首页

> 论文发表知识库

首页 论文发表知识库 问题

毕业论文数据怎么分析

发布时间:

毕业论文数据怎么分析

论文数据处理方法

论文数据处理方法,相信绝大部分的小伙伴都写过毕业论文吧,当然也会有正准备要写毕业论文的小伙伴要写毕业论文了,那么论文数据处理方法大家都知道是什么吗?接下来让我们一起来看看吧。

一是列表法。列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要满足以下几点:

1、表格设计要合理,以利于记录、检查、运算和分析。

2、表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。

3、表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。

此外,表格要加上必要的说明。通常情况下,实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。

二是作图法。作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。作图法的基本规则是:

1、根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。

2、坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。

3、描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的.标记符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。

4、标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”联接。

实验数据的处理离不开绘制成表,列表法和作图法还是有一定区别的。科研工作者在处理数据时,要注意根据实验数据的特点,选择是用列表法还是作图法。

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

怎样对论文进行分析

怎样对论文进行分析,有时候我们在写论文的时候,会被老师要求先去分析论文的,可是对于从来都没有分析过论文的学生来说,是一件难事的,我和大家一起来看看怎样对论文进行分析的相关资料。

01、 确定研究目标

确定研究目标,看似是一个“伪命题”,我论文的研究方向都定好了,研究目标不就显而易见了嘛。

研究方向只是一个宽泛的概念,具体落实到分析层面,具体要研究什么?得到什么结果?要用什么方法?很多时候我们并没有想清楚。

这里建议大家在开始分析前,先对着自己收集来的数据和问题,列出准备研究的内容。

还记得高中每次考试前语文老师一定会提醒:写作文的时候拿到题目先不要动笔!看清题目,想好了列出提纲再动笔!

数据分析也是如此,分析前制定一个分析框架,可以帮助我们快速捋清思路,不至于漫无目的地乱分析,同时也能节省很多时间。

当然,对于初学者来说,制定一个完整的分析框架比较困难,建议大家多参考一些领域内的专业文献,看看其他人是如何设计分析的。

SPSSAU也提供几类常见的分析框架,研究者可以结合自己的问卷类型进行选择。

SPSSAU-量表型问卷

SPSSAU-非量表型问卷

两个注意点:

① 框架的核心不要偏离研究主题,所做的任何分析都是为研究主题服务,因此一定注意避免出现与主线不相干的内容。

②在这一步中,可以先不去管具体要用哪种分析方法,如何分析。更重要的是,先搞清想分析什么。

比如,问卷调查里,一开始的几道题基本都是对研究对象个人信息的收集。

第一,可对研究对象的性别、年龄、学历等个人信息进行简单统计。

第二,可用个人信息与核心研究项联系到一起,分析不同背景的人群对核心研究项的态度或行为是否有差异。

02、 判断数据类型

有了基本框架后,就要进入到具体的分析方法选择阶段。

判断数据类型是第一步,在SPSSAU之前的文章中,对此都有详细的说明,这里不再重复。

03、 选择分析方法

在完成上面的步骤后,基本上已经完成对数据部分的了解,下面就需要结合数据类型,选择对应的分析方法。

对单个题的统计分析比较简单,主要困扰大家的是对于两个题或多个题的关系研究如何选出正确的分析方法。

变量的关系最常见有:相关关系、影响关系、差异关系,及其他关系。

SPSSAU的建议是:先用一句话描述研究内容,话里面拆开成X和Y:然后结合X与Y的数据类型进行选择。

根据X和Y的'个数,以及方法功能,分成几个表格汇总如下:

注:单变量意为分析只涉及一个分析项X(变量)。

注:分析涉及1个自变量X和一个因变量Y。

每种方法的使用场景不是固定不变的,这里的只提供最常用的说明,帮助初学者快速了解,更深入的方法介绍请参考SPSSAU帮助手册说明,以及SPSSAU视频教程。

确定方法之后,可使用spssau系统进行分析,分析界面也是区分了X、Y。将标题放置到对应位置即可分析得出结果。

总结

最后我们再回顾一遍整个方法选择的流程:

选择分析框架→判断变量的数据类型→表格查找分析方法→开始分析

同时要提醒一点,在分析前要有意识的剔除无效数据(如一个人重复填写,明显的异常值等),以保证结果的准确性。

1、什么是论文分析

我们在分析论文前,首先要了解分析的含义,分析是分解文学作品,独立解决每个观点。当我们分析一篇论文时,主要目标是要确保用户在没有太多争议的情况下来获得主要观点。在分析论文时展现批判性的思维能力,在分析中必须要对某一些事情作出判断,然后得出结论,只有这样在完成论文后才能说服用户已经读过该篇论文。

2、分析论文的要点

总结论文的主要内容,刚开始写论文分析时,我们要对论文中的要点进行一个总结,让大家能够理解论文的全部内容。摘要是作为论文大纲的概述,但不是主要的分析点,只是用来指导用户简要理解论文的内容。作者在论文中提出的主要论点以及论据,这才是分析的开始,我们需要通过分析作品来给出证据来证明论文内容,还应该找出缺陷。因为只有越有说服力的论文内容,这样才更加突出。论文查重系统怎么进行选择?

3、论文分析格式

最后我们需要了解,用户要提出适合他们的语气,必须确保了解用户群体。毕业论文主要的用户是导师,所以必须很正式。在上课时,我们可以分析一篇论文,需要向了解用户群体将有助于了解如何分析论文。在写论文之前,那么首先的一个步骤就是要阅读分析论文,应该多次阅读,然后积累我们的知识,如果对论文的理解不够的话,那么就无法对论文进行分析。所以做好论文前的准备工作也是非常重要的。

数据分析毕业论文怎么写

A、需求分析阶段:综合各个用户的应用需求。B、在概念设计阶段:用E-R图来描述。C、在逻辑设计阶段:将E-R图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式。然后根据用户处理的要求,安全性的考虑,在基本表的基础上再建立必要的视图(VIEW)形成数据的外模式。D、在物理设计阶段:根据DBMS特点和处理的需要,进行物理存储安排,设计索引,形成数据库内模式。一展开就够论文字数了

基本信息描述

统计描述一般指的是均数、标准差等

化学毕业论文怎么分析数据

1、标准偏差(SD 、Standard Deviation) 一种量度数据分布的分散程度的标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。 标准偏差公式:S = Sqr[∑(xn-x平均)^2 /(n-1)] Sqr……开平方,^……平方 2、相对标准偏差(RSD、Relative Standard Deviation) 相对标准偏差就是指:标准偏差与测量结果算术平均值的比值,用公式表示如下 RSD=SD/X,其中S为标准偏差,X为测量平均值 3、加标回收率 加标回收实验是化学分析中常用的实验方法,也是重要的质控手段,回收率是判定分析结果准确度的量化指标。加标实验及回收率的计算并不复杂,加标方式可根据不同项目、不同分析方法和不同的需要灵活掌握,回收率的计算也各不相同,因此文献[1 ]只给出回收率(记作R) 计算的定义公式: R = 加标试样测定值 - 试样测定值/加标量×100 %分析化学 呵呵,具体加标回收率的操作 由于文字太多 就不贴出来了,再说也不知道对你到底是否有用。 如果有用的话,可以去下面的网址查看具体操作 列表法 将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。 本课程中的许多实验已列出数据表格可供参考,有一些实验的数据表格需要自己设计,表1.7—1是一个数据表格的实例,供参考。 表1.7—1 数据表格实例 杨氏模量实验增减砝码时,相应的镜尺读数 2 作图法 作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。 要特别注意的是,实验作图不是示意图,而是用图来表达实验中得到的物理量间的关系,同 时还要反映出测量的准确程度,所以必须满足一定的作图要求。 1)作图要求 (1)作图必须用坐标纸。按需要可以选用毫米方格纸、半对数坐标纸、对数坐标纸或极坐标纸等。 (2)选坐标轴。以横轴代表自变量,纵轴代表因变量,在轴的中部注明物理量的名称符号及其单位,单位加括号。 (3)确定坐标分度。坐标分度要保证图上观测点的坐标读数的有效数字位数与实验数据的有效数字位数相同。例如,对于直接测量的物理量,轴上最小格的标度可与测量仪器的最小刻度相同。两轴的交点不一定从零开始,一般可取比数据最小值再小一些的整数开始标值,要尽量使图线占据图纸的大部分,不偏于一角或一边。对每个坐标轴,在相隔一定距离下用整齐的数字注明分度(参阅图1.7—1)。 (4)描点和连曲线。根据实验数据用削尖的硬铅笔在图上描点,点子可用“+”、“×”、“⊙”等符号表示,符号在图上的大小应与该两物理量的不确定度大小相当。点子要清晰,不能用图线盖过点子。连线时要纵观所有数据点的变化趋势,用曲线板连出光滑而细的曲线(如系直线可用直尺),连线不能通过的偏差较大的那些观测点,应均匀地分布于图线的两侧。 (5)写图名和图注。在图纸的上部空旷处写出图名和实验条件等。此外,还有一种校正图线,例如用准确度级别高的电表校准低级别的电表。这种图要附在被校正的仪表上作为示值的修正。作校正图除连线方法与上述作图要求不同外,其余均同。校正图的相邻数据点间用直线连接,全图成为不光滑的折线(见图1.7—1)。这是因为不知两个校正点之间的变化关系而用线性插入法作的近似处理。 图1.7—1 校准曲线图示例 2)作图举例 表1.7—2所列数据是测量约利秤弹簧伸长与受力的关系。测量弹簧长度使用带有游标的米尺。加外力使用的是5个200mg的4级砝码,其误差限很小,对测量结果的不确定度的影响可以忽略。 表1.7—2 弹簧伸长与受力关系数据表 作图示例见图1.7—2。 图1.7—2 作图示例 如果所作图线是一条直线,可以按以下方法求直线的斜率和截距。 直线方程为y=ax+b 其斜率(1.7—1) 在所作直线上选取相距较远的两点P1、P2,从坐标轴上读取其坐标值P1(X1,Y1)和P2(X2,Y2)代入式(1.7—1),可求得斜率a。P1、P2两点一般不取原来测量的数据点。为了便于计算,X1、X2两数值可选取整数。在图上标出选取的P1、P2点及其坐标。斜率的有效数字位数要按有效数字运算规则确定。 图1.7—1例中劲度系数 截距b为x=0时的y值,可直接用图线求出。但有的图线x轴的原点不在图上,用延长图线的办法,如果延得太长,稍有偏斜会导致b有很大误差。这时,可采取从图线上再找一点P3(X3,Y3),利用关系式 求得截距b。 用作图法表述物理量间的函数关系直观、简便,这是它的最大优点。但是利用图线确定函数关系中的参数(如直线的斜率和截距)仅仅是一种粗略的数据处理方法。这是由于:①作图法受图纸大小的限制,一般只能有3、4位有效数字;②图纸本身的分格准确程度不高;③在图纸上连线时有相当大的主观任意性。因而用作图法求取的参数,不可避免地会在测量不确定度基础上增加数据处理过程引起的不确定度。一般情况下,用作图法求取的参数,只用有效数字粗略地表达其准确度就可以了。如果需要确定参数测量结果的不确定度,最好采用直接由数据点去计算的方法(如最小二乘法等)求得。 3)曲线改直 按物理量的关系作出曲线虽然直观,但是作图和从图线中获得有关参数却比较困难。许多函数形式可以经过适当变换成为线性关系,即把曲线改成直线,这样既便于作图,也便于求得有关参数。举例如下。 (1)y=axb,a、b为常数,则lgy=lga+blgx,则lgy~lgx直线的斜率为b,截距为lga。 (2)y=ae-bx,a、b为常数,则lgy=lga-bx/,lgy~x直线的斜率为-b/,截距为lga。 (3)y=abx,a、b为常数,则lgy=lga+(lgb)x,lgy~x直线的斜率为lgb,截距为lga。 (4)y2=2px,p为常数,改变后,y=±√2px,则y为√x的线性函数。 (5)1/y=a/x+b,a、b为常数,则1/y~1/x直线的斜率为a,截距为b。 4)用对数坐标纸作图 在某些情况下,变量变化范围很大,或者两物理量之间的关系为指数函数或幂函数时,利用对数坐标纸作图往往更为方便。对数坐标纸的分度与所表示量的对数值成正比,其每一循环(1,2,3,…,9,1)对应于一个数量级,简称级。用对数坐标纸作图时,可根据数据的覆盖范围选取不同的级。全对数坐标纸两个坐标轴都以对数间距分度;半对数坐标纸仅一个坐标以对数间距分度,而另一坐标仍以毫米均匀分度。 曲线改直例(1)可用全对数坐标纸作图。如用实验研究弹簧振子周期T与振子质量m的关系。令T=Amα,A和α待定,测得振子质量m与振动周期T的数据后,就可以用全对数坐标纸作图,还可从图中确定A与α的值。 图1.7—2是在半对数坐标纸上作的半导体热敏电阻的R~1/T关系图(半导体热敏电阻电阻值随温度变化数据见表1.7—3)。因该元件的电阻温度关系为,在普通坐标纸作图将是一条指数曲线,而在半对数纸上作图即为一条直线。 图1.7—3 半对数坐标纸作图示例 表1.7—3 半导体热敏电阻电阻值随温度变化数据 3 最小二乘法 用作图法处理实验数据获得直线的斜率和截距等重要参数虽然简单明了,但是存在相当大的主观成分,结果也往往因人而异。最小二乘法则是一种比较精确的直线拟合方法。它的依据是:对于等精度测量若存在一条最佳拟合直线,那么各测量值与这条直线上的对应点值之差的平方和应为极小。 这里只考虑最简单的直线拟合问题。假定每个数据点的测量都是等精度的,而且x的测量误差很小,可忽略,只有y的测量存在测量误差。 已知所观测的一组数据点(xi,yi)(i=1,2,…,n),变量x与y有y=ax+b ,并且xi的测量误差远小于yi的测量误差。根据最小二乘原理估计a和b的值,应满足测量值yi和直线上的对应点值(axi+b)之差的平方和为最小,即 (1.7—3) 确定a,b使式(1.7—3)成立的必要条件是:对a和b的一阶偏导数等于零,即 (1.7—4) 于是有 (1.7—5) 整理后写成 (1.7—6) 式中: 联合求解,得 (1.7—7) 要使式(1.7—3)取极小值还需满足充分条件,即其二阶导数大于零,这里不再证明。 衡量数据点在拟合直线两侧的离散程度,仍用标准偏差表示: (1.7—8) Sy表示以拟合直线y=ax+b求得的y值的标准不确定度的A类分量值。根据不确定度传递关系,可求得斜率a和截距b的标准不确定度A类分量: (1.7—8) 必须指出,任何一组观测值(xi,yi)都可以通过式(1.7—7)得到系数a、b,也就是说x和y之间存在线性函数关系是预先设定好的,因此这种关系是否可靠需要验证。可以通过相关系数γ来描述两个变量x、y的线性关系的明显程度。 (1.7—9) γ是绝对值≤1的数,|γ|越大,说明两个变量的线性关系越明显。若|γ|≈1,说明xi与yi间线性相关强烈;|γ|≈0,说明实验数据点分散,xi与yi无线性关系;γ>0(或γ<0)表示y随x增加而增加(或y随x增加而减小)。 4 逐差法 对于自变量等间距变化的数据组,常采用逐差法处理一元线性拟合问题。逐差法与作图法相比,它不像作图法拟合直线具有较大的随意性,比最小二乘法计算简单而结果相近,在物理实验中是常用的数据处理方法。设实验数据组(xi,yi)具有线性关系 y=ax+b xi按等间距变化,并且其测量误差远小于y的测量误差。为了进行逐差法拟合直线,把数据分成两组: 进行等间隔逐差(隔n项): 再利用y=ax+b的关系求得一组斜率值: a1=(yn+1-y1)/(xn+1-x1) a2=(yn+2-y2)/(xn+2-x2) … ai=(yn+i-yi)/(xn+i-xi) … an=(y2n-yn)/(x2n-xn) 取平均值 (1.7—10) 因为自变量xi等间距变化,且其测量误差可以忽略,则有 (1.7—11) 式中:x为自变量的变化间距;n为逐差间隔数,即为测量次数的1/2。 a的A类不确定度分量 (1.7—12) 由此可见,逐差法处理数据是利用等间隔的数据点连了n条直线,分别求出每条直线的斜率后,再取平均值,得到拟合直线的斜率。

如何利用数据分析工具,对自己的文章进行诊断

问题一:怎样进行论文数据分析 请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么) 研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况) 数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有 *** 参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦 问题二:论文结果分析怎么写 结果是你实验过程中记录的各项变化和数据。列出图、表更直观一些。并且要做一下适当的说明。 分析是将这些结果说明了什么写出,即结论,同时是否与你的预期一致,还有你的实验结果有什么意义。 如果结果与预期不符,说明一下原因或可能的原因。 问题三:有数据了怎么写数据分析的论文 20分 数据了,写数据,分析的 问题四:论文的数据分析怎么写 你可以把数据发给我看看,我帮你看下 问题五:关于毕业论文的数据分析 我觉得你先要明白想用这些数据得出怎么样的结果 然后我就知道怎么样进行数据分析 数据分析只是方式,前提是你要明白自己的目的 问题六:论文中数据显著分析,怎么做是啊a,b,c 论文不难写的,不要抄袭,有自己的观点就行,不会写可以问我的。论文常指用来进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。 问题七:急!!毕业论文实证分析中的样本选取和数据来源怎么写啊 20分 数据可以去公司里面,年鉴等地方找 不要相信其他人说的给你,什么没问题,都你的 我经常帮别人做数据分析的 问题八:毕业论文的假设检验进行数据分析后 有些没通过 影响大吗 最后的结论怎么写 要写哪些内容 25分 做的是什么假设检验:方差分析、卡方检验、秩和检验还是直线相关与回归 问题九:这个论文数据分析该找哪些数据,该怎么分析,求大神指导。 这个框架 没有办法判断 你需要把模型的设定 先做出来 才可能确定数据选择和收集 问题十:工程力学论文怎么写,其中的数据分析如何 1,定义:应用于工程实际的各门力学学科的总称。常指以可变形固体为研究对象的固体力学。广义的工程力学还包括水力学、岩石力学、土力学等。工程力学是研究有关物质宏观运动规律,及其应用的科学。 2,一般工程力学包括结构力学,理论力学,材料力学即三大力学。它们的关系是包括与被包括的关系。包括实验力学,结构检验,结构试验分析。模型试验分部分模型和整体模型试验。结构的现场测试包括结构构件的试验及整体结构的试验。实验研究是验证和发展理论分析和计算方法的主要手段。

论文的数据分析怎么写如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

毕业论文的数据分析怎么弄

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

一、学习背景

本科学了四年文科专业,除了形式逻辑外几乎没再接触过与理科搭边的东西。想借着毕业论文学一点数据分析的东西,知网上找了几篇相关文献,以为数据分析很简单,于是跟导师定了题开始着手做。

二、问卷编制+数据分析类论文框架

(一)低阶版:非专业,要求低,不需要用spss,调研规模200+即可。

如果时间相对紧张,不想在毕业论文上花过多时间,建议采用低阶版即可,字数也绝对够。知网上“问卷编制+数据分析”类的文章除少部分期刊论文,大多数都是硕博论文,看看文献综述即可,不要用他们的数据分析框架,这是高阶版需要考虑的。

引言,研究背景写完,就写研究综述。把需要研究的变量列出来分别写研究综述,记得加上一些国外的研究,引用一些外文文献。接下来,简单地说一下自己如何编制的问卷,如何发放的问卷(线上/线下),回收问卷的情况。然后写样本情况,可以列一个大表格,内容包括哪类人有多少个,占百分之多少。接下来就是对数据结果的分析,用例如“A越...,B就越...”、“C的总体水平较低/高”、“D的....比E的....水平要高”的句式,找出一些规律即可。最后就可以写讨论、结论、总结对策建议了。

(二)高阶版:比较专业,要求高,不确定因素大(比如数据可能真的拟合不了模型),需要用spss statistics 和 amos。

采用高阶版不仅对人有要求,对数据也有要求。如果你没有把握自己能拿到样本较大的数据,也没有把握帮你填问卷的人是认真的,还是谨慎尝试为好,免得前面都做得很好,最后卡在模型拟合或者相关分析之类。大多数本科毕业论文的同学都是用问卷星,让小伙伴、家长等帮扩,这个样本量可能不会很大,而且如果题目比较多,不排除会出现开始东一个西一个乱填的情况。

以上内容就是青藤小编关于本科毕业论文做问卷和数据分析应该怎么着手的相关分享,希望对小伙伴们有所帮助,想要了解更多毕业论文相关内容,欢迎大家及时在本平台进行查看哦!

毕业论文数据分析怎么描述

数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

问题一:怎样进行论文数据分析 请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么) 研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况) 数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有 *** 参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦 问题二:论文结果分析怎么写 结果是你实验过程中记录的各项变化和数据。列出图、表更直观一些。并且要做一下适当的说明。 分析是将这些结果说明了什么写出,即结论,同时是否与你的预期一致,还有你的实验结果有什么意义。 如果结果与预期不符,说明一下原因或可能的原因。 问题三:有数据了怎么写数据分析的论文 20分 数据了,写数据,分析的 问题四:论文的数据分析怎么写 你可以把数据发给我看看,我帮你看下 问题五:关于毕业论文的数据分析 我觉得你先要明白想用这些数据得出怎么样的结果 然后我就知道怎么样进行数据分析 数据分析只是方式,前提是你要明白自己的目的 问题六:论文中数据显著分析,怎么做是啊a,b,c 论文不难写的,不要抄袭,有自己的观点就行,不会写可以问我的。论文常指用来进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。 问题七:急!!毕业论文实证分析中的样本选取和数据来源怎么写啊 20分 数据可以去公司里面,年鉴等地方找 不要相信其他人说的给你,什么没问题,都你的 我经常帮别人做数据分析的 问题八:毕业论文的假设检验进行数据分析后 有些没通过 影响大吗 最后的结论怎么写 要写哪些内容 25分 做的是什么假设检验:方差分析、卡方检验、秩和检验还是直线相关与回归 问题九:这个论文数据分析该找哪些数据,该怎么分析,求大神指导。 这个框架 没有办法判断 你需要把模型的设定 先做出来 才可能确定数据选择和收集 问题十:工程力学论文怎么写,其中的数据分析如何 1,定义:应用于工程实际的各门力学学科的总称。常指以可变形固体为研究对象的固体力学。广义的工程力学还包括水力学、岩石力学、土力学等。工程力学是研究有关物质宏观运动规律,及其应用的科学。 2,一般工程力学包括结构力学,理论力学,材料力学即三大力学。它们的关系是包括与被包括的关系。包括实验力学,结构检验,结构试验分析。模型试验分部分模型和整体模型试验。结构的现场测试包括结构构件的试验及整体结构的试验。实验研究是验证和发展理论分析和计算方法的主要手段。

基本信息描述

统计描述一般指的是均数、标准差等

相关百科

热门百科

首页
发表服务