首页

> 论文发表知识库

首页 论文发表知识库 问题

关于数学广角论文题目

发布时间:

关于数学广角论文题目

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

如果你写的出来那是直接送去留学的的了......啊!什么?!你五五五五五五年级?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。

教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。

2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。

3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:用假设法解决“鸡兔同笼”问题。

教学具准备:电脑课件

一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)

“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”

二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)

1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。

2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。

同样方法演示全是5元的,再拿二元去替换也可以。

3.抽象算法(形成策略):

(32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。

三、类化巩固(自主练习)。

①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”

先由学生小组讨论,在抽生上台展示算法:

假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。

同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。

②自己出题,交换答案.

展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?

展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)

四、归纳提高:

解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).

五、知识拓展。

其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。

“鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”

六、 解决生活问题(达标测试):

1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。

②小明买了6角和8角的邮票共花5元,分别买了多少张?

2.选作题:

①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?

②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?

反思

《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。

首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。

在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。

在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。

本堂课我力求做到了三动:身动、心动、神动.

随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。

在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。

“鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。

一、 《孙子算经》中的“雉兔同笼”

“鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)

其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:

第一步:上置三十五头,下置九十四足

我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)

古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。

如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。

第二步:半其足得四十七

意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。

图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。

第三步:上三除下三,上五除下五

这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)

用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)

第四步:下有一除上一,下有二除上二即得

与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)

以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。

二、 《算法统宗》中的“鸡兔同笼”

“鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)

其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:

第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。

第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。

第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。

第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。

第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。

第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。

另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。

《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:

(94-35×2)÷2=12(只)

第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:

(35×4-94)÷2=23(只)

这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。

《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”

【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。

【关键词】鸡兔同笼;解题思路;求解方法;数学思想

鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。

解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡

方程:

解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23

答:兔有12只,鸡有23只。

我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解

对于这个问题,我们给出如下几种求解方法,并给出相应的公式;

解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数

解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数

解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数

解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数

解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数

解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数

解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数

解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数

解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数

“鸡兔同笼”中的数学思想方法

一、化归思想

化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。

二、假设思想

假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。

用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。

三、方程思想

方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。

四、建模思想

弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。

以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。

参考文献:

把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。 (一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。因为1/10=〈@①,3/10=〉@②;可能是8吗?不可能。 因为1/ 8=〉@①,3/8=〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=……=@①;3/9=1/3=1÷3=……= @②。 计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。 @③=4/9 验证:4/9=4÷9=…… @④=6/9=2/3 验证:2/3=2÷3=…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。 循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。因为12/100=〈@⑤,13/100=〈@⑥。可能是98吗?不可能。 因为12/98≈〉@⑤,13/98≈〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。 12/99=12÷99=……=@⑤; 13/99=13÷99=……=@⑥。 验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。 @⑦=15/99=5/33,验算:5/33=5÷33=…… @⑧=18/99=2/11,验算:2/11=2÷11=…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。 现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。 附图{图} 实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。 二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。 还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。 附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。 附图{图} 验证:352/1125=352÷1125=…… 验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。 附图{图} 实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附图{图} 验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。 猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

数学广角大学毕业论文

你先加了我QQ了来嘛,加了再在QQ里聊,方便些,对吧。恩,我也是小学生,但我比你大,我是毕业班的~792421204.验证消息你就填四年级的,不然我不知道是哪个

学在人类文明的发展中起着非常重要的作用,数学推动了重大科学技术的进步,在早期社会发展的历史上,限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现,数学为人类生产和生活带来的效益容易被忽视。进入二十世纪,尤其式到了二十世纪中叶以后,科学技术发展到现在的程度,数学理论研究与实际应用之间的时间已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化和信息通道的大规模联网,依据数学所作的创造设想已达到即时试、即时实施的地步,数学技术将是一种应用最广泛、最直接、最及时、最富创造力和重要的技术,故而当今和未来的发展将更倚重数学的发展。 数学对人的影响也式非常深刻的,“数学是锻炼思维的体操”,数学的重要性不仅仅是它蕴含在各个知识领域之中,而且更重要的是它能很好地锻炼人的思维,有效地提高能力,而能力(理解能力、分析能力、运算能力)则是关系到学习效率的更重要因素。 在我国建国60年来,我国数学科学的发展更是取得了辉煌的成就,涌现了一批如:华罗庚、吴文俊等站在数学发展最前沿的,代表数学发展方向的,享誉世界的数学家 ,对比其他国家数学科学的发展,我国的数学发展可谓一波三折。 与美国相比,自二战以后,为了迎接越来越大的内外挑战,美国经历了四次重大的教育改革实践,由二十世纪50年代末前苏联在“外层空间”的挑战而引发的“学科结构”为运动发端的教育大讨论,70年代初兴起了改变职教与普教分离的“生计教育”,至70年代中期又展开了强调基础知识与基础技能训练的“回归基础”运动,而80年代则掀起了波澜壮阔的综合教育改革运动,如果说美国80年代以前的教育具有明显的“应时性”特征的话,那么进入80年代后则更多地呈现出综合性与前瞻性的特点,并以四个著名的教育改革文献——《国家处于危机之中:教育改革势在必行》,《2061计划:面向全体美国人的科学》,《美国2000年教育战略》,《2000年目标:美国教育法》为标志,向世界呈现了一副21世纪的教育蓝图。 我国的近代教育兴起于甲午战争之后,当时的数学教育也和整个近代教育一样,基本照搬日本模式,大量采用日本教材,五四运动之后,科学于民主的口号深入人心,数学教育的作用也为更多人所认识,我国自编的中学数学教材也纷纷出现。从抗战爆发直至1949年全国解放,此间大量引进以英美为主的西方数学教材。解放初期,由于意识形态的差异,我过全面学习前苏联的教育模式,采用吉西略夫的教材,以及以其为蓝本而改编的教材,因此,我国近代数学发展所走的路线大致是:先照搬日本,后模仿美英,然后又学习前苏联,由于当时前苏联的数学教育曾经体现了数学改革的主流,所以我国的数学教育虽然起步晚,但还是绕道跟上了世界潮流。 随后,于1958年我国展开了赶美超英的大跃进运动,这一客观形势使我国数学教育改革也出现了过热的势态,批判了1955年的教学大纲和教材,认为传统的中学数学教材“内容贫乏,陈旧落后,脱离政治,脱离实际”,提出建立适应社会主义建设需要的新学科,但由于改革过于急促,所以整个改革方案未能进行到底,1961年以后,我国教育贯彻“调整、巩固、充实、提高”的方针,于1961年和1963年相继修订了中学数学教学大纲,重新强调了基础知识和基本技能的重要性,同时教学秩序趋于正常,教研活动深入开展,数学教学质量得到了稳步的提高,1966年文化大革命开始,大批教师被扣上了“臭老九”的帽子,教师队伍受到了巨大的冲击,教育事业也受到了严重的摧残,致使我国各项教育教学工作不能继续进行,经过十年动乱之后,于1978年颁布了《中学数学教学大纲(试行草案)》,使我国的数学科学教育事业重新回到正常地轨道上来,该草案对中学数学教学内容进行了改革,精简了传统的中学数学内容,增加了微积分、概率统计、向量、矩阵等初步知识,把集合映射等近代数学思想渗透进中学数学课本中,由于近代数学所发现的微积分、矩阵等知识主要还处于理论应用之中,且只有在具备了相应地数学学习能力之后,才能很好地理解其重要意义,这一点不太符合我国当时数学教育还处在较低级发展水平的现实,加重了学生学习的负担,知识体系也不够完善,针对这种情况,于1982年又拟定了《六年制重点中学数学教学大纲(草案)》,对中学数学的内容进行了适当地调整,编写了几套深度和广度不同的教材,以供不同地区根据当地的具体基础选择相应的教材,同时积极稳妥地进行了大量地教材改革试验,随着社会的进步,科技的发展,1985年5月颁布了《中共中央关于教育体制改革的决定》,1986年4月颁发了《中华人民共和国义务教育法》指明了教育改革的方向,并且颁布了《全日制中学数学教学大纲》,并对教育的目标提出了适应当时具体情况和未来发展的新要求,1999年6月党中央国务院召开了改革开放以来第三次全国教育工作会议,颁发了《中共中央,国务院关于深化教育改革,全面推进素质教育的决定》对深化教育体制和结构改革,全面推进素质教育提出了明确的目标和要求,这一决定对我国教育事业的影响直至今日。

1.国际著名数学大师,沃尔夫数学奖得主,陈省身 1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士(1989),中国科学院国外院士等。荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖. 2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人,华罗庚 华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等著名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都做出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专著与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。 3.仅次于哥德尔的逻辑数学大师,王浩 1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代 初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华裔数学家、逻辑学家、计算机科学家、哲学家。 4.著名数学家力学家,美国科学院院士,林家翘 1937年毕业于清华大学物理系。1941年获加拿大多伦多大学硕士学位。1944年获美国加州理工学院博士学位。1953 年起先后担任美国麻省理工学院数学教授、学院教授、荣誉退休教授。 林家翘教授曾获:美国机械工程师学会Timoshenko奖,美国国家科学院应用数学和数值分析奖,美国物理学会流体力学奖。他是美国国家文理学院院士(1951),美国国家科学院院士(1962),台湾“中央研究院”院士(1960)。从40年代开始,林家翘教授在流体力学的流动稳定性和湍流理论方面的工作带动了整整一代人在这一领域的研究探索。从60年代开始,他进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际所公认。1994年6月8日当选为首批中国科学院外籍士。 5.我国泛函分析领域研究先驱者,曾远荣 1919年入清华学校(清华大学前身)留美预备部,一直读到1927年7月。由于学习成绩优异,先后在美国芝加哥大学,普林斯顿大学及耶鲁大学学习并研究数学,1933年取得博士学位。1934年8月至1942年7月一直任教于清华大学(1938年与北京大学、南开大学在昆明组成西南联合大学)。1950年2月,受国立南京大学数学系主任孙光远教授写信聘请到南京大学任教直至退休,曾在南京大学建立国内最早的计算数学专业。长期从事泛函分析研究,是我国开展这一领域研究的先驱者之一,在广义逆等研究领域成就卓著。 6.我国最早提倡应用数学与计算数学的学者,赵访熊 1922年考取北京清华学校。当时清华学校是公费留美预备学校,竞争激烈,在江苏只招3名学生,他在众多考生中名列榜首。毕业后即到美国麻省理工学院(MIT)电机系学习。他1930年在电机系毕业,被哈佛大学数学系录取为研究生,且于1931年获硕士学位。1933年他受聘回国在清华大学数学系任教,1935年被聘为教授,从此一直在清华大学任教,参与创办国内第一个计算数学专业。赵访熊于1962年和1978年先后两次出任清华大学副校长,1980-1984年兼任新成立的应用数学系主任,并受聘担任国务院学位委员会学科评议组委员。他担任过中国数学会理事、名誉理事。1978年至1989年担任第一、二届计算数学学会理事长及第三届名誉理事长和《计算数学学报》主编等一系列职务。数学家,数学教育家。我国最早提倡和从事应用数学与计算数学的教学与研究的学者之一。自编我国第一部工科《高等微积分》教材。在方程求根及应用数学研究方面颇有建树。 7.著名数学家,数学教育家,吴大任 1930年与陈省身以最优等成绩在南开大学毕业,考取清华大学研究生,1933年夏,在姜立夫的鼓励下,吴大任参加了中英庚款第一届公费留学考试,被录取到英国学习。他本想到剑桥大学攻读,因抵伦敦时间错过了该校入学的时机,改入伦敦大学的大学学院,注册为博士研究生。1937年9月初,吴大任到武汉大学任教,之后即随武汉大学迁到四川乐山。后来长期担任南开大学领导工作与教学工作,著、译数学教材及名著多种。对我国高等教育事业作出了积极贡献。研究领域涉及积分几何、非欧几何、微分几何及其应用(齿轮理论)。1981年他任国家学位委员会第一届数学组成员,《中国大百科全书数学卷》编委兼几何拓扑学科的副主编以及全国自然科学名词审定委员会第一和第二届委员。 8.著名数学家,北大教授,庄圻泰 1927年考入清华学校,1932年毕业于清华大学数学系,1934年,熊庆来教授接受庄圻泰为自己的研究生,1936年于该校理科研究所毕业。1938年获法国巴黎大学数学博士学位。曾任云南大学教授。1952年院系调整后,庄圻泰留任北京大学。此后除继续担任复变函数课程的教学任务外,他还陆续讲过保角变换,拟保角变换,整函数与亚纯函数等专业课。九三学社社员。长期从事函数论研究,在整函数与亚纯函数的值分布理论上取得重要成果。著有《亚纯函数的奇异方向》,合编《AnalyticFunctionsOfOneCom•plexVariable》(在美国出版) 9.著名数学家,数学教育家,四川大学校长,柯召 1931年,入清华大学算学系。1933年,柯召以优异成绩毕业。1935年,他考上了中英庚款的公费留学生,去英国曼彻斯特大学深造,在导师L.J.莫德尔(Mordell)的指导下研究二次型,在表二次型为线性型平方和的问题上,取得优异成绩,回国后先后任教于重庆大学,四川大学。1953年,他调回四川大学任教至今。在这40余年间,他以满腔的热情投入教学和科研工作,为国家培养了许多优秀数学人材,在科研上硕果累累。与此同时,他还先后担任了四川大学教务长、副校长、校长、数学研究所所长等职,作为学术带头人和学校负责人,他卓有成效地抓了几个重要方面的工作:努力提高教学质量,积极开展基础理论研究,发展应用数学,培养一批高水平的人材。其研究领域涉及数论、组合数学与代数学。在二次型、不定方程领域获众多优秀成果。1955年选聘为中国科学院院士(学部委员)。 10.中央研究院院士,首批学部委员,许宝騄 1929年入清华大学数学系,1933年毕业获理学士学位,1936年许宝騄考取赴英留学,派往伦敦大学学院,在统计系学习数理统计,攻读博士学位。1940年到昆明,在西南联合大学任教。1948年他当选为中央研究院院士。回国后不久就发现已患肺结核。他长期带病工作,教学科研一直未断,在矩阵论,概率论和数理统计方面发表了10余篇论文。1955年,他当选为中国科学院学部委员。在中国开创了概率论、数理统计的教学与研究工作。在内曼-皮尔逊理论、参数估计理论、多元分析、极限理论等方面取得卓越成就,是多元统计分析学科的开拓者之一。1955年选聘为中国科学院院士(学部委员)。 11.中科院院士,原北大数学系主任,段学复 1932年考入了清华大学数学系(当时称为“算学系”)。 1936年夏,段学复获得理学士学位,毕业留校任助教。1941年8月进入美国普林斯顿大学数学系攻读博士学位。1946年回国任清华大学教授,自1952年院系调整后,任北京大学数学系主任近40年。长期从事代数学的研究。在有限群的模表示论特别是指标块及其在有限单群和有限复线性群构造研究中的应用方面取得突出成果。指导学生用表示论和有限单群分类定理彻底解决了著名的Brauer第39问题、第40问题。在代数李群研究方面与国外学者合作完成了早期奠基性成果。在有限P群方面取得一系列研究成果。在数学应用于国防科研和国防建设方面作了大量工作。1955年选聘为中国科学院院士(学部委员)。 12.我国拓扑学的奠基人 江泽涵 毕业于南开大学,1927年参加清华大学留美专科生的考试,考取了那年唯一的学数学的名额,后在美国哈佛大学数学系留学,1930年获得博士学位。1930在美国普林斯顿大学数学系做研究助教。1931年起,长期担任北京大学数学系教授,并任北京大学数学系主任,曾兼任理学院代理院长。数学家,数学教育家。早年长期担任北京大学数学系主任,为该系树立了优良的教学风尚。致力于拓扑学,特别是不动点理论的研究,是我国拓扑学研究的开拓者之一。1955年当选为中国科学院数理学部委员。

正方形花园上每隔10米有一棵树,算上两端一共有24棵,这条路有多少米长?或者正方形花园有500米长,每20米种一棵树,一共种几棵树?再或者说24棵树要再125米的正方形花园上栽种,每隔多少米种一棵?QQ906565568以后有事可以直接叫我

关于小学教师角色的论文题目

小学教师论文的选题题目

从小学、初中、高中到大学乃至工作,许多人都有过写论文的经历,对论文都不陌生吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。写起论文来就毫无头绪?下面是我为大家收集的小学教师论文的选题题目,仅供参考,希望能够帮助到大家。

1、亲历、探究、感悟——指导学生西瓜栽培的实验案例

2、学生喜欢语文书,却不喜欢语文课——一次发书后的反思与实践

3、让语文作业与“大头贴”同具魅力

4、“蝴蝶”飞起来了——浅议一堂新课标下的自然课

5、培养孩子一双数学的眼睛——浅谈写“数学日记”的意义

6、沉默是金,此时无声胜有声——浅谈静思默想在语文学习中的作用

7、意料之外?情理之中!——《特殊的葬礼》教学随想

8、感悟评优课《神秘的地下宫殿》

9、让学生变成“读书郎”——指导小学生进行课外阅读的初步尝试

10、“课改热”后的“冷思考”

11、德育,需要教师“共同遭遇”

12、新课程背景下小学数学课堂教学的冷思考

13、自编教材,其乐无穷——记一次数学活动的实践与反思

14、大拇指教育的智慧——浅析赏识教育

15、掀起你的盖头来——是是非非话“奥数”

16、沟通,预约语文教学的和谐有效——一次特殊的语文回家作业引起的思考

17、朝朝频顾惜,夜夜不相忘

18、数学课堂的生命——走进学生生活——低年级数学课堂选择生活情境的误区及对策

19、不急着演——苏教版第八期《推敲》教学片断反思

20、诗意地栖居,幸福地享受——浅谈语文课堂诗意地追求

21、让考试的感觉象春天——小学体育学科考核评价的探索

22、让课堂成为学生思维的运动场——刍议“小学数学教学中的概念教学”

23、情感元素,让德育课堂洋溢生命的气息——从执教《有多少人为了我……》谈起

24、让你不再“听”数学——浅谈提高探究有效性的三点做法

25、小组合作,你准备好了吗?

26、论小学教育中的“赏”与“罚”

27、你是快乐的,我是幸福的——艺术课《猜猜我是谁》教学案例与反思

28、书山有路“疑”为径

29、不同的设计,不同的收获

30、课堂:因朴实而精彩!

31、关注学生:从现象走向本质

32、透视课堂教学中的不公平现象

33、用爱心营造阳光——刍议“新时期孤离学生”与教育的急功近利

34、当数学课遇上网络——从一堂数学网络课说开去

35、让“作业”和“自由”共舞

36、错误,作为一种资源来开发

37、教育随笔——教师成长的催化剂

38、羽化课堂生命

39、综合实践活动课程的文化解读

40、感悟快乐的课堂情绪——谈良好的课堂氛围的营造

41、给孩子一个金话筒——浅谈学生“口语交际”能力的培养

42、收放·适度·并重·反思——三年级乘除法竖法计算有效性教学的实践与思考

43、寻回教学目标在教师心中的位置

44、爱可以这样表达——学习陶行知教育思想的探讨

45、“做数学”,让智慧出在指尖上

46、让童心在校本课程学习中浸润和飞扬——浅谈校本课程的开放和使用

47、在缘情会文中还“语文味”于课堂

48、老调需重弹,钻研是真经

49、活起来的“精彩”——作文课教案从“有”到“无”的思考

50、数学离生活究竟有多远?——有效使用生活素材,创设高效合理的数学课堂

51、太仓市小学体育教师教科研工作的现状调查与分析

52、构建信息时代教师专业发展的校本脚手架

53、让爱“导航”,请严“护航”——试谈班主任工作中的“爱”与“严”

54、在文本中成长——《庐山的云雾》教学反思

55、优化操作活动,发展空间观念——谈《角》的教学

56、绿色课堂:焕发生命活力的语文课堂

57、语文教育呼唤人文性

58、让批评充满人情味

59、让阅读课“写”起来

60、“协商”——让学生拥有学习的主动权

61、亲近“白纸黑字”:谨防阅读教学平面化

62、爱的吐蕊

63、从错别字现象反思小学识字教学

64、校本课程“识字与儿童创造力的发展”的生成和实施

65、融入生活,超越文本,碰撞情感——我对《品德与生活》学科的初浅认识

66、对小学数学教学中“情境创设”的几点思考

67、一颗被丢弃的红五星

68、儿童心理问题的个案研究和反思

69、多渠道开发体育课程资源,促进学生综合素质的发展

70、感悟——语文教学活的灵魂!

71、构建绿色音乐课堂,把音乐课上到孩子们的心里

72、让作文充满生命的绿色——浅谈小学生个性写作的培养

73、让语文教学走向智慧

74、从新的视角探究儿童画教学的指导方法

75、低年级语文课引导学生“倾吐”的`做法和体会

76、用语文细节创设书香四溢的班级文化点滴谈

77、读书——永远的情怀

78、小学教师课堂困境成因的社会性探析

79、晨会,一道可口的精神早餐——通过晨会教育培养学生的主体精神

80、我们怎样开始上课——关于“上课开始方式”的调查与思考

81、体验:让阅读教学课堂绽放生命之花

82、对“生活英语”打假

83、丑小鸭在这里变成天鹅——浅谈一年级新生任务意识及规则意识的培养

84、浅议教学难点与难点教学

85、“温柔”是一剂良药——对学生错误行为的人性化教育例谈

86、给学生一对能遨游书海的翅膀——浅谈小学快速阅读教学

87、课堂,让语言与能力同构共生——关于英语课堂教学的几点思考

88、我和秋天有个约会——小学语文《秋游》教学例谈

89、课堂:师生个性发展的空间——小学语文学科个性化教学的研究

90、建立新型师生关系,重塑音乐新课堂——浅谈师生角色互融的教学实践与体会

91、给予什么

92、别让精彩与课堂擦肩而过——例谈语文教学中生成资源的利用

93、论师生交往中理解关系的缺失与重建

94、理解:语文课堂生活的诗意状态

95、三思“选择你喜欢的方式读”

96、新课程改革背景下小学生自主学习能力培养策略研究

97、有效教学,源于“适度精彩”——对新课程下数学课堂教学若干过度现象的反思

98、基于理解的朗读才有生命力——浅谈小学语文朗读教学“三引领”

99、回归生活,紧贴教学,触及心灵——“构建生活课堂,实施生活德育”研究初探

100、让每一片花瓣都散发芬芳-案例研究四则

101、还学生言语的权力

102、短信,让心灵“零距离”

103、数学学习中的“听、说、读、写”

104、打造校本教研文化,提升课程实施品质

105、一个都不能少——浅谈教育教学中的人文关怀

106、成就真而美的课堂——美术公开课教学本质的突围与坚守

107、真实,在过程中凸显——堰桥中心小学校本教研阶段性回顾总结

108、增强生活体验,让学生享受“绿色作文”

109、生成:课堂教学的本质与诗意所在

110、谈谈小学生的数学阅读

111、智慧在这里徜徉

112、智慧课堂:让课改向理性深处漫溯——关注课堂教学的实践智慧之文化书写

113、从纠缠到和谐——与品德学科的两组课程对话

114、生命之花在文化严霜的摧残下凋谢——应试教育对生命的摧残及其文化归因

115、终极关怀:现代教育应有的视界

116、从课本、课堂、课程的基本含义看教育的三种境界

117、数学教学应突出学生的数学思考——兼对课改实践中一些问题的思考

118、新课改,让数学课本默默地离开?

119、音乐,让美术课堂更多彩——浅谈美术教学的情趣教育

120、善待错误,点“石”成“金”

121、作文,要说爱你也容易

122、我的一堂标点教学课

123、赢在起点——一年级学生良好学习习惯培养目标及实施策略探究

124、数学游戏是儿童获取数学礼物的最佳方式

125、煎、炸、烹、妙——美味英语课

126、小学生社会交往心理问题及心理辅导对策的浅析

127、关注生成,保留课堂真实本色

128、直面心理惩罚

129、让“流行”的课堂多一点理性的思考

130、抓契机,重渗透——谈小学低段作文意识的培养

131、让学生在日记中获得精神的成长——新课程中如何引导学生进行自我教育

132、让计算教学“活”起来

133、让学生亲历养蚕的过程

134、若想取之,必先予之——谈班主任与学生的交往

135、教师成长:滴水穿石的守望

136、口语交际教学的再思考——谈小学生口语交际能力的症结及对策

137、学名师上课

138、学海泛舟心有舵——课堂生成问题处理的导向

139、真诚对话,让阅读充满人性关怀

140、作业“变脸”,价值提升

141、教学资源:从“被动使用”到“有效开发”

142、听的精彩,听的收获——培养学生听力阅读的心路历程

143、我们在对话中成长——校本教研案例一则

144、悟出语文学习的灵性和情趣,练出学习语文的能力和价值

145、让课间活动成为孩子生命中一道最美丽的风景线

146、换一种评价——小议“即时性学生评语”

147、城市流动人口子女义务教育问题及相关政策分析

148、从“文本”到“人本”——谈新课程指导下的教学设计

149、痛着,并成长着——我对挫折教育的一点认识

150、打造小学语文教师的专业底气

151、当前小学骨干教师心理问题及其对策

152、课改不需要作秀——谈新课程背景下语文教学的形式主义问题

153、学生需要一个什么样的语文课堂——谈课程改革下的语文课

154、让智慧奔涌在笔端——学生撰写“流动日记”随笔

155、让学生的“自主”不浮于表面

156、花开有声——关注小学高年级学生的“早恋”情结

157、倡导有生活意义的语文对话

158、语文,再语文些

159、课改,盲目跟风要不得

160、慎防“泡沫改革”

161、用文化的力量引领教师的发展

162、课堂,激情的旅程——浅谈语文课堂中有关动态生成的几个问题

163、开启思维之窗,让风自然流动——语文学科思维训练之我见

164、过程——数学课堂因你而精彩

165、授“语”以“渔”——谈如何拓展中年段学生言语实践的空间

166、自己摘的果实最有味儿

167、反思,魅力无穷——记《观察物体》一课某一片断的改进过程

168、课改,更应演绎常态课的精彩

169、谁为我们的成长负责——教师成长的困惑与反思

170、让孩子真正拥有“权”

171、二次讨论,打开语文课堂一扇窗

172、守住文本价值的底线

173、低年级学生也能成为数学问题的解决者

174、“得寸进尺效应”给我们的思考——我对转化“差生”的一点想法

175、期待的美丽——利用“阅读期待”提高阅读质量

176、合作时机选择:从“随手拈来”到“恰到好处”

177、农村小学作文教学应着力于五大突破

178、警惕评价中的负面效应——对低年级语文教学评价现状的思考

179、小学生职业志向的调查研究

180、用对话式教学重构语文课堂

181、别忘了保护孩子的自尊——对私拿他人物品行为的个案干预

182、在实践中体验,在体验中反思——执教《摆的研究》一课后心得体会

183、我爱我的读书卡——语文课外阅读实践活动组织形式的思考与实践

184、切合实际的才是最好的——从一个案例谈课堂活动

185、在文本价值与独特体验之间寻求平衡

186、面对“麻烦学生”的教育反思

187、沉浸在发现的喜悦中——从一堂识字课看探究学习

188、教学的成功从“课前预设”开始

189、感悟不能,让训练走开

190、“读”占鳌头

191、赏出“水”来,品到“渠”成

192、梅花香自苦寒来——抓校本教研,促教师成长

193、少讲新奇典型,但求平常真实——谈学生习作的取材

194、浅探小学语文课堂教学中教师评价的人文关怀

195、小学作文教学中“档案袋”使用的研究

196、领悟语文教学的春天——浅谈构建语文新课堂

197、在课改中重建我们的校本科研文化

198、如何在低年级数学课堂中培养学生的数感

199、“学生插嘴现象”的理性思考与应对策略

200、从视觉文化角度看课文插图的现代教育价值

201、几经风雨,初见彩虹——开发校本课程《小公民》的实践与思考

202、“教学机智”的养成与实践

203、于细微处解读学校团队精神

204、数学课中“挑战性问题”设计之初探

205、“预设”诚可贵,“生成”价更高

206、数学学习别“冷落”了课本

207、在“传统”与“现代”间寻求平衡——谈新课程下的课堂常规

208、让孩子拥有阅读的三大礼物:兴趣,方法,习惯

209、数学阅读:引领学生走进美妙的数学花园

210、让课堂流程在动态生成中“变奏”——谈《长方体的体积》的两种不同教学方法

211、网络教学热的冷思考

212、让“别样的声音”变得精彩

213、“删繁就简三秋树,标新立异二月花”——实施有效教学,关注预设与生成

214、情感,还朗读美丽的容颜——从学生的朗读谈朗读教学

215、莫让“人文”虚化了语文——教《印度洋上生死夜》一文有感

216、什么样的数学吸引学生?——《角的认识》教学片断及反思

217、追求真实的课堂教学——对公开课的一些思考

218、授人以渔不如授之以渔场

219、让语文走向生活

220、“孩子,别趴下!”——防止“差生”向“接受失败者”转化的策略

221、小学语文教学的文化追求

222、将新闻引入语文课堂的尝试

223、校长追求什么?——一切为了学校的发展

224、以意逆志,活化对话——新课程视野下阅读对话的价值审视

225、为用而学,在用中学,学了就用——浅谈任务型教学中任务的设计

226、对话——生命因你而精彩

227、口语交际教学中的三“心”二“意”

228、数学教学中学生学习主动权的回归

229、渗透数学文化,丰富教学内涵

230、让孩子过有道德的网络生活

231、自主参与,探索创新,享受学习,小学开展研究性学习的误区及对策

232、让学生插上“积累”的翅膀——浅谈新课程下小学生语言积累的实践

233、建立记录袋,促进学生习作能力的提高

234、给小草开花的时间——谈课堂教学中“皮格马利翁”效应

235、生命化教育:对“流行的激励”的理性思考与追问

236、农村小学生数学课堂语言表达存在的问题与对策

237、引领学生走进课外阅读的缤纷世界

238、思维——课堂教学的不竭动力——几种小学数学课堂教学设计的对比思考

239、数学课堂,我们迷失了什么?

240、通过对话引领学生走进文本的深处——《天游峰的扫路人》反思与评析

241、要给孩子的学习补充心理营养

242、再现生活,享受快乐——浅谈小学作文教学的实践与思考

243、班级特色文化——学校德育的新天地

244、以“境”促“情”,培养学生健康的学习情感——在低年级实施“创设情境,主动参与,体验成功”模式

245、沟通与交往从容,谈吐与智慧齐飞——谈口语交际能力的培养

246、让数学和文学联姻

247、《小班探究性阅读教学片断设计与实施的研究》结题报告

248、给我一个“支架”,我将……——浅谈“支架式教学”策略在数学课堂中的运用

249、“亲近母语,快乐阅读”——低年段“在主题活动中,培养学生语文综合能力”阶段性研究报告

250、让音乐课堂在“人文评价”中前行

251、在数学教学细节中体味多元评价的魅力

252、表扬或批评,我们应该持怎样一种态度?

253、浅论小学语文阅读教学中补白艺术的价值

254、浅谈小学校本人力资源的管理

255、南京市拉萨路小学教育信息化成本效果分析

256、浅谈教师与学生的心理沟通策略

257、陶行知的经验论及其现代启示

258、一切从“心”开始——创设小学低年级数学的生命课堂

259、小学思品课旧大纲与新标准之比较研究

260、纸上得来终觉浅,绝知此事要躬行——关于农村小学古诗文诵读情况的调查与研究

261、心灵相约——做一位教育的艺术家

262、不可低估的动漫魅力——将动漫引进美术课堂中

263、拿什么来拯救你,我的孩子?——关于中小学生心理健康现状的思考

264、实践“对话”课堂

265、从对话的理想到理想的对话——由孔子和苏格拉底的对话想开去

266、一次交换试卷的风波

267、童真,童趣,童心——童谣与儿童美术教学的研究

268、《小学语文生活化导学片段的设计与实施》结题报告

269、巧妙运用“相似论”提高教学有效性

270、让“问题教学”彰显新课程理念

271、新课程下,寻找数学教育的平衡点

272、心与心相连,情与情相牵——打造“心心相印”的班集体过程中心理学知识的应用策略

273、追寻最美的阳光仙——由心理辅导访谈带来的教师教育教学行为的思考

274、音乐始于人自身内——有感于柯达伊、奥尔夫音乐教学法

275、语文创造力构成的心理因素及培养

276、快乐的学习,健康的成长——把低年级数学教学童趣化的几点做法

277、“诺亚方舟”是否有我们的风吹过——体育教学中弱势群体的研究与对策

278、当心,别让表扬变为美丽的“谎言”——论表扬孩子的误区

279、精彩源于学生的“错”

280、基础教育场域中教师对学生的“新”评价

281、理性思考,诗意创作——从创作《月光启蒙》看课堂教学结构的优化

282、课前调查——你开始了吗?

283、蓄情·体情·抒情——浅谈阅读教学的情感流程

284、别“伤”着孩子——当今学校教育环境对学生“隐性伤害”的一点思考

285、用“延时评价”点击学生心灵的鼠标

286、让课外阅读成为低年级学生语文课堂学习的“餐后甜点”

287、今夜没有暴风雨

288、让课堂变“水平如镜”为“波澜起伏”

289、创设自主探究空间,让学生“亲”数学

290、自觉进行“知识教学的革命”

291、以生活为本,过有道德的课堂生活

292、我会和一年级小朋友说话了——浅谈教师口语的艺术表达

293、创设“听”的气氛,提高课堂效率

294、《小学“学习地图”》的实践研究》结题报告

295、晨会,您有效利用了吗?——晨会活动开展现状剖析及整改策略

296、在学生眼前悬一把“青草”——让“草香”飘逸在课堂始终

297、让儿童的道德生命“诗意的栖居”

298、沟通往来于文字之间——谈谈数学作业的批阅方式

299、别让文本成为“最熟悉的陌生人”——浅谈阅读教学中学生与文本之间的对话

300、不该小视的——课堂“小结”——浅谈《品德与生活》课堂小结环节的设计

301、让作文评语成为学生爱上写作的理由——从作文评语入手指导学生写作

302、让课外阅读成为孩子诗意的栖居

303、“亲情、和谐、创新”的学校文化建设的思考与实践

304、对新理念下阅读教学的几种误区的诊断及治疗

305、演绎数学文化,倾注人文关怀,构建生态课堂——为数学课堂画上文化的坐标轴

306、潜心开发课程资源,优化动态生成过程

307、小学六年级学生学习语文的心理成因及对策

308、论学校形象的审美设计

309、数学“生态课堂”建构刍议

310、演绎数学文化,倾注人文关怀——为数学课堂画上文化的坐标轴

311、议教学中学生的从众行为

312、“数”山有路巧激趣,学海无涯“乐”作舟

313、小学语文课上渗透人格教育——浅谈学生自信培养

314、关注课堂生态,构筑生态和谐课堂——由教室中出现的“中间地带”说开去

315、金玉当作外,败絮勿为中——浅谈合作学习之“橘”

316、单亲家庭子女教育初探

317、从“必然”中求得“自为”——班主任工作从经验型转向科研型的深入研讨

318、让儿童的“梦”在语文课堂中得到回归

319、《小学班级特殊学生心理监护系统的构建与运作》研究报告

你要看一下你自己究竟研究的是哪一方面,您小学教育只是代表你的专业,要看你具体研究的哪一个专业方向,跟你所擅长的去确定题目,你也可以找你的老师去商量。

小学 教育 是培养社会所需要的各种各样的人才的基础,师范专业的学生在撰写小学教育论文的过程中,要注重论文题目的选择,好的题目能起到画龙点睛的作用。下文是我为大家整理的小学教育的论文题目的内容,欢迎大家阅读参考! 小学教育的论文题目(一) 1 浅谈中小学教师专业化及其发展 2 福建小学地方性课程中加入方言 文化 课的构想 3 教师教学风格对小学生学习习惯形成的影响 4 厦门市家校合作的现状、问题及对策 5 新课程背景下的文本解读 6 浅谈小学“学困生”自我效能感的培养 7 美国小学教师教育的基本特点及启示 8 小学习作评改的策略研究 9 研究性学习在小学科学教学中应用现状的分析及其启示 10 中美小学教育本科专业课程设置的比较及启示 11 浅谈如何提高小学教师的审美素质 12 信息技术与小学课程整和的问题与对策 13 集美大学小学教育专业学生科学素养的调查研究 14 试论小学生学习习惯的发展特点及其培养 15 当前语文课堂评价的误区与矫正 16 不同家庭结构对 儿童 个性的影响 17 教学中批判性思维及其培养策略研究 18 女大学生心理健康现状及其相关因素研究 19 网络成瘾对儿童心理发展的影响 20 小学习作教学存在的主要问题及对策初探 小学教育的论文题目(二) 1. 浅谈新课标理念下的课堂教学改革 2. 教师教学风格对小学生个性形成的影响 3. 关于小学教育专业本科生职业认同感调查研究 4. 当前 家庭教育 的不足对小学生心理健康的影响 5. 小学生口语交际能力的培养策略初探 6. 新课改背景下的阅读教学误区初探 7. 浅析中国现代母亲教育 8. 关于课堂提问以学生为主体问题的思考 9. 传统个别化教学与网络个别化教学之比较 10. 福建小学教育专业本科 毕业 班学生职业意识初探 11. 厦门市小学生课余培训调查研究 12. 研究型教师的成长策略 13. 浅谈小学口语交际课堂教学的策略 14. 小学数学“实践与综合应用”教学的问题及对策 15. 台湾“感恩教育”教学范例阐析 16. 运用现代教育技术优化小学课堂教学 17. 小学数学课堂情境教学探究 18. 浅析当前教师评价体制 19. 在数学教学中加强情感教学的策略 20. 小学教师教学语言现状调查与分析 21. 重塑当代大学生的人文精神 22. 浅谈小学生良好阅读习惯的培养 23. 论推广少儿经典教育的必要性和成败关键 24. 放飞语文课堂 开辟求知天地 25. “任务驱动型”口语交际教学模式的构建 26. 中 国画 与西方绘画的造型之比较 27. 小学生信息素养的培养 28. 中美小学教育专业本科培养目标的比较分析与启示 29. 小学课堂教学中运用新模式存在的问题及对策 30. 小学语文综合性学习的误区初探 小学教育的论文题目(三) 1. 关于小学生视野中优秀教师的调查研究 2. 小学教师“随班就读”教育教学能力的研究 3. 感悟:词义教学的新策略 4. 中日生存教育的比较及思考 5. 小学科学教学中“有结构材料”的研究 6. 大学生团体心理咨询内容分类研究 7. 小学数学教学中游戏的应用与设计 8. 二十一世纪中小学健康教育新思考 9. 新时期小学班级管理的策略初探 10. 小学数学概念教学存在的问题及对策 11. 小学古诗教学要加强审美教育 12. 信息时代小学美术教学的策略 13. 浅谈小学科学课科学探究活动的现状和策略 14. 关于小学口算教学的几点思考 15. 台湾小学教师教育的优势及其启示 16. 小学数学生成性课堂资源的开发和利用 17. 小学生家庭作业布置的误区及改进策略的研究 18. 信息技术条件下小学生探究学习能力的培养 19. 小学数学课堂情境创设的误区及对策 20. 小学生数学建模能力培养策略 21. 教育信息化环境下教师角色的转变 22. 试论当前小学的科普教育 23. 小学生课外阅读策略探究 24. 试论小学古诗教学中的情感教育 25. 试论金庸武侠小说对小学生的影响 26. 浅谈互联网对中小学生德育教育的影响 猜你喜欢: 1. 关于小学教育的论文 2. 关于小学教育论文题目 3. 浅谈小学教育的论文 4. 有关小学教育方向毕业论文 5. 小学语文教师论文题目大全

小学教育类的论文有很多可以选择的方向,我们 可以把相关主题分为几个类别,例如:

一、关于教育内容的论文题目

1、外语应该成为学校的必修课吗?

2、应该教学生打字而不是写字吗?

3、教师是否应该对民族英雄的负面性格、行为或习惯保持沉默?

二、关于国家教育政策的论文题目

1、家庭教育应该由国家控制吗?

2、是否应该定期测试教师的水平?

3、学校应该为学生的不良行为负责吗?

三、关于学校法律和政策的论文题目

1、是否应该对网络欺凌进行监管?

2、教师或保安人员应该带武器吗?

3、学校应该禁止公开祈祷或讨论宗教吗?

小学数学广角论文参考文献

如果你写的出来那是直接送去留学的的了......啊!什么?!你五五五五五五年级?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

小学数学益智游戏培养学生思维方式论文

现如今,大家都不可避免地会接触到论文吧,通过论文写作可以培养我们的科学研究能力。相信许多人会觉得论文很难写吧,下面是我精心整理的小学数学益智游戏培养学生思维方式论文,欢迎阅读,希望大家能够喜欢。

摘要: 当前,教育改革的不断深入对小学数学课堂教学提出了更高的标准。基于这样的情况,小学数学教师需要对传统的教学方式不断进行改进以及优化。小学数学教师要在小学数学课堂的教学过程中全面增加益智游戏的应用,这样不仅可以提升小学课堂教学的效率,并且也能使小学生的数学思维以及创造思维得到全面的发展和推进。

关键词: 益智游戏;小学数学;应用研究;

当前小学教师在开展数学教学的过程中,需要通过有效的方式来提高学生的数学成绩,那么便需要在原有的教学方式上不断改进和创新,来激发学生的积极性以及学习热情。在实际授课中,教师可以根据学生情况引用趣味性的益智游戏作为教学的有益补充。小学生年龄小,注意力容易分散,而游戏不仅可以激发学生的学习兴趣,还能够长时间吸引学生的注意力,使学生在游戏的过程中理解本节课的知识点。另外,游戏的运用还可以营造良好的课堂气氛和学习氛围,拉近师生、生生的关系。

一、益智游戏在课堂教学中的作用

传统的应试教育在目前受到了很多的质疑,当前随着我国教育体制的不断改革以及完善,其中一项最为重要的改革内容便是注重学生综合素质以及能力的培养。在当前对于小学生来讲,他们正处于一个智力开发的关键阶段,因此在目前的教育环境中,加入益智游戏有利于从小培养学生科学的思维模式以及动手习惯。

对于益智游戏来讲,这是一种有助于开发智力的游戏,在当前的诸多小学中得到了广泛的使用。通过大量的研究调查得知,将益智游戏作为教学的辅助方式,它对学生的智力发育有着很好的帮助作用,并且能够使学生在游戏的过程中,在愉快的氛围中收获到知识。因此,这种教学方式对比传统的填鸭式教学方式有着很好的改进。那么对于教师来讲,需要认真对待这种教学方法,以此作为辅助性教学,从而激发学生学习的兴趣。

(一)以课堂教学为主,以游戏为辅

对于小学数学教学来说,在当前的教育模式下,主要是以课堂教学为主,因此教师在教学过程中需要不断扩展教学的内容以及层次,从而有效提高学生对于课堂教学的参与度。益智游戏和传统的游戏有着一定的区分,传统的游戏比较注重于娱乐性,而益智游戏更加注重在娱乐的同时开发学生的智力,并且可以在一定的程度上培养学生的团队协作能力。因此教师在进行教学的过程当中,需要明确地了解益智游戏的特点,从而让学生在收获到快乐的同时也得到自我的提升,从而更好地学习以及成长。对于教师来讲,在设计益智游戏的时候需要立足于课堂教学的内容以及每一名学生的特点。

教师在组织学生进行益智游戏的时候,需要把班级内部的学生进行分组,对每一个小组布置相应的游戏任务,从而在游戏的过程当中有效地观察每一个学生的表现。对于积极参与到游戏当中的学生可以给予相应的奖励,这样的做法不仅使益智游戏得到了很好的利用,并且能够活跃课堂气氛,从而有效地开展小学数学教学。

(二)有效提升当前小学生的综合素质

益智游戏能够在一定的程度上培养学生的独立性以及团队协作性,尽管如此,益智游戏也只能作为教学的一种辅助工具,并不能让其占据整个教学时间。那么教师在小学数学的教学过程当中需要认真设计游戏,并合理分配游戏时间,使益智游戏既能够很好地发挥作用,又不会喧宾夺主,过多地吸引学生注意力,影响教学的高效开展。另外,益智游戏的运用,并不是单单地培养学生学习的兴趣,还能够在一定的程度上培养学生的综合素质能力,为其在未来的发展中奠定一定的基础。

(三)有效发挥出益智游戏的作用

对于教学来讲,它主要是通过学生以及教师两者的交流来完成知识的传授。小学生往往有活泼好动,辨别是非能力差,以具体思维为主,对事物好奇,喜欢提问等特点。教师要以学生的'需求为主,在教学的过程当中开展一系列的益智游戏,并有效加强游戏组织,将教学知识点巧妙地融入到游戏当中去,让学生在游戏中感受到学习内容的存在,只有这样才能在潜移默化之中形成对知识的认知以及提高理解能力,这样一来,学生学习知识的兴趣及能力都会逐渐加强。

(四)有效吸引小学生的注意力

根据一些相关的科学研究,我们可以了解到,小学生的注意力主要是通过有意识和无意识两个方面来组成的。在这两个方面当中,无意识注意占据了大多数的时间,而有意识注意则是占据着少数时间,但是有意识注意在学生的学习中发挥着重要作用,因此,如何有效、合理地利用这一部分时间是我们需要进行思考的问题。在教学中,教师应当了解到如何有效地利用学生的有意识注意力,这在很大程度上决定当前小学生智力的开发程度,因此在课堂教学中应用益智游戏有着积极的作用。很多益智类游戏的设计方向便是提升学生的有意识注意力,因此作为教师,我们必须要深入地了解益智游戏的作用,从而合理地运用到日常的教学中去。

(五)有效培养学生守规矩的意识

对于益智游戏来讲,它是提升教育效果的重要载体,但其本质上也是一种游戏。对于任何一种游戏来讲,都有着属于自身的规则,那么教师就需要使学生懂得游戏的规则,让学生明白一旦违反规则就需要接受惩罚,从而在参与益智游戏的过程当中养成很好的规则意识。

二、益智游戏培养学生思维方式的探讨

(一)培养学生的创新思维

对于益智游戏来讲,它是一种带有趣味性的游戏,可以开发学生的智力,使学生的思维更加灵活,更具思维的广度,让学生在愉快的心境中投入学习,取得事半功倍的效果。因此教师可以在教学课堂当中加入益智游戏,以这种方式来提高学生学习兴趣。另外,教师还可以根据班级中学生的特点来组织不同的学生开展不同的益智游戏,使得班级内的每一名学生都能参与到益智游戏中,从而对他们的创新能力以及思维能力进行提升。因此,在当前小学数学的教学当中有效地加入益智游戏是一项十分重要且有意义的教学方法。

在小学数学的教学内容当中,例如教学广角推理,教学广角数与形等内容时,都对原本的数学知识进行了简化,使得学生可以在学习的过程当中能够有效地对数学思想以及规律进行总结。因此,将良好的益智游戏融入到数学教学中,可以让学生的自学能力以及解题技巧得到明显的提高,不仅使学生了解到数学知识从繁化简的过程,还能提升学生的学习成绩。

(二)培养学生的数学兴趣

对于初接触数学知识的小学生来讲,他们年龄较低,自身的数学思维发展有着较强的限制性,因此他们在学习的过程当中很难正确地理解较为抽象的数学概念以及理论,那么这就在一定程度上增大了学生学习的难度。并且小学生普遍有着活泼好动的特性,长期处于一个较为枯燥的学习环境中,便会使他们自身的学习积极性以及学习热情受到较大的打击,从而丧失对学习的兴趣和爱好。针对这种情况,小学教师应当积极地在课堂教学中引入激发学生兴趣的益智游戏,并且教师还需要不断地摸索数学教学内容和益智游戏两者的共同处,使得益智游戏可以很好地融入到课堂当中。在游戏的过程中,教师还要不断地鼓励和引导学生,使每一名学生都能够积极地参与到课堂游戏中去。

例如,当教师在对学生教学图形方面的内容时,如果教师仅仅依靠书本知识来让学生进行图形的学习,掌握正方形、长方形以及三角形等图形的特点和性质,由于内容有些抽象,学生很难深入理解。因此,面对这样的情况,教师可以使用七巧板游戏的方式来对学生进行教学,让学生自己动手来摆一摆、拼一拼,从而加深对学习内容和知识点的理解,并且通过这种方式,还可以培养学生的动手能力以及思维能力,进而为学生以后的学习道路奠定坚实的基础。或者教师还可以使用多媒体设备来播放教学的图形,加强学生的视觉刺激。这两种方式都可以提高学生对于课堂教学内容的兴趣。

(三)有效提升学生思考以及解决问题的能力

在当前小学数学教学中普遍存在一个问题,那便是当学生掌握了基础知识之后,不能很好地使用到实际的解题过程当中。这种现象的出现,主要是因为学生本身的知识应用能力比较差。还有部分学生在学习知识的时候往往死脑筋,只能记住这道题的解题步骤,但是当题目内容数字发生了改变之后便不会解题了。这主要是因为学生的思维惯性以及思维定势受到了一定的限制所导致的。因此,为了使学生的数学思维得到全面发展,教师需要在教学当中教会学生举一反三来解决问题,这样才能使学生解决问题的能力有所提高,并且也可以使得学生的思维得到创新。

例如,当教师在进行图形和几何的教学时,如采取传统的教学方式对这一部分内容进行教学,则很难取得良好的教学效果。那么这个时候教师就可以借助一些工具来进行教学,比如鲁班锁玩具。在课堂中,让学生对鲁班锁不断地拆分和重装,通过自身想象力来对不同形式的鲁班锁进行组装,这样不仅可以提升学生的数学集合能力,也可以使得学生的数学思维方式得到有效的拓展。

三、结语

新时期的教育改革对小学数学课堂的教学提出了更高的标准,不仅仅是教会学生数学知识,更需要教会学生数学逻辑思维,培养学生的实际应用能力。在这一时代要求下,小学数学教师必须要转变教学理念,不断改进和优化教学思路和方法。在小学数学课堂教学过程中引入益智游戏,这样不仅可以对课堂上的氛围进行塑造,同时也可以加强学生的数学思维能力,提升学生的创造性思维。总体来说,当前小学数学成绩的提升,除了受限于学生自身的学习能力以及认知水平之外,它还受到外界因素的影响,例如教师的教学观念以及教师的教学方式等,因此,教师应当在课堂中有效地引进益智游戏来提升学生的兴趣以及学习能力。

四、参考文献

[1]魏昌禄.数学游戏在小学数学教学中的实践应用探讨[J].读与写(教育教学刊),2019(4).

[2]潘云.寓教于乐乐在学中-谈游戏在小学数学教学中的应用[J].数学大世界,2017(9).

[3]邵丽娟.浅谈教育游戏在小学一年级数学教学中的应用策略[J].中国校外教育,2018(17).

把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。 (一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。因为1/10=〈@①,3/10=〉@②;可能是8吗?不可能。 因为1/ 8=〉@①,3/8=〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=……=@①;3/9=1/3=1÷3=……= @②。 计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。 @③=4/9 验证:4/9=4÷9=…… @④=6/9=2/3 验证:2/3=2÷3=…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。 循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。因为12/100=〈@⑤,13/100=〈@⑥。可能是98吗?不可能。 因为12/98≈〉@⑤,13/98≈〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。 12/99=12÷99=……=@⑤; 13/99=13÷99=……=@⑥。 验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。 @⑦=15/99=5/33,验算:5/33=5÷33=…… @⑧=18/99=2/11,验算:2/11=2÷11=…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。 现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。 附图{图} 实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。 二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。 还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。 附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。 附图{图} 验证:352/1125=352÷1125=…… 验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。 附图{图} 实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附图{图} 验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。 猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

课堂是落实课程改革的场所,课堂教学是学生在校期间学习文化科学知识的主阵地,课堂教学的质量直接影响学生素质的形成,影响学生的成长与发展。因此探讨“如何提高课堂教学的有效性”就显得格外重要。 1.充分了解学生研究学生、了解学生是数学课堂教学有效性的前提之一。因此,要使数学课堂教学有效,应当对学生做出更为深入和具体的分析,为教师本人备课及实施所用。好的教学设计,教学内容的层次感,研讨的核心问题和关键点等都基于对学生的了解。好的构思和创意都有很强的针对性,都需要对学生有真切的了解。对学生了解的越清楚,教学中就更能心中有底,通过及时反馈调节教学的重点与进程,就能适时进行质疑、把问题引向深入,提高数学课堂教学的有效性。同时,每位数学教师都要充分认识到:学生是有着巨大发展潜能和个别差异的个体,他们都有取得发展,赢得尊重的权利,教师必须在人格和交往上尊重每一个学生,在学习和生活中关爱每一个学生,做到因材施教,因人施教。那么,每个智力正常的学生就都能得到健康发展并获得成功。2.认真钻研教材,把握教材数学教材不再是学生数学学习的目标以理解或掌握教材上呈现的内容作为学生学习数学的最重要任务;数学教材应当成为学生学习数学的基本出发点让学生在教材所搭建的数学活动平台上展开数学学习。采用由浅入深、逐级递进、螺旋上升的方式逐步渗透重要的数学思想方法,给学生充分探索和交流的机会,强化学生在数学学习过程中的主体地位,突出探索式学习方式:即在知识的学习过程中给学生留有充分的思考与交流的时间和空间,让学生经历观察、实验、猜测、推理、交流、反思等活动.另外,教师还要意识到:教材只是教师教学的一个凭借,往往呈现一些生活、学习现象和事实,不利于学生探索与创新,需要教师根据学生的具体情况对教材进行合理的加工、改造,重组出具有迁移性、思考性、再生力的数学活动,因此我们要树立“用教材去教,而不是教教材”的观念,提高课堂教学的有效性。3.创设问题情境,激发学生学习兴趣《数学课程标准》指出:“数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境”。新教材最大的特点和优点之一就是许多知识的引入和问题的提出、解决都是在一定的情境中展开的。德国一位学者有过一个精辟的比喻:将15克盐放在你的面前,你无论如何也难以下咽。但将15克盐放入一碗美味可口的汤中,你早就在享用佳肴时,将15克盐全部吸收了。教学情境之于知识,犹如汤之于盐。盐需溶入汤中,才能被吸收;知识需要溶入情境之中,才能显示出活力和美感。 因此,教学中教师要尽可能地从生活或具体情境中引入数学新知,让学生在有效的情境中产生学习和探索的兴趣, 兴趣是学习的最好老师,它在学习活动中起着定向和动力的作用,是激发学生学习积极性、增强求知欲的重要因素。中学生的探索精神和创新意识是在对数学特点、内容发生兴趣时而引发的。课的引入是学生能否产生学习兴趣,渴求新知,增强教学效果的关键。在教学中,教师要善于了解学生的学习特点,不断改进教学方法,根据学生的心理特点,教学内容,挖掘教材活动性和创新性因素,努力创设各种生动形象的教学情境,激发学生的学习兴趣,引导他们积极、主动参与到学习中去。中学生学习数学的情境大致有两种:第一种是现实生活情境;第二种是问题矛盾情境。教师通过创设情境,设置认知冲突,以情激趣,以趣导思。让学生的注意指向新知,并产生学习新知的动机,积极投入到探索新知的活动中。数学课的引入不但要起到温故知新的作用,还要有利于激发学生参与意识。要选准新知识生长点,提供诱因,促进知识的迁移,使学生产生强烈的求知欲和主动探索的兴趣。4.根据教学内容和学生特点选择适当的教学方法。在教学实践中我们发现,教学中存在着一些好的教学方法,但教无定法,在教学中要根据不同的教学内容和不同的学生选择恰当的教学方法。只有灵活机动地选择最适合学生的教学方法,才能最好、最优地提高数学教学的有效性。(1)根据不同内容选择不同的方法。代数知识、几何知识、统计知识等不同的教学内容具有不同的特点,在教学中我根据不同的教学内容选择不同的方法。例如在教学几何知识时我采取从直观到抽象的方法逐渐培养学生的空间想象能力;在教学统计知识时采用让每个孩子经历统计过程的方法,让他们体会数学知识在实际生活中的应用非常广泛。(2)根据学生实际选择适合的方法。在教学中要立足于学生是“教学之本”。教师选用教学方法时应把学生作为教学的出发点,学生的年龄特征、学习基础、个性差异都是教师要考虑的因素。初中阶段学生已能进行抽象逻辑思维,但对于一些空间观念很强的题目仍要用实物展现或者用多媒体辅助教学以加深他们的理解。再如同一年级的不同班级由于学习基础不在同一水平线上,教学方法也不能一样:自学能力强的班级可以采用自学法、尝试法;基础相对较低的班级则可以采用实际操作、设疑法等。并且同一个班级中针对不同个性的学生也要运用不同方法。如好动、爱说的学生适宜用讨论法;不善于表达,喜静的学生就适宜用发现法、自学法。只有关注学生,“备”学生,才能找到有效的教学方法,提高教学的效率。5.利用多媒体技术进行辅助教学,提高数学课堂教学的效率。心理学认为:兴趣是人们对客观事物选择的一种态度,是积极认识某种事物或参加某种活动的心理倾向。兴趣是直接推动学习的内在动力,是获取智能的开端,追求知识的先导。多媒体技术是现代教育技术的一种,运用这一技术制作的课件图文并茂,具有信息量大、动态感强等传统教学技术无法具有的优点,特别适用有关几何图形和函数图像知识的教学。在常规教学中,由于受客观条件的限制,有些概念的理解,用常规的教学手段难以达到一定的效果。而用多媒体技术制作的课件能给学生深刻的印象,使学生获得直观的感知,从而激发学生的学习兴趣和积极性,提高学习效果。6.优化课堂评价,激发学生学习的热情课堂教学中,教师适时地对学生进行肯定,表扬,使学生体验成功的愉悦,树立起信心的风帆是十分必要的,尤其是学生智慧的火花闪现时教师要不惜言辞,大加赞赏,这更能震撼学生的心灵,奋发学习的激情。然而,对学生的课堂表现及时地进行客观评价,指正。与学生交流时,使其明确努力的方向也必不可少。成功只有在失败的衬托下才显得更加耀眼光彩,表扬也只有在客观评价指正下才更有价值和张力,只有在客观的基础上,坚持鼓励的原则,才是富有魅力的有价值的评价。教师在上课期间应尽量与每一位学生进行积极的个人交流,认真倾听和接受每一位学生对教学的正确想法。7.有针对性的设计课堂练习练习是学生掌握知识、巩固知识、形成技能、发展思维、提高解决问题能力的主要途径,它是数学课堂教学中不可缺少的组成部分,所以,老师们对于课堂练习的选择和设计都非常的重视。要使课堂练习真正起作用,首先要摒除一些已经出现的不良倾向。一些教师为图省事,往往过于依赖书本。所有的练习来自于书本且不加选择。书上的练习不是不好,只是书上的练习有共性,是最基本的东西。如果我们能投入精力设计出一些针对本班学生情况的、土产的、有版权的练习,会更省时更有效的。另外,有些教师留给学生的思维时间太短,练习的要求又太单一,或者要求实践的作业流于形式,学生没有真正的参与进去。这些做法,都大大影响了教学效果。 因而我们要优化课堂练习,让学生的练习练到点子上,练在易混易错处,使练习题的针对性强,同时注意内容的迁移,要有利于深化理解,活跃思维。这就要求练习题的设计要有层次,能体现新旧知识的比较综合以及对新知识的引申发展与思考,由浅入深,由易到难,循序渐进,减缓梯度。当然,还需要设计适量的综合练习,以不脱离课本为前提,允许学生不做难度大的题,精讲多练不能以时间论,该讲就讲,不该讲就不讲。最重要的,还是必须加强实践的操作练习。当然,我们得控制练习的数量,要少而精,切记不要增加学生的负担。总之课堂教学是学生和教师的双边活动,教师要结合各自的实际情况教学,要尽可能采用高效的方法让课堂的每一分钟都体现出价值。 参考文献:张安娇 《如何在数学课堂上设计好练习》 教育论文网 贾广索 《如何提高课堂教学》 搜狐中国教师 陈 燕 《如何提高数学课堂的有效性》 《教育研究》 2007年第6期 《教育情报参考》2007年第9期

关于三角函数问题的研究论文

三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!

一、创设教学情景,使“数学教学生活化”。以此激发学生的学习兴趣,调动学生积极性。 创设教学情境是模拟生活,使课堂教学更贴近现实生活,让学生身临其境,如见其人,如闻其声,加强感知,突出重点,突破难点,激发兴趣,开发思维。课堂教学中如何创设教学情境呢?我认为可这样做: 1、运用实例创设情境。如教学循环小数概念时,我给学生讲永远讲不完的故事:“从前,山上有座庙,庙里有个老和尚在给小和尚讲故事:老和尚说:从前山上有座庙……”,通过实例初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环变化,引出“循环”的概念。 2、运用实物(挂图)创设情境。“圆的认识”教学时,我这样引入:出示一幅颜色鲜艳的用正方形做轮子的自行车,问同学们这自行车漂亮吗?喜不喜欢?为什么?学生们回答:“不喜欢。因为这车虽然漂亮但踩不动。”我把正方形车轮换成椭圆后再问学生喜不喜欢,同学们还是说不喜欢,因为骑这样的自行车,即使是在平坦大路上也象在颠跛不平的路上骑一样,我再把椭圆形车轮换成圆形,学生才满意。 3、动手操作创设情境。在推导平行四边形面积公式时,我让学生准备几个平行四边形,鼓励他们动手操作,通过画、剪、移、拼等方法把一个平行四边形变成我们学过平面图形——长方形,观察拼成的长方形长和宽与平行四边形的底和高有什么关系,然后推导出:因为长方形面积=长×宽,所以平行四边形面积=底×高。平行四边形面积公式是学生在操作时,通过观察、思考概括而来,学生尝试到成功的快乐,不但能掌握知识,更能培养他们的信心和兴趣。 4、运用多媒体创设情境。多媒体教学具有直观、形象、具体、生活化的特点,运用多媒体创设情境,使抽象概念具体化,使难理解的问题容易化。如教学“长方体的认识”时,相对的面完全相同,相对的棱长度相等,我运用电脑平移两个面和相应的棱,使学生看见两个相对的面完全重合,相对的棱完全相等,从而达到具体,直观的效果。 5、 模拟生活创设情境。如教学两步加减的应用题时,要求每个小组的同学可以邀请别组的同学参加,小组人数可以比原来的人数多也可以比原来的少。 第一小组:我这组原来6人,走了2人,来了4人,现在有8人。 问:谁能把第一小组人员变化情况列成式子?6-2+4=8(人) 又问:谁把它编成求“现在有多少人?”的应用题。 第二小组:我这组原来6人,先来了2人,后面又来了3人,现在有11人。…… 通过若干个小组的汇报训练,学生在活动中完成了两步加减的应用题学习。 创设生活化的情景,让学生经历将现实问题抽象成数学模式的过程。 如我在教三年级教学《分数的初步认识》时,我就安排了这样一个游戏:先请上男、女学生各一名站在讲台前,然后,我拿出4个月饼,请其余学生用手指表示每人分到的月饼个数。要求大家仔细听老师要求,然后做。我边分边说:“我有4个月饼,平均分给蔡伟和熊娴,请用手指个数表示每人分到的月饼个数”。学生很快伸出2个手指。我接着问如果只有一个月饼,要平均分给蔡伟和熊娴,请用手指表示每人分到的月饼个数,这时,许多同学都难住了,有的同学伸出弯着的一个手指,问他表示什么意思,回答说,因为每人分到半个月饼,我进一步问:你能用一个数来表示“半个”吗?学生被问住了。此时,一种新的数(分数)的学习,成了学生自身的欲望,这样创设了一个与生活相关的教学情景,就激发了学生学习的兴趣,激起了学生解决问题的欲望。 二、研究生活中的数学,使数学课堂教学生活化。 知识是前人在生活中积累的经验或是揭示出的规律,而教学目标是为了掌握规律及学习发现规律的方法。我们老师如果只是让学生掌握知识,那就是把学生头脑当成了知识的容器,“头脑不是一个要被填满的容器,而是一把需被点燃的火把”。因此,教学中必须让学生了解知识发生的过程,但40分钟毕竟有限,因此我们老师要引导学生善于去捕促、获取、积累生活中的数学知识。 首先,要挖掘教材中生活资源。我以小学数学第十册举三个例。例1:数据的收集,要求学生在上放学途中遇到红灯时,数一数另一方向经过的大客车、小汽车、摩托车各是多少辆?例2:长方体和正方体的认识,要求学生模仿家庭中长方体和正方体用硬纸板动手做一个长方体和正长体。例3:质数和合数,分解质因数,布置作业,想一想班上每个同学的学号是质数还是合数,并把合数分解质因数。 其次,要指导学生观察生活中的教学。让学生观察生活中的数学,既可积累数学知识,更是培养学生学习数学兴趣的最佳途径。低年级学生数一数客厅的资砖、光碟等数量,比一比身高、体重,认一认周围的平面图形和立体图形。中高年级观察数学美,如形体的美、结构美等。 三、设计“数学生活化”的练习,帮助学生去发现生活中的数学问题,并应用所学的数学知识解决实际问题。使学生通过练习感觉到生活中处处有数学,数学来源于生活并应用于生活。 1、在练习过程中创造性地对教材内容进行还原和再创造,将数学练习融合于生活中,就可以使原有的练习为我所用。如我教《求平均数》(第八册)时,练习中有一题是给出一组学生身高数据,算出平均身高,来巩固平均数=总数÷个数的这种方法。我是这样做的:先给出我省十岁儿童的平均身高是140cm,问“我们组的身高水平是在平均身高之上还是不到平均身高呢?”引出要算本组平均身高,再让学生统计本小组8个人的身高,最后通过计算,得出小组的平均身高,与140cm进行比较。同样是计算学生平均身高的练习,但这样的练习设计不但巩固了求平均数的方法,还让学生明白了算平均数的必要性,也体会到生活中需要平均数;还学会了算平均数的这些数据是怎样来的;从平均数中可以获得哪些信息等等。我觉得这样的教学就达到了目标。 2、把生活中的数学原型生动地展现在课堂上,使学生眼中的数学不再是简单的做数学练习,而是富有情感、贴近生活,具有活力的东西。如我在教学长“方体和正方体的表面积”一课的练习拓展中,我设计了这样一个题目,我们的教室由于使用时间过长,比较成旧,需要重新粉刷,泥工师傅要按平方受取工资,总务处胡老师想要大家帮他算一算:我们教室要粉刷的面积是多少?请同学们明天作个答复。接着我让同学们讨论:要算出这个教室的粉刷面,需要找到那些数据,同学们准备怎么办?然后,让大家课后完成,可以合作。通过老师的点拨,激发了学生的自主探究和动手实践,学生兴趣高涨,积极动脑思考,动手实践,真正地把数学知识用到了生活当中。 总之,我们数学教师要引导学生善于思考生活中的数学,加强知识与实际联系;要做生活中的有心人,力争结合教学内容和学生的生活经验以及已有的知识,尽可能地创设一些生动有趣、贴近生活、富有生活气息的情景和练习,使学生切实体验到“生活离不开数学”,“人人身边有数学”,用数学可以解决生活中的实际问题,从而对数学产生亲切感,和浓厚的学习兴趣,增强学生对数学知识的应用意识,培养学生的自主创新能力和解决问题的能力。我对“数学教学生活化”的点滴尝试 数学中的测量在现实生活中的应用

基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文 摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更能够体现新课程标准精神。基于网络环境下的数学教学,有助于突破难点,真正实现分层教学和因材施教,从而提高教学效益。基于网络环境下的数学教学应处理好网络与学生的和谐关系,网络与教师的关系,教师与学生的关系。关键词:教学 数学 网络 新课标传统的教育模式的教学方法、教学手段和教学评价已不能适应社会发展和人们学习的需要,基于网络环境下的学科教学和课堂评价的出现和普及,极大的丰富了教学改革的内容,充分有效的利用了教学资源,基于网络环境下的课堂教学与评价把文本、图像、图形、视频、音频、动画整合在一起,并通过互联网进行处理、控制传播、为学生提供了最理想的学习环境。 一、基于网络环境下的数学教学的含义 基于网络环境下的数学课堂教学,根据新课程标准的教学内容和教学目标需要,继承传统教学的合理成分,打破传统教学模式,全天候,不间断,因材施教的新型教学方法,教学与评价的信息在互联网上传输与反馈,极大的优化了教师群体,极大的丰富了学生的知识能力。基于网络环境下的教学,可以共享教学资源,传递多媒体信息,适时反馈学生学习情况,刺激学生不同的感官,符合学生的学习认知规律,提高学生的学习兴趣,扩大了信息接受量,增大了课堂教学容量,同时又具有实时性,交互性,直观性的特点大大丰富了课堂教学模式,同时又满足了分层教学,因材施教,远程教学等社会需要,开创了教学的全新局面。 二、基于网络环境下数学教学与评价的应用 基于网络环境下数学教学与评价有两大优点: 1、能做到图文并茂,再现迅速,情境创设,感染力强,能突破时空限制,特别是基于.Net技术的交互式动态网页更能提高学生的多种感官的感知效能,发挥个体的最大潜能和创造力,加快学生对知识的理解、接受和记忆,也最能体现新课标的精神,也极大的满足社会全民教育,终身教育的要求。 2、同时全体老师又能通过网络共享教学资源,适时创新资源,使每一位老师都成为名师,使教学的方法水平永不落后。如在讲授函数这部分内容时,二次函数,幂函数,指数函数,对数函数,三角函数的图像以及图像变换是重点内容,关于函数图像的传统画法,是通过师生列表,描点,连线而得,这些工作烦,静止孤立,间断的点和线。教师要自制每一节的课件难度大,时间又有限,而基于网络环境下的数学教学,就可以充分利用网络版课件,进行网上学习,从而化静为动,化繁为简,减轻教师的体力负担,使教师有更多的时间进行创新研究,同时让学生在交互的动态的网络环境下学习,函数值随自变量变化而同步变化以及对应运动的轨迹,从而得到完整精确的函数图像,通过交互学习让学生充分体会同一函数不同参数与图像特征之间的联系,充分掌握函数的性质和抓住图像的平移、反射、压缩、拉伸和对称变换特征。若有疑问或好的见解,还可以通过网络进行远程的交流互动。通过多媒体,交互反馈,使学生深刻理解,不易遗忘。也培养了学生自我学习和终身学习的能力。网络环境下的数学教学,教师教得轻松,也有更多的时间进行个别指导,学生学得愉快。学得有趣,这样数学教学的效率也提高了。 二、基于网络环境下数学教学突破教学难点 高中数学中有一些知识需要通过抽象思维来解决问题,而这也正是高中数学的难点之一,基于网络环境下的教学可以化抽象为直观,有利于突破难点。 如“二次函数即:y=ax2+bx+c(a≠0)在[m,n]上的最值的探讨,学生对二次函数的开口,对称轴移而区间不动或图像不动而区间变化时函数的最值”不易理解,在网络环境下,学生通过对网络课件的阅读和对a,b,c,m,n的动态控制,能深刻理解数学知识的要点,加上在网上的即时测试和评价,更能有效的掌握它,不再感到难以理解。 三、基于网络环境下的数学教学与评价形式多样化,即时化。 传统的教学形式是教师讲,学生听,这样教学方式课堂容量有限,反馈方式单调,信息交流少,所有的学生步伐相同不利于因材施教,不利于培养学生现代的终身的学习能力,同时不能解放教师,让教师从事更有意义的教育工作。而网络环境下的教学可以同时满足不同用户不同要求,培养活学活用的能力,真正实现教学以学生为中心,教学面向全体通过互联交流互联互动进行分层教学、个别教学实现因材施教,体现新课标的要求, 四、基于网络环境下数学教学应处理好的关系 (1)网络与学生的关系 和谐是教学成功的关键。实践中发现基于网络环境下的学科教学,应加强对互联网海量信息的搜索,筛选,加工,创新。在选好教育资源后,教师要努力探索适时、适用问题,创设学习情境,营造和谐的环境。加上学生对网络应用知识基本掌握,达到网络与人的和谐统一。 (2)网络与教师的关系 基于网络环境下的学科教学优势空前,实践中发现,只有网络环境下的教学与教师灵活生动的讲解和创新的适时评价互相配合,相互促进,协调传递信息,最大限度地发挥网络和教师的优势。 (3)教师与学生的关系 教为主导,学为主体,这是在任何教学模式中都应遵循的原则,要体现学生的主体发展与教师的主导相互作用的关系。专题教学网站和网络教学资源库的形成,即将教师从繁杂的重复劳动中解放出来了,但教师的主导作用不是减弱了而是加强了,网络环境下的教学,对教师提出了更高的要求,教师必须挤出大量的时间学习Windows,Authorwear,3Dmax,Flash等方面的知识,还要学会搜索,筛选,创新信息的能力,甚至包括各种电教媒体的操作技能和技巧,只有这样,才能使自己在网络环境下的学科教学中获得自由,掌握主动,充分发挥网络教学的优势,提高我国的教育教学质量。

原文链接:几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具. 1. 角函数的计算和证明问题 在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握: (1)三角函数的单调性 当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论. 注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina. (2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出). 例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是( ) (A)锐角 (B)钝角 (C)直角 分析 对A分类,结合sinA和cosA的单调性用枚举法讨论. 解当A=90°时,sinA和cosA=1; 当45°<A<90°时sinA>,cosA>0, ∴sinA+cosA> 当A=45°时,sinA+cosA= 当0<A<45°时,sinA>0,cosA> ∴sinA+cosA> ∵1, 都大于. ∴淘汰(A)、(C),选(B). 例2(1982年上海初中数学竞赛题)ctg67°30′的值是( ) (A)-1 (B)2- (C)-1 (D) (E) 分析 构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.

相关百科

热门百科

首页
发表服务