、供热量、供电煤耗等一些大指标及压力、温度等小指标,风力发电要有日平均风速等指标等,主要是为生产部门及主管领导及时了解各种运行状况下的运行参数,以便更好地进行运行调度,保证机组在最合理、经济条件下运行。

第三类为月报,即在日报的基础上进行累计计算,加上月末粉位调整、煤场盘煤及全月燃油后进行计算的报表;

第四类为季报,即在月报的基础上编制而成;

第五类为年报,主要包括一些大的生产经营指标及机组设备方面的变更。无论是何种报表的编制,均应严格按照统计标准,并根据厂的实际情况进行计算。统计工作的性质决定了统计人员在每月1日无论出现什么情况都必须以比平时正常上班都要早的时间来提前上班,统计人员牺牲了诸如 元旦 、 春节 、五一、十一等多个节假日,目的只是为了保证能按时准确地向厂内相关部门、上级政府部门及行业部门提供准确无误的报表,优质完成统计服务工作。

4.开展统计分析调查,为企业经营决策提供依据。统计分析是企业对生产经营过程和经营成果进行全面系统分析研究,改善经营管理、提高经济效益的一种重要手段。一般发电企业均实行以月度为周期的统计分析制度,每月各相关部门对所辖指标的当月及累计发生情况进行一次全面的统计分析工作,由计划统计部门汇总并报相关领导、车间、部室、公司以及上级有关部门。每季召开一次全厂统计分析会(经济活动分析会),党政主要领导及各相关单位的负责人参加,以全厂经济效益目标为中心,突出重点,不回避难点和矛盾,对重点、难点问题针对性地提出工作措施建议。

在此基础上,还应不定期地实行专题分析,针对目前实际中出现的问题,及时召集相关部门进行专题分析,透过现象看本质,通过指标看问题。如针对某段时间供电煤耗奇高,可进行降低供电煤耗的专题探讨分析、针对综合厂用电率高可进行上网电量的结构分析及降低厂用电率可采取的措施,针对供热与电厂效益的关系可进行热电联产经济效益分析,针对供水计量中存在的问题可进行提高关口计量表计的准确性等专题分析,尤其现在新建发电企业,如风电、光伏电站,因可借鉴的历史资料较少,更应加强统计分析工作,没有同期数据比较,就要加大与可研资料的对比分析,加大与同区域发电企业的数据对比分析,或者是针对实际问题开展一些专题分析。

如某光伏电站,经常出现直流柜空气开关跳闸情况,针对这种情况,通过对大量统计数据及实验数据的比对分析,发现有一16回路汇流箱接入80A空开,行成“小马拉大车”的情况,负荷超过80A空开所能承受的电流后,开关跳闸,有一8回路汇流箱接入160A空开,形成“大马拉小车”的局面,影响发电量的减少,经过厂家配合重新接线后,再没出现开关跳闸情况,且最高负荷提高了3个百分点。这些专题分析切实能起到统计分析的目的,从而改善企业生产经营管理状况,提高企业整体经济效益,为确保发电企业总体经营目标的实现提供保障。

5.加强统计人员的培训工作,提高统计人员整体素质:统计事业是一项智力型事业,高智力型事业与低整体素质的矛盾是阻碍统计工作大踏步前进的主要障碍。要冲破这一障碍,就必须大力发展统计教育,建立一支具有高度政治觉悟、掌握现代科学和多方面技能的统计队伍。在统计人员的培训上,要坚持国家与地方并举,教育与实践相结合的方针,时间上以业余为主,方法上以参加培训班为主,内容上以更新提高为主。如:每位统计人员均需取得统计上岗证并保证年检制度;参加各种统计普法培训;参加国家统计学会及电力学会举办的培训班等,进行多层次、多类型、多方位地教育培训,大大提高统计队伍的整体素质,为统计工作的优质服务奠定基础。

随着社会的不断发展与进步,统计工作也会向更高更深的层次发展,这就要求统计人员必须坚持不懈地致力于统计工作,不断提高统计质量,优化统计服务,确实当好企业领导及更高层领导的参谋和助手。

参考文献:

1.国家统计局工业交通统计司.新编工业统计工作指南

2.广西壮族自治区统计局.工业统计手册.广西经济出版社,2010

3.樊华英.如何提高统计质量.广西经济出版社,2010

4.大唐山东发电有限公司计划与投融资部.中国大唐集团公司计划与投融资管理制度汇编

统计数据质量作为衡量统计工作绩效水平的重要依据,社会各界对其给予了更多的关注,也提出了更高的要求。下文是我为大家搜集整理的关于统计方面论文范文的内容,欢迎大家阅读参考!统计方面论文范文篇1 论我国统计方法制度改革 统计方法制度是我国统计工作的基础与规范,关系到什么是统计、怎样统计的问题,关系到统计质量的问题,关系到服务于决策者和社会等问题。随着市场经济体制建设的深入发展,统计工作进入到一个由旧体制向新体制转变的关键时期,统计方法制度伴随着生产经济方式的转变,进行了一系列改革。但是还存在着一些问题没有解决,提出相应的解决措施已经成为一个重要的课题,本文就此详细的进行了论述。 一、统计方法制度基本特点 统计方法制度是统计管理工作的一个重要的对象,是统计工作的一个基础与规范,贯彻与执行以及实施统计方法的相关制度就包括:我国基层中的统计工作者其统计工作、政府部门中统计工作者的统计工作、以及政府综合性的统计工作者其统计工作。 其主要的特点就包括以下几点: 首先,全面性。统计方法相关制度就是包括了各个领域,包括资源、流通、生产、以及分配等等,涉及到了三次产业以及国民经济的相关部门。从社会经济的各个方面来看,它就全面的反映了政治文明、社会文明、物质文明、以及科技文明、以及环境文明等等。 其次,可比性。从纵向上来说,我国的一些统计制度就在很大程度上保证了一定的可比性以及稳定性。统计制度就在很大程度上反映了长期的稳定与发展,这也是能够成为一个长期制度的原因,也是因为这种原因,才能够在经济运行的过程中发现一些存在的问题以及规律,从计算的方法来看,在我国的统计方法制度中,也在很大程度上保证了可比性以及稳定性。 此外,系统性。从管理的角度来说,统计方法制度就包括了部门、地方、以及国家的统计方法的制度。在时间上来说,这就包括了年报以及定报。从标准来说,这已经形成了一套标准。从其管理的方面来看,已经本文由论文联盟http://收集整理基本上形成了一种固定的模式。 二、我国的统计方法改革存在的问题 近年来,社会各界对统计信息的需求量剧增,无论是宏观管理还是微观经济活动,对统计信息的依赖程度愈来愈大,要求愈来愈高,与统计力量薄弱,统计法制不健全,协调监督不力,技术手段滞后,形成的反差很大。现行的统计体制的弊端越来越显示出来,主要表现在以下几方面: 第一,常规统计的内容以及范围还存在着一些缺口。在我国的一些常规性统计中,其调查制度的一些内容以及范围还存在着缺口,其覆盖面不是很全,这就意味着对我国的国民核算体系还缺乏一定的支撑作用。主要体现在以下几点:价格的统计制度不是很健全、常规服务业的缺口也比较大、以及一些专业的统计范围不是很健全。 第二,专业性统计制度之间的协调性较差。这就往往体现在年报以及普查之间的矛盾;抽样调查与全面报表的矛盾;核算统计相关制度与专业性统计制度的矛盾;我国的统计制度还没有形成一个完整的、协调的、有机的整体。 第三,统计的标准化程度还没有对现在的需要完全相适应,目前来说,很多的统计标准其在制定以及修订的过程中,往往是以国际的标准以及与国际标准相联系的标准予以展开的,而没有与实际相联系起来,没有结合着自身的发展以及相关的制度改革相联系,这类的标准是较少的。尤其是目前的一些在一定程度上制约了改革的调查单位,与城乡一体化相互配合的一些支出分类,以及反映出我国的一些企业登记与注册的标准等等都需要做到对其研究、制定、以及改革。 第四,重复性调查比较多,对基层来说起负担较重。统计信息的浪费比较严重。因为缺乏一种对制度的平衡以及整体性设计,这就造成了专业制度其内部、各个专业之间、部门统计以及综合统计之间的一种重复性调查,这就在很大程度上加大了工作量。首先,基层的统计数据其质量不是很高。其次,造成了数出多门以及一门多数或者是数据打架的一种情况。在这个过程中很多的统计信息就会被湮没,使得可以运用的信息较少,造成了不必要的浪费。 三、制度方法改革的思路及策略 综上所述,随着形势的发展,统计工作的现行体制、制度、方法等弊端就越加暴露出来,只有加大改革的力度,加快统计方法、制度的改革步伐,转变职能,统计工作才有生气,才有希望,才能不断地向前发展。 (一)完善统计指标体系 在不断的改革以及对社会经济发展的规律不但的认识基础上,要做到不断的去发现并要捕捉到经济发展中的一些难点以及热点问题,要对当前的一些适用的统计指标要保留,对一些过时的、陈旧的、不适用社会发展的一些指标予以去除,对指标体系做到不断的改进以及完善,使得整个的指标体系在真实的基础上反映出实际情况,做到对社会各个方面的统计与要求能够适应。 (二)改进统计的方法 统计工作应该要在实际的情况以及新环境的基础上,根据实际的调查对象其不同的特征来对统计方法进行改革,在实行普查的基础上,依靠着抽样调查以及全面报表体系,并且要利用一些非全面的调查方法,加强利用行政记录。对调查方法进行改革中,首先要保证数据的质量,早保证质量的基础上再对成本加以考虑,用比较少的花费以及比较小的一种力量,来实现一种统计的目的。目前来说,在调查方法体系中,存在的一个主要的问题就是推进行政管理体系以及调查方法之间的一种考核还存在的一些矛盾,怎样去协调以及管理,这就需要我们运用智慧去研究以及解决。 此外,还要对统计的标准化水平予以提升,还要不断的对国民经济的核算体系进行完善等。 四、结束语 总之,对我国的统计方法进行改革有着极为现实的意义,鉴于在统计方法制度中存在的一些问题,就应该不断的采取相应的措施,促进我国的统计方法制度的不断发展与完善。 统计方面论文范文篇2 浅析中等职业学校统计教学方法 1 《统计学》课程教学面临的挑战 《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。特别是指数、抽样调查这部分概念抽象难以理解,公式复杂不易计算,这些对于学生学好这一课程面临的困难是可想而知的。 现在中等职业学生的特点: 中职学校的学生是一个特殊的群体,由于当前严峻的升学和就业形势,导致多数人认为上中职学校没有发展前途,基础好的学生都上了高中,中职学校的生源都是被挑选后剩余的学生。他们在初中时期,大部分成绩不是很好,甚至有的学生是个别教师“遗忘的角落”。因此,在很大程度上,这一批学生心理上存在着一定的缺陷,对自己不自信、甚至破罐破摔,缺乏学习兴趣、甚至厌学。大部分学生理论学习热情不高,缺乏钻研精神,缺乏积极的学习动机,学习目标不明确,学习上得过且过、效率低下。并且,他们的信息来源非常广泛,外界诱惑非常大,因此课程学习远远不能满足他们的心理需要。他们热衷于网络、游戏、追星、享乐等,根本无心学习。因此,采用传统的教学方法不能适应当代中职教育的要求。另外,中职生源知识基础比较差,但智力素质并不差。他们的思维敏捷,动手能力较强,对新事物、新观念容易接受,适应性强,且追求时尚,追求财富,出人头地的梦想非常强烈。所以,我们必须注重发掘他们的潜力,努力实施“因材施教”。加强实践教学环节,改变“填鸭式”的传统教学方法,培养学生的操作能力,让学生在实践中学习、在实践中进步。 2 统计学教学设想 在教学内容上,依据excel的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,整合教学内容。 传统方式上的数据整理是使用纸上表格,填入数据、文字,再利用计算器计算所需的结果,如求和、分类汇总、求平均值、数列分析等数学运算,但往往因为数据过于庞大复杂,不仅计算起来十分辛苦,而且容易出错。现在计算机已非常普及,无论是高校、高职和中专,培养出来的学生不会用统计软件分析数据,不管哪一个层次,都已说不过去。统计学是一门应用的方法型学科,统计学应从数据技巧教学转向数据分析的训练。统计学应与计算机教学有机地合为一体,让学生掌握一些常用统计软件的使用。这样既培养了学生搜集数据、分析数据的能力,还培养学生处理大量数据的能力,即数据挖掘的能力。 excel电子表格软件是大家生活工作上常用的一款软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握,已能满足常用的统计方面的要求。excel可以进行数据运算,绘制图表、统计运算等,应用于数据整理、数据描述、抽样分析与参数估计、时间数列分析,不仅可以减少繁琐的重复计算,而且一旦编制好一个工作底稿,以后只要更改其中任一数据,就可以轻松地重新自动计算结果。这样,一方面可以减轻数据整理工作量,学习统计不再意味着整天埋头于一堆枯燥无味的数据中,另一方面可以提高学生的学习兴趣。 通过统计实践学习统计。 统计的教学不能只停留在课本上,我们应以学生为中心,案例教学与情景教学应成为统计课程的重要内容。在统计教学过程中,我们应增加统计实际案例,通过计算机对大量实际数据进行处理,可以在试验室进行,亦可在课堂上进行讨论,这样学生不仅理解了统计思想和方法,而且锻炼和培养了研究和解决问题的能力。还可以通过课堂现场教学、引导学生先读后写再议、模拟实验、利用课余时间完成项目,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,如社会调查、专题研究、提供咨询、参与企业管理等方法。全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。 比如同学们在设计调查问卷和调查方案的基础上,让他们组成若干调查小组(如以寝室为单位),在校园内真正进行一次统计调查活动,从具体调查对象和单位的确定,样本的抽取(不一定要很大),问卷的发放、回收与审核,数据输入与资料整理,估计与分析,一直到调查报告的编写,调查总结或体会的形成,全部由同学自己来完成。这样,同学们就亲身参与了统计调查、统计整理和统计分析(含统计推断)的整个过程,效果很好。 统计教学与日常生活相结合。 统计是一种社会调查活动,不论是宏观社会的整体调查研究,还是微观事物的观察分析,都需要统计。从微观上说,在日常生活中无处不存在着“统计”。例如,开学时,辅导员要统计一下到校的学生人数;篮球比赛中教练员要统计每个队员的投篮命中率、犯规的次数;农户在农作物收获后统计其产量等。再例如,家庭中的商品选购,买房买车,储蓄炒股,节水省电,参与彩票等等。在统计教学过程中,尽量把生活中的例子融入到统计课堂教学中。比如讲到正态分布,我们可以联系到我们的日常生活,你会发现许多现象呈现常态,虽有差异,偏离正常,但表现过高或过低的情况总是比较少,而且越不正常的可能性越少。比如人生目标,现实中“总统”只有一个,真正的发明家也不太多,而普通人随处可见。明确了这一规律,我们就不必为我们不是“总统”或“发明家”而气馁,我们应该像大多数普通人一样根据自己的实际情况树立一个通过努力就可以达到的目标。再说身边的朋友,最要好、最贴心的不会很多,明争暗斗、勾心斗角的也是少数,而不冷不热、不疏不亲的“点头朋友”却随处可见。“点头朋友”约占95%,也就说你在大街上随便碰到的100 个朋友中,大约只有五个是好朋友或坏朋友,其余都是“点头朋友”。明白了这一点,我们就应好好珍惜那少数几个难能可贵的好朋友们,对那95%的“点头朋友”要少些期待和要求,对那些无可救药的坏朋友则应该敬而远之,避免不必要的麻烦。这样书本上的知识也讲了,与实际生活相联系又增加了趣味性。 从宏观上说,一个国家一个社会更是离不开统计。在当代社会,统计学的应用越来越普及,人口学中的统计学应用(进行优生优育)、社会发展与评价、持续发展与环境保护、资源保护与利用、宏观经济监测与预测、政府统计数据收集与质量保证等都依赖于各类科学的统计方法。统计学在企业生产、经济生活中的应用也十分广泛,其中包括了保险精算、金融业数据库建设与风险管理、宏观经济监测与预测等一系列经济研究应用问题。 既然是处处离不开统计,那么我们就可以定期带领着同学们阅读各大新闻报纸及浏览各大统计官方网站,学习统计知识的同时又了解了国家大事。 改革考试方式和内容,合理评定学生成绩。 考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育、特别是应有利于学生的创造能力的培养之目的相差较远。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习《统计学》课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不拘一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。 3 结束语 教师在教学过程中要时刻明确学生是课堂的主体,教师要结合学生状况,灵活设计课堂模式,激发学生学习兴趣,了解和贯彻课程内容对学生能力和学生个性发展的要求,把学生放在教学的主导地位,引导学生发挥其主观能动性,培养学生信息学习的积极性、创造性和主观能动性,建立起能促进学生全面发展的教育教学模式。 猜你喜欢: 1. 统计方面论文优秀范文参考 2. 统计方面的论文范文 3. 统计学术论文范文 4. 统计优秀论文范文 5. 统计学论文范文

优秀多元统计分析论文模板

题目摘要关键词正文参考文献致谢

多元统计分析论文各省市数据可以在国家统计局下设省统计局,市统计局,均可获取各地的数据资料。多元统计分析是从经典统计学中发展起来的一个分支,是一种综合分析方法,它能够在多个对象和多个指标互相关联的情况下分析它们的统计规律,很适合农业科学研究的特点。

强烈建议您看看根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找:毕业论文网: 分类很细 栏目很多毕业论文: 毕业设计: 开题报告: 实习论文: 写作指导:

1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。 因子分析的基本思想: 把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。 (2)F = (F1,F2,…,Fm)¢ (m

相关百科

热门百科

首页
发表服务